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ABSTRACT

Despite the advancements in large language models (LLMs) for mathematical
reasoning, solving competition-level math problems remains a significant chal-
lenge, especially for open-source LLMs without external tools. We introduce
the MMIQC dataset, comprising a mixture of processed web data and synthetic
question-response pairs, aimed at enhancing the mathematical reasoning capabili-
ties of base language models. Models fine-tuned on MMIQC consistently surpass
their counterparts in performance on the MATH benchmark across various model
sizes. Notably, Qwen-72B-MMIQC achieves a 45.0% accuracy, exceeding the
previous open-source state-of-the-art by 8.2% and outperforming the initial version
GPT-4 released in 2023. Extensive evaluation results on Hungarian high school
finals suggest that such improvement can generalize to unseen data. Our ablation
study on MMIQC reveals that a large part of the improvement can be attributed
to our novel augmentation method, Iterative Question Composing (IQC), which
involves iteratively composing new questions from seed problems using an LLM
and applying rejection sampling through another LLM.
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Figure 1: Performance evaluation of various LLMs on MATH (Hendrycks et al., 2021a) and the 2023
Hungarian National High School Mathematics Finals (Paster, 2023b).
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Figure 2: The performance of base models and their fine-tuned versions on MATH benchmark. The
models remarked with an ∗ are trained and evaluated by us. We can see that the models fine-tuned on
MMIQC consistently outperform their counterparts by a clear margin.

1 INTRODUCTION

Although large language models have been demonstrated to be powerful in various applications (Chen
et al., 2021; Brown et al., 2020; Ouyang et al., 2022; Park et al., 2023; Huang et al., 2022b),
solving math problems that require complex reasoning skills remains a challenging task. On
MATH (Hendrycks et al., 2021b), a competition-level math problem benchmark, open-source base
LLMs such as the LLaMA family (Touvron et al., 2023a;b) fail to answer most of the problems
correctly.

Previous work tries to enhance the mathematical reasoning abilities of base models by fine-tuning
them on domain-specific data. Specifically, One line of work (Azerbayev et al., 2023; Lewkowycz
et al., 2022) collects math corpora from the web and fine-tunes the models on them, which is
also known as the procedure of continual pre-training (Cossu et al., 2022). Another line of work
focuses on constructing synthetic data through rejection sampling (Yuan et al., 2023), distilling
from GPT-4/GPT-3.5 (Yue et al., 2023) or question bootstrapping (Yu et al., 2023), and then use the
generated question-response pairs to perform supervised fine-tuning in the way described in Taori
et al. (2023); Ouyang et al. (2022). However, there still exists a large performance gap between these
fine-tuned models and the most advanced close-source models such as GPT-4 (OpenAI, 2023) and
Gemini-Ultra (Team et al., 2023). Given that simply adding more data does not always lead to better
performance as shown in (Yu et al., 2023), how to bridge the gap remains an open challenge.

This work tackles the challenge by combining the two lines of work. On one hand, we reuse
the high-quality corpora used in the pre-training stage during fine-tuning. Specifically, MMIQC
contains around 1200k question-response pairs we filtered and pre-processed from the web pages at
math.stackexchange.com, which are included in the RedPajama dataset (Computer, 2023). On the
other hand, for the synthetic data part of MMIQC, we increase the diversity by using multiple kinds of
augmentation methods listed below: 1) Prompting GPT-4 with an integrated version of the question
bootstrapping prompts used in Yu et al. (2023), and do rejection sampling with GPT-3.5-Turbo on
both seed and augmented problems. 2) Using a modified prompt presented in Liu et al. (2023) to ask
GPT-4 to generate similar problems with answers given seed problems of the training set of MATH.
Although the generated answers can be wrong, we perform rejection sampling on these problems as
well. 3) Performing IQC (Iterative Question Composing) with 4 iterations in total. We iteratively ask
GPT-4 to compose new questions from the given seed problems and do rejection sampling to filter
those problems with answers aligned with GPT-3.5-turbo’s answers. 4) Filtering a 204k subset of
MetaMathQA (Yu et al., 2023) and adding it to the MMIQC dataset (More details on MMIQC will
be introduced in Section 4).

We fine-tune several base models on MMIQC, resulting in models consistently achieving a large
margin compared to their counterparts when evaluated on MATH, as shown in Figure 2. Specifically,
the models Mistral-7B-MMIQC, Llemma-34B-MMIQC, DeepSeek-67B-MMIQC and Qwen-72B-
MMIQC, which are obtained by fine-tuning Mistral-7B (Jiang et al., 2023), Llemma-34B (Azerbayev
et al., 2023) and DeepSeek-67B (Bi et al., 2024) on MMIQC, achieve 36.0%, 38.6%, 41.0% and
45.0% accuracy on MATH, 5.8%, 3.8%, 4.2% and 3.3% higher than the counterpart models that
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are fine-tuned on MetaMathQA, respectively. We also evaluate the models on the 2023 Hungarian
national high school finals in mathematics Paster (2023a). The results in Figure 1 suggest that
the mathematical reasoning abilities the models acquire through being fine-tuned on MMIQC can
generalize to unseen held-out problems.

We highlight our contributions as follows:

• We propose IQC (Iterative Question Composing), a data augmentation method that can
iteratively generate diverse data starting from a seed dataset of math word problems.

• We release MMIQC, a mixture of processed web data and synthetic question-response
pairs. In different model sizes, the models fine-tuned on MMIQC consistently outperform
their counterparts by a clear margin on the MATH test set. Notably, Qwen-72B-MMIQC
achieves a 45.0% accuracy, exceeding the previous open-source state-of-the-art1 by 8.2%
and outperforming the initial version GPT-4 released in 2023. Such improvement can
generalize to unseen held-out data, e.g., Hungarian high school finals.

• Our results show that reusing the high-quality data in the pre-training corpora during the
fine-tuning stage can improve the model performance, successfully combining the two lines
of work of continual pre-training and supervised fine-tuning.

• Our results also show that using multiple augmentation methods to construct datasets for
fine-tuning is an efficient way to boost the performance of LLMs.

2 RELATED WORK

Base Large Language Models. Base large language models (LLMs) trained on massive corpora
(e.g. 1.4T tokens of text for Llama‘Touvron et al. (2023a)) from various sources with a simple
auto-regressive next token prediction loss have achieved great success in various natural language
processing tasks Radford et al. (2019); Brown et al. (2020); Touvron et al. (2023a;b); Jiang et al.
(2023). Although these pre-trained models are not intended to serve for solving complex mathematical
problems, Wei et al. (2023) show that few-shot prompting can help the models answer a certain
fraction of problems correctly. Nevertheless, to achieve better performance, fine-tuning the base
LLMs on domain-specific data is required.

Fine-tuning Base LLMs on Mathematical Datasets. Current practice of fine-tuning base LLMs
on mathematical datasets can be classified into two kinds: 1) continual pretraining (Lewkowycz et al.,
2022; Azerbayev et al., 2023). This line of work typically collects billion-tokens level mathematical
text data from the web, such as mathematical sub-sites of Stack Exchange and ArXiv, and fine-tune
the model in the same way as that in the pre-training stage. 2) SFT (Supervised Fine-Tuning) Yuan
et al. (2023); Yu et al. (2023); Yue et al. (2023); Gou et al. (2023). Works in this line collect question-
response pairs via various methods and train the models on their dataset in an Alpaca style. Due to
the scarcity of publicly available high-quality question-response pairs datasets and the costly nature
of manually composing math word problems, how to augment new data from the existing datasets
becomes the focus of these works.

Our work is located in the middle between these two: MMIQC is a mixture of filtered pre-training
corpus and question-response pairs generated using various augmentation methods.

Reasoning Frameworks for Solving Mathematical Problems. Much effort has been devoted to
achieving a higher accuracy on math word problem benchmarks by designing different procedures of
using the given LLMs to obtain the answers, which we refer to as reasoning frameworks. Among them,
Prompting-based methods Radford et al. (2019); Wei et al. (2023); Fu et al. (2022) play a significant
role in activating the potential reasoning abilities for base LLMs through carefully designing the
prompts shown to the models. Self-consistency (Wang et al., 2023b) samples multiple rationale paths
for a model and then decides the answer by majority voting. In contrast of self-consistency, Cobbe
et al. (2021); Uesato et al. (2022); Lightman et al. (2023) use Outcome Reward Models (ORM) and
Process Reward Models (PRM) trained on human annotations as verifiers to help select the answer
with the highest score from the sampled reasoning paths of LLMs. Getting rid of the need of manual

1As of the time of writing in January 2024, to the best of our knowledge, the open-source SOTA on MATH
is the DeepSeek-67B-MetaMathQA model reported in Wang et al. (2023a), which achieves 36.8% accuracy
without external tool usage.
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Algorithm 1: Iterative Question Composing
Require: Question composing model πq , rejection sampling model πr, answer extractor defining ≃,

text templater x(·, ·) with inverse x−1(·), initial seed dataset S0 = {(qi, ai)}ni=1, total iterations
K, question composing prompts p1, p2, . . . , pK , rejection sampling prompt pr, maximum
rejection samples per problem m

1: for k = 1 to K do
2: Initialize Sk ← {}, Rk ← {}
3: for all (q, a) ∈ Sk−1 do
4: Sample x′ ∼ πq (·|pk ⊕ x(q, a))
5: Decompose (q′, a′)← x−1(x′)
6: Append Sk ← Sk ∪ {(q′, a′)}
7: for j = 1 to m do
8: Sample a(j) ∼ πr(·|pr ⊕ q′)
9: if a(j) ≃ a′ then

10: Append Rk ← Rk ∪ {(q′, a(j))}
11: end if
12: end for
13: end for
14: Combine Dk ← Sk ∪Rk

15: end for
output Collections D1, D2, . . . , DK

annotation, Wang et al. (2023a) score a given reasoning step by estimating the potential of that step
to lead to a correct answer automatically.

Some frameworks also include the use of plug-in tools and external APIs. Program-aided prompt-
ing (Gao et al., 2022; Yue et al., 2023) provides in-context samples containing Python codes for
LLMs and uses code interpreters to execute the output to facilitate reasoning. Further, Gou et al.
(2023) interleave natural language rationales with Sympy code and fine-tune the model on trajectories
sampled from GPT-4 to follow their framework in two steps, namely imitation learning and output
space shaping.

We note that our results in Figure 2 do not include multiple times of sampling, use of verifiers or code
interpreters, thus cannot be directly compared with the results reported in these works.

3 ITERATIVE QUESTION COMPOSING

Traditional data augmentation methods primarily concentrate on modifying either the questions
or answers while retaining their original meanings, or generating similar problems, as discussed
in (Yu et al., 2023) and Liu et al. (2023). These methods, however, are limited in their diversity
as they aim to create nearly identical problems. Our approach, termed IQC (Iterative Question
Composing), deviates from this by iteratively constructing more complex problems. It augments the
initial problems, adding additional reasoning steps without altering their intrinsic logical structure.
This ensures that the newly formed problems are organically linked to the original problem and
elaborately tries to not include extraneous elements induced by a large transition of the reasoning
process.

Notations. In our description, we refer to the combination of an LLM, its tokenizer, encod-
ing/decoding methods, and a fixed generation configuration (inclusive of generation strategy, sam-
pling temperature, and stopping criteria) simply as ‘an LLM’. For an LLM π, we denote the output
distribution given prompt p ∈ A∗ as π(·|p). The concatenation of two text paragraphs p1 and p2 is
represented as p1 ⊕ p2.

The IQC process begins with specifying an LLM πq for question composing and another model
πr for rejection sampling. An answer extractor is needed to derive answers from responses. Two
responses r1 and r2 are considered equivalent, denoted r1 ≃ r2, if the same answer can be extracted
from both. The process initiates with a seed dataset S0 = {(qi, ai)}ni=1.
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In iteration #1, we prompt πq with p1 ⊕ x(q, a) for each (q, a) ∈ S0, where x(·, ·) is a text template
transforming a question-response pair into text, and p1 solicits a new question-answer composition.
This yields a new dataset

S1 = {(q′i, a′i)}ni=1,

where (q′i, a
′
i) = x−1(x′

i) and x′
i ∼ πq (·|p1 ⊕ xi) is the output for the ith sample. We further

enhance S1 by rejection sampling from πr, resulting in

R1 := {(q′i, a
(j)
i )|a(j)i ≃ a′i, i ∈ [n], j ∈ [m]},

where a
(j)
i are the sampled responses from πr(·|pr ⊕ q′i). The dataset D1 is then formed by uniting

S1 and R1:
D1 := S1 ∪R1.

For each subsequent iteration #k, the aforementioned procedure is repeated using Sk−1 as the seed
dataset, with varying question composing prompts pk. The complete IQC process is delineated in
Algorithm 1.

Seed Question:
Evaluate

(5a2 − 13a+ 4)(2a− 3)

for a = 1 1
2 .

Iter # 1 Question:
If b = 2a− 3 and a = 1 1

2 , what is the value of (5a2 − 13a+ 4)b?

Iter # 2 Question:
Given b = 2a− 3, a = 1 1

2 , and c = 3b+ 5, find the value of c(5a2 − 13a+ 4).

Iter # 3 Question:
Given b = 2a−3, a = 1 1

2 , c = 3b+5, and d = c2−4c, find the value of d+c(5a2−13a+4).

Iter # 4 Question:
Given b = 2a− 3, a = 1 1

2 , c = 3b+ 5, d = c2 − 4c, and e = d3 + 2cd− 7, find the value
of e+ c(5a2 − 13a+ 4) + d.

Figure 3: An example of the questions composed via IQC by GPT-4 given 1 seed problem in MATH
training set.

You will be provided with 1 math problem and its solution and answer (which are not
guaranteed to be right). Please generate 1 new problem that (implicitly) contains the original
problem as a subproblem or substep.

Your response should only contain one line text with 3 fields ”problem”, ”solution” and
”answer” in the same format as the given problem. The solution to the generated problem
should be as brief as possible and **should not quote the conclusion of the original
problem**. Ensure there is only one latex box in the solution and the answer is completely
the same with the content in the box.

**Please use two backslashes to represent one in the strings in order that it can be properly
read in python.** For example, you should write “\cdot” as “\\cdot”.

Figure 4: The prompt we use to perform question composing in IQC. The brown part is not used in
iteration #1.
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4 THE MMIQC DATASET

In this section, we introduce how each part of MMIQC is constructed in detail.

Subset of MetaMathQA. The original MetaMathQA dataset is constructed by sampling GPT-3.5 for
k = 20 times under a T = 0.7 temperature for each problem in the training set of MATH (Hendrycks
et al., 2021a) and GSM8K (Cobbe et al., 2021) dataset, or its bootstrapped versions. We restrict
the number of samples for each completely same question to be 3 and 1 for MATH and GSM8K,
respectively, to obtain a subset of MetaMathQA. This subset contains 112.2K GSM8K question-
response pairs and 91.5K MATH pairs.

You will be provided with 1 math problem in newline-delimited json format. Please augment
5 diverse problems from the given problem.

The way you augment a problem can be:
- Rephrase the problem.
- Change the scenario without modifying specific quantities.
- Set 1 number in the problem to an unknown variable, put the answer in the problem and ask
what is the value of the variable. Ensure the generated problem is reasonable. Otherwise,
skip this method.
- Other approaches that can ensure the correctness of the answer you provide to the augmented
problem.

Your response should only contain text in newline-delimited json format, keeping the same
with the given problem. Please use two backslashes to represent one in the strings.

Figure 5: The prompt we use to perform question bootstrapping for asking GPT-4.

Answer Augmentation and Question Bootstrapping. We integrate the question bootstrapping
methods used in Yu et al. (2023) into a single prompt shown in Figure 5. Our motivation is that given
GPT-4 is highly capable of natural language understanding, a few-shot prompting style used in Yu
et al. (2023) might suppress the diversity of the augmented questions. The seed dataset is constructed
by the samples in the training set of MATH that do not contain Asymptote language in their question
statements. We perform rejection sampling from GPT-3.5 on both the seed dataset and generated
questions using the prompt shown in Figure 6, obtaining 66.5K question-response pairs. We use a
temperature T = 1.0 for both question bootstrapping and rejection sampling.

Augmented Similar Problems. Liu et al. (2023) asks GPT-3.5 to generate 10 similar questions given
1 seed problem in the training set of GSM8K. In our practice, we find that GPT tends to generate
several almost the same problems regardless of the given seed problem when asked to generate up
to 10 new problems. Thus, we only ask GPT to generate 3 problems (with a solution, for rejection
sampling) each time, using the prompt in Figure 7. Considering rejection sampling needs the answer
to the problem better to be correct, we use the stronger GPT-4 instead of GPT-3.5. To control the
cost, our prompt emphasizes that the solution should be as brief as possible. The total number of the
augmented similar problems and the question-response pairs rejection sampled from them is 38.2K.
The rejection sampling prompt is the same one in Figure 6 as well. We use a temperature T = 1.0 for
both procedures.

Iterative Question Composing. We perform Iterative Question Composing for 4 iterations as
described in Section 3. Specifically, we use GPT-4 for question composing model πq with a T = 0.7
temperature and GPT-3.5 for rejection sampling model πr with a T = 1.0 temperature. The question
composing prompts and rejection sampling prompt are shown in Figure 4 and Figure 6, respectively.
The text templater x(·, ·) we use is a program that transforms each question-response pair into
JSON text format, with fields ‘problem’ and ‘solution’. The resulting dataset has 55.1K samples in
total.2 We provide an example of the generated questions in different iterations corresponding to the
same seed problem in Figure 3. We note that although some of the questions are not rigorously a
sub-problem or sub-step of the corresponding problem in the previous iteration as required in our
prompt, they are still valid questions that can increase the diversity of the dataset.

2A part of the samples are generated by performing IQC for 2 iterations using a legacy version of prompts.
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You will be presented a mathematical problem. You should solve the problem step-by-step
carefully. Present the final answer in latex boxed format, e.g., 63π .

Figure 6: The prompt we use to do rejection sampling from GPTs.

You will be provided with 1 math problem in newline-delimited json format. Please generate
3 diverse new problems similar to the given problem.

Your response should only contain text in newline-delimited json format, keeping the same
with the given problem. The solutions to the generated problems should be as brief as possible.
Ensure there is only one box in the solution and the answer is completely the same with the
content in the box. Please use two backslashes to represent one in the strings.

Figure 7: The prompt we use to generate questions similar to the seed problems for asking GPT-4.

Mathematics Stack Exchange. We observe that in the OpenWebMath (Paster et al., 2023) dataset,
the data from Mathematics Stack Exchange shows high quality and is most related to competition-
level math. Motivated by this, we extract the data collected from Mathematics Stack Exchange in
RedPajama (Computer, 2023) and pre-process it into question-response pairs. For each Mathematics
Stack Exchange page, we only retain the answer ranked first by RedPajama. Then we filter out
the answer that does not contain a formula environment symbol ‘$’. This results in a dataset with
1203.6K question-response pairs.

Table 1 shows the make-up of MMIQC. When fine-tuning the models MMIQC contains 3 repetitions
of the subsets mentioned above, except for the Mathematics Stack Exchange part. We shuffle the
order of samples after combining the subsets.

5 EXPERIMENTS

5.1 FINE-TUNING SETUP

Our fine-tuning strategy mainly follows the practice of Taori et al. (2023), except that we use a different
prompt template to transform the question-response pairs. For a sample from Mathematics Stack
Exchange, the corresponding prompt fed into the model during training is a simple concatenation
of the question and response with two new-line symbols. For a sample from other subsets, we
additionally add a prefix ‘Please solve the following problem and put your answer at the end with
“The answer is: ”.’ to the question-response concatenation.

We use the HuggingFace transformers library Wolf et al. (2019) for our fine-tuning experiments. We
fine-tune all models on MMIQC for 1 epoch, using a 3% warm-up ratio linear learning rate schedule.
For the choice of maximum learning rate, we do a simple hyper-parameter selection experiment
shown in Table 2 and determine it to be 1e-5. We use the BFloat16 numerical format during training.
Employing the DeepSpeed Zero-3 Stage Rajbhandari et al. (2020), we fine-tune 7B models on one
node of 8xA800 GPUs with micro batch-size at 8, and gradient accumulation at 4, 34B models on
2 nodes with micro batch-size at 4 and gradient accumulation at 4 and ∼70B models on 4 nodes
with micro batch-size at 4 and gradient accumulation at 2, maintaining an effective batch size of 256.
It takes around 14 hours, 61 hours and 90 hours to fine-tune 7B, 34B and ∼70B models under the
setups stated above, respectively.

5.2 MODEL EVALUATION

For a fair comparison, we first evaluate the fine-tuned models on MATH (Hendrycks et al., 2021a), a
competition-level math word problems benchmark with 5000 test problems in a zero-shot setting.
We prompt all our fine-tuned models with the test question with the prefix ‘Please solve the following
problem and put your answer at the end with “The answer is: ”.’, and extract the answer from the
output using a modified version of the answer extractor provided in Lewkowycz et al. (2022). We

7
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Table 1: The composition of MMIQC.

DATA # SAMPLES #REPETITIONS RATIO

METAMATHQA 203.7K 3 26.6%
ANSAUG & QB 66.5K 3 8.7%
AUGSIMILAR 38.2K 3 5.0%
IQC 55.1K 3 7.2%
MATHSTEX 1203.6K 1 52.5%

Table 2: Ablation study on the optimal learning rate. We fine-tune Mistral-7B on MMIQC with
different maximal learning rate values and evaluate the fine-tuned models on MATH to decide the
best candidate.

LR 1E-6 5E-6 1E-5 2E-5 5E-5 1E-4

MATH(%) 32.3 35.1 36.0 35.4 31.5 27.1

use a series of rules to infer whether the extracted answer is the same as the ground-truth answer,
including a comparison using SymPy Meurer et al. (2017). The complete results of our evaluation on
MATH and a comparison with existing models are shown in Table 3.

For the evaluation on 2023 Hungarian national high school finals in mathematics, we use the few-shot
prompt used in Paster (2023a). We manually assess the grades for every model according to the
examiner instructions. The results shown in Figure 1 are the grades under a full mark of 117.

5.3 ABLATION STUDY ON SUBSETS OF MMIQC

In order to understand the ratio of contribution to the improvement revealed in Table 3 of different
subsets of MMIQC, we fine-tune Mistral-7B with a series of training sets constructed by gradually
adding the subsets. When MathStackExchange is not added, we fine-tune for 3 epochs. When
MathStackExchange is added to the training dataset, we mix 3 repetitions of other data with 1
repetition of the MathStackExchange, and fine-tune for only 1 epoch. It can be seen from Table 4 that

• Although our filtered subset of MetaMathQA is only half the size of the original dataset
(which has 395K samples, more than the total number of samples of our synthetic data),
the performance drop is only 1.8%. This shows that the k = 20 strategy in Yu et al. (2023)
results in some redundancy.

• Our Answer Augmentation & Question Boosting data help the fine-tuned model beat Mistral-
7B-MetaMathQA, verifying our hypothesis that directly asking GPT to perform question
bootstrapping is more efficient than providing few-shot examples to them.

• Our IQC method leads to a significant 3.1% improvement from a high accuracy of 31.5%
with only 55.1K samples, showing its efficiency. Moreover, the later iterations of IQC
also account for a certain ratio of improvement, proving that IQC is a method that can
continuously generate new data that can help increase the diversity when added to the data
generated in previous iterations.

5.4 CONTAMINATION TEST

We check the n-gram matches for MMIQC to ensure that the improvement is not a result of direct
memorization. We use the script provided by Azerbayev et al. (2023) to check the n-gram matches
between the synthetic part of the MMIQC and MATH test set. It turns out that for a 30-gram match
check, there are 44 hits of match between the ‘solution’ field of MATH test set and the ‘output’
field of MMIQC, far fewer than the 168 hits between that of MATH test set and MATH training set.
Moreover, we manually check these 44 hits and find that 43 among them belong to the case where
intermediate steps of the solutions to similar but different questions collide, with the only exception
being the question ‘A regular polygon has interior angles of 144 degrees. How many sides does the
polygon have?’. This almost rules out the possibility that fine-tuned models get memorization of
solutions to the problems in the test set, indicating a very low risk of data contamination for MMIQC.

8
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Table 3: A comparative analysis of the accuracies achieved by various models on the MATH
benchmark. The models marked with an asterisk(∗) are fine-tuned and evaluated by us. Other
results, unless otherwise cited, are derived from Wang et al. (2023a). This comparison highlights the
significant improvements our fine-tuned models demonstrate over existing solutions in mathematical
problem-solving accuracy.

MODEL FT-DATASET TOOL USAGE? EVAL METHOD MATH(%)

PROPRIETARY MODELS

MINERVA-540B (UESATO ET AL., 2022) ARXIV+WEB NO MAJ1@64 50.3
GPT-4 (2023-0314) (BUBECK ET AL., 2023) - NO PASS@1 42.5
GEMINI-ULTRA (TEAM ET AL., 2023) - NO PASS@1 53.2

∼7B MODELS

LLAMA-2-7B (TOUVRON ET AL., 2023B) - NO PASS@1 2.5
QWEN-7B (BAI ET AL., 2023) - NO PASS@1 11.6
LLEMMA-7B (AZERBAYEV ET AL., 2023) PROOF-PILE-2 NO PASS@1 18.0
METAMATH-7B (YU ET AL., 2023) METAMATHQA NO PASS@1 19.8
MISTRAL-7B-METAMATHQA (YU ET AL., 2023) METAMATHQA NO PASS@1 28.2
MISTRAL-7B-MMIQC* MMIQC NO PASS@1 36.0
MAMMOTH-CODER-7B (YUE ET AL., 2023) MATHINSTRUCT CODE PASS@1 35.2
TORA-CODE-7B (GOU ET AL., 2023) TORA-CORPUS CODE PASS@1 44.6

∼34B MODELS

CODELLAMMA-34B - CODE PASS@1 25.0
LLEMMA-34B-METAMATHQA METAMATHQA NO PASS@1 34.8
LLEMMA-34B-MMIQC* MMIQC NO PASS@1 38.6
LLEMMA-34B-METAMATHQA METAMATHQA MATH-SHEPHERD MAJ+VERIFY1@256 47.3
TORA-CODE-34B (GOU ET AL., 2023) TORA-CORPUS CODE PASS@1 50.8

∼70B MODELS

LLAMA-2-70B (TOUVRON ET AL., 2023B) - NO PASS@1 13.5
DEEPSEEK-67B (BI ET AL., 2024) - NO PASS@1 18.7
DEEPSEEK-67B-METAMATHQA METAMATHQA NO PASS@1 36.8
DEEPSEEK-67B-MMIQC* MMIQC NO PASS@1 41.0
DEEPSEEK-67B-METAMATHQA METAMATHQA NO MAJ1@256 45.4
DEEPSEEK-67B-METAMATHQA METAMATHQA MATH-SHEPHERD MAJ+VERIFY1@256 48.1
QWEN-72B (BAI ET AL., 2023) - NO PASS@1 35.2
QWEN-72B-METAMATHQA* METAMATHQA NO PASS@1 41.7
QWEN-72B-MMIQC* MMIQC NO PASS@1 45.0

Table 4: How different subsets of MMIQC affect the accuracy of the finetuned model on MATH.
The base model is Mistral-7B, and the accuracy baseline is the reported 28.2% of Mistral-7B-
MetaMathQA.

DATA # SAMPLES MATH(%)

METAMATHQA 395K 28.2

METAMATHQA (SUBSET) 203.7K 26.4 (-1.8)
+ ANSAUG & QB +66.5K 30.1 (+1.9)
+ AUGSIMILAR +38.2K 31.5 (+3.3)
+ IQC ITER #1 +21.8K 33.0 (+4.8)
+ IQC ITER #2 +16.0K 33.7 (+5.5)
+ IQC ITER #3 & #4 +17.3K 34.4 (+6.2)
+ MATHSTACKEXCHANGE +1203.6K 36.0 (+7.8)

6 CONCLUSION

In this work, we introduce a novel data augmentation method for math word problem datasets called
IQC (Iterative Question Composing) and use it in the construction of our MMIQC dataset. Our
evaluation results show that the models fine-tuned on MMIQC achieve new SOTAs on the MATH
benchmark. The improvements of our models benefit from the diverse data sources of MMIQC and
the effectiveness of IQC.

For future directions, we are interested in how to equip open-source models with the ability to
compose questions, in order to perform IQC in a self-evolution style, similar to that in Huang et al.
(2022a). Besides, how to integrate the verification systems (Wang et al., 2023a; Liu et al., 2023) that
are originally used to improve the accuracy during inference time into the procedure of IQC, is also
an attractive topic.
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