
Under review as a conference paper at ICLR 2024

VISUAL PROMPTING REIMAGINED: THE POWER OF
ACTIVATION PROMPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual prompting (VP) has emerged as a popular method to repurpose large pre-
trained models for downstream vision tasks. Unlike many parameter-efficient
fine-tuning (PEFT) techniques that modify model parameters, VP introduces a uni-
versal perturbation directly into the input data to facilitate task-specific fine-tuning
while keeping the pretrained model intact. However, there exists a noticeable
performance gap between VP and conventional fine-tuning methods, highlighting
an unexplored realm in theory and practice to understand and advance VP to close
its performance gap. Towards this end, we introduce a novel concept, termed
activation prompt (AP), which extends the scope of input-level VP by enabling
universal perturbations to be applied to activation maps within the intermediate
layers of the model. With the aid of AP, we show that VP, by its input perturbation
design, has intrinsic limitations in both performance and efficiency. By contrast,
AP shares a natural connection to normalization tuning, e.g., batch normalization
for convolutional neural networks (CNNs) and layer normalization for vision trans-
formers (ViTs). This illuminates the reason behind the observed better accuracy
of normalization tuning than VP in the literature. Furthermore, we show that the
choice of prompting exhibits a distinct preference for layer depth, with conclusions
varying significantly between CNNs and ViTs. We theoretically elucidate the
rationale behind such preference by analyzing global features across layers. By
conducting extensive experiments across 29 datasets and various model architec-
tures, we provide a thorough performance analysis of AP, comparing it with VP
and PEFT baselines. Our experimental results demonstrate that AP significantly
surpasses the input-level VP in terms of both accuracy and efficiency, considering
factors like time, parameters, memory usage, and throughout. These results further
support our new insights into the incapabilities of VP and the capabilities of AP.

1 INTRODUCTION

Large pretrained models have emerged as fundamental components in deep learning (DL) research in
recent years (Brown et al., 2020; Touvron et al., 2023; Chiang et al., 2023; Li et al., 2022; Bai et al.,
2023a). Thus, the pretraining-finetuning paradigm rises, allowing for quickly adapting a pretrained
model to a plethora of downstream tasks (Jia et al., 2022; Hu et al., 2021; Chen et al., 2022b; Cai
et al., 2020; Sung et al., 2022; Pfeiffer et al., 2020; Chen et al., 2023b). Due to its extensive parameter
space, the model possesses ample capacity to acquire a rich and diverse set of valuable features during
pretraining, thereby ensuring exceptional performance and high data efficiency during finetuning.
Nonetheless, the substantial increase in computational demands, as highlighted in recent studies
(Frantar & Alistarh, 2023), has underlined the need for more economical and lightweight fine-tuning
approaches. Consequently, the development of such approaches has become a central research focus.

Among the various parameter-efficient finetuning (PEFT) methods (He et al., 2021; Hu et al., 2021;
Pfeiffer et al., 2020; Chen et al., 2022b; Xu et al., 2023), prompting technique has been gaining
popularity (Liu et al., 2023; Li & Liang, 2021). Different from the model-centric PEFT techniques in
the realm of computer vision (CV), the conventional visual prompting (VP) crafts specific prompts or
templates on the inputs to reprogram the pretrained model without altering the model parameters,
which offers a new data-centric viewpoint to analyze, understand, and further harness the pretrained
model (Chen et al., 2023b). However, even though several VP variants have been introduced, current
state-of-the-art (SOTA) VP techniques still lag in performance when compared to finetuning-based
approaches (Chen et al., 2023b; Wu et al., 2022) and remain in nascent stages, compared to its
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counterpart in natural language processing (NLP) (Liu et al., 2023; Li & Liang, 2021), which has
found great utility. Therefore, to interpret the root cause for such an inferior performance and to
further advance VP, in this work, we primarily focus on the following question:

(Q) Is VP (visual prompting) truly beneficial for improving vision models and tasks, and under
what conditions does it prove effective or ineffective?

Frozen Model Parameters

Visual Prompt Activation Prompt

+ +

vs.

Figure 1: An illustration of the proposed activation
prompt vs. the conventional input-based prompt.

To address the above question, we introduce a
more generalized version of VP termed activa-
tion prompt (AP); see Fig. 1 for an illustration.
In this context, it can be viewed that VP operates
as a specific instance of AP, functioning at the in-
put layer rather than any intermediate layer that
AP can be applied to. Through a warm-up study
of AP in different model layers, we find that VP
seems not to be the optimal design in terms of
either effectiveness or efficiency. In particular,
a properly installed AP can significantly exceed
the performance of the conventional input-based
VP. To understand the mechanism behind AP,
we provide empirical studies as well as theoreti-
cal understanding, highlighting a close connection between AP and normalization tuning, although
AP does not require modifying model parameters as normalization tuning does.

Probing deeper into the conditions under which AP can be employed to maximize downstream
performance, our analyses shed light on the layer and architectural influences in AP. Specifically,
AP has a pronounced layer preference to achieve the best performance. Interestingly, this preference
manifests oppositely in widely adopted architectures like the ResNet and the Vision Transformer
(ViT) family. Comprehensive examinations of intermediate features from ResNets and ViTs reveal
that layers rich in global features typically amplify the efficacy of AP. Conclusively, our theoretical
analysis rigorously validates the “layer and architecture effect”. Our contributions are as follows:

• We propose AP (activation prompt) as a valuable tool for gaining insights into VP (visual prompting).
In addition, AP establishes itself as a versatile and highly effective prompting technique in its own
right, revealing a provable relationship with normalization tuning.

• We show that the choice of the optimal layer for implementing AP is heavily contingent on the
specific model architecture employed. Empirical analyses underscore that this layer-architecture
effect is intricately linked to the model’s capacity to capture global features. Moreover, we provide
theoretical validation to substantiate these empirical findings.

• Through extensive experimentation involving 29 datasets across various benchmarks, we confirm
that AP markedly improves upon VP in diverse learning scenarios. When compared to 6 other SOTA
PEFT methods, we show that AP excels in both accuracy performance and efficiency.

2 RELATED WORK

Visual prompting. VP was first proposed in (Bahng et al., 2022b) to extend the prompting technique
in NLP. A similar idea with a different name, known as adversarial reprogramming, was also proposed
earlier in CV (Elsayed et al., 2018; Chen, 2022; Neekhara et al., 2018; 2022; Chen et al., 2021; Zhang
et al., 2022a; Chen et al., 2022a), which aims at re-purposing a fixed pretrained model to adapt to a
new task. Recent advancement either focuses on improved label mapping (Chen et al., 2021; Yang
et al., 2023) or normalization strategy (Wu et al., 2022) to enhance VP. Other works further extend
the idea of VP to areas like adversarial defense (Chen et al., 2023a; Mao et al., 2022) and distribution
shift (Huang et al., 2023; Tsai et al., 2023), and vision-language models (Zhou et al., 2022). The most
relevant work to ours is VPT (Jia et al., 2022), which proposes another form of prompt by appending
additional tokens to all the intermediate layers of a ViT. However, it fails at dissecting the layer effect
of different models and also results in a more computationally intensive design.

Theoretical study on prompt engineering. Existing theoretical works on prompt engineering include
the expressive power of the introduced parameter (Wei et al., 2021; Bai et al., 2023b; Akyürek et al.,
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2022), the optimization process (Ding et al., 2022; Von Oswald et al., 2023), and the generalization
analysis (Xie et al., 2021; Oymak et al., 2023; Zhang et al., 2023a; Li et al., 2023b). Most studies
concentrate on in-context learning, a tuning-free hard prompt method. In contrast, for soft prompt
tuning, Wei et al. (2021) unveils prompting is powerful enough to remove nonessential information
for the downstream task. Ding et al. (2022) interprets prompt tuning as a subspace optimization
method for the solution or functional space. Notably, (Oymak et al., 2023) is the sole study on the
generalization dynamics of gradient-based prompt tuning but relies on a single-layer Transformer
architecture without the MLP layer, making it incapable of examining the impact of multiple layers.

Parameter-efficient finetuning. PEFT demonstrates that only finetuning a small part of a large
pretrained model can achieve outstanding performance. In the domain of CV, besides prompting-
based methods, PEFT methods can be roughly classified into two categories. The former (Basu
et al., 2023; Xu et al., 2023) focuses on identifying a small ratio of parameters from the pretrained
model itself, such as normalization tuning (Basu et al., 2023), and the latter designs small modules to
the original network backbone to adapt do downstream tasks (Hu et al., 2021; Chen et al., 2022b;
Karimi Mahabadi et al., 2021; Xu et al., 2023; Pfeiffer et al., 2020; Lian et al., 2022; Zhang et al.,
2022b; Luo et al., 2023). The representative work includes LoRA (Hu et al., 2021), which inserts
low-rank parameters to the attention blocks of ViT, adapter-based methods (Chen et al., 2022b; Luo
et al., 2023; Karimi Mahabadi et al., 2021; Pfeiffer et al., 2020) that interpose lightweight networks
within the pretrained model, and FACT (Jie & Deng, 2023), that tensorizes the ViT weights to a
3D tensor and reduces the tunable parameter ratio to less than 0.01%. Nonetheless, these strategies
heavily rely on the model architecture and thus require additional parameters, which either introduce
additional inference latency or only apply to a certain type of model. AP differentiates itself from the
methods above by not introducing additional inference overheads or having any requirements on the
model architectures.

3 ACTIVATION PROMPTING: AN “IN-DEPTH” EXTENSION OF VP

Preliminaries on VP. The VP technique harnesses universal pixel-level perturbations applied to input
images as a means of model adaptation (Bahng et al., 2022a). For example, VP enables the transfer
learning of an ImageNet-trained source model to various downstream tasks without the need for fine-
tuning the model weights. It has sparked significant interest in the recent research (Bahng et al., 2022a;
Chen et al., 2023b; Zhang et al., 2022a; Tsai et al., 2020; Wu et al., 2022). To be concrete, let fθ denote
the pre-trained source model parameterized by θ, and D = {(x1, y1), (x2, y2), . . . , (xN , yN )}
denote the fine-tuning dataset for a downstream task, with x and y being the data feature and label,
respectively. The objective of VP is to obtain a perturbation vector, denoted as δVP, which is tailored
to a specific task but remains agnostic to the input data. This vector is then used to transform the input
data x through the function g(x, δVP). Here g symbolizes the transformation template function that
molds the input image to fit the desired prompt pattern. Two prevalent templates include the addition
g(x, δVP) = x+ δVP (Bahng et al., 2022a; Zhang et al., 2022a), and the resize-and-concatenation
g(x, δVP) = [δVP,M(x)] (Zhang et al., 2022a; Chen et al., 2023b), where M stands for the resizing
function. Unless specified otherwise, the additive VP formulation is adopted in this work.

Activation prompts: Generalizing VP to the feature space. The conventional VP approach
primarily focuses on making direct modifications to the input data. However, this direct manipulation
has limitations in terms of flexibility and efficiency for two key reasons. First, raw input data typically
contains an abundance of details, which can introduce complications for tasks like prompt generation
due to issues such as background clutter and semantic ambiguity (Yu et al., 2017). In contrast,
intermediate features tend to encompass a broader range of local and global attributes, preserving
more class-discriminative information for decision-making (Bau et al., 2017). Second, parameter
updates in VP demand gradient propagation throughout the entire network. Consequently, even with
a lower number of tunable parameters, there might not be a substantial increase in training efficiency.

Motivated by the above, we broaden the scope of VP into the feature domain and introduce the
concept of activation prompting (AP), see Fig. 1 for an illustration. Given a neural network model
with L layers, represented as θ = [θ(1),θ(2), . . . ,θ(L)], the output from the l-th layer is denoted
as z(l) = fθ(l)(z(l−1)), where z(0) = x (i.e., the input date). Similar to VP, AP at the l-th layer is
defined by a perturbation vector δ(l) to the intermediate feature z(l), leading to the ‘prompted’ feature
map g(z(l), δ(l)) = z(l) + δ(l). We denote the output with the l-th-layer AP given θ as fθ(x, δ(l)).
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The objective of AP is then to optimize δ(l) so as to facilitate the adaptation of the fixed source
model fθ for performing the downstream task on D. It is evident that AP can be conceptualized as
an extension of VP when we set the layer number l to 0. Moreover, the optimization process for
both VP and AP can be carried out similarly through empirical risk minimization (ERM) on D, i.e.,
minδ(l) E(x,y)∼Dℓ(fθ(x, δ

(l)); y), where ℓ is the sample-wise cross-entropy loss.

However, AP also exhibits several notable attributes different from VP. First, the number of parameters
in AP directly relates to the size of the feature map z(l). Hence, a properly designed AP can
substantially reduce the parameter count. Second, while the optimization of AP mirrors that of VP, its
parameter update does not necessitate back-propagation throughout the entire network. For example,
embedding AP deeper within the architecture reduces computational demands during training.

AP might be a better design than VP. Next, we present a preliminary experiment that serves
as a warm-up, demonstrating how AP exhibits the potential to improve accuracy performance, as
well as enhance computation and parameter efficiency when compared to VP. We examine the
commonly used transfer learning scenario for applying VP, in which the source model ResNet-
101 (He et al., 2016) is initially trained on ImageNet (Deng et al., 2009) and is subsequently
transferred to the CIFAR-10 dataset (Krizhevsky et al., 2009). Fig. 2 presents a performance com-
parison between AP and VP against the layer index on ResNet-101, at which AP is introduced.
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Figure 2: Performance and
efficiency comparison of
VP, NORM-TUNE and AP
over different layer depths of
ResNet-101 on OxfordPets.

The preliminary results provide several key insights, which will be
substantiated in more detail later. First, AP holds the potential to
substantially enhance the accuracy of transfer learning when com-
pared to VP. For instance, when AP is applied at layer 31, it achieves
the highest accuracy in transfer learning, surpassing VP by approx-
imately 5%. In fact, more comprehensive experiments presented in
Sec. 5 demonstrate that applying AP to a deeper layer consistently
produces the most significant accuracy improvements across a wide
range of convolutional neural networks (CNNs). Second, due to
the preference for deeper layers when utilizing AP in CNNs, there
exists a computational advantage since back-propagation from the
output to the input layer is not required. Third, AP maintains the
parameter efficiency merit compared to VP. For instance, at the layer
that exhibits the best performance, AP utilizes only 100k parame-
ters, whereas VP employs 150k parameters. The results from the
warm-up experiment above indicate that AP has the potential to outperform VP, offering not only
improved accuracy but also greater efficiency.
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Figure 3: Tunable parameter shape com-
parison between NORM-TUNE and AP
(ours). The same color indicates shared
parameters across different dimensions.

Understanding AP through its connection to normal-
ization tuning. In this study, we present normalization
tuning (NORM-TUNE) as a parameter-efficient fine-tuning
(PEFT) technique. This approach tunes parameters within
a model’s normalization layers, i.e., BatchNorm for CNNs
(Ioffe & Szegedy, 2015) and LayerNorm for ViTs (Ba
et al., 2016). For clarity, we denote the tunable param-
eters of a normalization layer as γ = (γ1, · · · , γD′)⊤

and β = (β1, · · · , βD′)⊤, with D′ representing the num-
ber of channels or the token dimension. Further, de-
fine µ and σ as the channel-wise mean and standard
deviation constants of z(l) for BatchNorm over the en-
tire batch. For LayerNorm, they represent the data-wise
mean and standard deviation of z(l) across the embed-
ding dimension. Given that both AP and NORM-TUNE
utilize a linear model for feature representations, namely g(z(l), δ(l)) = z(l) + δ(l) for AP and
g(z(l),γ,β) = γ · (z(l) − µ)/

√
σ + β for NORM-TUNE, AP can be interpreted as a variant of

NORM-TUNE. Fig. 3 illustrates the connection. Specifically,

• Conditions for CNNs: when AP’s perturbations are consistent across all feature map units, the
unit-scaling BatchNorm-based NORM-TUNE closely mirrors the formulation of AP, differentiated
merely by a linear mapping plus a bias. This equivalence becomes apparent when relating W (l)δ(l)

to β − γ · µ/
√
σ, especially when γ/

√
σ = 1, supposing W (l) as the weight for the l-th layer.
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• Conditions for ViTs: assuming uniform perturbations across tokens and mean value is consistent
across data dimensions within a batch, AP reduces to the unit-scaling LayerNorm-based NORM-
TUNE, using the mean as the bias. This can be represented as δ(l) = β − µ, given γ/

√
σ = 1.

Due to more flexible perturbations of AP, such a connection exhibits increased power of AP than
NORM-TUNE in terms of a larger parameter space for bias tuning. We theoretically summarize the
above connection as Proposition 1 in Appx. C.2. Meanwhile, we remark that another key difference
of AP compared to NORM-TUNE is that no parameters of the model backbones need to be altered
during training. This differentiates “prompting” technology from any other PEFT methods by purely
using the knowledge extracted by the pretrained model backbone alone. In the realm of PEFT,
recent research has shown that LayerNorm-based NORM-TUNE serves as a robust baseline of model
adaptation for ViTs (Basu et al., 2023). Beyond that, we will show that AP can surpass NORM-TUNE
and remain effective for CNNs.

4 A DEEP DIVE INTO AP: LAYER AND ARCHITECTURE EFFECT
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Figure 4: Layer preference of AP with different model architectures on OxfordPets (Parkhi et al., 2012). CNNs
and ViTs exhibit opposite layer preferences. Results on more datasets are provided in Fig. A1.

4.1 INFLUENCE OF MODEL ARCHITECTURE ON AP’S LAYER PREFERENCE.

Our preliminary findings in Fig. 2 suggest that the effectiveness of AP may be contingent on the
specific layer where it is installed. To acquire a deeper understanding of this characteristic and its
association with model architecture, we examine two commonly-used model architectures: ResNet
and ViT. Fig. 4 follows and expands Fig. 2 by covering the additional models, namely ResNet-50,
ViT-Base/12, and ViT-Large/16, and showcasing the transfer learning accuracy enabled by AP on the
downstream dataset OxfordPets as a function of the layer index to which AP is applied. As we can
see, a key observation is that ResNets and ViTs exhibit contrasting layer preferences for AP, where
★ indicates the best performance of AP in Fig. 4 under each architecture. Specifically, CNNs exhibit
a preference for AP in their deeper layers, while ViTs tend to favor AP in their shallower layers.
Moreover, it is worth noting that within the comfort layer zone, the performance of AP consistently
outperforms NORM-TUNE. These insights underscore the significant potential of AP as an effective
PEFT method, which will be further elucidated in Sec. 5.
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Figure 5: Features dissection to understand the layer effect of AP
on OxfordPets dataset. (A) CKA-based feature similarity comparison
between ViT-Large/16 and ResNet-101. (B) The average attention distance
across all the heads of different layers of ViT-Large/16. A larger distance
signifies a more globally-focused attention, indicative of global features.

Dissecting CNNs and ViTs:
AP prioritizes ‘global’ fea-
tures over ‘local’ features. To
unpack the intriguing AP’s layer
preference behavior above, we
next examine the features cap-
tured by different layers of
CNNs and ViTs. To this
end, we first employ the Cen-
tered Kernel Alignment (CKA)-
based feature similarity analy-
sis (Cortes et al., 2012) to mea-
sure the layer-wise representa-
tion similarity between CNNs
and ViTs, e.g., ResNet-101 and
ViT-Large/16 in Fig. 5 (A). As we can see, the deep features of ResNet-101 predominantly align with
the middle layers of ViT-Large/16. This concurs with the observations made in (Raghu et al., 2021),
which suggest that ViTs have the capability to capture features reminiscent of the deeper layers of
CNNs even within their relatively early layers. In addition, as indicated by network dissection analysis
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for CNNs (Bau et al., 2017), it is known that CNNs tend to prioritize low-level visual concepts, i.e.,
local features like color and texture, in their shallower layers. In contrast, they transition to high-level,
class-discriminative concepts, encompassing global features like scenes and objects in deeper layers.

Drawing upon the analyses presented above and insights in Fig. 4, we hypothesize that AP exhibits a
preference for deep layers in CNNs and shallow layers in ViTs, which can be attributed to the models’
inclinations toward global features over local features. To bolster our hypothesis, we investigate how
global information is distributed across the layers of ViTs. We employ a methodology used in (Raghu
et al., 2021) and (Walmer et al., 2023) to compute the average attention distance between the position
of query tokens and the locations they attend to with the query within each self-attention head in ViTs.
This analysis unveils how each self-attention layer contributes to the balance between local and global
information in the overall representation. In Fig. 5 (B), we present the average attention distance
across 16 attention heads for with different layer indices of a pretrained ViT-Large/16. A general
trend can be observed: the distribution of the sorted attention distance moves firstly downwards (layer
index from 1 to layer 12). This implies that the ratio of the global features captured by attention in
general decreases. When the layer index is larger than 15, the global feature ratio slightly increases.
This trend roughly aligns well with the patterns observed in Fig. 4. These observations underscore
our claim that AP’s layer preference is influenced by the presence of global features. We provide
theoretical support in the following section to support the layer and architecture effect. In particular,
we focus on the more challenging part of ViTs, since the study on CNNs is abundant.

4.2 WHY DOES LAYER AND ARCHITECTURE EFFECT HOLD IN THEORY?

From a perspective of generalization, we discuss the following layer and architecture effect for ViTs:

To achieve the desired generalization performance, shallow-layer AP tuning requires less
sample complexity than deep-layer ones for ViTs.

To show this, we present the theoretical setups that satisfy the conditions of global features for ViTs,
followed by the generalization analysis with sample complexity bound in Theorem 1.

Problem setup. Following existing theoretical works (Li et al., 2023a; Oymak et al., 2023; Tarzanagh
et al., 2023), we study a binary classification problem using a single-head two-layer ViT as the
pretrained model with the dataset {xn, yn}Nn=1. yn ∈ {+1,−1}. Each data xn ∈ Rd×P consists of
P tokens. The training is implemented by a mini-batch stochastic gradient descent (SGD) with the
loss ℓ(xn, yn). The generalization performance is evaluated by the population risk E[ℓ(xn, yn)].

Data assumption. Each token of xn is formulated as a pattern added with a Gaussian noise following
N (0, σ2), σ ≤ O(1/P ). We consider four patterns {v1,v2,v3,v4} in total. In each xn, only one
token corresponds to either v1 or v2, named discriminative patterns that decide the label. Other
P −1 tokens correspond to either v3 or v4, named non-discriminative patterns that work as the image
background. For instance, if one token is the noisy version of v1 (v2), then yn = 1 (yn = −1).

Pretrained model assumption. The pretraining is assumed to learn a task where all four patterns
are key features. Following the recent SOTA theoretical finding (Shi et al., 2022; Li et al., 2023a)
that hidden neurons learn discriminative features, we set the MLP neurons as features that appear
in the l-th layer and assign the value of the linear heads accordingly. To characterize the global
features shown in Fig. 5, we assume the key and vector matrices to be scalings of permutation
matrices. The details about the data and model assumptions can be found in Appx. C.3. Given a set
of queries q1, · · · , qP and keys k1, · · · ,kP for an attention head, We formally define the average
attention distance mentioned in Fig. 5 as

∑P
i=1 |i − argmaxj∈[P ] ⟨kj , qi⟩ |/P , i.e., the average

distance between the query qi and the key kj that has the largest inner product with qi, i, j ∈ [P ].
Assuming the discriminative key and value are away from the discriminative query with a distance of
dA ≥ 1, we have the following Lemma on decreasing the average attention distance.
Lemma 1 The average attention distance defined above decreases from (1 + dA)/P to 1/P after
the 1st layer of the simplified two-layer ViT.
Lemma 1 supports our empirical observation in Fig. 5 (c) of decreasing attention distance values
in deep layers in ViT. Such a decrease results in an increased sample complexity for guaranteed
generalization, summarized in the following theorem.
Theorem 1 For the two-layer ViT, training with SGD returns a model with zero generalization
error as long as the batch size B ≥ Ω(1) and the required number of samples N satisfy (1)
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N ≥ N1 = Θ(P ) if adding AP to the 1st layer; (2) N ≥ N2 = Θ(P 2 logP ) if adding AP to the
2nd layer. N2 is order-wise larger than N1.
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Figure 6: Sample complex-
ity study of AP in different
layers on OxfordPets with
ViT-Large/16.

Theorem 1 shows deep-layer AP requires more training samples than
the shallow-layer AP to achieve the same generalization, as shown by
the dashed line in Fig. 6. Accordingly, with the same number of training
samples and the setup, shallow-layer AP has better generalization than
deep-layer AP. The proof of Theorem 1 can be found in Sec. C.4. The
basic proof idea is that for AP in the shallow layer, a trained prompt with
a norm of Θ(P ) that removes non-discriminative patterns is enough to
make all tokens attend to discriminative tokens. Thus, the amount of
global features does not decrease. This can ensure zero generalization
by abundant global features. For AP in deep layers, however, given
Lemma. 1, a lack of global features leads to an evident mismatch between
discriminative tokens in the 2nd-layer self-attention. Hence, a trained prompt with a norm of
Θ(P 2 logP ) is necessary to direct the attention to focus on discriminative tokens. We then show the
sample complexity bound is proportional to the magnitude of the trained prompt in these two cases.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets and models. We utilize two commonly used architectures for the source datasets: ResNet-
101 from the ResNet family (He et al., 2016) and ViT-Large/16 from the ViT family (Dosovitskiy
et al., 2020). Both are pretrained on ImageNet-1K (Russakovsky et al., 2015). In the target domain,
we consider over 20 datasets from transfer learning benchmarks FGVC (Maji et al., 2013) and VTAB
(Zhai et al., 2019). In VTAB, we consider both full-data and few-shot (VTAB-1k) regimes. In
addition, we also consider other commonly used datasets (Chen et al., 2023b) for transfer learning
like CIFAR-10 (Krizhevsky et al., 2009), UCF101 (Soomro et al., 2012), GTSRB (Houben et al.,
2013), Food101 (Bossard et al., 2014), and Waterbirds (Sagawa et al., 2019). More details on the
datasets and the benchmarks can be found in Appx. A.

We cover three types of baselines in transfer learning. First, we primarily compare AP to the
parameter-efficient learning methods designed for both CNNs and ViTs, including LINEAR-PROBE
that only finetunes the classification head with a fixed feature extractor, the conventional (input-level)
VP (Bahng et al., 2022a) and NORM-TUNE (Basu et al., 2023) that tunes all the normalization
layers in a model. Second, we select FULL-FINETUNE as our reference method due to its superior
accuracy; it fine-tunes the entire pretrained model, albeit being the most computationally expensive
option. Lastly, we consider another 9 SOTA PEFT baselines used in ViT families: VPT (Jia et al.,
2022), LORA (Hu et al., 2021), ADAPTER (Chen et al., 2022b), BIAS (Zaken et al., 2021), NORM-
TUNE (Basu et al., 2023),ATTNSCALE (Basu et al., 2023), and ADAPTERFORMER (Chen et al.,
2022b). These methods help us to establish the ranking of AP in the PEFT domain.

Implementation, training, and evaluations. We implement AP at the input of the third-to-last
ResNet block in ResNet-101 and the third Transformer block in ViT-Large/16, based on the layer
effect in Fig. 4. During training, all the methods are trained for 100 epochs using the Cross-Entropy
loss with an Adam optimizer (Kingma & Ba, 2015). Hyperparameters, including learning rates, are
determined through a search process for each method, and the implementation details are summarized
in Appx. A. During evaluation, we compare different methods in terms of their performance (testing
accuracy) and efficiency. In particular, we depict the efficiency portrait of a method from the
following 4 different perspectives: (1) tunable parameter number, (2) memory cost, (3) train time per
epoch, and (4) throughput for inference efficiency; see Tab. 2 for more details.

5.2 EXPERIMENT RESULTS

AP is not only effective but also efficient. We examine the performance of the proposed AP in
the full-data regime below. Two key observations can be drawn from experiment results: (1) AP
consistently outperforms baselines across the majority of datasets from various dataset benchmarks,
in particular with a significant improvement over VP (see Tab. 1); (2) AP demonstrates remarkable
efficiency across various efficiency metrics, establishing itself as a cost-effective and potent method,
as highlighted in Tab. 2.
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Table 1: Performance comparison of various methods on 19 datasets from different benchmarks. Three
parameter-efficient baselines (denoted by ◦ ) are compared to AP due to their high relevance, where the best
performance is highlighted in bold. The most computationally intensive FULL-FINETUNE (denoted by • ) serves
as the performance reference. Each accuracy value is averaged over 5 independent trials, with the variance
omitted due to its negligible values (≤ 0.3%). The “Average” column represents the averaged accuracy of each
method over all the datasets in each row.
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• FULL-FINETUNE 88.91 90.13 87.76 84.45 99.98 92.24 99.13 79.97 99.81 90.49 97.14 79.19 91.13 99.13 97.24 97.68 88.32 82.72 96.69 91.69

◦ LINEAR-PROBE 63.76 86.63 49.62 52.09 82.01 73.87 90.58 61.35 93.14 91.17 66.30 54.51 83.36 95.84 92.25 79.64 71.03 64.31 88.11 75.76
◦ NORM-TUNE 66.39 87.59 67.64 56.72 66.50 82.58 91.32 63.53 92.85 89.81 95.26 54.56 84.42 96.14 93.90 96.43 69.44 72.54 88.95 79.81
◦ VP 65.72 86.91 51.04 54.23 78.50 72.01 93.51 63.12 90.17 87.93 80.68 54.97 83.71 95.44 92.55 83.18 66.30 57.89 86.71 76.03
◦ AP (ours) 69.42 87.79 59.06 58.31 85.14 76.94 94.85 69.80 95.13 91.31 87.30 56.83 84.91 97.21 94.08 90.43 73.96 68.12 88.13 80.45

V
iT

-L
ar

ge
/1

6 • FULL-FINETUNE 89.79 93.31 89.42 84.75 99.91 93.19 99.25 75.30 99.39 93.35 98.13 79.31 91.93 97.92 98.30 97.90 89.25 86.16 97.93 92.34

◦ LINEAR-PROBE 84.69 86.11 65.24 75.71 99.40 88.55 97.01 73.31 99.24 91.15 65.79 72.37 84.05 97.26 98.13 80.72 83.02 83.02 94.16 85.20
◦ NORM-TUNE 85.90 89.76 75.61 78.78 99.35 90.69 98.01 78.90 99.76 92.88 88.30 73.57 79.82 97.17 98.44 90.86 85.15 83.21 94.36 88.45
◦ VP 85.24 87.02 67.64 76.20 99.32 89.44 97.81 77.72 99.72 91.31 85.70 74.33 84.27 97.85 98.80 89.09 84.67 82.23 95.03 87.54
◦ AP (ours) 86.74 90.83 69.41 79.83 99.70 90.96 98.99 78.96 99.84 93.89 88.87 75.44 86.99 98.33 98.54 91.49 86.80 84.04 94.60 89.17

Table 2: An overview of the methods considered in this
work. The efficiency analysis is based on the model-data
setting (ViT-Large, CIFAR-10) with a batch size of 128,
and time consumption is evaluated using a single RTX-
A6000 GPU. For each metric, we use ↑ or ↓ to indicate
whether a larger smaller value is favored for each metric.

Method
Param. Efficiency Train-Time Efficiency

Parameter
# (M) ↓

Memory Cost
(G) ↓

Time Cost
(s/epoch) ↓

Troughput
(image/s) ↑

ResNet-101
FULL-FINETUNE 44.5 10.32 118 41.47
LINEAR-PROBE 0.02 6.2 39 41.33

NORM-TUNE 0.13 11.7 83 41.45
VP 0.12 12.2 72 40.59
AP 0.12 6.3 41 41.36

ViT-Large/16
FULL-FINETUNE 304.33 41.5 520 79.58
LINEAR-PROBE 0.01 9.7 121 79.64

NORM-TUNE 0.06 29.5 285 79.51
VP 0.11 35.9 280 77.14
AP 0.16 31.6 262 79.48

Tab. 1 shows the performance of AP vs. the
baselines VP, NORM-TUNE, LINEAR-PROBE,
and FULL-FINETUNE. As we can see, AP con-
sistently outperforms VP in all the 19 datasets.
Notably, AP yields an increase in the average
accuracy of over 4% and 1.5% compared to VP
for both ResNet-101 and ViT-Large/16. In some
datasets, such as StanfordCars, SVHN and GT-
SRB using ResNet-101, this advantage can in-
crease to 7%∼9%. AP also remains effective
compared to NORM-TUNE, which has proven
to be a strong PEFT method for ViT families
in (Basu et al., 2023). AP performs the best
in 13 and 15 out of 19 datasets for ResNet-101
and ViT-Large/16, respectively. Although FULL-
FINETUNE remains the best-performing in most
datasets, AP still manages to surpass FULL-FINETUNE in some datasets, such as OxfordPets for
ResNet-101, and DTD for ViT-Large/16. Most importantly, AP is much more efficient than FULL-
FINETUNE, as illustrated below.

Tab. 2 demonstrates the efficiency profile of different methods under different metrics. Two key
insights can be drawn from the results. First, in comparison to VP, AP demonstrates superior
efficiency in terms of memory (reduced memory overhead), time (decreased training duration),
and inference (increased throughput) for both ResNet-101 and ViT-Large/16. This superiority is
maintained while operating at a comparable parameter efficiency, marked by a negligible tunable ratio
difference of less than 0.05%. This trend is amplified for ResNet-101, as evidenced by the significant
reductions in memory usage (6.3 G for AP vs. 12.2 G for VP) and training duration (41 s/epoch for
AP vs. 72 s/epoch for VP). This efficiency arises from the AP’s preference towards deeper layers
over shallower ones in ResNet-101, resulting in reduced back-propagation overhead for most of the
network. Second, when compared to NORM-TUNE, although AP consumes slightly higher memory
cost for ViT-Large/16, it achieves higher training efficiency for ResNet-101 and ViT-Large/16. This
is due to that, while NORM-TUNE possesses a small tunable parameter ratio, these parameters are
dispersed throughout the network, leading to a more expensive back-propagation process. Although
no significant difference is observed in throughput, we will show later in Tab. 4 that AP enjoys high
throughput efficiency compared to other PEFT methods.

How does the downstream dataset scale affect AP? To study the effect brought by the downstream
data scales, we follow the setting of (Jia et al., 2022) and examine the performance of different
methods under the few-shot setting on VTAB-1K. In particular, for each of the 19 datasets in the
VTAB benchmark, only 1000 data samples are available for training. Tab. 3 shows that AP makes a
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Table 3: Performance comparison of various methods in the few-shot setting on the VTAB-1K benchmark.
Other settings follow Tab. 1.

Benchmark VTAB-Natural VTAB-Specialized VTAB-Structured
A

rc
hi

te
ct

ur
e

C
al

te
ch

10
1

C
IF

A
R

-1
00

D
T

D

Fl
ow

er
s1

02

O
xf

or
dP

et
s

Su
n3

97

SV
H

N

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

dS
pr

-L
oc

dS
pr

-O
ri

K
IT

T
I-

D
is

t

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

v

A
ve

ra
ge

R
es

N
et

-1
01

• FULL-FINETUNE 89.99 45.17 63.78 84.29 89.82 41.09 67.79 84.92 74.57 91.37 74.14 58.11 60.99 43.61 67.05 40.45 78.34 33.64 36.38 64.50

◦ LINEAR-PROBE 83.87 39.13 53.09 70.89 85.15 28.14 43.44 78.65 69.43 90.78 69.31 35.91 36.48 35.75 34.76 19.51 65.68 16.91 23.39 51.12
◦ NORM-TUNE 85.61 35.78 47.71 56.64 78.10 10.10 68.67 83.16 61.10 90.50 72.44 37.54 55.24 40.04 60.89 20.33 65.54 24.86 25.96 53.70
◦ VP 84.73 43.01 57.55 76.91 87.03 28.75 55.47 75.15 70.27 89.26 69.08 36.70 54.24 34.48 42.41 20.32 63.71 17.93 26.93 54.42
◦ AP 87.49 39.80 63.62 81.44 88.74 34.83 65.92 78.91 74.19 91.44 71.18 40.20 55.26 38.95 54.68 21.98 72.86 26.24 28.77 58.76

V
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6 • FULL-FINETUNE 93.34 76.03 75.74 99.88 93.72 59.06 68.70 86.70 82.84 93.54 82.22 55.42 60.33 48.23 83.62 52.77 78.06 30.40 29.95 71.08

◦ LINEAR-PROBE 89.37 62.98 70.02 93.42 91.22 53.68 45.28 80.52 80.34 91.64 70.43 38.15 35.26 40.74 21.84 29.42 62.54 14.59 23.09 57.60
◦ NORM-TUNE 91.10 65.20 72.36 98.64 91.38 55.14 47.21 82.50 82.34 93.94 71.74 42.83 44.59 41.21 35.64 32.08 63.43 16.52 24.12 60.68
◦ VP 90.06 63.16 71.59 95.35 91.20 54.45 46.26 81.82 81.45 92.25 71.03 41.03 45.49 39.94 32.52 30.29 62.68 15.59 23.13 59.96
◦ AP 91.40 64.40 72.61 99.50 91.46 56.67 49.43 81.41 82.76 93.14 71.99 43.26 38.09 40.57 42.44 31.83 65.40 18.29 25.96 61.06

distinguishable improvement over the baselines VP and NORM-TUNE in the few-shot setting. As we
can see, AP achieves a performance boost of over 1% than VP using ViT-Large/16 and this advantage
increases to 4.3% in the case of ResNet-101. This demonstrates that directly steering the intermediate
features can be more effective when facing data scarcity.

Table 4: Performance comparison between AP and more
SOTA PEFT methods on ViT-Large/16. Experiment settings
follow Tab. 1, and Tab. 2.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.43
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.34 89.24 90.14 0.25 33.7 334 76.35
ADAPTER 87.06 89.44 91.21 2.17 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69

AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Comparing AP with more SOTA PEFT
baselines. To demonstrate the applicability
of AP as an effective and generic PEFT
method, we compare AP with more SOTA
PEFT methods in Tab. 4. As we can see,
even when compared to the strongest PEFT
baselines, AP still remains a competitive
method in terms of both accuracy and effi-
ciency. For example, AP ranks roughly
2∼4 in terms of accuracy among the 8
PEFT methods considered in this work (in-
cluding VP and NORM-TUNE). More im-
portantly, AP ranks the first in terms of all
of the four perspectives of efficiency. In contrast, the best performance of the ADAPTERFORMER
comes at a cost of three times lower throughput efficiency. This is due to that extra modules introduce
significantly more computations during the inference.

Other ablation studies. We provide additional experiment results in Appx. B. In particular, we show-
case the effectiveness of AP across a broader spectrum of model architectures and its compatibility
with models pretrained using various pretraining methods. We also provide layer effect analysis
similar to Fig. 4 on more datasets.

Discussion and limitations. It is worth noting that a potential limitation of AP lies in its implicit
reliance on the size of the pretrained model as a factor for achieving superior accuracy. Specifically,
for compact models like ResNet-18 and ViT-Tiny, while AP enhances the performance of VP, it does
not outperform NORM-TUNE. This observation suggests that AP may primarily utilize downstream
data to guide or “direct” the existing learned knowledge obtained during pretraining, rather than
actively acquiring new knowledge. However, we believe that this limitation does not prevent AP
from future applications to larger foundational vision models.

6 CONCLUSION

In this paper, we delve into AP (activation prompt) as a means to enhance VP. We unveil that extending
VP to AP yields improved empirical performance and establishes a connection with normalization
tuning NORM-TUNE. Additionally, we investigate the layer preference of AP on CNNs and ViTs
both empirically and theoretically. Our experimentation across 29 datasets clearly illustrates the
efficiency of AP compared to other PEFT methods and its superiority over VP.
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REPRODUCIBILITY STATEMENT

The authors have made an extensive effort to ensure the reproducibility of algorithms and results
presented in the paper. First, the details of the experiment settings have been elaborated in Sec. 5
and Appx. A. In this paper, 29 datasets are studied and the details about each dataset is described in
Tab. A1. The evaluation metrics are also clearly introduced in Sec. 5. Second, 9 PEFT methods are
studied in this work. The implementation details of all the baseline methods are clearly presented in
Appx. A. For our proposed AP, we include the implementation details in Sec. 5 and Appx. A. Third,
all the results are based on 5 independent trials with different random seeds to guarantee the reliability
of the results. Fourth, codes are included in the supplementary material.
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APPENDIX

A EXPERIMENT SETTING DETAILS

Datasets. We consider 29 downstream image classification tasks in the target domain across various
domains. We show each dataset’s attributes in Tab. A1.

Dataset Train Size Test Size Class Number Batch Size Reference
Full-Data Setting

Flowers102 4093 2463 102 128 (Nilsback & Zisserman, 2008)
DTD 2820 1692 47 128 (Cimpoi et al., 2014)
UCF101 7639 3783 101 128 (Soomro et al., 2012)
Food101 50500 30300 101 128 (Bossard et al., 2014)
SVHN 73257 26032 10 128 (Netzer et al., 2011)
GTSRB 39209 12630 43 128 (Houben et al., 2013)
EuroSAT 13500 8100 10 128 (Helber et al., 2019)
OxfordPets 2944 3669 37 128 (Parkhi et al., 2012)
StanfordCars 6509 8041 196 128 (Krause et al., 2013)
SUN397 15888 19850 397 128 (Xiao et al., 2010)
CIFAR10 50000 10000 10 128 (Krizhevsky et al., 2009)
CIFAR100 50000 10000 100 128 (Krizhevsky et al., 2009)
CUB-200-2011 5394 5794 200 128 (Wah et al., 2011)
NA-Birds 21536 24633 55 128 (Van Horn et al., 2015)
StanfordDog 10800 8580 120 128 (Khosla et al., 2011)
OxfordFlowers 1020 6149 102 128 (Nilsback & Zisserman, 2008)
Waterbirds 4795 5794 2 128 (Sagawa et al., 2019)
Caltech101 4128 2465 102 128 (Li et al., 2006)
Camelyon 262144 32768 2 128 (Veeling et al., 2018)

Few-Shot Setting (VTab-1k)
CIFAR-100 1000 10000 100 128 (Krizhevsky et al., 2009)
Caltech101 1000 6084 102 128 (Li et al., 2006)
DTD 1000 47 1880 128 (Cimpoi et al., 2014)
Flowers102 1000 6149 102 128 (Nilsback & Zisserman, 2008)
OxfordPets 1000 3669 37 128 (Parkhi et al., 2012)
SVHN 1000 26032 10 128 (Netzer et al., 2011)
Sun397 1000 21750 397 128 (Xiao et al., 2010)
Patch Camelyon 1000 32768 2 128 (Veeling et al., 2018)
EuroSAT 1000 5400 10 128 (Helber et al., 2019)
Resisc45 1000 6300 45 128 (Cheng et al., 2017)
Retinopathy 1000 42670 5 128 (Kaggle & EyePacs, 2015)
Clevr/count 1000 15000 8 128 (Johnson et al., 2017)
Clevr/distance 1000 15000 6 128 (Johnson et al., 2017)
DMLab 1000 22735 6 128 (Beattie et al., 2016)
KITTI/distance 1000 711 4 128 (Geiger et al., 2013)
dSprites/location 1000 73728 16 128 (Matthey et al., 2017)
dSprites/orientation 1000 73728 16 128 (Matthey et al., 2017)
SmallNORB/azimuth 1000 12150 18 128 (LeCun et al., 2004)
SmallNORB/elevation 1000 12150 9 128 (LeCun et al., 2004)

Table A1: Dataset attributes and training configs through 29 target image-classification datasets.

Implementation details. As we stated in the main manuscript, we, by default, install AP to
the input of the thrid-to-last ResNet block and the third Transformer block in ViT-Large/16. For
LoRA (Hu et al., 2021), we use the rank r = 10 by default. For VPT (Jia et al., 2022), we use a
prompt length of 10. We train all the methods for 1000 epochs using an Adam optimizer. For AP, we
adopt a learning rate of 0.001 for ResNet family and 0.01 for ViT family without weight decay. For
baselines, we adopt the learning rate suggested in the papers or official code repositories.

B ADDITIONAL EXPERIMENT RESULTS

Layer effect study on more datasets. In Fig. A1, we demonstrate that the layer effects of AP
demonstrated in Sec. 4 is general and apply to multiple datasets.

Applying AP to various model architectures: A case study on CLIP. In the main manuscript,
we show that AP can effectively adapt large supervised pretrained models to downstream tasks
and outperforms VP. In this section, we shift our focus from the vision source model to the vision-
language model, specific to CLIP (contrastive language–image pretraining), which has received
increasing attention in the area of VP Bahng et al. (2022b). Our experiments demonstrate that the
proposed idea of AP works well even on steering a pretrained CLIP model without changing its
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Figure A1: Layer preference of AP with different model architectures on different datasets. CNNs and ViTs
exhibit opposite layer preferences.

parameters. In Fig. A2 and Tab. A2, we demonstrate that the main conclusions from Sec. 4 and Sec. 5
about AP still holds well on various datasets. Specifically, in Fig. A2, we show that the layer effect of
AP still exists on the CLIP model. As the CLIP model uses a ViT as its backbone, the observed layer
effect mimics that of a ViT-Large/16 as observed in Sec. 4. Specifically, AP prefers to be installed
on shallow layers to deep ones in order to obtain the best performance. In Tab. A2, we demonstrate
that in various datasets, AP can significantly outperform VP by 1% ∼ 6%. These experiments
demonstrate the applicability of AP on various model types.

Performance of AP in the precise experiment setting of VPT. We conduct an ablation study
to strictly follow the experiment settings of VPT, with these results included in Tab. A3. The
performance of VPT is directly sourced from Tab. 1 of (Jia et al., 2022). As we can see, the
performance as well as efficiency of AP positions itself between VPT-Shallow and VPT-Deep, with
an average of 3% performance gain over VPT-Shallow and an average of 3.5% drop compared to
VPT-Deep. Regarding these results, we would like to mention that the results of VPT reported in
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Table A2: Performance comparison of VP and the proposed AP on CLIP and Swin-Transformer
model with different dataset. The CLIP uses a ViT-B/32 as a backbone and we adopt Swin-B (with
12 Swin-Transformer blocks) pretrained on ImageNet. Other settings follows Tab. 1.

Dataset OxfordPets DTD EuroSAT Flowers102 UCF101 Food101 Waterbirds

CLIP

VP 81.97 64.43 95.54 83.74 70.42 79.61 72.42
AP (Ours) 83.82 69.42 96.43 85.52 76.42 82.43 79.32

Swin-Transformer

VP 80.42 65.39 97.23 84.48 74.41 75.72 75.22
AP (Ours) 82.29 69.13 96.45 84.98 75.92 81.38 78.99
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Figure A2: The layer effect of AP applied to a (a) CLIP model and (b) Swin-Transformer on the
OxfordPets dataset.

Table 1 of (Jia et al., 2022) are selected based on its best prompt length per dataset, while AP sticks
to the same hyper-parameters across all the datasets.

Table A3: Performance comparison of AP with other methods in the setting of VPT (Jia et al., 2022).
Specifically, ViT-B/16 pretrained on supervised ImageNet-21k is adopted as the pretrained model.
The numbers except AP are directly sourced from VPT (Jia et al., 2022).

ViT-B/16
(85.8M)

Total
Params FGCV VTAB-1k

Natural Specialized Structured

FULL-FINETUNE 24.02× 88.54 75.88 83.36 47.64
LINEAR-PROBE 1.02× 79.32 68.93 77.16 26.84

VPT-SHALLOW 1.04× 84.62 76.81 74.66 46.98
VPT-DEEP 1.18× 89.11 78.48 82.43 54.98

AP (Ours) 1.11× 87.33 76.59 79.32 49.98

Performance comparison with re-initialized classification head. We carried out an ablation
experiment using re-initialized classification head. This will influence the tunable parameter counts
of LINEAR-PROBE and other methods involved. As we can see, the results in Tab. A4 are nearly
identical to our previous findings in Tab. 4 that AP shows a competitive performance and efficiency
compared with other strong PEFT baselines.

Comparison to VPT with other prompt lengths. We conducted an experiment to implement VPT-
Deep using a smaller prompt token length 10 (VPT-10). The results, presented in Tab. A5, indicate
that VPT-10’s performance is comparable to VPT-50 in Tab. 4, albeit with enhanced efficiency.

Layerwise comparison between AP and VPT-Deep. We conduct an experiment for a more detailed
layer-wise evaluation in Fig. A3. These additional results highlight a consistent layer-architecture
influence on VPT-Deep, akin to what we initially observed in our original AP design. This outcome
is not unexpected, considering that the implementation of VPT-Deep essentially converges with that
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Table A4: Performance comparison between AP and SOTA PEFT methods on ViT-Large/16 with re-initialized
classification head. Experiment settings follow Tab. 1, and Tab. 2.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.31 78.43 87.71 0.01 8.1 121 79.69

BIAS 85.49 89.47 90.85 0.29 27.4 297 79.51
LORA 86.49 89.74 91.49 1.00 32.5 363 71.47
VPT 86.15 90.13 90.88 1.24 37.2 397 72.91
ADAPTER 87.14 89.12 91.01 2.07 31.1 357 63.78
ADAPTERFORMER 89.24 90.49 92.21 0.65 31.1 289 23.82

AP 85.32 90.12 91.11 0.16 30.2 262 79.54

Table A5: Performance comparison between AP and VPT with different prompt lengths on ViT-Large/16.
Experiment settings follow Tab. 1, and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

VPT-10 86.34 89.24 90.14 0.25 33.7 334 76.35
VPT-50 86.05 89.97 90.64 1.24 38.6 397 72.84

AP 85.30 90.25 91.09 0.16 31.6 262 79.43

of AP when a specific network layer is selected for prompting. The key divergence lies in the prompt
design approach: VPT-Deep favors concatenation, whereas AP opts for addition in prompt design. It
is worth noting that, in the context of single-layer prompting, the efficacy of concatenation in prompt
design is comparatively lower than that of addition.
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Figure A3: Layer-wise performance comparison between AP and VPT on OxfordPets.

Ablation study on additional prompt types in AP. We conduct additional experiments, with the
findings presented in Tab. A6. We observed that the originally proposed AP outperforms its new
prompt variants studied in Tab. A6 (AP-Product and AP-Concate). We speculate that the advantage
of the originally proposed AP may stem from its intrinsic connection to NORM-TUNE, as discussed
in the concluding part of Sec. 3.

Comparison with additional PEFT methods. We conduct an experiment and report the results of
SSF in Tab. A7. In particular, we can see SSF is also a competitive method among all the baselines
but is still under AdapterFormer. Compared to AP, SSF yields better performance for the FGVC
benchmark but leads to slightly worse accuracy for the VTAB benchmark. In general, SSF ranks
approximately the second or the third place among all the PEFT methods.
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Table A6: Ablation study on AP with more prompt types. Specifically, instead of using additive prompt in the
intermediate layer, AP-PRODUCT uses feature-wise product and AP-CONCATE adopts concatenating prompt.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.48
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
ADAPTER 87.06 89.44 91.21 2.07 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69

AP-PRODUCT 84.20 85.36 90.15 0.16 31.6 262 79.43
AP-CONCATE 83.29 82.42 89.13 0.12 31.4 261 79.47
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Table A7: Performance comparison of AP with more PEFT methods (SSF (Lian et al., 2022)). Experiment
settings follow Tab. 1 and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.48
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
ADAPTER 87.06 89.44 91.21 2.17 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69
SSF 87.32 89.43 92.21 0.48 34.7 299 79.49
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Comparison with LoRA of different rank values. We conduct additional experiments on the
hyper-parameters of LoRA, namely the rank r. In Tab. 4, the rank r is adopted to 10 by default.
In Tab. A8 of our revised manuscript, we explore more rank values varying from 1 to 50. We can
see that the performance of LoRA increases with the larger rank values, but the difference between
r = 10 and r = 50 is insignificant. In contrast, the efficiency of LoRA will drop significantly with a
rank larger than 10. In order to strike a balance between performance and efficiency, we adopt the
rank value of 10 as the default value in this work.

Table A8: Ablation study on performance of LORA with different rank values. Experiment settings follow
Tab. 1 and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

LORA-1 84.43 88.21 90.07 0.04 10.43 139 79.43
LORA-10 86.87 89.81 91.45 1.00 33.1 363 79.43
LORA-20 86.93 90.23 91.35 4.38 33.1 443 79.43
LORA-50 87.23 90.41 91.97 12.22 57.2 589 79.43

AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Application of AP to multiple layers. We implement AP with multiple layers, and we show
the results in Tab. A9 in the revision. Our findings indicate that the layer addition of AP does
not yield significant improvements in performance. This observation is significant as it suggests
that applying AP to a single, carefully selected layer can achieve comparable performance to more
extensive applications. This underscores the efficiency of AP, affirming its value in settings where
computational resources are a concern.
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Table A9: Ablation study on the number of layers installed with AP. In particular, for AP-3 and AP-5,
AP are installed on the input of the first 3 and 5 blocks of the pretrained ViT-L. Other experiment
settings follow Tab. 1, and Tab. 2.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput

Number of tasks 5 9 5 - - - -

FULL-FINETUNE 91.43 91.97 93.91 304.33 41.5 520 79.58
LINEAR-PROBE 82.23 78.90 87.81 0.01 9.7 121 79.64

BIAS 85.32 89.84 90.41 0.29 32.9 297 79.48
LORA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
ADAPTER 87.06 89.44 91.21 2.17 32.4 357 63.39
ADAPTERFORMER 89.18 90.69 92.08 0.65 32.3 289 23.69

AP-3 85.41 90.38 91.21 0.46 47.8 297 79.43
AP-5 85.49 90.49 91.31 0.76 69.7 348 79.43

AP 85.30 90.25 91.09 0.16 31.6 262 79.43

C THEORETICAL DETAILS

C.1 MODEL ARCHITECTURE

We define the general definition of the model architecture CNN, ViT in this section.

CNN: We follow the architecture of ResNet (), which stacks multiple residual blocks plus an input
and an output layer. Each residual block includes several convolutional layers and a skip connection.
For the input z(l)

in to the l-th convolutional layer, where l ∈ [L], the output z(l)
out can be computed as

z(l) = Conv(z(l)
in ;W

(l)
1 ), z

(l)
out = relu(BN(z(l))) (A1)

where z
(0)
in = x. Conv(·) and BN denote the Convolution operation and the Batch Normalization,

respectively. The output ŷ = FC(Pooling(z(L)
out )), where FC(·) denotes fully-connected layer.

ViT: The architecture of Vision Transformer is defined in (). For the input z(l)
in to the l-th Transformer

layer, we first let z(l) = z
(l)
in . Then, the output z(l)

out can be computed as

z(l) = MSA(LN(z(l))) + z(l), z
(l)
out = MLP(LN(z(l))) + z(l), (A2)

where z
(0)
in = x. MSA(·) and LN(·) denote the Multi-Head Self-attention and Layer Normalization,

respectively. For an L-layer ViT, the output ŷ = Out(H(L)
out ), where Out(·) denotes the output layer.

C.2 PROPOSITION 1 AND ITS PROOF

We first provide a full definition of NORM-TUNE.

NORM-TUNE is a method where only the Batch Normalization layers for CNNs or Layer Normaliza-
tion for ViTs are trainable. Consider a batch of the l-th-layer features z(l)

1 , z
(l)
2 , · · · , z(l)

B defined in
(A1) and (A2), where z

(l)
b = [z

(l)
b,·,1, z

(l)
b,·,2, · · · , z

(l)
b,·,P ′ ] =∈ RD′×P ′

, z(l)
b,·,p ∈ RD′

for b ∈ [B] and
p ∈ [P ′]. B is the batch size, D′ denotes the number of channels or token dimension, and P ′ denotes
the size of the feature map or token length. We can formulate the Normalization on h

(l)
b,d,p, the d-th

dimension of h(l)
b,·,p, as follows.

BN : µd =

B∑
b=1

P ′∑
p=1

z
(l)
b,d,p

BP ′ , σ
2
d =

B∑
b=1

P ′∑
p=1

(z
(l)
b,d,p − µd)

2

BP ′ , BN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µd

σd
+ βd,

LN : µb,p =

D′∑
d=1

z
(l)
b,d,p

D′ , σ2
b,p =

D′∑
d=1

(z
(l)
b,d,p − µb,p)

2

D′ , LN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µb,p

σb,p
+ βd,

(A3)
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where γd, βd are trainable parameters for d ∈ [D′]. Then, we present a full statement of Proposition
1.

Proposition 1 Without the assumption that the input to the batch (or layer) normalization layer has
zero mean and unit variance for each dimension (or token), we have the following conclusion:

AP on the l-th layer is the same as NORM-TUNE on the l-th layer, if

• for CNNs, γd/σd = 1, and all δp’s added to z
(l)
b are the same as δ, βd = w

(l)
d δ∗ + µd for

all d ∈ [D′], where δ∗ = δ
(l)
i for i ∈ [P ′];

• for ViTs, γd/σb,p = 1, and µb,p’s are the same as µp, p ∈ [P ′] among all b ∈ [B] for ViTs,
βd = δ

(l)
p,d + µp for all d ∈ [D′], p ∈ [P ′].

Proof:

For BN, note that

BN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µd

σd
+ βd =

γd
σd

z
(l)
b,d,p + βd −

µdγd
σd

(A4)

where
z
(l)
b,d,p = w

(l)
d z

(l−1)
b,·,p , z

(l−1)
b,·,p = xb,·,p (A5)

When adding the prompt δ(l)p , we have the output

w
(l)
d (z

(l−1)
b,·,p + δ(l)p ) (A6)

We then need the equation
γd
σd

z
(l)
b,d,p + βd −

µdγd
σd

= w
(l)
d (z

(l−1)
b,·,p + δ(l)p ) (A7)

Given γd/σd = 1, we have
βd = w

(l)
d δ(l)p + µd (A8)

Suppose that µd = 0 for d ∈ [D′] and δ
(l)
p = δ∗ for p ∈ [P ′], we can obtain

βd = w
(l)
d δ∗ (A9)

For LN, we need

LN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µb,p

σb,p
+ βd =

γd
σb,p

z
(l)
b,d,p + βd −

γdµb,p

σb,p
= z

(l)
b,d,p + δ

(l)
p,d (A10)

Given γd/σb,p = 1 and µb,p = µp for b ∈ [B], we have

βd = δ
(l)
p,d + µp (A11)

Suppose that µp = 0, p ∈ [P ′] and let δ(l)p = δ∗, p ∈ [P ′], we can obtain

β = δ∗ (A12)

C.3 PROOF OF LEMMA 1

Before we provide the proof, we state the formulation of a single-head and two-layer ViT, the full
assumption on the data model, and the pretrained model in detail.

Let xn(·,j) be the j-th patch/token of xn, j ∈ [P ]. The corresponding 1-st-layer output is zn(·,j).
Denote the j-th patch/token of xn or zn after introducing the AP, δ(h), as xn[δ

(h)
j ] and zn[δ

(h)
j ] =

(zn[δ
(h)
1 ], · · · , zn[δ(h)P ]), respectively.
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Following (Dosovitskiy et al., 2020), we consider a single-head self-attention parameterized by W
(l)
Q ,

W
(l)
K , and W

(l)
V in the l-th layer. The shapes of these matrices are m by d if l = 1 and m by m if

l = 2. Denote W (l) = W
(l)
K

⊤
W

(l)
Q , l = 1, 2. The MLP layer is a two-layer perceptron with m×m-

dimensional parameters W (l)
O , W (l)

U , and Relu activation. The output layer is a fully-connected layer
with a1, · · · ,aP where al ∈ Rm. Then, a two-layer ViT can be written as

fθ(xn, δ
(h)) =

P∑
k=1

a⊤
k W

(2)
U Relu(W (2)

O W
(2)
V zn[δ

(h)]softmax(zn[δ(h)]⊤W (2)zn[δ
(h)
k ])),

zn[δ
(h)
k ] = W

(1)
U Relu(

P∑
s=1

W
(1)
O W

(1)
V xn[δ

(h)
s ]softmax(xn[δ

(h)
s ]⊤W (1)xn[δ

(h)
k ])),

(A13)

The AP is restated as{
xn[δ

(h)
j ] = xn(·,j) + δ

(h)
j , zn[δ

(h)
j ] as defined in (A13), if h = 1,

xn[δ
(h)
j ] = xn(·,j), zn[δ

(h)
j ] = zn(·,j) + δ

(h)
j , if h = 2,

(A14)

We use Hinge loss ℓ(xn.yn) = max{0, 1/P − ynfθ(xn, δ
(h))} as the loss function.

Data model The patch/token xn(·,j) is a noisy version of patterns, i.e., xn(·,j) = vl + ϵnj , where
vl, l = 1, 2, 3, 4 is a pattern and ϵnj ∼ N (0, σ2) is a Gaussian noise, σ ≤ O(1/P ). v1, v2, v3, v4

are all unit norm and orthogonal to each other except the pairs of v3 and v4. v⊤
3 v4 = ζ ∈ (−1, 0).

In each sample xn, only one patch/token xn(·,j) corresponds to either v1 or v2, while other P − 1
patches/tokens correspond to either v3 or v4. v1,v2 are called discriminative patterns that decide the
label. v3,v4 are non-discriminative patterns that work as the image background. For instance, if one
patch is the noisy version of v1 (v2), then yn = 1 (yn = −1).

Pretrained model The pretraining stage is assumed to learn a task where all patterns {v1,v2,v3,v4}
are key features, where each data contains two types of patterns. The label is determined by the
number of v1 or v3 compared with the number of v2 or v4. Inspired by the finding that some
trained “lucky” hidden neurons represent discriminative features from existing theoretical works ()
on VITs, we accordingly set the neurons of feed-forward-networks W (i)

O in (A13), i = 1, 2 as pattern
representations of that layer and ignore “unlucky” neurons, which has a trivial effect on the output.
To be more specific, for the 1st layer, we set a 1/4 fraction of neurons to be vi, i = 1, 2, 3, 4, and
for the 2nd layer, we set a 1/4 fraction of neurons to be ei, i = 1, 2, 3, 4, i.e., the 2nd-layer pattern
representations. ai for CNNs and al(i) equal 1/(mP ) for neurons of e1 and e3, and they equal
−1/(mP ) for neurons of e2 and e4. For ViTs, we follow the orthogonal embedding assumption in
(Oymak et al., 2023; Li et al., 2023a; Zhang et al., 2023b) and set W (1)

Q = β1I , W (1)
K = β1P

(1)
x ,

W
(2)
Q = β2I , W (2)

K = β2P
(2)
x , W (1)

V = P
(1)
x , W (2)

V = P
(2)
x for simplicity, where β1 = Θ(1),

β2 = Θ(1), I is the identity matrix, and P
(1)
x and P

(2)
x are permutation matrices.

Then, we present the proof of Lemma 1.

Proof:

Without loss of generality, we focus on studying the data where v1 is the discriminative pattern, and
v4 is the non-discriminative pattern.

For ViTs, note that the permutation matrix P
(1)
x changes the location of the pattern v1 to another

place with a distance of at least dA. By computing the feature correlation for the pattern v1, we have

β2
1 > 0, (A15)

which means the the pattern v1 has the largest correlation with v1. Hence, the pattern of v1 is a
global feature. For the feature correlation of the pattern v4, we have

β2
1 > 0, (A16)

which means the the pattern v4 has the largest correlation with v4. Hence, the pattern of v4 is a
global feature because the distance between two v4 patterns is at most 1. Since that there will be one
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v4 token corresponding to a v1 token after the permutation, there will be a contribution of distance 1
to the average distance. The average attention distance of the first layer is

1

P

P∑
i=1

|i− arg max
j∈[P ]

⟨kj , qi⟩ | =
1 + dA

P
(A17)

After the first layer, the feature of the v1 token becomes

eβ
2
1

eβ
2
1 + P − 1

v1 +
P − 1

eβ
2
1 + P − 1

v4 := λ1v1 + (1− λ1)v4, (A18)

while the feature of the v4 token becomes

1

(P − 1)eβ
2
1 + 1

v1 +
(P − 1)eβ

2
1

(P − 1)eβ
2
1 + 1

v4 := λ2v1 + (1− λ2)v4, (A19)

Here 1/2 > λ1 > λ2 > 0. Therefore, we have

(λ1v1 + (1− λ1)v4)
⊤(λ1v1 + (1− λ1)v4 − λ2v1 − (1− λ2)v4)

=(2λ1 − 1)(λ1 − λ2) < 0
(A20)

(λ2v1 + (1− λ2)v4)
⊤(λ2v1 + (1− λ2)v4 − λ1v1 − (1− λ1)v4)

=(2λ2 − 1)(λ2 − λ1) > 0
(A21)

Therefore, the feature from the token of v4 has the largest correlation with the token of both v1 and
v4. Since there exists a v4 token close to v1 token with a distance of at most 1, we have that both v1

and v4 tokens become local features. Then, the average attention distance of the second layer is

1

P

P∑
i=1

|i− arg max
j∈[P ]

⟨kj , qi⟩ | =
1

P
(A22)

C.4 PROOF OF THEOREM 1

We first present two lemmas. One can observe that Theorem 1 is a combination of these two lemmas.
Therefore, the proof of Theorem 1 is exactly the same as the proof of these two lemmas.

Lemma 2 For a two-layer single-head Transformer

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2(zn(·,j) + δ
(h)
j )

· softmax((zn(·,j) + δ
(h)
j )⊤W⊤

K2
WQ2

(zn(·,l) + δ
(h)
l )))

(A23)

where

zn(·,j) = Relu(
P∑

s=1

WO1
WV1

xn(·,s)softmax(xn(·,s)
⊤W⊤

K1
WQ1

xn(·,j))) (A24)

as long as the batch size and the required number of iterations satisfy

B ≥ Ω(1), T =
η−1P 2 logP

(1− σ)−1
, (A25)

where σ ≤ Θ(P−1), training δ(h), h = 2 with SGD returns a model with zero generalization error.

Lemma 3 For a two-layer single-head Transformer

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2
zn(·,j)softmax(zn(·,j)⊤W⊤

K2
WQ2

zn(·,l)))

(A26)
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where

zn(·,j) = Relu(
P∑

s=1

WO1
WV1

(xn(·,s)+δ(h)s )softmax((xn(·,s)+δ(h)s )⊤W⊤
K1

WQ1
(xn(·,j)+δ

(h)
j )))

(A27)
as long as the batch size and the required number of iterations satisfy

B ≥ Ω(1), T =
η−1P

(1− Pσ)−1(1 + γ)
, (A28)

where σ ≤ O(P−1), training δ(h), h = 1 with SGD returns a model with zero generalization error,
where γ := v⊤

3 v4 ∈ (−1, 0).

C.4.1 PROOF OF LEMMA 2

Proof:

For h = 2,

fθ(xn, δ
(h)) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

s=1

WO(i,·)WV (zn(·,s) + δ(h)s )

· softmax((zn(·,s) + δ(h)s )
⊤
W⊤

KWQ(zn(·,s) + δ
(h)
l ))),

(A29)

we have WK = β2 · Px, WQ = β2 · I , and WV = Px where β2 = Θ(1). To avoid multiple
superscripts, we use δ to denote δ(h) since that h is fixed in this proof. We use δ(t) to denote the
update of δ at t-th iteration. Then,

∂fθ(xn, δ)

∂δj

=

P∑
l=1

m∑
i=1

al(i)1[

P∑
s=1

WO(i,·)(zn(·,Ps,2) + δPs,2
)softmax((zn(·,Ps,2) + δPs,2

)
⊤
(zn(·,s)

+ δl)) ≥ 0] ·
(

softmax((zn(·,Ps,2) + δPs,2)
⊤
(zn(·,s) + δl))WO(i,·)

+ 1[j ̸= l]WO(i,·)(zn(·,j) + δj) · (zn(·,j) + δl) · (−softmax(β2
2(zn(·,j) + δj)

⊤

· (zn(·,l) + δl)))softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,l) + δl))

+ 1[j = l]WO(i,·)(zn(·,l) + δl)softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,l) + δl))

· (1− softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,j) + δl)))(zn(·,l) + δl)

(A30)

Let t = 0. For yn = +1, Note that if zn = [e3, e3, · · · , e3, e1, e3, · · · , e3] without noise, the loss is
0. Hence, we compute the loss from zn = [e4, e4, · · · , e4, e1, e4, · · · , e4].

E[1[
P∑

s=1

WO(i,·)(xn(·,s) + δ(t)s )softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l )) ≥ 0]

=Pr(

L∑
s=1

WO(i,·)(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l )) ≥ 0)

(A31)

for WO(i,·) = e1 or e4. We can finally show that with a high probability, the above indicator is close
to 1. Meanwhile, for WO(i,·) = e2 or e3, the indicator equals 0 or 1 with half probability when t = 0.
Consider that zn(·,j) comes from v4, which means zn(·,j) is close to v4 by a noisy term. In this case,
if zn(·,l) comes from v1,

softmax(β2
2(zn(·,l) + δ

(t)
l )

⊤
(zn(·,l) + δ

(t)
l )) ≥ 1

P
(A32)

softmax(β2
2(zn(·,j) + δj)

⊤
(zn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A33)
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If zn(·,l) comes from v4, then

softmax(β2
2(zn(·,l) + δ

(t)
l )

⊤
(zn(·,l) + δ

(t)
l )) ≥ 1

P
(A34)

softmax(β2
2(zn(·,j) + δ

(t)
j )

⊤
(zn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A35)

Then we consider that zn(·,j) comes from e1. In this case, if zn(·,l) comes from v1, then

softmax(β2
2(zn(·,j) + δ

(t)
j )

⊤
(zn(·,l) + δ

(t)
l )) ≥ 1

P
(A36)

If zn(·,l) comes from v4,

softmax(β2
2(zn(·,j) + δ

(t)
j )

⊤
(zn(·,l) + δ

(t)
l )) ≤ 1

P
(A37)

Therefore, if zn(·,j) comes from v1,

∂fθ(xn, δ
(t))

∂δ
(t)
j

=
1

4P
λe1 +Θ(

1

P
)(−e2 + e3 − e4), (A38)

and if zn(·,j) comes from v4,

∂fθ(xn, δ
(t))

∂δ
(t)
j

= − 1

4P
λe4 +Θ(

1

P
)(−e2 + e3 + e1), (A39)

where λ = µ = Θ(1). The last terms in (A38) and (A39) come from the indicators from other WO

neurons, which may become 1 because of feature noises. Note that when t ≥ 2, since the data which
contains e2 and e3 would similarly contribute to the overall gradient, there will be a close amount of
e1 and e2 in δ

(t)
j and a close amount of e3 and e4 in δ

(t)
j . Hence, when kµ < Θ(1),

E[δ(t)j ] = E[δ(0)j ]− E[η
t∑

b=1

1

B

∑
n∈Bb

∂

∂δj
ℓ(fθ(xn, δ

(b)), yn)]

= ηt
1

4P
(λe1 + λe2 − µe3 − µe4)

= k(λe1 + λe2 − µe3 − µe4),

(A40)

δ
(t)
j = E[δ(t)j ] +

ηt

L

√
logBt

Bt
(±e1 ± e2 ± e3 ± e4) (A41)

where λ ≥ Θ(1) · (1− σP ), µ ≥ Θ(1) · (1− σP ) for t ≥ 2. The term (1− σP ) comes from that
for WO(i,·) = e1 or e4,

E[1[
P∑

s=1

WO(i,·)(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l )) ≥ 0]

≥1− e
(Bt)2

σ2P2 ≥ 1− σP
(A42)

given B ≥ Θ(1) by Hoeffding inequality. When kµ ≥ Θ(1), for zn =
[e4, e4, · · · , e4, e1, e4, · · · , e4],

zn(·,j) + δ
(t)
j = kλ(e1 + e2)− kµe3 + (1− kµ)e4 (A43)

for zn(·,j) from v4. Then,

E[1[
P∑

s=1

e1(zn(·,Ps,2)+δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l)+δ

(t)
l ))]] ≥ 1−e

(Bt)2

σ2 ≥ 1−σ

(A44)
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Pr(

P∑
s=1

e4(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l ))) ≤ e−

1
σ2 ≤ e−P 2

(A45)
Hence, with a probability at least 1− e−P 2

, no patches is activated by e4. For zn(·,k) from v1 and
zn(·,j) from v4, we have

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,k) + δ

(t)
k )) ≥ 1

P
(A46)

softmax((zn(·,j) + δ
(t)
j )⊤(zn(·,k) + δ

(t)
k )) = Θ(

1

P
) (A47)

softmax((zn(·,j) + δ
(t)
j )⊤(zn(·,j) + δ

(t)
j )) ≥ 1

P
(A48)

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,j) + δ

(t)
j )) = Θ(

1

P
) (A49)

Therefore, when kµ > Θ(1), i.e., t ≥ t0 = 4Pη−1(1− σP )−1 we have

δ
(t)
j =E[δ(t)j ] +

ηt

P

√
logB(t− t0)

B(t− t0)
(±(e1 + e2)±

1

P
e−P 4

(e3 + e4))

=E[δ(t0)j ]− E[η
t∑

b=t0

1

B

∑
n∈Bb

∂

∂δj
ℓ(fθ(xn, δ

(b)), yn)]±
ηt

P

√
logB(t− t0)

B(t− t0)
(e1 + e2)

=E[δ(t0)j ] +
η(t− t0)

4P
(λe1 + λe2 + µe3 + µe4)±

ηt

P

√
logB(t− t0)

B(t− t0)
(e1 + e2),

(A50)
where λ ≳ (1− σ)−1. Then,∣∣∣e⊤3 E[η t∑

b=t0

1

B

∑
n∈Bb

∂

∂δ
ℓ(fθ(xn, δ

(b)), yn)]
∣∣∣ ≲ η(t− t0)

1

P
·

√
logB(t− t0)

B(t− t0)
(A51)

∣∣∣e⊤4 E[η t∑
b=t0

1

B

∑
n∈Bb

∂

∂δ
ℓ(fθ(xn, δ

(b)), yn)]
∣∣∣ ≲ η(t− t0)

1

P
·

√
logB(t− t0)

B(t− t0)
(A52)

and thus |µ| ≤ Θ(1/
√
B(t− t0)). Hence, for zn(·,k) from v1 and zn(·,j) from v4,

(zn(·,k) + δ
(t)
k )⊤(zn(·,k) + δ

(t)
k )− (zn(·,k) + δ

(t)
k )⊤(zn(·,j) + δ

(t)
j )

=Θ(1) · eβ
2
2

eβ
2
2 + P − 1

(
eβ

2
2

eβ
2
2 + P − 1

+ e⊤1 δ
(t))

(A53)

(zn(·,j) + δ
(t)
j )⊤(zn(·,k) + δ

(t)
k )− (zn(·,j) + δ

(t)
j )⊤(zn(·,j) + δ

(t)
j )

=Θ(1) · eβ
2
2

eβ
2
2 + P − 1

· e⊤1 δ(t)
(A54)

Since that β2 = Θ(1), we have

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,k) + δ

(t)
k )) =

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

(A55)

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,j) + δ

(t)
j )) =

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

(A56)

To make
fθ(xn, δ

(t)) ≥ 1/P, (A57)
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we require that

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

· eβ
2
2

eβ
2
2 + P − 1

+
P − 1

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

· 1

eβ
2
2 (P − 1) + 1

≥ 1

P
(A58)

As a result, we finally need

eΘ(1)· e
⊤
1 δ(t)

P ≳ P (A59)

which holds as long as t− t0 ≳ P 2η−1(1− σ)−1 logP . Therefore, we have

fθ(xn, δ) ≥ 1/P (A60)

for xn that contains a patch from v1. We similarly have

fθ(xn, δ) ≤ −1/P (A61)

for xn that contains a patch from v2. To sum up, we need t ≥ Θ(η−1P 2(1− σ)−1 logP ) iterations.

C.4.2 PROOF OF LEMMA 3

Proof:
To avoid multiple superscripts, we use δ to denote δ(h) since that h is fixed in this proof. We use δ(t)
to denote the update of δ at t-th iteration. For the network

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2zn(·,j)softmax(zn(·,j)⊤W⊤
K2

WQ2zn(·,l)))

(A62)
where

zn(·,j) = Relu(
P∑

s=1

WO1WV1(xn(·,Ps,1) + δs)softmax((xn(·,Ps,1) + δs)
⊤W⊤

K1
WQ1(x

n
j + δj))),

(A63)
we have

∂fθ(xn, δ)

∂δs
=

P∑
j=1

∂fθ(xn, δ)

∂zn(·,j)

∂zn(·,j)

∂δs
(A64)

Note that WQ2
= β2I , WQ1

= β1I , WK2
= β2Px, WK1

= β1Px,, WV2
= Px, WV1

= Px,
where β1 = Θ(1) and β2 = Θ(1). Therefore,

∂fθ(xn, δ)

∂zn(·,j)

=

P∑
l=1

m∑
i=1

a⊤
(l)i

1[

P∑
s=1

WO2(i,·)zn(·,Ps,2)softmax(β2
2zn(·,Ps,2)

⊤zn(·,l))]
(

softmax(β2
2zn(·,j)

⊤zn(·,l))

·WO2(i,·) + 1[j ̸= l]WO2(i,·)zn(·,j) · zn(·,l) · (−softmax(β2
2zn(·,j)

⊤zn(·,l)))

· softmax(β2
2zn(·,l)

⊤zn(·,l)) + 1[j = l]WO2(i,·)zn(·,l)softmax(β2
2zn(·,l)

⊤zn(·,l))

· (1− softmax(β2
2zn(·,l)

⊤zn(·,l)))zn(·,l)

)
(A65)
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∂zn(·,j)

∂δk

=1[

P∑
s=1

WO1
(xn(·,Ps,1) + δs)softmax((xn(·,Ps,1) + δs)

⊤(xn
j + δj))]

(
softmax((xn

j + δj)
⊤

· (xn(·,l) + δl))WO1 + 1[k ̸= l]WO1(xn(·,k) + δk) · (xn(·,l) + δl)
⊤

· (−softmax(β2
1(x

n
j + δj)

⊤
(xn(·,l) + δl)))softmax(β2

1(xn(·,l) + δl)
⊤
(xn(·,l) + δl))

+ 1[k = l]WO1
(xn(·,l) + δl)(xn(·,l) + δl)

⊤

· softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl))

· (1− softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl)))

)
(A66)

Let t = 0. For yn = +1, Note that if xn = [e3, e3, · · · , e3, e1, e3, · · · , e3] without noise, the loss
is 0. Hence, we compute the loss from xn = [e4, e4, · · · , e4, e1, e4, · · · , e4].

E[1[
P∑

s=1

WO(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δl)) ≥ 0]

=Pr(

P∑
s=1

WO(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δl)) ≥ 0)

(A67)

for WO(i,·) = e1 or e4. We can finally show that with a high probability, the above indicator is close
to 1. Meanwhile, for WO(i,·) = e2 or e3, the indicator equals 0 or 1 with half probability when t = 0.
Consider that xn(·,j) comes from v4. In this case, if xn(·,l) comes from v1,

softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl)) ≥

1

P
(A68)

softmax(β2
1(x

n
j + δ

(t)
j )

⊤
(xn(·,l) + δl)) = Θ(

1

P
) (A69)

softmax(β2
2zn(·,l)

⊤zn(·,l)) ≥
1

P
(A70)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A71)

If xn(·,l) comes from v4, then

softmax(β2
1(xn(·,l) + δ

(t)
l )

⊤
(xn(·,l) + δ

(t)
l )) ≥ 1

P
(A72)

softmax(β2
1(x

n
j + δ

(t)
j )

⊤
(xn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A73)

softmax(β2
2zn(·,l)

⊤zn(·,l)) ≥
1

P
(A74)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A75)

Then we consider that xn(·,j) comes from v1. In this case, if zn(·,l) comes from v1, then

softmax(β2
1(xn(·,j) + δ

(t)
j )

⊤
(xn(·,l) + δ

(t)
l )) ≥ Θ(

1

P
) (A76)

softmax(β2
2zn(·,j)

⊤zn(·,l)) ≥ Θ(
1

P
) (A77)

If xn(·,l) comes from v4,

softmax(β2
1(xn(·,j) + δ

(t)
j )

⊤
(xn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A78)
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softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A79)

Therefore, if xn(·,j) comes from v1,

∂fθ(xn, δ)

∂δ
(t)
j

= P · 1

4P
λ(e⊤1 · 1

P
WO1

)⊤ =
1

4P
v1 +Θ(

1

P
)(−v2 + v3 − v4), (A80)

and if xn(·,j) comes from v4,

∂fθ(xn, δ)

∂δ
(t)
j

= − 1

4P
µv4 +Θ(

1

P
)(−v2 + v3 + v1), (A81)

where λ = µ = Θ(1). Note that when t ≥ 2, since the data which contains v2 and v3 would similarly
contribute to the overall gradient, there will be a close amount of v1 and v2 in δ

(t)
s and a close amount

of v3 and v4 in δ
(t)
s . Hence, when kµ < Θ(1),

E[δ(t)s ] = E[δ(0)s ]− E[η
t∑

b=1

1

B

∑
n∈Bb

∂

∂δs
ℓ(fθ(xn, δ

(b)
s ), yn)]

= ηt
1

4P
(λv1 + λv2 − µv3 − µv4)

= k(λv1 + λv2 − µv3 − µv4),

(A82)

δ(t)s = E[δ(t)s ] +
ηt

P

√
logBt

Bt
(±v1 ± v2 ± v3 ± v4) (A83)

where λ ≥ Θ(1) · (1− σP ), µ ≥ Θ(1) · (1− σP ) for t ≥ 2. The term (1− σP ) comes from that
for WO2(i,·) = v1 or v4,

E[1[
P∑

s=1

WO1(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δ

(t)
l )) ≥ 0]

≥1− e
(Bt)2

σ2P2 ≥ 1− σP
(A84)

given B ≥ Θ(1) by Hoeffding inequality. When kµ ≥ Θ(1)
1+γ , we have that for xn(·,j) from v4,

1[

P∑
s=1

WO1(xn(·,Ps,1) + δs)softmax(β2
1(xn(·,Ps,1) + δs)

⊤(xn(·,j) + δ
(t)
j )) ≥ 0]

≥[1, 1,−kµ+ (1− kµ)γ + v⊤
3 a,−kµγ + 1− kµ+ v⊤

4 a]
⊤

≥[1, 1, 0, 0]⊤

(A85)

where a ∼ N (0, σ2I) in the first step, and the last step holds with probability at least

Pr(v⊤
4 a− kµγ + 1− kµ ≤ 0) ≤ 1− Pr(v⊤

4 a ≥ Θ(1)) ≤ 1− e
1
σ2 ≤ 1− e−P 2

(A86)

Pr(v⊤
3 a− kµ+ (1− kµ)γ ≤ 0) ≤ 1− Pr(v⊤

3 a ≥ Θ(1)) ≤ 1− e
1
σ2 ≤ 1− e−P 2

(A87)
Hence, for xn(·,k) from v1 and xn(·,j) from v4,

(xn(·,k) + δ
(t)
k )⊤(xn(·,k) + δ

(t)
k )− (xn(·,k) + δ

(t)
k )⊤(xn(·,j) + δ

(t)
j ) = Θ(1) · (1+ 2(kµ)2) (A88)

(xn(·,j) + δ
(t)
j )⊤(xn(·,k) + δ

(t)
k )− (xn(·,j) + δ

(t)
j )⊤(xn(·,j) + δ

(t)
j ) = Θ(1) · (2kµ− 1) (A89)

Since that β1 = Θ(1), we have

softmax(β2
1(xn(·,k) + δ

(t)
k )⊤(xn(·,k) + δ

(t)
k )) =

eΘ(1)·(kµ)2)

P − 1 + eΘ(1)·(kµ)2) (A90)

softmax(β2
1(xn(·,k) + δ

(t)
k )⊤(xn(·,j) + δ

(t)
j )) =

eΘ(1)·kµ

P − 1 + eΘ(1)·kµ (A91)

31



Under review as a conference paper at ICLR 2024

To make
fθ(xn, δ

(t)) ≥ 1/P, (A92)
we require that

eΘ(1)·(kµ)2)

P − 1 + eΘ(1)·(kµ)2) · 1 ≥ 1

P
(A93)

or
eΘ(1)·kµ

P − 1 + eΘ(1)·kµ · 1 ≥ 1

P
(A94)

As a result, we finally need
eΘ(1)·kµ ≳ 1 (A95)

which holds as long as t ≳ Pη−1(1 − Pσ)−1(1 + γ)−1). With the same condition, we also have
that for all yn = −1,

fθ(xn, δ) ≤ −1/P (A96)
To sum up, we need t ≥ Θ(Pη−1(1− Pσ)−1(1 + γ)−1)).
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