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ABSTRACT

We introduce Representation Tokenizer (RepTok), a generative modeling frame-
work that represents an image using a single continuous latent token obtained from
self-supervised vision transformers. Building on a pre-trained SSL encoder, we
fine-tune only the semantic token embedding and pair it with a generative decoder
trained jointly using a standard flow matching objective. This adaptation enriches
the token with low-level, reconstruction-relevant details, enabling faithful image
reconstruction. To preserve the favorable geometry of the original SSL space, we
add a cosine-similarity loss that regularizes the adapted token, ensuring the latent
space remains smooth and suitable for generation. Our single-token formulation
resolves the spatial redundancies of the 2D latent space and significantly reduces
training costs. Despite its simplicity and efficiency, RepTok achieves competitive
results on class-conditional ImageNet generation and extends naturally to text-
to-image synthesis, reaching competitive zero-shot performance on MS-COCO
under extremely limited training budgets. Our findings highlight the potential of
fine-tuned SSL representations as compact and effective latent spaces for efficient
generative modeling. We will release our code to facilitate further research.

1 INTRODUCTION

In recent years, diffusion- (Ho et al., 2020; Kingma et al., 2021; Song & Ermon, 2019) and flow-
based (Lipman et al., 2023; Liu et al., 2023b; Ma et al., 2024) models have emerged as powerful
generative modeling frameworks, capable of synthesizing high-quality images (Ramesh et al., 2022;
Rombach et al., 2022; Dhariwal & Nichol, 2021) and videos (Ho et al., 2022). However, these
models typically come with substantial computational demands since they regress vector fields in the
high-dimensional pixel space of images. Latent Diffusion Models (Rombach et al., 2022) address
this challenge by decomposing the generative modeling task into two stages. By first compressing
images into a lower-dimensional latent space via a pre-trained Variational Autoencoder (Kingma
et al., 2013), LDMs abstract away imperceptible details, enabling the generation process to solely
focus on semantic content and drastically reducing computational costs during training and inference
(Esser et al., 2021; 2024; Fuest et al., 2024; Schusterbauer et al., 2024). However, despite these
computational advantages, the latent space is still organized in a two-dimensional grid structure,
which fails to exploit the high spatial redundancies inherent to natural images.

Recent efforts have sought to improve latent generative paradigms along two directions. TiTok (Yu
et al., 2024a) tries to exploit spatial redundancies and replaces the default 2D spatial grid in latent
diffusion with a transformer-based encoder–decoder that represents images as 1D latent sequences,
achieving compact encodings with as few as 32 discrete tokens. In parallel, REPA (Yu et al., 2024b)
leverages the rich representations of pre-trained self-supervised learning (SSL) models to accelerate
the convergence of latent diffusion models, by distilling the semantic knowledge into the diffusion
model via a cosine similarity loss between their respective feature representations.

In this work, we extend these two directions by exploring more powerful uses of SSL representations.
While REPA accelerates training primarily through feature alignment on the 2D spatial grid, we
demonstrate that self-supervised models can be leveraged more directly: with minimal but crucial
fine-tuning, pooled 1D SSL representations themselves constitute effective latent spaces for generative
modeling. These representations exhibit smooth, semantically structured geometry that is well-suited
for generation, while simultaneously eliminating the spatial redundancies inherent in 2D grid-based
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Figure 1: Comparison of our single-token MLP-Mixer generator against transformer-based baselines
(DiT, SiT), as well as representation-aligned models like REPA. RepTok attains competitive generative
performance while reducing training cost by over 90% owing to its compact latent space and
lightweight architecture. All results reported without CFG. For fair comparison, we employ an
encoder and decoder trained on general-domain data.

latents. Specifically, we show that the pooled 1D output from the [cls] token alone provides a
compact yet expressive representation that not only captures high-level semantics but also preserves
sufficient spatial detail to enable high-fidelity reconstruction.

Our Representation Tokenization approach, termed RepTok, builds on a pre-trained SSL encoder
that is lightly fine-tuned and trained jointly with a generative decoder. We train the decoder with a
standard flow matching objective, complemented by a cosine-similarity loss that regularizes the latent
representation to remain close to its original smooth and semantically structured space, which is well-
suited for generation. Without auxiliary perceptual (Zhang et al., 2018) or adversarial (Esser et al.,
2021) losses, the resulting model is able to faithfully decode the single-token latent representation
into the pixel space. This design enables highly efficient image synthesis training, allowing us to
use simple, attention-free architectures such as MLP-Mixers (Tolstikhin et al., 2021) for accelerated
ImageNet training (see Figure 1). Furthermore, we show that the framework naturally extends to
text-to-image (T2I) synthesis: by incorporating cross-attention to integrate textual conditioning, our
model achieves competitive zero-shot performance on the COCO (Lin et al., 2014) benchmark under
an extremely constrained training budget (see Figure 7). We state our contributions as follows:

• We show that self-supervised vision transformers can be used more powerfully than just
guiding generative training: with minimal adaptation of the semantic token, their smooth and
semantically structured latent spaces can directly act as encoders for generative modeling.
By injecting the necessary fine-grained information into this semantic token, we enable
faithful reconstruction while simultaneously eliminating the spatial redundancies inherent in
2D grid-based latents. Coupled with a generative decoder, this setup allows accurate image
reconstruction from a single continuous token.

• Exploiting this autoencoder design, we introduce a lightweight and optionally attention-free
pipeline for latent generative modeling. This drastically reduces training compute while
preserving quality, achieving competitive ImageNet generation at a fraction of the cost of
transformer-based diffusion baselines.

• We show that RepTok scales effectively to text-to-image synthesis, achieving competitive
zero-shot results on MS-COCO with under 20 hours of training on four A100 GPUs.

2 RELATED WORK

Latent space generation Early approaches such as PixelVAE and VQVAE(Gulrajani et al., 2016;
Razavi et al., 2019; Van Den Oord et al., 2017) demonstrated that generative modeling within compact
latent spaces significantly improves sampling quality and efficiency. VQGAN (Esser et al., 2021)
integrates vector-quantized variational autoencoders with adversarial losses to construct discrete
latent codebooks. Subsequently, these discrete tokens are leveraged by autoregressive transformers
for image generation tasks. Latent Diffusion Models (LDMs) (Rombach et al., 2022) brought this
concept into the diffusion models, operating in learned spatial latent spaces that preserve semantic
content and abstract away perceptual detail. This approach has since become foundational across
modalities including images (Peebles & Xie, 2023; Ma et al., 2024; Pernias et al., 2024), audio (Liu
et al., 2023a), and video (Ho et al., 2022; Blattmann et al., 2023b;a; Kong et al., 2024).
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Figure 2: Overview of our pipeline. (a) Joint fine-tuning of the [cls] token of SSL encoder E and
training of the generative decoder D for image reconstruction. (b) Training of the generation model
G to synthesize frozen encoder outputs, which constitute the latent space z = E(x). (c) Inference
pipeline, where the latent space z is first generated and subsequently decoded into the pixel space.

Pre-trained representations in diffusion models Leveraging pre-trained representations has been
shown to improve image generation. REPA (Yu et al., 2024b) accelerates diffusion training by
aligning diffusion features with DINO embeddings, with Wang et al. (2025) noting that careful
scheduling is required for effective training. Closely related to our approach is RCG (Li et al., 2024),
which employs a two-stage pipeline: first generating a predefined semantic representation and then
transporting it to the pixel space. However, RCG primarily targets unconditional synthesis and thus
leaves the representation space unchanged. In contrast, our objective is faithful reconstruction and
generation, similar to the role of the latent space in VAEs. This requires not only semantic but also
low-level visual information. We address this by injecting fine-grained details into the representation
space, enabling both faithful reconstruction and high generative performance. Concurrent works like
RAE (Zheng et al., 2025) and SVG (Shi et al., 2025) use the full spatial grid of SSL features, thus
operating in a high-dimensional structured latent space. Our approach is fundamentally different:
RepTok relies solely on the pooled semantic token, discarding all spatial tokens and learning to
represent an image with a single compact vector. This yields a much more aggressive compression.
Additionally, a key difference to SVG whose objective is aligning to the SSL representation, we
directly employ the pooled semantic output as the latent representation itself.

Global information latent spaces Recent work has explored 1D tokenization beyond spatial grid
latents. TiTok (Yu et al., 2024a) encodes images into compact sequences of as few as 32 discrete tokens
with a ViT encoder, enabling efficient autoregressive generation. ElasticTok (Yan et al., 2024) extends
this idea with adaptive token counts per frame, while FlexTok (Bachmann et al., 2025) introduces
variable-length ordered tokens for coarse-to-fine generation. Our approach differs in the following
key aspects: First, we operate in a continuous latent space, avoiding quantization and enabling
fully differentiable diffusion training. Second, we directly exploit the [cls] token of SSL vision
transformers as a compact latent, yielding smooth and semantically structured manifolds. Unlike
discrete tokenizers, Diffusion Autoencoders (Preechakul et al., 2022) extract semantic information
into a continuous latent space and utilize a jointly trained diffusion model for reconstruction. As the
latent space is mostly semantic, image reconstruction requires an additional subcode xT , obtained
by mapping the image back to the Gaussian noise space using conditional DDIM sampling (Song
et al., 2020). By contrast, our method reconstructs images faithfully from a single latent z alone. A
concurrent work, AToken (Lu et al., 2025), proposes a unified visual tokenizer designed to operate
consistently across multiple modalities.

3 METHOD

3.1 PRELIMINARIES

Flow Matching models learn vector fields that map between two terminal distributions: p(x0),
typically a simple prior distribution such as a standard Gaussian distribution, and p(x1), the target
data distribution. Let Rd be the space that x0 and x1 reside in, and let vω(t, x) represent the time-
dependent vector field to be learned with t → [0, 1]. The underlying dynamics of flow matching
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ImageNet-1K MS-COCO
GT TiTok FlexTok Ours GT TiTok FlexTok Ours
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Figure 3: We introduce RepTok, a compact visual tokenizer that builds upon pre-trained SSL represen-
tations. Our approach augments these representations with additional necessary information to enable
images to be faithfully encoded as a single continuous token, which allows for both high-fidelity
image reconstruction and synthesis. The third row indicates the number of tokens for reconstruction.

models are then governed by the ordinary differential equation (ODE) dx = vω(x, t). A common
choice for the interpolant between x0 and x1 is the linear interpolant (Liu et al., 2023b), defined
as xt = tx1 + (1 ↑ t)x0. The vector field vω can then be optimized using the following training
objective with a randomly sampled t and the corresponding xt (Lipman et al., 2023; Liu et al., 2023b;
Schusterbauer et al., 2025):

L = Et,x0,x1 ||vω(xt, t)↑ (x1 ↑ x0)||. (1)

To sample from a flow matching model, one simply integrates along the trajectory defined by the
learned ODE. This can be accomplished using numerical integration techniques such as the forward
Euler method, with the update rule given by xt+t! = xt+t!vω(xt, t), where ↓t → [0, 1), t! = 1/N ,
and N being the number of function evaluations (NFE).

3.2 REPTOK: REPRESENTING IMAGES AS A SINGLE TOKEN

TiTok (Yu et al., 2024a) represents a significant advancement over traditional VAEs by overcoming
their inherent 2D tokenization grid constraints. Unlike conventional approaches, where each token
is restricted to attending only to a fixed image grid, TiTok enables tokens z to attend freely to the
entire image. However, despite these improvements, TiTok typically still relies on multiple tokens to
effectively encode an image. In this work, we show that continuous latent spaces can achieve even
greater efficiency in few-token regimes. Specifically, we demonstrate that a single continuous token,
derived from a pre-trained encoder, can be used together with a generative decoder to synthesize
high-fidelity reconstructions.

Finetuned Self-supervised Models are Faithful Encoders It is well established that models such
as CLIP (Radford et al., 2021), MAE (He et al., 2022) and DINO (Caron et al., 2021; Oquab et al.,
2024) models encode highly informative representations and demonstrate a strong understanding of
images, as evidenced by their effectiveness in various downstream tasks, including image classification
(Radford et al., 2021; Caron et al., 2021; Oquab et al., 2024) and semantic segmentation (Zhang et al.,
2023). This capability is further demonstrated by the existence of unCLIP models (Ramesh et al.,
2022; Rombach et al., 2022), which can generate image variations from noise using only a single
CLIP embedding. While this observation confirms that generative models can synthesize images from
extremely compact bottlenecks (for unCLIP (Ramesh et al., 2022) z → R1→512), we hypothesize that
the variations of the outputs arise from the fact that CLIP models are not explicitly trained to preserve
exact pixel locations but instead optimize a contrastive loss with corresponding textual descriptions,
thereby capturing only high-level semantic features.

Motivated by these observations, we explore and unlock the potential of leveraging a pretrained
encoder E that already possesses a comprehensive understanding of image content. To this end, we
introduce a novel training strategy that leverages a pretrained self-supervised learning (SSL) model
with a transformer-based architecture as the encoder. These models typically incorporate a class
token (typically referred to as the [cls] token) that is trained, either explicitly or implicitly, to
aggregate information from image patches. However, such pretrained models are often optimized
for downstream tasks and may consequently, as an example, underrepresent low-level visual details
critical for image reconstruction. To address this limitation, we propose a targeted adaptation strategy
that only updates the class token embedding while keeping the remainder of the encoder frozen.
Remarkably, we find that this minimal intervention is sufficient to inject the necessary visual detail
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Image A →↑↑↑↑↑↑↑↑ Interpolation ↑↑↑↑↑↑↑↑↓ Image B

Figure 4: Latent space interpolation. We observe smooth transitions not only in semantic content
but also in spatial configuration. This indicates that our method successfully integrates low-level
spatial information while preserving the properties of the pretrained encoder’s latent space, and
facilitates generation within the learned representation. We provide more samples in the Appendix.

into the representation. Empirical results reveal that with only the class token being fine-tuned, the
system is capable of producing reconstructions with high fidelity across a range of SSL backbones
including DINOv2 (Oquab et al., 2024), MAE (He et al., 2022) and CLIP (Radford et al., 2021). We
demonstrate our reconstructions in Figure 3.

Training the Encoder together with a Generative Decoder While the SSL-pretrained encoder
E remains largely frozen, a supervisory signal is still required to inject reconstruction-relevant
information into the class token. Additionally, a decoder is necessary to map the resulting single-
token latent representation back into pixel space. To this end, we jointly train the encoder E and a
generative decoder D in a continuous manner, using a simple but effective flow matching loss.

The generative decoder D is trained end-to-end alongside the encoder E to learn a mapping from
randomly sampled Gaussian noise ω to the target image x. We follow principles similar to the
conditioning mechanism employed in MMDiT (Esser et al., 2024) and concatenate the latent token
z = E(x) with the noisy image tokens. The resulting training objective is formulated as a flow
matching loss as in Equation (1), which optimizes both the encoder and the decoder:

L = Et,x0,x1 ||vω(t, xt, z)↑ (x1 ↑ x0)||. (2)

To improve computational efficiency and remain consistent with the SiT framework (Ma et al., 2024),
we adopt a pretrained 2D VAE (Rombach et al., 2022) so that the generative decoding process
operates within a learned latent space rather than directly in pixel space.

Figure 5: Fine-tuning the [cls] to-
ken. From left: GT, frozen, finetuned.

Cosine-Similarity Loss We observe that the [cls]
tokens of self-supervised vision encoders already provide
a smooth, semantically structured space. Hence, our goal
during training is to maintain this well-regularized space
while still allowing the token to integrate the fine-grained
information the decoder needs for faithful reconstructions.
Freezing the [cls] token leads to poor reconstruction
quality, as indicated in Figure 5. Conversely, leaving the
encoder completely unconstrained pulls the token far away
from the well-regularized space, removing the prerequisite
for later generative modeling. We find that only unfreezing
the [cls] while fixing all other encoder weights strikes
a good balance between integration of more information and maintaining the original regularization.
To constrain the token from deviating its pre-trained representation, we introduce a cosine-similarity
alignment term

Lcos(x) = ε(1↑ cos(z, zfrozen)) zfrozen = Efrozen(x), z = E(x), (3)

where zfrozen is the token output from the frozen SSL model, z is the fine-tuned counterpart, and ε
explicitly controls the allowed deviation. Reducing ε relaxes the constraint; increasing it restricts the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

token more tightly to its source. With this alignment mechanism, we retain the well-behaved SSL
latent space for later generative modeling, while additionally enriching the token with the additional
information the generative decoder needs to faithfully reconstruct. We observe that incorporating the
cosine similarity loss prevents the embedding from drifting away from the well-regularized latent
space, also under extended training, as illustrated in Figure 9. We directly condition the generative
decoder on those representations and focus on preserving their structured properties while injecting
additional information to enable both faithful reconstruction and generative abilities.

3.3 SINGLE TOKEN GENERATION FOR IMAGE SYNTHESIS

Since RepTok projects images into a continuous latent space z (typically in R1→768), it becomes
feasible to model and sample from this space using a separate generative model G. To this end, we
again employ flow matching (Lipman et al., 2023) for latent space generation. We discover that
utilizing a frozen SSL model, with only the class token finetuned, provides an effective alternative
regularization mechanism to the conventional approaches using Kullback-Leibler (KL) divergence
(Rombach et al., 2022) or vector quantization (Austin et al., 2021; Yu et al., 2024a; Tian et al., 2024).
By preserving the structural properties of the learned feature space, the frozen encoder inherently
constrains the latent representations and facilitates the generation process without requiring explicit
KL or vector quantization regularization.

Attention-free ImageNet Generation Typical diffusion models operate on high-dimensional image
or latent spaces consisting of multiple tokens, where capturing global structure and local detail relies
on modeling interactions across tokens. This is commonly achieved through attention (Vaswani et al.,
2017). While effective, it introduces significant computational overhead. In contrast, when inputs are
aggressively compressed into a single token, token-to-token interactions become unnecessary. We
show that in this highly compressed regime, generative modeling can be effectively performed using
an attention-free, pure MLP-based architecture such as MLP-Mixer (Tolstikhin et al., 2021). Despite
its architectural simplicity and lack of self-attention, our MLP-only approach performs remarkably
well. This highlights a novel and computationally efficient approach to diffusion modeling, where
architectural complexity is shifted to the pre-trained compression stage without sacrificing flexibility
or generality. For text-to-image synthesis, we still use attention for text conditioning, but the
compactness of our latent space keeps the associated cost minimal. In particular, because the number
of tokens in our latent space is small, the quadratic scaling of attention remains inexpensive.

4 EXPERIMENTS

We evaluate RepTok on class-conditional ImageNet-1k (Deng et al., 2009) and show the scalability
of our approach on text-to-image (T2I) generation. We evaluate reconstruction performance with
reconstruction FID (rFID), PSNR, SSIM, and LPIPS, and generation performance with generation
FID (gFID), consistent with prior work (Bachmann et al., 2025; Yu et al., 2024a). All models operate
at 2562 resolution; implementation and training details are provided in the Appendix.

4.1 CLASS-CONDITIONAL GENERATION

We jointly train the SSL encoder (only the [cls] token parameters are trainable) and a generative
flow matching-decoder for reconstruction in a first stage. We use DINOv2 (Oquab et al., 2024) as
our SSL encoder, but show in section 4.3 that our method also generalizes to other SSL methods.
For latent space synthesis, we train a lightweight, attention-free generator (MLP-Mixer) over the
continuous [cls] token, where we encode images using the previously trained SSL encoder model.
We inject class information by concatenating a learned class embedding, which we randomly drop
during training to enable classifier-free guidance (Ho & Salimans, 2021).

Table 1: Reconstruction per-
formance on ImageNet 2562.

FID@50K ↔ PSNR ↗
RCG 3.20 9.31
Ours 1.85 14.94

Quantitative Comparison Table 3 compares our method against
recent, state-of-the-art transformer-based generative models on Ima-
geNet 256↔ 256. For each model, we report the FID score, number
of training iterations, parameter count, per-iteration compute in
GFLOPs, and the resulting total training compute in Peta-FLOPs.
FLOPs are estimated from a single forward pass (batch size 1), and
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Table 2: State-of-the-art comparison between tokenizers for reconstruction and class-conditional
ImageNet generation. † metrics sourced from (Bachmann et al., 2025).

Tokenizer # tokens global continuous rFID gFID

LDM (Rombach et al., 2022) 32x32 ✁ ✂ 0.90 7.76
LlamaGen† (Sun et al., 2024) 16x16 ✂ ✁ 2.19 3.06
TiTok-L† (Yu et al., 2024a) 32 ✂ ✁ 2.21 2.77
TiTok-B† (Yu et al., 2024a) 64 ✂ ✁ 1.70 2.48
TiTok-S† (Yu et al., 2024a) 128 ✂ ✁ 1.71 1.97
FlexTok† d12-d12 (Bachmann et al., 2025) 1-256 ✂ ✁ 4.20 3.83
FlexTok† d18-d18 (Bachmann et al., 2025) 1-256 ✂ ✁ 1.61 2.02
FlexTok† d18-d28 (Bachmann et al., 2025) 1-256 ✂ ✁ 1.45 1.86

RepTok (ours) 1 ✂ ✂ 1.85 1.88

scaled linearly with the effective batch size and the number of training steps; we follow the convention
of counting only the forward pass. Our model achieves highly competitive FID scores while requiring
significantly less total compute than other baselines such as DiT and SiT. We note that classifier-
free guidance (CFG) yields only limited improvements in our setting, a phenomenon also reported
by RCG. Table 2 compares RepTok with spatial and 1D tokenizers for both reconstruction and
class-conditional generation on ImageNet. Despite using just one continuous token, RepTok matches
or even outperforms several spatial and non-spatial baselines in rFID while remaining competitive on
gFID relative to recent discrete tokenizers. Additional results in Table 1 compare RepTok to RCG (Li
et al., 2024), a method which relies on purely semantic codes. RepTok achieves significantly higher
PSNR and lower FID, indicating that our continuous token preserves more information than pure
semantics and delivers stronger performance across both perceptual and pixel-level metrics.

Efficiency We measure training compute in floating point operations (FLOPs). In the single-token
latent space, token-to-token interactions are unnecessary. We therefore adopt a pure MLP-Mixer as the
latent space generator model. The combination of representing an image with a single token and the
MLP-only architecture reduces training FLOPs by an order of magnitude compared to attention-based
diffusion in latent space, as shown in Figure 1. Despite a comparable number of parameters across
both models, our approach still achieves a substantially lower computational footprint, requiring only
1.7% of the FLOPs consumed by SiT (Ma et al., 2024). Our overall FLOPs remain significantly
lower, also when accounting for the inference cost of the corresponding first-stage encoder.

Qualitative Comparison Figure 3 shows high-fidelity reconstructions from a single token on
ImageNet validation images and strong out-of-distribution reconstructions on MS-COCO (Lin et al.,
2014), despite training only on ImageNet. Figure 6 presents class-conditional samples; despite the
simple architecture and low compute budget, quality remains competitive with attention-based image
generation models. We provide more uncurated, qualitative samples in the Appendix.

Latent Space Interpolation A key advantage of self-supervised encoders is the smoothness of
their latent spaces, yielding a geometry well-suited for generation. Figure 4 shows that our training
preserves this property, where we linearly interpolate between latent representations, which produces
gradual transitions in both high-level semantics and low-level visual details. We observe continuous
changes in object shape, size, emergence, and rotation (see more samples in the Appendix).

4.2 ENABLING REPTOK FOR T2I GENERATION

We scale RepTok to text-to-image generation using 120M image–text pairs from COYO (Byeon
et al., 2022), recaptioned using InternVL3-1B (Zhu et al., 2025). We first train the language-agnostic

Figure 6: Uncurated MLP-Mixer ImageNet generations (CFG=3.5). More samples in the Appendix.
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Figure 7: Left: Training days vs gFID, zero-shot evaluation on MS-COCO (Lin et al., 2014). Data
sourced from MicroDiT (Sehwag et al., 2024). Right: Scaling the frozen language backbones results
in improved performance. Language models: CLIP, InternVL, and Gemma-2B.

encoder-decoder using DINOv2 as our SSL encoder and a Flow Matching transformer as decoder.
During generative model training, we concatenate four learnable tokens with the noisy [cls] token
from the SSL encoder and apply cross-attention to the frozen outputs of the language model. Similar
to prior work, we evaluate our method on the COCO validation set (Lin et al., 2014). We report FID,
CLIP Score (Hessel et al., 2021), as well as validation loss, as (Esser et al., 2024; Polyak et al., 2024)
found that it correlates with human evaluations.

Quantitative Results Figure 7 (left) shows that our method achieves substantially lower training
cost than prior text-to-image models while maintaining competitive zero-shot FID. Since the language
backbone is frozen and only provides conditioning, it can be scaled independently without impacting
the training cost of the generative model. Figure 7 (right) shows the performance for language
backbones with increasing scale: CLIP (Radford et al., 2021), InternVL (Zhu et al., 2025), and
Gemma-2B (Team-Gemma et al., 2024). Larger language models consistently improve performance
across all metrics. All results are obtained after 200k training iterations with a batch size of 256.

Qualitative Results Figure 8 shows qualitative text-to-image results. Our model is able to produce
realistic images after only 200k training iterations. Despite the short training time (< 20 hours on 4↔
A100 GPUs), the generations capture fine details and adhere closely to the prompt. This highlights
the efficiency and scalability of RepTok for text-to-image synthesis. Interestingly, we observe that
the SSL encoder and generative decoder trained exclusively on ImageNet can already be repurposed
for text-to-image generation. We show qualitative samples and discuss this further in the Appendix.

Table 3: FID comparison on the ImageNet 256↔ 256 benchmark, including parameter counts and
training FLOPs. Stage 1 refers to the training of the generative decoder, while Stage 2 corresponds to
the main generative model training. As all models rely on the SD-VAE and REPA uses DINOv2 as
well, we exclude these shared pre-training costs from FLOP estimates.

Stage 1 Stage 2
Model FID PFlops Train Steps Params (M) GFlops/Iter PFlops Total PFlops

DiT-XL/2 19.5 – 400K 675 118.6 12.1K 12.1K
+REPA 12.3 – 400K 675 140.5 14.4K 14.4K

SiT-L/2 18.8 – 400K 458 77.5 7.9K 7.9K
+REPA 9.7 – 400K 458 99.4 10.2K 10.2K

SiT-XL/2 17.2 – 400K 675 118.6 12.1K 12.1K
+REPA 7.9 – 400K 675 140.5 14.4K 14.4K

SiT-XL/2 8.3 – 7M 675 118.6 212.5K 212.5K
+CFG=1.5 2.06 – 7M 675 118.6 212.5K 212.5K
+REPA 5.9 – 4M 675 140.5 143.9K 143.9K
+REPA, CFG=1.5 1.42 – 4M 675 140.5 143.9K 143.9K

RepTok 5.4 30.4K 100K 276 23.0 0.6K 31.0K
RepTok 3.4 30.4K 700K 276 23.0 4.1K 34.5K

+CFG=1.5 3.22 30.4K 700K 276 23.0 4.1K 34.5K
RepTok 2.06 30.4K 460K 516 25.0 11.7K 42.1K

+CFG=1.5 1.88 30.4K 460K 516 25.0 11.7K 42.1K
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A cactus with a cartoon happy
face in the Sahara dessert

An avocado chair in the shape
of a halved avocado

A cat wearing round
sunglasses lying on the beach

A close-up of a horse’s face
with details of mane and eyes

Figure 8: RepTok text-to-image results with a transformer-based latent space model (CFG scale 3.5).

Figure 9: The parameter ε of the cosine similarity loss in Equation (3) allows us to trade off between
pixel-wise reconstruction and generation capabilities. Relaxed constraints (low ε) improve pixel-wise
reconstruction (PSNR in right plot), but result in poor generation capabilities (gFID in right plot).

4.3 ABLATIONS

Generalization to other SSL methods Our method generalizes to a number of self-supervised
vision encoders, as shown in Table 4. While the main results are based on DINOv2, we observe
similarly strong reconstruction quality and generative performance when using alternative SSL
methods such as MAE and CLIP. In contrast, when using a randomly initialized encoder with no
prior information, the generative decoder loss enforces a strong pixel-wise reconstruction but leaves
the resulting latent space completely unstructured and hard to capture for the generative model, as
reflected in the high generation FID. A semantic prior enforces a geometry in which semantically
similar images are drawn together and dissimilar images are pushed apart. This naturally induces
smooth, low-dimensional manifolds which promotes stable generations.

Cosine Similarity Loss We introduced a cosine similarity loss in Equation (3) that incentivizes the
semantic token to remain close to the SSL encoder’s original to preserve the beneficial properties
of the pre-trained space. Here, similar to previous work (Yao et al., 2025; Tschannen et al., 2024),
we observe a trade-off between generation and reconstruction, visualized in Figure 9. Stronger
regularization improves the generative performance (gFID), but at the cost of reduced pixel-wise
reconstruction (PSNR). Mild regularization significantly improves the generative quality, indicating a
better latent space for generation, while minimally degrading reconstruction quality. ε allows us to
balance between preserving high-level semantic content and reconstructing low-level visual details.

Table 4: Our approach generalizes to other self-supervised encoders. We compare 10k FID on
class-conditional ImageNet (Deng et al., 2009).

SSL method rFID ↔ PSNR ↗ SSIM ↗ LPIPS ↔ gFID ↔
w/o prior 13.99 19.64 47.19 0.23 128.54

CLIP (Radford et al., 2021) 13.66 14.24 31.69 0.44 30.56
MAE (He et al., 2022) 9.09 13.79 30.28 0.45 28.48
DINOv2 (Oquab et al., 2024) 7.95 14.94 33.26 0.41 20.75
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Figure 10: Scaling analysis of the MLP Mixer (Tolstikhin et al., 2021). We observe that the model
scales: larger variants consistently yield improved performance, and continued training further
improves results. The largest XL model evaluated contains 516M parameters.

GT Recon

Figure 11: Fine-tuned encoder-decoder model on 5122 resolution. Left: original validation images.
Right: reconstructions at 5122 resolution.

Scaling Analysis of MLP-Mixer Since parameter scaling is a key feature of Transformers, we
further evaluate whether this also holds for our latent space MLP-Mixer architecture (Tolstikhin et al.,
2021). In Figure 10 we show that the MLP Mixer also scales with parameter size and FLOPs.

Scaling the Decoder to 512px We further fine-tune our encoder–decoder model for 100K iterations
at 5122 resolution, starting from weights pre-trained at 2562. The model successfully adapts to the
higher-resolution setting as visualized in Figure 11.

5 CONCLUSION

In this work, we introduced RepTok, a framework that adapts self-supervised representations into
a compact latent space for generative modeling. By fine-tuning only the class token of an SSL
encoder and regularizing it with a cosine-similarity loss, we obtain a single continuous token that
retains the smooth geometry of the original space while enriching it with reconstruction-relevant
information. Coupled with a generative decoder trained via flow matching, this setup enables faithful
reconstructions and efficient image synthesis without reliance on costly attention mechanisms or
auxiliary losses. Our experiments demonstrate that this single-token formulation achieves competitive
results in class-conditional generation at a fraction of the computational cost. We further show that
RepTok scales to more complex text-to-image settings. Overall, these findings highlight the potential
of leveraging SSL representations themselves to build lightweight but effective generative models.
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