
Failure Analysis of Autonomous Systems
with RL-Guided MCMC Sampling

Anonymous Author(s)
Submission Id: ???

ABSTRACT
Advanced autonomous systems are increasingly deployed for crit-
ical tasks, but are typically not amenable to standard verification
and validation techniques. Manually-refined Monte Carlo sampling
is often the only recourse for the practical assessment of system
behavior and the discovery of anomalies. However, this method
scales poorly when applied to systemswith high-dimensional states,
multiple agents, or long time horizons. When system failures are
rare, they cannot be effectively analyzed by direct sampling. We im-
prove on previous work and demonstrate RL-MCMC, a Monte Carlo
Markov chain approach to the efficient generation of rare system
failures and the accurate estimation of failure mode log-likelihood.
MCMC algorithms enable the sampling of arbitrary unnormalized
distributions that lack an explicit generative process; however, they
are highly sensitive to initialization and commonly suffer from
convergence issues. We present a method to find ideal initializa-
tions for the MCMC sampling process with reinforcement learning,
leveraging the power of modern neural network-based policy op-
timization to find solutions to nontrivial and highly-constrained
sequential tasks. By formulating a Markov decision process (MDP)
to explicitly learn modal paths to failure, it is possible to eliminate
the unreliable convergence phase of the MCMC algorithm and im-
mediately begin generating valid, in-distribution system failures.
We assess the approach with two simple example problems and
demonstrate the accuracy and stability of the likelihood estimation.

KEYWORDS
Reinforcement learning, Monte Carlo Markov chains, system vali-
dation, failure analysis

1 INTRODUCTION
Validation of a system under test (SUT) is the process of deter-
mining whether requirements specified in the design of a system
are met by its implementation. Formal V&V methods can rigor-
ously prove or disprove this correspondence, but system dynamics
rarely conform to the necessary idealizations; as a result, statistical
validation (falsification) is often performed instead, typically in
simulation. This requires the tester to randomly sample system
inputs, perturbations, or transitions according to a predetermined
model, categorize the observed failures, and estimate the overall
reliability of the system.

The Monte Carlo approach deteriorates when sampling occurs
over higher dimensions or longer horizons. Many systems ulti-
mately fail due to unanticipated correlations; since direct sampling
explores regions in proportion to their likelihood of occurrence, the
majority of computational effort is expended evaluating nominal

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

and near-nominal behavior. In addition, as the parameters of the
perturbation model inform the exploration, small model errors have
a vast impact on the sampling outcome. Because of these difficulties,
it is common practice to manually bias the search toward known
issues, leveraging pre-knowledge of the system to expedite failure
discovery. However, this approach incurs the risk of missing failure
modes unforeseen by the system developers and testers.

As an alternative, reinforcement learning-informed sampling
(RLIS) is a two-stage framework that gathers and exploits informa-
tion about the state space, allowing failure modes to be discovered
with more independence and greater efficiency [7]. In the first stage,
reinforcement learning is used to generate a policy that encodes
an approximation of the statistical modes of a failure likelihood
function. This policy then forms the basis of a surrogate distribu-
tion, through which the true failure probability can be estimated
by the method of importance sampling. RLIS does not depend on
any particular learning algorithm or policy representation, making
it applicable to a wide variety of systems under test. It is also mod-
erately robust under uncertainty and model error: since likelihood
appears as part of an objective function, not as the property of a
generative process, the learning stage is less sensitive to unmodeled
effects.

However, importance sampling is notoriously sensitive; the vari-
ance of its output can be unacceptably high, and in certain cases
unbounded, when the surrogate distribution differs significantly
from the theoretical ideal. Since RLIS relies on approximating the
surrogate, it is susceptible to the same instability. Accurately quan-
tifying the sampling error in practice is difficult due to the low
magnitude of the failure likelihood, which is estimated in absolute
probability space, with 𝑝 ∈ [0, 1].

This paper vastly improves on RLIS by replacing importance
sampling with Monte Carlo Markov chain (MCMC) methods. This
family of algorithms enables an implicitly-specified distribution
to be sampled without requiring the calculation of a normalizing
constant (which is intractable in all but the simplest cases) or the
derivation of an explicit generation mechanism. However, MCMC
methods are highly sensitive to initialization, particularly when
portions of the domain are infeasible, and commonly exhibit a
prolonged phase of convergence, during which the output is far
from the mode of the distribution and not practicably usable. As a
result, they are not suited to the problem of failure discovery, which
involves optimizing over a highly discontinuous objective.

However, we can use the RLIS failure policy to accelerate the
MCMC algorithm, since it is explicitly formulated to learn themode
of the relevant distribution (the probability of system transitions,
conditioned on eventual failure). The learned policy is used as a
bridge distribution to directly sample the theoretically ideal surro-
gate distribution using the method of path sampling. At the same
time, the failure probability estimate and its confidence bounds are

formed directly in log-probability space, resulting in significantly
lower variance and more reliable estimation. These developments
vastly improve the accuracy and stability of the framework.

2 BACKGROUND
We consider a simulation that contains a SUT interacting with a
stochastic environment over a fixed time horizon. At each point in
time, the simulation is summarized by a state 𝑠 ∈ S; the internal
state of the SUT does not need to be directly observable, but system
failure must correspond to some subset F ⊂ S. The environment
consists of a set of external variables collected into the random
variable 𝑋𝑡 ∈ X, where 𝑋𝑡 ∼ 𝑝𝑡 (𝑥) and 𝑥 may be multidimensional.
In this paper, we consider only time-stationary distributions; the
subscript 𝑡 serves to differentiate step-wise variables from the tra-
jectory variables. Fundamental to RLIS is the assumption that all
randomness can be captured in the specification of the environment
(i.e., the SUT is either deterministic or de-randomizable). It should
also be possible to specify a rough distance-to-failure metric 𝑑 (𝑠),
a scalar function that is non-negative and attains a value of zero
upon failure; this value guides the learning and sampling processes.

As an example, in the aircraft collision avoidance setting, the
state might contain the positions and velocities of a group of aircraft
while the environment describes externalities (from the perspective
of the SUT) such as pilot controls, wind gusts, or sensor noise. A
sensible distance metric would be the minimum pairwise distance
between aircraft; failure has occurred if 𝑑 (𝑠) = 0.

For each episode of simulation, the state is initialized at some
𝑠0. Then, an environment sample 𝑥𝑡 is drawn and the simulation
is advanced. The environment-system update step is repeated for
a fixed number of time steps, or until failure. We refer to this as
the rollout of the environment; a given sequence of environment
samples 𝑥 = [𝑥1, 𝑥2, . . . 𝑥𝑇] is a trace or trajectory.

Since the failure region F may be arbitrary complex, it is de-
fined implicitly by an indicator function 1F (𝑠) ∈ {0, 1}. For a fixed
initialization 𝑠0, one can also consider the function 𝑓 (𝑥), which
indicates whether or not failure occurred at any point across the
rollout of the trace 𝑥 . Similarly, it is possible to define 𝑑 (𝑥) as the
minimum distance to failure across the trace.

3 SAMPLING FRAMEWORK
Let 𝑋 = [𝑋1, 𝑋2, . . . 𝑋𝑇] be the random trace corresponding to a
𝑇 -step rollout of the environment. Then, the result of 𝑓 (𝑋), as
previously defined, is a binary random variable indicating whether
or not a failure occurs. The overall prevalence of failure can be
calculated as

𝜇 = 𝑃 (𝑓 (𝑋) = 1) = E[𝑓 (𝑋)] =
∫
X𝑇

𝑓 (𝑥)𝑝 (𝑥) 𝑑𝑥 ,

where 𝑝 (𝑥) = ∏𝑇
𝑡=1 𝑝𝑡 (𝑥𝑡) is the joint probability distribution of

the trace and 𝑑𝑥 = 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑇 . Regular statistical validation is
equivalent to Monte Carlo integration, in which

E[𝑓 (𝑋)] ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥 (𝑖)) ,

where sample traces 𝑥 (𝑖) are drawn from 𝑋 . When failures are rare
and difficult to elicit, the estimate is likely to be zero, which may
not be a particularly useful result.

RLIS mitigates the elicitation problem by constructing a surro-
gate distribution𝑞(𝑥) using reinforcement learning and re-weighting
the samples to correct for their disproportionate contribution to
the probability estimate, according to the identity

𝜇 =

∫
X𝑇

𝑓 (𝑥) 𝑝 (𝑥)
𝑞(𝑥) 𝑞(𝑥) 𝑑𝑥 = E

[
𝑓 (𝑋 ∗) 𝑝 (𝑋

∗)
𝑞(𝑋 ∗)

]
,

where 𝑋 ∗ ∼ 𝑞(𝑥). The surrogate is formed by learning paths to
failure in a setting where exploration is largely decoupled from
the generative model 𝑝 (𝑥), and then recentering the model around
these paths. A related approach is developed in [9], where Bayesian
methods are used to refine a surrogate for importance sampling.

While this approach can be effective in low-dimensional settings,
importance sampling has a severe limitation: the sample variance
tends to increase dramatically as the surrogate distribution differs
from the ideal. This variance can vastly overwhelm the estimate, in
the worse case causing it to fall outside the interval [0, 1] entirely. In
RLIS, the high dimensionality of the distribution (with scales with
both the number of environment variables and the time horizon)
tends to magnify the difference between the distributions.

The variance of an importance sampling scheme is given by

𝜎2 = E

[(
𝑓 (𝑋 ∗) 𝑝 (𝑋

∗)
𝑞(𝑋 ∗)

)2]
− 𝜇2

=

∫
X𝑇

𝑓 (𝑥)2 𝑝 (𝑥)
2

𝑞(𝑥)2
𝑞(𝑥) 𝑑𝑥 − 𝜇2

=

∫
X𝑇

(
𝑓 (𝑥) 𝑝 (𝑥)

𝑞(𝑥) − 𝜇
)
𝑓 (𝑥)𝑝 (𝑥) 𝑑𝑥 .

The ideal variance-minimizing surrogate is thus

𝑞∗ (𝑥) = 𝑓 (𝑥)𝑝 (𝑥)
𝜇

.

This distribution is not directly realizable, since it depends on 𝜇,
the variable we would like to estimate. However, it can be related
to the fundamental stress testing problem. Consider the conditional
probability distribution function of the trace 𝑥 given eventual failure.
By Bayes’ theorem, this can be written as

𝑝 (𝑥 | 𝑓 (𝑥)) = 𝑃 (𝑋 = 𝑥 | 𝑓 (𝑋) = 1)

= 𝑃 (𝑓 (𝑋) = 1 | 𝑋 = 𝑥) 𝑃 (𝑋 = 𝑥)
𝑃 (𝑓 (𝑋) = 1)

=
𝑓 (𝑥)𝑝 (𝑥)

𝜇
.

From this perspective, it is clear that the conditional PDF is
proportional to the quantity 𝑞(𝑥) = 𝑓 (𝑥)𝑝 (𝑥). If it were possible
sample the normalized form of 𝑞(𝑥), we could perform importance
sampling with an ideal surrogate and compute a perfect estimate
of the failure likelihood. However, this would require first knowing
the normalizing constant.

This motivates an alternative approach that abandons the mech-
anism of importance sampling. If 𝑞(𝑥) could instead be sampled

directly in its unnormalized form, those samples would be identical
in distribution to the conditional PDF. An adapted procedure could
then be used to integrate over the distribution with its own samples.
An elegant resolution to the problem is provided by Monte Carlo
Markov chain (MCMC) methods.

4 MCMC SAMPLING
MCMC sampling involves constructing a Markov chain whose sta-
tionary distribution is proportional to a given function. Crucially,
this allows an unnormalized PDF of arbitrary complexity to be sam-
pled without explicitly calculating the normalization or deriving
an explicit sampling mechanism. In many applications, such as
Bayesian computation or the analysis of quantum systems, normal-
ization factors may be practically uncomputable.

In the symmetric random-walk Metropolis algorithm, a special
case of the general MCMC formulation, the Markov chain is ini-
tialized with a value 𝑥 ∈ X𝑇 . At each iteration, a transition Δ𝑥 is
drawn from a symmetric transition distribution to form a candidate
value 𝑥 ′ = 𝑥 + Δ𝑥 . The candidate is accepted with probability

𝑃acc (𝑥 → 𝑥 ′) = min
(
1,

𝑞(𝑥 ′)
𝑞(𝑥)

)
.

If accepted, 𝑥 ′ becomes the next value in the chain; otherwise,
𝑥 is reused. The choice of transition distribution can determine
the efficacy of the process. The environment distribution 𝑝 (𝑥), if
symmetrized, provides a natural candidate.

Note that since 𝑞(𝑥) is only evaluated in ratio form, the constant
of proportionality is irrelevant. It can be shown that under a wide
range of conditions, this process eventually converges in distribu-
tion to a sampling of 𝑞∗ (𝑥), which is here equal to the conditional
distribution 𝑝 (𝑥 | 𝑓 (𝑥)) [11].

The period of convergence for a MCMC process is commonly re-
ferred to as burn-in. Since the initial value may be far from the bulk
of the probability mass of 𝑞∗ (𝑥), the process require a high number
of iterations before the chain begins to resemble IID samples. In
the early stages of the algorithm, the chain is preoccupied with
moving towards regions of higher probability. As a result, many
common convergence metrics rely on autocorrelation-based heuris-
tics. Even so, the lack of a ground truth and the general difficulty
of comparing high-dimensional distributions make it difficult to
assess convergence.

For the stress-testing problem, the distribution may be particu-
larly irregular, with discontinuities and large plateaus. Because of
the algorithm’s acceptance criterion, the chain must be initialized
with a valid failure trace, and may experience convergence issues
if the trace is not sufficiently high-likelihood.

5 ADAPTIVE STRESS TESTING
Reinforcement learning can be used to find an optimal MCMC ini-
tialization. The adaptive stress testing (AST) framework formulates
stress testing as an MDP whose solutions represent the highest
likelihood failure traces [6]. This approach has proven useful in a
variety of applications, including the analysis of aircraft collision
avoidance software [6, 8], pedestrian avoidance procedures for au-
tonomous vehicles [1, 4], trajectory planners for small unmanned
aircraft [5], aircraft taxiing algorithms [3], and flight management
systems [10].

Rather than sampling from the environment, AST explicitly op-
timizes over sample values to find the most likely failure events in
the SUT. For an arbitrary 𝑇 -step trajectory, the joint likelihood is
given by

𝑝 (𝑠0, . . . , 𝑠𝑇) = 𝑝 (𝑠0)
𝑇∏
𝑡=1

𝑝 (𝑠𝑡 | 𝑠0, . . . , 𝑠𝑡−1)

= 𝑝 (𝑠0)
𝑇∏
𝑡=1

𝑝 (𝑠𝑡 | 𝑠𝑡−1)

= 𝑝 (𝑠0)
𝑇−1∏
𝑡=0

𝑝 (𝑥𝑡 | 𝑠𝑡) ,

where simplifications are due to the Markov property and random-
ness assumptions. For a given initialization 𝑠0, the high-level goal
of AST is then to solve the optimization problem

max
𝑥0,...,𝑥𝑇 −1

𝑇−1∏
𝑡=0

𝑝 (𝑥𝑡 | 𝑠𝑡)

subject to 𝑠𝑇 ∈ F .

This is precisely equivalent to maximizing the conditional PDF,
since within the feasible region F ,

𝑞∗ (𝑥) = 𝑓 (𝑥)𝑝 (𝑥)
𝜇

∝ 𝑝 (𝑥) .

Because the constraint may be arbitrarily complex (recall that F
is defined implicitly in 𝑥), the problem benefits from a non-classical
optimization technique. In particular, the MDP formulation enables
a reinforcement learning approach. Figure 1 illustrates the AST
architecture. At each time step, an agent observes the state 𝑠 , selects
an environment instance 𝑥𝑡 , advances the simulation to state 𝑠′,
and receives a reward

𝑟 (𝑠, 𝑥𝑡 , 𝑠′) = log𝑝 (𝑥𝑡 | 𝑠) + Δ(𝑠, 𝑠′) + 𝑟 𝑓 · 1F (𝑠) ,

where 𝑟 𝑓 is a bonus for reaching failure and

Δ(𝑠, 𝑠′) ∝ 𝑑 (𝑠) − 𝑑 (𝑠′)

is a potential-based reward-shaping term designed to guide the
learning agent. This amounts to a softened version of the origi-
nal optimization, as the constraint is replaced by a penalty; the
relaxation does not change the theoretical optimum.

The scope can be expanded to learn a failure policy 𝜋∗, an optimal
mapping between states and environment values that induce the
likeliest path to failure. Instead of an initial state 𝑠0, we specify an
initial distribution 𝑝0 (𝑠) with support S0 ⊆ S to be sampled at the
start of each episode.

A failure policy is more than a generalization over initializations.
It has the ability to latently represent multiple independent failure
modes, which are encoded in its directions for selecting adversar-
ial environments. The subsequent sampling scheme extracts this
representation.

A wide variety of algorithms can be used to solve the AST MDP.
Deep reinforcement learning offers an attractive option when state
and environment spaces are high-dimensional. Due to the ability of
neural networks to interpolate and generalize, this approach allows
failure paths to be approximated between samples.

Simulation

SUT Environment Einteraction Reinforcement
Learner

Reward
Function

disturbance 𝑥

reward
𝑟

state 𝑠

transition probability 𝑝 ,
failure event 𝑓 , distance 𝑑

Figure 1: Adaptive stress testing architecture. A generic reinforcement learning agent chooses instances of a stochastic
environment to elicit the likeliest possible failure in the system under test.

Since the output of AST corresponds to the mode of 𝑞∗ (𝑥), it can
be used to seed the MCMC process directly in the region of highest
probability mass, mitigating the burn-in phase. We are then able
to immediately generate a stream of failure traces, which can be
treated as samples from 𝑝 (𝑥 | 𝑓 (𝑥)). This stream can be used to
characterize the failure mode both quantitatively and qualitatively,
compute various statistics of the conditional distribution, and per-
form a variety of other analyses. The basic process is described in
Algorithm 1.

Algorithm 1 RL-guided MCMC sampling

Input: 𝑥∗, 𝑁
Output: samples
1: samples← {} ⊲ Collection of samples
2: 𝑥 ← 𝑥∗ ⊲ Seed chain with AST failure
3: 𝑞 ← 𝑝 (𝑥∗)
4: for 𝑖 = 1 to 𝑁 do
5: Δ𝑥 ← Sample[𝑝 (𝑥)] ⊲ Candidate transition
6: 𝑥 ′ ← 𝑥 + Δ𝑥
7: 𝑞′ ← 𝑝 (𝑥 ′)
8: if IsFailure(𝑥 ′) then
9: 𝛼 ← Sample[Unif(0, 1)]
10: if 𝛼 < 𝑞′/𝑞 then ⊲ Acceptance criterion
11: 𝑥 ← 𝑥 ′

12: 𝑞 ← 𝑞′

13: end if
14: end if
15: append 𝑥 to samples
16: end for
17: return samples

6 PROBABILITY ESTIMATION
Although MCMCmethods provide the ability to sample from an un-
normalized distribution, the same samples cannot be directly used
to calculate the normalizing constant, the probability of failure1.

To compute 𝜇, wemake use of an application ofMCMC known as
path sampling, which derives from the thermodynamic integration
1In the univariate setting, the normalization can be estimated via the empirical CDF,
but this method does not generalize to higher dimensions.

method of computational physics [2]. This approach requires us
to specify a continuous transformation from a distribution with a
known normalization to the target distribution; the desired solution
is obtained via a path integral through parameter space.

Consider the unnormalized probability distribution function

𝑞𝜃 (𝑥) = exp
(
𝛽𝑑 (𝑥)
ln𝜃

)
𝑝 (𝑥) ,

where 𝑑 (𝑥) is the non-negative distance-to-failure metric and 𝛽 >

0 is a hyperparameter chosen so that the product with 𝑑 (𝑥) is
roughly O(1) across the domain. The exponential term represents
an analytic continuation of the indicator function 𝑓 (𝑥) such that

lim
𝜃→0

𝑞𝜃 (𝑥) = 𝑝 (𝑥) and lim
𝜃→1

𝑞𝜃 (𝑥) = 𝑓 (𝑥)𝑝 (𝑥) .

The presence of 𝑑 (𝑥) in the expression allows the transition be-
tween the two distributions to be informed by the shape of the
failure mode; it softens the discontinuities inherent to the condi-
tional distribution 𝑓 (𝑥)𝑝 (𝑥). The normalized probability distribu-
tion function is

𝑞∗
𝜃
(𝑥) = 𝑞𝜃 (𝑥)

𝑧𝜃
,

where 𝑧𝜃 =
∫
𝑞𝜃 (𝑥) 𝑑𝑥 . By construction, 𝑧0 = 1 and 𝑧1 = 𝜇. From

the definition of 𝑧𝜃 , it follows that
𝑑

𝑑𝜃
ln 𝑧𝜃 = E𝑋

[
𝑑

𝑑𝜃
ln𝑞𝜃 (𝑋)

]
= −E𝑋

[
𝛽 𝑑 (𝑋)
𝜃 ln(𝜃)2

]
,

where 𝑋 ∼ 𝑞∗
𝜃
(𝑥) via MCMC sampling. This identity is integrated

to yield

ln 𝜇 = ln
(
𝑧1
𝑧0

)
=

∫ 1

0

𝑑

𝑑𝜃
ln 𝑧𝜃 𝑑𝜃

= −E𝑋,Θ

[
𝛽 𝑑 (𝑋)
Θ ln(Θ)2

]
,

where the expectation is performed jointly over variables 𝑋 and
Θ ∼ U(0, 1). This value is realized with the double-loop estimator

l̂n 𝜇 =
1
𝑚

𝑚∑︁
𝑖=1

𝑢

(
𝜃 (𝑖)

)
,

𝑢 (𝜃) = − 𝛽

𝜃 ln (𝜃)2
· 1
𝑛

𝑛∑︁
𝑗=1

𝑑

(
𝑥
(𝑗)
𝜃

)
,

where 𝜃 (𝑖) are drawn randomly from the range (0, 1) and 𝑥 (𝑗)
𝜃

are
the output of a MCMC sampling of 𝑞∗

𝜃
(𝑥). Since the estimate is

formed directly as a logarithm, it is well suited to the computation
of small probabilities.

Algorithm 2 Path sampling estimation

Input: 𝑥∗, 𝛽 ,𝑀 , 𝑁
Output: l̂n 𝜇, 𝜍2
1: u← {}
2: for 𝑖 = 1 to𝑀 do
3: 𝜃 ← Sample[Unif(0, 1)]
4: d← {}
5: 𝑥 ← 𝑥∗ ⊲ Seed chain with AST failure
6: 𝑞 ← 𝑝 (𝑥∗)
7: for 𝑗 = 1 to 𝑁 do
8: Δ𝑥 ← Sample[𝑝 (𝑥)] ⊲ Candidate transition
9: 𝑥 ′ ← 𝑥 + Δ𝑥
10: 𝑞′ ← exp(𝛽𝑑 (𝑥 ′)/ln𝜃)𝑝 (𝑥 ′) ⊲ Bridge surrogate
11: 𝛼 ← Sample[Unif(0, 1)]
12: if 𝛼 < 𝑞′/𝑞 then ⊲ Acceptance criterion
13: 𝑥 ← 𝑥 ′

14: 𝑞 ← 𝑞′

15: end if
16: append 𝑑 (𝑥) to d
17: end for
18: 𝑢 ← −𝛽/

(
𝜃 ln(𝜃)2

)
·mean(d)

19: append 𝑢 to u
20: end for
21: return mean(u), var(u)/𝑀

Along with the estimate of the failure log-probability, the sample
variance is calculable as

𝜍2 =
1

𝑚(𝑚 − 1)

𝑚∑︁
𝑖=1

[
𝑢 (𝜃 (𝑖)) − l̂n 𝜇

]2
,

where the 𝑚 − 1 term is the standard bias correction. The full
procedure is described in Algorithm 2. The estimator is theoretically
unbiased; as the number of samples increases, the distribution of
the estimator should approach a normal distribution centered on
the true failure log-probability with variance given by the above
expression [11]; this yields a concentration bound

𝑃

(���ln 𝜇 − l̂n 𝜇��� ≥ 𝛿

)
≈ 2

©­­«1 − Φ
©­­«

𝛿√︃
𝜍2

ª®®¬
ª®®¬ ,

equivalently expressed as the confidence interval

𝑃

(���ln 𝜇 − l̂n 𝜇��� ≥ √︃
𝜍2 Φ−1

(
1 − 𝜖

2

))
≈ 𝜖 .

In experiments, we find that the sample variance decreases con-
sistently with number of samples, while the estimator exhibits a
small positive bias that appears to be proportional to the square
root of the sample variance; this is consistent with the definition
of an unbiased estimator, since the bias converges to zero in the
high-sample limit. More precisely, we note that the z-score formed

by the estimator and its sample variance appears to converge in
distribution to

𝑧 =
l̂n 𝜇 − ln 𝜇√︃

𝜍2
∼ N(ln 2, 1) ,

although this effect has only be measured empirically and warrants
further study. If confirmed analytically, it may be used to further
correct the confidence interval for accuracy.

Because the sample variance is also itself a quantity over log-
probability space, it is much more accurate than in the linear setting
of Monte Carlo estimation, where 𝜇 ± �̂� represents an uneven and
often meaningless spread over probabilities that spans multiple
orders of magnitude and can easily lie outside of the interval [0, 1].
With this method, the error bars effectively scale down for ultra-low
probabilities, making them useful for rare event analysis.

7 EXPERIMENTAL RESULTS AND DISCUSSION
7.1 One-dimensional example (estimation)
We first demonstrate RL-MCMC with a very simple toy problem
that admits an analytical solution. This allows us to evaluate the ac-
curacy, efficiency, and consistency of the joint learning-estimation
scheme.

In this problem, we imagine a UAV attempting to fly with con-
stant velocity 𝑣 , remaining above a given altitude until it reaches
a goal located at a horizontal distance 𝑑 away. The environment
produces a stochastic change in altitude at each time step, accord-
ing to 𝑋𝑡 ∼ N(0, 𝜎2). Failure occurs if the altitude drops further
than a certain value ℎ. The control system is assumed to be in a
failure state and is unable to effectively stabilize the altitude. The
probability of system failure is thus simply the probability that an
unimpeded random walk exceeds a certain threshold; this can be
calculated directly as

𝑝fail = 1 − Φ
(

ℎ

𝜎
√︁
⌈𝑑/𝑣⌉

)
,

where Φ is the cumulative distribution function of the normal distri-
bution. For the chosen parameters (listed in the caption of Figure 2),
the failure probability is 9.852 × 10−12. Although the general path
to failure could not be more obvious, the Monte Carlo approach
is hopeless. On average, it would require over 1011 trials to reveal
the existence of the failure mode, and orders of magnitude more in
order to begin characterizing it; the effect is seen in Figure 2.

The RL-MCMC approach looks very different. We first learn
the mode of the failure distribution, here choosing the seed-action
formulation of AST as described in [6]. This formulation treats
the system as a near-black box and requires Monte Carlo tree
search (MCTS) to find the likeliest paths to failure without access
to direct state or action information; the action space is merely the
space of random seeds used to set the system RNG at each time
step. Note that the vast majority of RL algorithms make active use
of differential state information, and would be able to solve this
problem trivially due to the direct relationship between actions and
states. However, by using this more generic framework, we can
make the example somewhat less trivial.

Figure 2: Random trajectories sampled from the system. Pa-
rameters are Δ𝑡 = 1 second, ℎ = 15meter, 𝜎 = 1meter, 𝑣 = 10
meters per second, and 𝑑 = 50meters. While the accumula-
tion of perturbations is evident, the Monte Carlo approach
is not sufficient to reach failure; a high degree of time corre-
lation is required.

The reinforcement learning phase was run for 105 episodes. The
10 highest scoring paths through the tree are shown in Figure 3; by
construction, these trajectories are representative of the mode of
the conditional failure distribution, but cannot be directly used to
estimate probability of failure.

Finally, the MCMC-based estimation is performed (Figure 4),
following Algorithm 2, with hyperparameters set to 𝛽 = 1/ℎ, 𝑛 =

103, and𝑚 = 104; this amounts to𝑚 ·𝑛 = 107 total trials. We obtain
simultaneous estimates of

l̂n 𝜇 ≈ −25.480√︃
𝜍2 ≈ 0.575 .

Given that the true value is log𝑝fail ≈ −25.343, we can conclude
that the RL-MCMC estimate is very close to the true value, and is
capable of accurately estimating its own variance. In contrast to
the Monte Carlo approach, our approach requires 1.01 · 107 samples
to produce a highly accurate estimate of the failure probability,
representing an improvement in efficiency by several orders of
magnitude.

We also characterize this estimation scheme over multiple runs.
Each execution produces an estimate of the log-probability and
the corresponding sample variance. As the number of samples in-
creases, the z-score should be distributed according to a unit normal
distribution. As described earlier, we observe a bias that is propor-
tional to the square root of the sample variance, which decreases
as the number of samples grows. Figure 5 shows a histogram of the
results over 1000 random seeds. The mean of the z-scores is 0.695,
close to the posited value of ln 2, while the standard deviation is
1.023, close to the ideal value of 1.

Figure 3: Highest scoring paths from the MCTS algorithm. In
reinforcement learning, the exploration policy is detached
from the generative process of the perturbation model and
can easily find the correlated perturbations that lead to the
region of failure. Since the AST framework optimizes for
likelihood under the constraint of eventual failure, these
trajectories represent the approximate mode of the desired
conditional distribution.

Figure 4: Random trajectories sampled directly from the
conditional distribution. Since the MCMC process has been
seeded at the mode of the distribution by the reinforcement
learning policy, the convergence phase is eliminated. These
samples can be used to characterize the distribution in greater
depth.

7.2 Two-dimensional example (sampling)
To highlight the ability of RL-MCMC to learn and sample complex
conditional distributions, we consider a system with an active SUT,

Figure 5: Distribution of z-scores for the estimated mean and
sample variance. The shaded curve represents the N(ln 2, 1)
distribution, which we posit to be the limiting case of the
statistic.

less trivial dynamics, and a more tightly constrained route to failure.
In this problem, we imagine a multirotor that must hover at the
center of a horizontal square [−𝑎, 𝑎] × [−𝑎, 𝑎] while pointing in a
fixed angle of 0◦ in the𝑥-𝑦 plane; the vertical dimension is irrelevant.
Two-dimensional Gaussian noise perturbs the position at each time
step, and failure occurs if the vehicle exceeds its horizontal bounds.

Because of the fixed-angle requirement, the vehicle cannot be
rotated in place to move in an arbitrary direction. An engineer
designs an ad-hoc controller to maintain the vehicle at the origin,
relying on the fact that the multirotor can be rolled along either
of the two non-vertical axes to produce horizontal movement. To
avoid a net change in pointing angle, only one axis can be rolled
at a time, and therefore these corrective positional maneuvers can
only occur along the unit vectors 𝑥 and 𝑦, although the sign and
magnitude of the impulse can vary.

The controller is implemented as follows: at each time step,
if the multirotor displacement (𝑥,𝑦) is sufficiently off-nominal,
proportional control with a gain 𝑘 is applied to the higher of the two
coordinates2. In this way, the position is continually regulated back
toward the origin. To avoid jitter around the origin, the engineer
specifies the nominal region as

| |𝑥 | − |𝑦 | | < 𝜖

for a small value of 𝜖 . This is an implementation bug; instead of
defining a simple 𝐿1 ball around the origin, the engineer’s sign error
has caused the nominal region to extend along [±1,±1] in a O(𝜖)
width strip. If the position falls in this region, no correction will
be applied, although the effect is subtle enough under the noise
disturbance that failures remain rare (Figure 6). Note that manual
coordinate-wise bounds testing would also not reveal viable paths
to failure.

2Drag forces provide sufficient damping to obviate the need for a full PID controller.

Figure 6: Random trajectories sampled from the system. Pa-
rameters are 𝑎 = 1, 𝜎 = 0.1, 𝜖 = 0.05, and 𝑘 = 0.25. In most
parts of the domain, the SUT applies restricted proportional
control to quickly regulate the multirotor back to the origin.
An implementation error creates corridors of the state space
(shown in green) where the controller does not function cor-
rectly. Due to the stochasticity of the environment and the
near-correctness of the SUT, this latent failure mode is ob-
scured in naïve Monte Carlo testing.

Figure 7: Samples from the PPO failure policy, with random
initializations close to the origin. Deep reinforcement learn-
ing is able to quickly identify and pursue the likeliest paths
to failure, although the algorithm has no knowledge of the
system implementation. As before, these trajectories are ap-
proximately modal; further training would improve the pol-
icy but the slight inexactness is not major problem for the
subsequent MCMC phase.

Figure 8: Random trajectories sampled directly from the con-
ditional distribution. Some imperfections and asymmetries
from the PPO policy are still visible at this stage in the sam-
pling but are gradually smoothed out as the MCMC process
continuously optimizes the distribution.

The results are similar to the first example. Here, the failure
model is learned with the PPO algorithm [12]; unlike MCTS, PPO
makes direct use of state information to learn a failure policy, which
associates positions with optimal disturbances along the modal
path to failure. The learning is performed for approximately 104
trials (105 steps), and the subsequent MCMC procedure is run for
107 total trials, yielding a large set of failure trajectories sampled
directly from the conditional distribution. These phases are shown
in Figures 7 and 8, respectively. An equivalently-sized Monte Carlo
experiment yields zero failure examples.

Figure 7 demonstrates why this approach is fairly tolerant of
model error. If the statistical parameters of environment are altered
(for instance, the perturbation magnitude), a prior Monte Carlo
analysis is invalidated and subsequent results may be dramatically
different. The reinforcement learning phase is roughly invariant to
this effect; once a model has been learned, the MCMC sampling can
be rerun with slightly different statistical parameters. Even if the
RL policy no longer represents the exact mode of the conditional
distribution, the MCMC process can compensate through burn-in,
optimizing its chain of samples toward the correct mode as the
sampling progresses.

8 FUTUREWORK
There are several aspects of this work that are ongoing. We would
like to explore the impact on the algorithm of critical hyperparam-
eters such as 𝛽 . Additionally, it will be important to better char-
acterize the convergence properties of the path sampling method;
this includes a formal analysis of the estimator bias and the de-
velopment of a second-order correction factor, if possible. Finally,
recent years have seen an explosion in the success of diffusion- and
transformer-based policies for difficult sequential decision-making
tasks. Applying thesemethods to the adaptive stress testing problem

could further improve the applicability of this research to real-world
systems.

9 CONCLUSION
We have addressed an important limitation in current and state-of-
the-art approaches to statistical validation of autonomous systems.
Subtle implementation errors, software bugs, and machine learning
model deficiencies tend to exhibit low-incidence, high-correlated
failures that are not caught by Monte Carlo testing. As a result,
the development and V&V process of autonomous systems can be
notoriously long-tailed. We have presented an approach that com-
bines reinforcement learning and MCMC sampling to efficiently
discover and analyze these sorts of failures. The MCMC method
allows rapid generation of failures provided a valid initialization
within the failure mode, while a modified path sampling procedure
uses those samples to accurately estimate the associated probability,
along with a valid confidence interval. We show that reinforcement
learning provides the key to enable this approach at scale by find-
ing the optimal initialization through non-statistical methods; it
benefits from the ability of modern ML to solve nontrivial and
high-dimensional problems. Critically, the estimates are formed
directly in logarithmic space, which is well suited to representing
probability, and we demonstrate that the statistics are reasonably
well-behaved over highly irregular underlying distributions. This
development improves the efficacy of automated stress testing and
is a step toward generation of artifacts for system certification.

REFERENCES
[1] Anthony Corso, Peter Du, Katherine Driggs-Campbell, andMykel J. Kochenderfer.

2019. Adaptive Stress Testing with Reward Augmentation for Autonomous
Vehicle Validation. In IEEE International Conference on Intelligent Transportation
Systems (ITSC). https://doi.org/10.1109/ITSC.2019.8917242

[2] Andrew Gelman and Xiao-Li Meng. 1998. Simulating normalizing constants:
From importance sampling to bridge sampling to path sampling. Statistical science
(1998), 163–185.

[3] Kyle D. Julian, Ritchie Lee, and Mykel J. Kochenderfer. 2020. Validation of Image-
Based Neural Network Controllers Through Adaptive Stress Testing. In IEEE
International Conference on Intelligent Transportation Systems (ITSC).

[4] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J. Kochenderfer. 2018. Adaptive
Stress Testing for Autonomous Vehicles. In IEEE Intelligent Vehicles Symposium
(IV). IEEE.

[5] Ritchie Lee, Ole J. Mengshoel, Adrian K. Agogino, Dimitra Giannakopoulou, and
Mykel J. Kochenderfer. 2019. Adaptive Stress Testing of Trajectory Planning
Systems. In AIAA SciTech, Intelligent Systems Conference (IS). aiaa.

[6] Ritchie Lee, Ole J. Mengshoel, Anshu Saksena, Ryan Gardner, Daniel Genin,
Joshua Silbermann, Michael Owen, and Mykel J. Kochenderfer. 2020. Adap-
tive Stress Testing: Finding Likely Failure Events with Reinforcement Learning.
Journal of Artificial Intelligence Research 69 (2020), 1165–1201.

[7] Rory Lipkis and Adrian Agogino. 2023. Discovery and Analysis of Rare High-
Impact Failure Modes Using Adversarial RL-Informed Sampling. In International
Conference on Autonomous Agents and Multiagent Systems. Springer, 123–140.

[8] Rory Lipkis, Ritchie Lee, Joshua Silbermann, and Tyler Young. 2022. Adaptive
Stress Testing of Collision Avoidance Systems for Small UASs with Deep Rein-
forcement Learning. In AIAA SciTech 2022 Forum. 1854.

[9] Robert J Moss, Mykel J Kochenderfer, Maxime Gariel, and Arthur Dubois. 2023.
Bayesian Safety Validation for Black-Box Systems. In AIAA Aviation 2023 Forum.
3596.

[10] Robert J. Moss, Ritchie Lee, and Mykel J. Kochenderfer. 2020. Adaptive Stress
Testing of Trajectory Predictions in Flight Management Systems. In IEEE/AIAA
Digital Avionics Systems Conference (DASC). AIAA/IEEE.

[11] Art B. Owen. 2013. Monte Carlo Theory, Methods, and Examples. Preprint.
[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347
(2017).

https://doi.org/10.1109/ITSC.2019.8917242

	Abstract
	1 Introduction
	2 Background
	3 Sampling framework
	4 MCMC sampling
	5 Adaptive stress testing
	6 Probability estimation
	7 Experimental results and discussion
	7.1 One-dimensional example (estimation)
	7.2 Two-dimensional example (sampling)

	8 Future work
	9 Conclusion
	References

