
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENERGY EFFICIENT LANGUAGE MODELS THROUGH
DYNAMIC SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer models, despite their impressive performance, often face practical
limitations due to their high computational requirements driven largely by the
memory-bound KV-cache. State-space Models (SSMs) attempt to address this
issue with linear attention, easing memory pressure and improving compute and
memory efficiency. However, their efficiency is instead limited by dense linear
layers with inherently low arithmetic intensity, again leading to a memory-bound
landscape, posing challenges for deployment on hardware-constrained edge devices
where these models might otherwise excel. In this work, we present a technique
to induce high activation sparsity in quantized SSMs with minimal performance
degradation, both for smaller-scale models suitable for edge-deployment and larger
billion scale models. We nullify activations within a trainable threshold (±∆),
which preserves outliers that are crucial for high performance. With only 1/4
of the effective MAC (Multiply-Accumulate) operations of a dense model, our
sparse MatMul-free models maintain competitive performance compared to the
dense base model. As GPUs offer limited support for unstructured sparsity during
inference, we target a neuromorphic hardware platform that efficiently supports
this dynamic and unstructured activation sparsity on a silicon level. Based on
previous deployment results of a dense model, our sparsified models can increase
throughput by 37× while decreasing power consumption by 16× compared to an
edge GPU-based deployment of a comparable transformer-based LLM. Compared
to a baseline dense model on the same hardware, we show improvements of 5.4×
in both metrics, paving the way for future explorations of highly efficient language
models leveraging dynamic activation sparsity.

1 INTRODUCTION

The growing scale of Large Language Models (LLMs) presents significant economic and envi-
ronmental challenges for inference (Fernandez et al., 2025), driven primarily by the self-attention
mechanism whose cost scales quadratically with sequence length. This bottleneck makes long-context
applications prohibitively expensive in resource-constrained settings. State space models (SSMs)
have emerged as a powerful alternative, replacing quadratic attention with a linear-time recurrent
mechanism and achieving competitive results across diverse domains (Gu & Dao, 2024; Popov et al.,
2025; Smith et al., 2023; Wang et al., 2025; Voelker et al., 2019). Nevertheless, the billions of
floating-point operations (FLOPs) required by SSMs still impede their deployment on edge devices,
where low latency and energy efficiency are critical.

Previous model compression techniques have focused on reducing either the number of weights
or activations, primarily through pruning. Weight pruning permanently removes parameters from
the model, while activation pruning targets the intermediate outputs during inference. Pruning can
be unstructured, removing individual weights or activations, or structured, which eliminates entire
channels or blocks. While structured pruning is easier to exploit on modern specialized GPUs,
the lack of fine-grain control often leads to lower model performance compared to unstructured
pruning (Cheng et al., 2024). Theoretically, unstructured activation sparsity is promising because
zero-valued activations can eliminate entire rows from memory access and subsequent Matrix-
Vector Multiplication (MVM) operations. However, realizing benefits from unstructured sparsity is
challenging for four primary reasons: 1) In long sequences, the self-attention mechanism becomes
the primary memory bottleneck, diminishing any performance gains from sparsity in the dense

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

layers; 2) Multi-batch inference requires accessing a majority of the model’s parameters unless the
sparsity patterns across different input samples are closely aligned; 3) Current methods for inducing
unstructured sparsity typically achieve only modest levels model-wide or else significantly degrade
model performance, and 4) GPU memory interfaces (HBM) are optimized for contiguous data access
and are ill-suited for the fine-grained, irregular memory patterns that result from unstructured sparsity.

SSMs inherently address the first challenge above by replacing the quadratic self-attention mechanism,
thereby removing its associated memory bottleneck. In this work, we tackle the remaining issues by
introducing a method to induce high activation sparsity in quantized SSMs with minimal performance
degradation. We achieve this by injecting a sparsity-inducing pre-activation gate before each layer
that in the forward pass, pushes activations within a learnable range of ±∆towards zero, while
in the backward pass, it maintains a proper gradient flow for these near-zero activations, ensuring
stable training. Crucially, the gate preserves high-magnitude activations (outliers), both positive
and negative, which are known to be vital for LLM performance Xiao et al. (2023); Raman et al.
(2025). This allows the model to maintain expressiveness without greatly disrupting the original
activation distribution. This approach yields model-wide activation sparsity up to 72% with negligible
impact on performance or additional training time. When targeting a neuromorphic accelerator
designed to leverage such dynamic, unstructured sparsity, the benefits become substantial. We project
a 24× reduction in latency and a 10× reduction in energy-per-token compared to a similarly sized
transformer model on an edge GPU. Compared to a dense version of the same SSM on the same
neuromorphic hardware, our method shows a 4.8× improvement in both metrics.

2 RELATED WORK

Smoother non-saturating activations, such as GELU (Hendrycks & Gimpel, 2023) and SiLU/Swish
(Ramachandran et al., 2017), have largely replaced ReLU due to improved optimization stability
and downstream performance (Dubey et al., 2022). Unlike ReLU, these functions do not naturally
produce zero activations. Recent studies in LLMs, however, show that switching back to ReLU can
be done with minimal performance loss (Mirzadeh et al., 2023), with new variants like ReLU² (Zhang
et al., 2024) and dReLU (Song et al., 2024) that aim to restore or enhance sparsity while retaining
competitive performance.

TurboSparse (Song et al., 2024) focuses on sparsity in the feed-forward network (FFN) by introducing
the dReLU activation function. The Swish activation in the SwiGLU block is replaced with ReLU,
and another ReLU is added to the Up projection. By continued pre-training of these modified models,
they are able to recover most of the performance of the dense baseline on benchmark tasks. The
sparsity they achieve, however, is localized. Only the inputs to the Down projection are zeroed, while
most other projections remain dense. As a result, even though sparsities above 90% are reported in
parts of the FFN, the overall proportion of active parameters across the model is much lower.

Other approaches have tried to achieve more model-level sparsity rather than only within the FFN.
Q-Sparse (Wang et al., 2024) does this by applying top-K selection to activations and using a
straight-through estimator to preserve gradients, combined with squared ReLU to promote sparsity.
However, selecting the K largest magnitude activation requires sorting activations on a per-token basis,
potentially introducing significant overheads, especially on constrained edge-hardware. Addition-
ally, it requires synchronization across channels, complicating implementation in compute-memory
integrated platforms (Pierro et al., 2025). TEAL (Liu et al., 2025) takes a different direction by
introducing a layer-wise sparsification strategy. It computes token importance scores and selectively
keeps only the most relevant tokens at each layer, allowing each layer to tolerate different levels of
sparsity. However, this approach is only applied for the decode phase of inference, leaving the pre-fill
phase fully dense and limiting potential end-to-end efficiency improvements.

3 BACKGROUND

3.1 ACTIVATION SPARSITY IN NEURAL NETWORKS

In an MVM operation, a zero-valued activation implies that all multiply-accumulate (MAC) operations
involving its corresponding column of the weight matrix contribute nothing to the output. As shown
in Fig. 5, this enables structured skipping: entire columns of weights associated with zero activations

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

can be bypassed, eliminating both the MAC operations and the need to fetch those weights from
memory. Since MVMs are often memory-bound, where performance is constrained more by the
cost of moving data than by raw compute throughput, reducing memory accesses can directly yield
substantial energy and latency gains (Chen et al., 2019). By avoiding both the computations and
memory accesses for weights corresponding to zero-valued activations, we can save bandwidth,
reduce cache pressure, improve latency, and lower overall energy consumption.

 ⬤ ⬤ ⊛ =

xW

=

Dense Sparse & Compressed

 ⊛ ⊛

Figure 1: Illustration of activation sparsity in a matrix-vector multiplication, where zero-valued
activations allow skipping associated weight accesses of entire rows in the weight matrix.

If ρ denotes the fraction of zero activations, then in the ideal case, both the memory reads and the
number of computations scale proportionally with (1 − ρ). This means that the ideal throughput
of hardware that can support sparsity is simply the dense throughput over the share of non-zero
activations, i.e., fsparse = fdense/(1− ρ).

GPUs tend to struggle to exploit activation sparsity in inference because their architecture is built
for dense, highly parallel computation with regular memory access. Unstructured sparse activations
break these patterns: nonzero elements are irregularly distributed, requiring indexing and indirection
that hurt coalesced memory access and reduce arithmetic efficiency. Since GPU threads execute
in lockstep, skipping zeros directly is difficult without wasting compute lanes. To take advantage
of sparsity, weights would need to be stored in column-major order, so that all weights linked to a
nonzero activation can be fetched contiguously; however, GPUs and their libraries are optimized for
dense, row-major, or block layouts, and reordering weights adds overhead. While sparse kernels can
exploit activation sparsity to some extent (Liu et al., 2023), real-world speedups on GPUs are often
much lower due to overheads from irregular memory access of dynamic zero-activation patterns and
the limited ability of standard hardware and software to take full advantage of unstructured sparsity
in a non-training setting, where the available hardware cannot be saturated with massive batch sizes.

3.2 LEVERAGING ACTIVATION SPARSITY IN HARDWARE ACCELERATORS

Activation sparsity has been extensively investigated in ASIC hardware due to the potential gains over
GPUs, whose more regular and highly parallelized architecture cannot fully exploit it (Shi et al., 2025).
Accelerators such as Eyeriss v2 (Chen et al., 2018) and SCNN (Keckler et al., 2017) primarily target
convolutional networks, leveraging sparsity to reduce power consumption and increase inference
throughput. More recently, neuromorphic computing has renewed interest in hardware optimized
for sparse, event-driven activity (Kim et al., 2023; Sadeghi et al., 2025; Liu et al., 2022), although
deployment of large models on the multi-million to billion-parameter scale required for language
modeling remains limited in academic chips.

Loihi 2 (Intel Corporation, 2021) represents a state-of-the-art implementation of this approach, de-
signed for sparse, event-based neural networks. By focusing on local event-driven computation, Loihi
2 efficiently leverages both sparse weight matrices and dynamically unstructured sparse activations
using fixed-point arithmetic. In multi-chip setups, the system further leverages sparse activations
through an event-driven inter chip and inter core communicating, minimizing communication over-
head in by transmitting only non-zero packages.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHODS

4.1 MODEL SELECTION

To meet the demands of compact models under constrained power budgets and the need for low-
latency, real-time inference at the edge, various linear-attention-based quantized LLMs have been
proposed (Abreu et al., 2024; 2025; Chiang et al., 2025). The MatMul-Free Language Model
(MMFreeLM) (Zhu et al., 2025) pushes quantization to an extreme with ternary weights (−1, 0,+1),
together with low-precision 8-bit fixed-point activations, transforming dense layers into BitLinear
layers that reduce multiplications to simple additions and subtractions. Based on the Gated Recurrent
Unit (GRU) proposed by Cho et al. (2014), MMFreeLM uses a MMFree-Linear-GRU (MLGRU)
with ternary weights, in place of the traditional self-attention mechanism in transformers. With these
features combined, the MMFreeLM model has proven to be well-suited for energy-efficient inference
across GPUs, edge-GPU, and neuromorphic hardware (Zhu et al., 2025; Abreu et al., 2025).

4.2 MOTIVATING STUDY

When extending sparsity beyond dense FFN layers to the full model, care must be taken since
different linear projections vary in their role and sensitivity to pruning/sparsification (Shao et al.,
2024). In SSMs, components closely tied to their linear attention, such as projections tied to the
hidden state transition h[t] → h[t+ 1], may be especially sensitive due to their stateful nature. To
study projection-wise and layer-wise sensitivity, we injected a forced sparsity into a pre-trained
MMFreeLM using top-k selection of the activations with the largest magnitude, applied either per
projection type (uniform across layers) or per layer (uniform across projections). Results, shown
in Fig. 2, normalize loss increases by each component’s share of FLOPs, highlighting where in the
network inactive neurons provide the best tradeoff between active parameters and performance.

(a) Projection-wise sensitivity to forced sparsity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

Fo
rc

ed
 a

ct
iv

at
io

n
sp

ar
sit

y
(%

)

0.1 0.0 0.0 -0.1 0.0 0.1 0.1 0.0 -0.1 -0.1 0.1 0.0 0.0 -0.1 0.0 0.1 0.0 0.1 0.1 -0.1 0.1 -0.1 0.0 0.0

0.0 -0.1 0.1 0.0 -0.1 0.1 0.1 0.0 0.1 -0.1 0.1 0.1 0.0 -0.1 0.1 0.1 0.1 0.0 0.1 -0.1 0.1 0.1 0.1 0.1

0.1 0.0 0.0 0.1 -0.1 0.1 0.1 0.1 0.1 0.0 0.1 -0.1 0.0 -0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 -0.1 0.1 0.1

0.1 0.0 0.0 0.0 0.1 0.0 -0.1 0.1 0.2 0.1 0.1 0.1 0.1 -0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.2 0.4

0.2 0.1 0.0 -0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.3 0.3 0.1 0.3 0.2 0.1 0.2 0.1 0.1 0.4 0.6

0.6 0.1 0.1 0.1 0.2 0.1 0.3 0.3 0.3 0.5 0.3 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.2 0.4 0.5 0.4 0.5 1.5

1.4 0.3 0.1 0.2 0.3 0.5 0.6 0.6 0.4 0.8 0.6 1.0 0.6 0.7 0.9 1.0 0.8 0.6 0.5 0.5 0.8 0.6 1.1 3.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e

Lo
ss

 In
cr

ea
se

 (%
)

(b) Layer-wise sensitivity to forced sparsity.

Figure 2: Sensitivity analysis to different degrees of forced top-k sparsity in the MMFreeLM, showing
the increase in loss over the dense base-model when varying levels of sparsity are enforced. a) on a
per-projection type basis and b) on a per-layer basis

Projection-wise analysis: The projection wise analysis shows that along with the very sensitive LM
head, the projections directly involved in the next state transition (h[t] → h[t+ 1]), I and F , are very
sensitive to enforced sparsity, whereas projections involved in the output calculation based on the
current state and input x[t] are less sensitive. The analysis further highlights the resilience of the
large down-projection in the FFN to forced sparsity, which again aligns well with prior sparsification
efforts that have targeted this projection with great success Zhang et al. (2024); Song et al. (2024).
Overall, these findings align well with prior work focusing on weight pruning: in transformers,
pruning attention heads leads to larger performance drops than pruning feed-forward layers (Michel
et al., 2019; Voita et al., 2019), and in SSMs such as Mamba, stateful steps are much less tolerant of
high sparsity than input projections or dense layers (Dao et al., 2025).

Layer-wise analysis: The layer-wise analysis, contrary to previous sensitivity studies on transformer-
based models by Shao et al. (2024), shows that there are peaks in the sensitivity of the very first
and very last layers, as well as the middle layers. This observation aligns with recent studies on

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

transformer architectures, which suggest that middle layers often possess greater redundancy and
robustness compared to the more critical early and late layers. For example, (Ikeda et al., 2025)
conducted a layer-wise importance analysis of feed-forward networks in transformer-based language
models, showing that concentrating model capacity in the middle layers while reducing or removing
components in the early and late layers improves downstream task performance.

4.3 PROPOSED SPARSIFICATION METHOD

Building on the sensitivity analysis in Section 4.2 and prior work on activation sparsity in LLMs,
which showed that activations often follow Gaussian or Laplacian distributions with near-zero mean
(Liu et al., 2025), we propose a sparsity-inducing pre-activation applied to the input of every linear
projection. Combined with an L0 surrogate loss penalty, this mechanism encourages activations to
collapse toward zero, while accounting for the varying sensitivities of different projections and layers
to balance task performance with activation sparsity on a model-wide level.

Sparse per-projection pre-activation: The proposed pre-activation is presented in equation 1 and
illustrated in Fig. 3. It consists of a two-sided ReLU that zeros out activations within the range
±∆. This preserves the overall distribution of activations by retaining both positive and negative
activations, introducing only a constant offset of ±∆ outside the zero region. The threshold ∆ is
treated as a learnable parameter and optimized separately for each projection during training.

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

+
x
xsparse
dxsparse

dx

xsparse = sign(x) · ReLU(|x| −∆) (1)

dxsparse

dx smooth
= σ

(
C(|x| −∆)

)
(2)

Figure 3: (left) The sparse pre-activation function, with activations being zeroed out within the range
±∆, along with the smoothed out surrogate gradient during the backwards pass. (right) The sparsity
inducing pre-activation and its surrogate gradient w.r.t. x.

Similar to findings showing the smooth nature of the SiLU activation improves learning performance,
especially at high levels of sparsity when a large share of gradients would be fully zeroed out by a
ReLU activation (i.e. dead neurons) (Horuz et al., 2025; Dubey et al., 2022), we found that a smooth
surrogate for the backwards pass, described in equation 2, gave slightly better convergence with
the base models’ training trajectory when compared to a hard magnitude thresholding, especially
at higher sparsity levels. A slope parameter C controls the steepness of the smooth mask for the
derivative, with larger C values pushing activations toward zero more aggressively. C is fixed during
training; empirically we found that C = 20 gives good results.

Loss penalty and differentiable sparsity surrogate: To encourage the model to learn to push
activations to the range within ±∆, as well as to learn an optimal value ∆ on a per-projection basis,
we use an L0 loss penalty added to the main task loss. Since directly counting zeros in the activation
vector would obstruct gradient flow to this penalty, we instead employ a surrogate sparsity measure ŝ,
resulting in the following learning objective:

L = Ltask + λ (1− ŝ), ŝ =
1

N

N∑
i=1

exp
(
− k |xq-sparse,i|

)
, (3)

where Ltask is the primary task loss (e.g., cross-entropy), λ controls the strength of the sparsity
penalty, N is the number of activations considered, xsparse,i is the i-th sparse activation, k is the
exponential steepness parameter, and ŝ serves as a differentiable proxy for the fraction of zero
activations. Empirically, setting k = 10 was found to provide a good trade-off between accurately
estimating true sparsity and excessively large gradient norms. The sparsity penalty is weighed on a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

per-layer basis, depending on the resulting reduction in MAC operations due to a zero activation in
that layer. This follows the calculations for effective MACs detailed in appendix A. Additionally,
similar to previous works on neural network pruning through regularization (Wang et al., 2021), we
ramp up the penalty weight term λ slowly at the start of training, to avoid excessive sparsity before
important features of the dataset have been learned. We found that a linear warm-up of 5% of the
total training steps performed well.

4.4 DEPLOYMENT ON NEUROMORPHIC HARDWARE

4.4.1 HARDWARE PLATFORM

Our hardware deployment results are derived from the real-world deployment of the dense MM-
FreeLM model on the Loihi 2 platform. The platform supports two operating modes (Zhu et al.,
2025), illustrated in figure 4. In pipelined mode, new inputs are introduced at every fixed time per
step (TPS) and passed through successive layers, maximizing throughput. In fall-through mode,
inputs are introduced only after the previous ones have been fully processed, thereby minimizing
latency and allowing for a dynamically varying TPS with the per-chip workload. LLM deployment
aligns naturally with these modes: prefill processing of long input sequences leverages pipelined
mode for throughput efficiency, while autoregressive token generation relies on fall-through mode,
since producing token t must complete before token t+ 1 can be processed.

Pipelined mode (Pre-fill)

Fall-through mode (Generate)

Input

Layer 0 Layer 1 Layer 2 Layer n

Layer 0
Layer 1
Layer 2

Layer n

Input

Layer 0 Layer 1 Layer 2 Layer n

Layer 1
Layer 0

Layer 2

Layer n

Figure 4: Different execution modes on Loihi 2, with pipelined mode (top) optimizing throughput
and Fall-through mode (bottom) optimizing latency.

4.5 PERFORMANCE BENCHMARKING AND MODELING

We extend the performance modeling framework of Abreu et al. (2025) to account for the impact of
activation sparsity. We first restate the baseline characterization of dense models and then introduce
modifications that reflect the behavior of sparse activations on Loihi 2. The goal is to establish a
realistic extrapolation of deployment performance under varying sparsity levels, while remaining
consistent with the execution modes and architectural constraints described by Abreu et al. (2025).

Baseline: The MMFreeLM architecture consists of Nblocks sequential computational blocks, each
mapped to a separate Loihi 2 core or chip. For the 370M parameter model, Nblocks = 24, where
each block corresponds to a layer composed of an MLGRU token-mixing unit and a ternary FFN
channel-mixing block (Zhu et al., 2025).

We adopt as baseline the measured dense multi-chip throughput fgenerate
dense and fprefill

dense reported by
Abreu et al. (2025). Results are provided for two inference modes: (i) prefill, where tokens are
processed in a pipelined manner with all layers active concurrently, and (ii) generate, where tokens
are produced autoregressively with one layer active at a time. Energy per token follows directly as
Edense ∝ 1/fdense, since Loihi 2 operates under an approximately constant power envelope (Abreu
et al., 2025). This throughput–energy pair serves as the reference for sparse extensions.

Impact of activation sparsity: We define r as the share of nonzero multiply–accumulate (MAC)
operations in a block’s linear layers. This reflects the effective density of executed computations,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

which differs from the complement of activation sparsity because linear layers vary in size and FLOP
contributions. We assume FLOPs are dominated by linear layers and ignore contributions from other
operations (e.g., elementwise activations or normalization). Under these assumptions, per-block
latency scales approximately linearly with r, consistent with prior accelerator measurements (Keckler
et al., 2017; Sadeghi et al., 2025).

Activation sparsity introduces two multiplicative factors relative to this baseline:

(i) Inter-chip communication penalty. Dense multi-chip inference suffers a ≈ 20% throughput
reduction from inter-chip communication overhead (Abreu et al., 2025). Because Loihi 2 uses
event-driven communication, where zero-event packets are skipped (Intel Corporation, 2021), this
communication overhead can be reduced by sparse packages at the block-boundaries. We therefore
model the sparsity-dependent inter-chip penalty as

Scomm(ρcom) =
1

0.8 + 0.2ρcom
, (4)

where ρcom is the boundary activation density, and a fully dense block-boundry activation (r = 1)
yields the throughput fdense reported by Abreu et al. (2025).

(ii) MAC density speedup. Within each block, latency scales in proportion to MAC density r. The
intra-block factor, introduced by the zero-skipping of MAC operations, is:

SMAC(r) =
1

r
. (5)

(iii) Combined throughput. The sparse-mode throughput is obtained by multiplying the dense
baseline with both factors:

fsparse = fdense · Scomm(ρcom) · SMAC(r). (6)

Lastly, due to the different execution modes on Loihi 2 used during prefill and generate, the latency
reduction modeled with SMAC varies slightly between the two modes:

• Prefill: Execution is pipelined across blocks, and throughput is bottlenecked by the slowest
block. Let rmax be the maximum MAC density across blocks:

f prefill
sparse = f prefill

dense · 1

0.8 + 0.2ρcom
· 1

rmax
. (7)

• Generate: Execution is sequential across blocks, and latency adds linearly. We approximate
using the mean MAC density ravg:

f generate
sparse = f generate

dense · 1

0.8 + 0.2ρcom
· 1

ravg
. (8)

5 RESULTS

5.1 TRAINING SETUP

We continue training the MMFreeLM models, one sized 370M parameters for edge-deployment, and
a larger 2.7B model, on 4B tokens of the FineWebEdu dataset Lozhkov et al. (2024). Training uses a
cosine decaying learning rate schedule with an initial learning rate of 2e− 3 and 0.75e− 3, and a
minimum learning rate of 2e− 4 and 0.75e− 4 for the 370M and 2.7B models, respectively, along
with a warmup of 5% of the total 4B tokens. The initial learning rate is set to half of that used for
training the original model to avoid diverging too much from the patterns learned during its original
training.

For a comparison with previous methods inducing activation sparsity suitable for edge-deployment,
we also train models by ReLU-fication as described by Mirzadeh et al. (2023) and the dReLU method
proposed by Song et al. (2024). Additionally, we also continue-train the baseline model for the same
steps as the sparse models in order to eliminate any bias introduced by the new training data. We
train 3 models with our proposed sparsification method with varying degrees of enforced sparsity
penalties.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 SPARSITY OF TRAINED MODELS

We present the effective MAC of the evaluated sparsification methods compared to our proposed
method, along with a per-projection type sparsity, divided into the FFN and MLGRU blocks, in table
1. Activation sparsities are captured over the entire benchmark set used in section 5.3.

Table 1: Breakdown of the activation sparsity for the MMFreeLM for different sparsity inducing
methods, shown on a per-layer basis across the MLGRU and FFN.

MLGRU FFN Head Effective MAC

Method I F G O Up Down sparsity (↑)†

370M MMFreeLM

Baseline (SiLU) 1.1 3.2 1.5 37.3 1.1 30.1 2.2 10.0* (10.9)
ReLU 1.1 2.8 1.4 37.9 1.2 87.6 2.2 23.7* (21.6)
dReLU 1.1 2.8 1.4 25.0 1.3 93.2 2.4 25.1* (22.9)
Ours (λ = 1.0) 45.7 61.2 48.9 78.2 63.8 92.2 24.0 69.5* (64.3)
Ours (λ = 2.0) 61.9 75.6 66.0 85.2 79.1 93.4 40.2 80.1* (76.2)

2.7B MMFreeLM

Baseline (SiLU) 1.7 4.3 1.4 41.8 1.3 30.4 2.9 12.5 (12.1)
Ours (λ = 1) 45.7 61.1 40.6 66.3 56.6 91.0 9.2 63.2* (61.5)

* Excluding LM Head, which is not included in the Loihi 2 implementation in Zhu et al. (2025). Value in
parentheses shows the effective MAC sparsity with the LM Head included.
† Detailed steps for calculating the effective MAC operations, based on skippable multiplications by 0 from
zero-activations, is described in Appendix A.

Due to some inherent sparsity from the fixed-point 8-bit quantization, even the base model inhibits an
average baseline parameter sparsity of 10.0%. While both ReLU-based methods achieve significant
levels of sparsity in the FFN at the input of the large down-projection, the impact on the overall share
of active parameters is limited, as the FFN only makes up ≈ 2/3 of total FLOPS, with the down-
projection contributing to just ≈ 1/3 of that. The result also shows that the second ReLU activation
inserted with the dReLU method has a limited impact on model-wide sparsity, as the dot-product
between the sparse post-activation output of the gate projection with the dense Up projection in of
itself already results in a sparse vector. Our proposed method is able to achieve significantly higher
levels of model-wide sparsity by not only targeting linear projections where SiLU activations can be
replaced by ReLU, but all linear projections in the model.

5.3 PERFORMANCE ON REASONING TASKS

We evaluated the zero-shot performance of the sparsified models on the same set of language tasks as
in the original MMFreeLM work, including ARC-Easy, ARC-Challenge Clark et al. (2018); Yadav
et al. (2019), HellaSwag Zellers et al. (2019), OpenBookQA Mihaylov et al. (2018), PIQA Bisk et al.
(2020), and WinoGrande Sakaguchi et al. (2020). The results are presented in table 2, showing a
small degradation in the average reasoning task performance compared to the dense baseline model,
with the 370M (λ = 1) model outperforming the dReLU model at just half the average active MAC
operations.

5.4 ENERGY EFFICIENCY OF SPARSE MODEL

We apply the methodology described in 4.2 to the 24-chip Loihi measurements in Abreu et al. (2025)
on our sparse model (λ = 2) to estimate the performance gains of a sparse model. A per-layer
breakdown of the MAC density r is attached in Appendix B.1. This shows a worst block MAC
density rmax = 0.31 in layer 17. The input activation density of the same block is taken as the
average activation sparsity to the MLGRU (i, f & g-proj) of the same layer (see (Zhu et al., 2025) for
mapping details) and set to ρcom = 0.61. Using equation 7, we calculate a decrease in latency and
energy-per-token of 3.5× against the dense deployment for prefill.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot accuracy of various sparse MMFreeLM-370M and MMFreeLM-2.7B models
compared to the dense baseline model, with all models quantized to ternary weights and 8-bit
activations.

Model Effective MACs (↓) ARCc ARCe HS OQ PQ WGe Avg.

370M MMFreeLM

Baseline (SiLU) 307M 24.15 41.54 32.69 30.40 62.89 49.57 40.21
ReLU 267M 24.95 39.90 32.99 31.40 61.70 49.17 40.02
dReLU 263M 23.46 38.68 32.08 29.20 61.04 50.12 39.10
Ours (λ = 1.0) 118M 23.81 41.29 31.58 31.00 61.10 50.59 39.90
Ours (λ = 2.0) 95M 24.57 38.38 30.60 29.80 60.17 50.67 39.03

2.7B MMFreeLM

Baseline (SiLU) 2.32B 27.05 50.55 47.54 35.00 69.26 50.75 46.69
Ours (λ = 1) 1.01B 26.71 48.32 43.43 35.80 66.43 52.49 45.53

Similarly, for generate, we use equation 8 with an average model-wide MAC density of ravg = 0.20
and an average ρcom = 0.67 to calculate an improvement in both metrics of 5.4× as compared to the
dense baseline. For further comparison, we also include deployment metrics by Zhu et al. (2025) of
comparable Transformers models, including the 500M parameter Qwen2 model (Yang et al., 2024),
and a 400M parameter Alireo model (Montebovi, 2024) on GPU and edge-GPU (Jetson).

Table 3: Throughput and efficiency across of various dense and sparse language models, including
our sparse MMFreeLM, for prefill and generation across various sequence lengths, running on a
NVIDIA H100 GPU, Intel’s Loihi 2 and a Nvidia Jetson.

Throughput (↑ tokens/sec) Efficiency (↓ mJ/token)

Sequence length 500 1000 4000 8000 500 1000 4000 8000

G
en

er
at

e

MMF (sparse) Loihi 2† 224.1 224.1 224.1 224.1 75.0 75.0 75.0 75.0
MMF (dense) Loihi 2* 41.5 41.5 41.5 41.5 405 405 405 405
MMF (dense) H100 ‡ 13.4 13.3 13.5 13.2 10.1k 10.1k 10.0k 9.9k
TF++ H100 ‡ 22.4 22.9 21.7 21.3 5.5k 5.6k 6.2k 6.8k
Alireo (400M) Jetson ‡ 14.3 14.9 14.7 15.2 723 719 853 812
Qwen2 (500M) Jetson ‡ 13.4 14.0 14.1 15.4 791 785 912 839

Pr
efi

ll

MMF(sparse) Loihi 2† 23.2k 23.2k 23.2k 23.2k 1.1 1.1 1.1 1.1
MMF (dense) Loihi 2* 6632 6632 6632 6632 3.7 3.7 3.7 3.7
MMF (dense) H100 ‡ 11.4k 13.1k 30.6k 51.6k 6.1 5.3 2.5 1.4
TF++ H100 ‡ 21.6k 32.7k 44.3k 55.4k 11.3 7.3 5.4 4.3
Alireo (400M) Jetson ‡ 849 1620 3153 2258 11.7 7.8 6.8 7.6
Qwen2 (500M) Jetson ‡ 627 909 2639 3861 17.9 13.9 6.7 4.4

† Proposed sparse model (λ = 2.0) with metrics extrapolated from dense model using on equations 7 and 8
* Baseline deployment results of 370M dense MMFreeLM in multi-chip setup from Abreu et al. (2025).
Includes inter-chip communication slowdown over single-chip measurements.
‡ Jeston and H100 metrics from reported deployment by Zhu et al. (2025).

6 CONCLUSION

In conclusion, this work introduces a novel approach to inducing high activation sparsity in an
already highly compacted and efficient ternerized SSM through learnable, sparsifying pre-activations.
With this method, we achieve up to 76% reduction in MAC operations, at minor performance
degradation. We further demonstrate that this level of unstructured activation sparsity can yield
substantial efficiency gains on hardware that supports this dynamic activation sparsity efficiently.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Steven Abreu, Jens E. Pedersen, Kade M. Heckel, and Alessandro Pierro. Q-s5: Towards quantized
state space models, 2024. URL https://arxiv.org/abs/2406.09477.

Steven Abreu, Sumit Bam Shrestha, Rui-Jie Zhu, and Jason Eshraghian. Neuromorphic principles for
efficient large language models on intel loihi 2. arXiv preprint arXiv:2503.18002, 2025.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7432–7439, 2020.

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices. IEEE Journal of Emerging and Selected Topics
in Circuits and Systems, 8(3):198–210, 2018. doi: 10.1109/JETCAS.2018.2834719.

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 9(2):292–308, 2019. doi: 10.1109/JETCAS.2019.2910232.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning-
taxonomy, comparison, analysis, and recommendations, 2024. URL https://arxiv.org/
abs/2308.06767.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, Mohamed S. Abdelfattah,
and Diana Marculescu. Quamba2: A robust and scalable post-training quantization framework for
selective state space models, 2025. URL https://arxiv.org/abs/2503.22879.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation, 2014. URL https://arxiv.org/abs/1406.1078.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Thanh Dao, Hieu Nguyen, et al. On pruning state-space llms. arXiv preprint arXiv:2502.18886,
2025. URL https://arxiv.org/abs/2502.18886.

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep
learning: A comprehensive survey and benchmark, 2022. URL https://arxiv.org/abs/
2109.14545.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 2943–2952. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/evci20a.html.

Jared Fernandez, Clara Na, Vashisth Tiwari, Yonatan Bisk, Sasha Luccioni, and Emma Strubell.
Energy considerations of large language model inference and efficiency optimizations, 2025. URL
https://arxiv.org/abs/2504.17674.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https:
//arxiv.org/abs/1606.08415.

Coşku Can Horuz, Geoffrey Kasenbacher, Saya Higuchi, Sebastian Kairat, Jendrik Stoltz, Moritz
Pesl, Bernhard A. Moser, Christoph Linse, Thomas Martinetz, and Sebastian Otte. The resurrection
of the relu, 2025. URL https://arxiv.org/abs/2505.22074.

10

https://arxiv.org/abs/2406.09477
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2503.22879
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/2502.18886
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
https://arxiv.org/abs/2504.17674
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2505.22074

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wataru Ikeda, Kazuki Yano, Ryosuke Takahashi, Jaesung Lee, Keigo Shibata, and Jun Suzuki.
Layerwise importance analysis of feed-forward networks in transformer-based language models.
arXiv preprint arXiv:2508.17734, 2025. URL https://arxiv.org/abs/2508.17734.

Intel Corporation. Taking neuromorphic computing to the next level with loihi 2, 2021.
URL https://download.intel.com/newsroom/2021/new-technologies/
neuromorphic-computing-loihi-2-brief.pdf.

Stephen W. Keckler, David Burger, Hadi Esmaeilzadeh, et al. Scnn: An accelerator for compressed-
sparse convolutional neural networks. Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 27–39, 2017. doi: 10.1109/ISCA.2017.13.

Sangyeob Kim, Sangjin Kim, Soyeon Um, Soyeon Kim, Juhyoung Lee, and Hoi-Jun Yoo. Snpu: An
energy-efficient spike domain deep-neural-network processor with two-step spike encoding and
shift-and-accumulation unit. IEEE Journal of Solid-State Circuits, 58(10):2812–2825, 2023. doi:
10.1109/JSSC.2023.3270442.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models, 2025. URL https://arxiv.org/abs/
2408.14690.

Ying Liu, Zhixuan Wang, Wei He, Linxiao Shen, Yihan Zhang, Peiyu Chen, Meng Wu, Hao
Zhang, Peng Zhou, Jinguang Liu, Guangyu Sun, Jiayoon Ru, Le Ye, and Ru Huang. An 82nw
0.53pj/sop clock-free spiking neural network with 40µs latency for alot wake-up functions using
ultimate-event-driven bionic architecture and computing-in-memory technique. In 2022 IEEE
International Solid-State Circuits Conference (ISSCC), volume 65, pp. 372–374, 2022. doi:
10.1109/ISSCC42614.2022.9731795.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Deja vu: Contextual sparsity for
efficient llms at inference time, 2023. URL https://arxiv.org/abs/2310.17157.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650, 2019. URL https://arxiv.org/abs/1905.10650.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting activation sparsity
in large language models, 2023. URL https://arxiv.org/abs/2310.04564.

Michele Montebovi. Alireo-400m: A lightweight italian language model, 2024.

Alessandro Pierro, Steven Abreu, Jonathan Timcheck, Philipp Stratmann, Andreas Wild, and
Sumit Bam Shrestha. Accelerating linear recurrent neural networks for the edge with unstructured
sparsity, 2025. URL https://arxiv.org/abs/2502.01330.

Matvei Popov, Aymen Kallala, Anirudha Ramesh, Narimane Hennouni, Shivesh Khaitan, Rick
Gentry, and Alain-Sam Cohen. Leveraging state space models in long range genomics, 2025. URL
https://arxiv.org/abs/2504.06304.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017. URL
https://arxiv.org/abs/1710.05941.

Rahul Raman, Khushi Sharma, and Sai Qian Zhang. Rethinking the outlier distribution in large
language models: An in-depth study. arXiv preprint arXiv:2505.21670, 2025.

11

https://arxiv.org/abs/2508.17734
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://arxiv.org/abs/2408.14690
https://arxiv.org/abs/2408.14690
https://arxiv.org/abs/2310.17157
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://arxiv.org/abs/1905.10650
https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2502.01330
https://arxiv.org/abs/2504.06304
https://arxiv.org/abs/1710.05941

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maryam Sadeghi, Yasser Rezaeiyan, Dario Fernandez Khatiboun, Sherif Eissa, Federico Corradi,
Charles Augustine, and Farshad Moradi. Nexus: A 28nm 3.3pj/sop 16-core spiking neural network
with a diamond topology for real-time data processing. IEEE Transactions on Biomedical Circuits
and Systems, 19(3):523–535, 2025. doi: 10.1109/TBCAS.2024.3452635.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8732–8740, 2020.

Hang Shao, Bei Liu, Bo Xiao, Ke Zeng, Guanglu Wan, and Yanmin Qian. One-shot sensitivity-aware
mixed sparsity pruning for large language models, 2024. URL https://arxiv.org/abs/
2310.09499.

Man Shi, Adrian Kneip, Nicolas Chauvaux, Jiacong Sun, Charlotte Frenkel, and Marian Verhelst.
Sparsity-aware hardware: From overheads to performance benefits. IEEE Solid-State Circuits
Magazine, 17(2):61–71, 2025. doi: 10.1109/MSSC.2025.3549709.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
sequence modeling, 2023. URL https://arxiv.org/abs/2208.04933.

Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen, Li Ma, Zeyu Mi, and Haibo Chen. Turbo
sparse: Achieving llm sota performance with minimal activated parameters, 2024. URL https:
//arxiv.org/abs/2406.05955.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019. URL https://arxiv.org/abs/1905.09418.

Dustin Wang, Rui-Jie Zhu, Steven Abreu, Yong Shan, Taylor Kergan, Yuqi Pan, Yuhong Chou, Zheng
Li, Ge Zhang, Wenhao Huang, et al. A systematic analysis of hybrid linear attention. arXiv
preprint arXiv:2507.06457, 2025.

Hongyu Wang, Shuming Ma, Ruiping Wang, and Furu Wei. Q-sparse: All large language models can
be fully sparsely-activated, 2024. URL https://arxiv.org/abs/2407.10969.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization, 2021.
URL https://arxiv.org/abs/2012.09243.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023.

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selection of
justification sentences for multi-hop question answering. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 2578–2589. Association for Computational
Linguistics, 2019.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu,
Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin
Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

12

https://arxiv.org/abs/2310.09499
https://arxiv.org/abs/2310.09499
https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/2406.05955
https://arxiv.org/abs/2406.05955
https://arxiv.org/abs/1905.09418
https://arxiv.org/abs/2407.10969
https://arxiv.org/abs/2012.09243
https://arxiv.org/abs/2407.10671

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800. Association for Computational Linguistics, 2019.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang Song,
Zhiyuan Liu, Zeyu Mi, and Maosong Sun. Relu2 wins: Discovering efficient activation functions
for sparse llms, 2024. URL https://arxiv.org/abs/2402.03804.

Rui-Jie Zhu, Yu Zhang, Steven Abreu, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin
Richmond, Sumit Bam Shrestha, Peng Zhou, and Jason K. Eshraghian. Scalable matmul-free
language modeling, 2025. URL https://arxiv.org/abs/2406.02528.

13

https://arxiv.org/abs/2402.03804
https://arxiv.org/abs/2406.02528

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED CALCULATION OF EFFECTIVE MACS (r)

We restrict the analysis to MVMs, as these dominate execution time compared to elementwise
operations. Nonlinearities and scalar operations (e.g., inverse square root, sigmoid, bias additions)
are excluded from our MAC counts, consistent with standard FLOP accounting in prior work Evci
et al. (2020).

The FFN in the MMFreeLM includes a fused Up/Gate projection of size dh × 2di and a Down
projection of size di × dh. The MLGRU block contains four projections: i, f, g, & o — each of size
dh × dh. For the 370M model, the hidden size is dh = 1024 and the intermediate size is di = 2816.

We define the effective MAC density r as the ratio of MAC operations executed under sparsity to the
number of MACs in the corresponding dense model:

r =
MACsparse

MACdense
.

Per-projection sparsity ρj quantifies the fraction of zeros in the inputs to projection j. The effective
MAC density for a single block is computed by summing across all projections:

MACdense =
∑
j

d
(j)
in · d(j)out , MACsparse =

∑
j

ρj d
(j)
in · d(j)out .

Each nonzero activation corresponds to one row of multiplications in the projection matrix, so the
number of MACs scales linearly with the activation density. Therefore, the overall effective MAC
density r is a weighted average of the per-layer densities:

r =

∑
j ρj · MAC(j)

dense∑
j MAC(j)

dense

.

It is worth emphasizing that because projection sizes vary across layers, r is generally not equal to
the simple arithmetic mean of per-projection sparsities:

r ̸= 1

N

∑
j

ρj ≡ ρmean.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DETAILED SPARSITY BREAKDOWN

B.1 PER-LAYER ACTIVE-PARAMETER BREAKDOWN OF SPARSE MODEL

0 5 10 15 20
Layer index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ef
fe

ct
iv

e
SO

P
vs

 d
en

se
 b

as
el

in
e rmax = 0.31

ravg = 0.20

Figure 5: Effective MACs vs dense baseline of the 370M MMfreeLM model (λ = 2.0), highlighting
the worst (rmax = 0.31) and average MAC density (ravg = 0.20).

B.2 DETAILED PROJECTION-WISE SPARSITY OF THE MODEL USED FOR THROUGHPUT/ENERGY
RESULTS

Layer Projection Avg. Sparsity ρ Layer Projection Avg. Sparsity ρ Layer Projection Avg. Sparsity ρ

0 attn.i_proj 0.374 8 attn.i_proj 0.615 16 attn.i_proj 0.522
0 attn.f_proj 0.631 8 attn.f_proj 0.751 16 attn.f_proj 0.698
0 attn.g_proj 0.352 8 attn.g_proj 0.686 16 attn.g_proj 0.580
0 attn.o_proj 0.629 8 attn.o_proj 0.879 16 attn.o_proj 0.873
0 mlp.gate_proj 0.888 8 mlp.gate_proj 0.830 16 mlp.gate_proj 0.687
0 mlp.down_proj 0.972 8 mlp.down_proj 0.955 16 mlp.down_proj 0.885
1 attn.i_proj 0.864 9 attn.i_proj 0.570 17 attn.i_proj 0.526
1 attn.f_proj 0.926 9 attn.f_proj 0.728 17 attn.f_proj 0.713
1 attn.g_proj 0.888 9 attn.g_proj 0.678 17 attn.g_proj 0.573
1 attn.o_proj 0.935 9 attn.o_proj 0.883 17 attn.o_proj 0.885
1 mlp.gate_proj 0.907 9 mlp.gate_proj 0.824 17 mlp.gate_proj 0.608
1 mlp.down_proj 0.991 9 mlp.down_proj 0.943 17 mlp.down_proj 0.867
2 attn.i_proj 0.840 10 attn.i_proj 0.524 18 attn.i_proj 0.624
2 attn.f_proj 0.891 10 attn.f_proj 0.703 18 attn.f_proj 0.741
2 attn.g_proj 0.859 10 attn.g_proj 0.669 18 attn.g_proj 0.659
2 attn.o_proj 0.955 10 attn.o_proj 0.861 18 attn.o_proj 0.912
2 mlp.gate_proj 0.902 10 mlp.gate_proj 0.827 18 mlp.gate_proj 0.785
2 mlp.down_proj 0.993 10 mlp.down_proj 0.931 18 mlp.down_proj 0.898
3 attn.i_proj 0.806 11 attn.i_proj 0.513 19 attn.i_proj 0.623
3 attn.f_proj 0.864 11 attn.f_proj 0.697 19 attn.f_proj 0.743
3 attn.g_proj 0.836 11 attn.g_proj 0.633 19 attn.g_proj 0.628
3 attn.o_proj 0.946 11 attn.o_proj 0.860 19 attn.o_proj 0.912
3 mlp.gate_proj 0.901 11 mlp.gate_proj 0.827 19 mlp.gate_proj 0.770
3 mlp.down_proj 0.992 11 mlp.down_proj 0.931 19 mlp.down_proj 0.901
4 attn.i_proj 0.773 12 attn.i_proj 0.467 20 attn.i_proj 0.635
4 attn.f_proj 0.832 12 attn.f_proj 0.674 20 attn.f_proj 0.753
4 attn.g_proj 0.808 12 attn.g_proj 0.596 20 attn.g_proj 0.632
4 attn.o_proj 0.928 12 attn.o_proj 0.610 20 attn.o_proj 0.919
4 mlp.gate_proj 0.892 12 mlp.gate_proj 0.794 20 mlp.gate_proj 0.782
4 mlp.down_proj 0.988 12 mlp.down_proj 0.912 20 mlp.down_proj 0.910
5 attn.i_proj 0.730 13 attn.i_proj 0.438 21 attn.i_proj 0.672
5 attn.f_proj 0.809 13 attn.f_proj 0.662 21 attn.f_proj 0.767
5 attn.g_proj 0.784 13 attn.g_proj 0.578 21 attn.g_proj 0.615
5 attn.o_proj 0.915 13 attn.o_proj 0.649 21 attn.o_proj 0.916
5 mlp.gate_proj 0.879 13 mlp.gate_proj 0.775 21 mlp.gate_proj 0.711
5 mlp.down_proj 0.983 13 mlp.down_proj 0.903 21 mlp.down_proj 0.902
6 attn.i_proj 0.704 14 attn.i_proj 0.443 22 attn.i_proj 0.730
6 attn.f_proj 0.806 14 attn.f_proj 0.662 22 attn.f_proj 0.812
6 attn.g_proj 0.762 14 attn.g_proj 0.522 22 attn.g_proj 0.667
6 attn.o_proj 0.916 14 attn.o_proj 0.527 22 attn.o_proj 0.923
6 mlp.gate_proj 0.865 14 mlp.gate_proj 0.721 22 mlp.gate_proj 0.736
6 mlp.down_proj 0.976 14 mlp.down_proj 0.891 22 mlp.down_proj 0.912
7 attn.i_proj 0.633 15 attn.i_proj 0.453 23 attn.i_proj 0.790
7 attn.f_proj 0.761 15 attn.f_proj 0.667 23 attn.f_proj 0.860
7 attn.g_proj 0.701 15 attn.g_proj 0.524 23 attn.g_proj 0.625
7 attn.o_proj 0.894 15 attn.o_proj 0.844 23 attn.o_proj 0.883
7 mlp.gate_proj 0.842 15 mlp.gate_proj 0.694 23 mlp.gate_proj 0.549
7 mlp.down_proj 0.965 15 mlp.down_proj 0.886 23 mlp.down_proj 0.917
- - - - - - - lm_head 0.402

Table 4: Per-layer average sparsity of the sparse λ = 1.5 model.

15

	Introduction
	Related work
	Background
	Activation Sparsity in Neural Networks
	Leveraging activation Sparsity in Hardware Accelerators

	Methods
	Model selection
	Motivating study
	Proposed Sparsification Method
	Deployment on neuromorphic hardware
	Hardware Platform

	Performance Benchmarking and Modeling

	Results
	Training setup
	Sparsity of trained models
	Performance on Reasoning Tasks
	Energy efficiency of sparse model

	Conclusion
	Detailed calculation of effective MACs (r)
	Detailed sparsity breakdown
	Per-layer active-parameter breakdown of sparse model
	Detailed projection-wise sparsity of the model used for throughput/energy results

