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Abstract: We present a conceptually simple and general framework for bi-manual
manipulation that extends the state-of-the-art 3D diffusion policy 3D Diffuser
Actor, by redefining the robot action in a bi-manual form. The method, called
Bi3D Diffuser Actor, uses 3D scene feature representations aggregated from posed
camera views and sensed depth, conditions on language instructions, and generates
3D trajectories of the left and right robot end effectors jointly. While most base-
lines struggle with the complexity of two-hand dynamics, our approach not only
effectively manages action multimodality but also generates coordinated and syner-
gistic two-hand motions, even in more challenging scenarios. Bi3D Diffuser Actor,
trained in a multi-task setting, establishes a new state-of-the-art on PerAct2, with an
absolute performance gain of 42.5% over prior approaches that are trained in single-
task settings. We hope our simple yet effective approach will serve as a strong
baseline and facilitate further research in bi-manual and dexterous manipulation.

Keywords: Diffusion model, 3D policy, Bi-manual manipulation, Imitation learn-
ing

1 Introduction

Bi-manual manipulation can unlock more potential for robots to solve more tasks and more effectively,
essentially closing the gap between human and robot manipulation capabilities. However, the bi-
manual setup is more challenging compared to single-arm manipulation. The two-hand dynamics
introduce higher complexity, requiring the motion of both arms to be coordinated synergistically
and precisely to achieve successful manipulation tasks. Past approaches [1, 2, 3, 4, 5] struggle to
generalize to many tasks due to either less expressive architectures or limited training domains.

At the same time, recent works on single-arm manipulation have achieved remarkable success in
handling action multimodality [6, 7, 8], effectively modeling the 3D structure of the scene [9, 10, 11]
and incorporating representations from foundation models [12, 13]. These advancements have not
been combined with bi-manual manipulation policies yet.

In this work, we aim to leverage the successful learning paradigms for single-arm manipulation into
a bi-manual manipulation policy. We propose Bi3D Diffuser Actor, a novel 3D denoising policy
transformer that builds upon the state-of-the-art 3D Diffuser Actor [13]. Similar to its predecessor,
Bi3D Diffuser Actor takes as input a tokenized 3D scene representation, a language instruction and
two noised end-effector’s future translation and rotation trajectories, one for each arm; it predicts the
error in translations and rotations for each arm’s end-effector simultaneously.

We test Bi3D Diffuser Actor in learning policies from demonstrations on the simulation bench-
mark of PerAct2 [4]. Bi3D Diffuser Actor sets a new state-of-the-art with a 42.5% absolute gain,
outperforming existing 3D and 2D policies.
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Figure 1: Overview of Bi3D Diffuser Actor. Top: Bi3D Diffuser Actor is a conditional diffusion
model that generates 3D trajectories of two end-effectors. Similar to [13], at each diffusion step
i, our model tokenizes the noised estimate of the robot’s future end-effector trajectories, posed
RGB-D views o, and proprioceptive information c. These tokens are contextualized through attention,
using 3D relative positional information, and attend to language tokens l to fuse the instructional
information. Our model predicts the noise of left- and right-hand 3D locations (ϵlocθ,l (o, l, cl, τ

i
l , i)

and ϵlocθ,r(o, l, cr, τ
i
r , i)) and the noise of left- and right-hand 3D rotations (ϵrotθ,l (o, l, cl, τ

i
l , i) and

ϵrotθ,r (o, l, cr, τ
i,r i).). Bottom: During inference, Bi3D Diffuser Actor iteratively denoises the esti-

mate of the future bi-manual trajectory.

2 Related Work

Bi-manual manipulation The difficulty of collecting bi-manual data has limited the scope of past
works [1, 3]. Recently, [2, 14] propose cost-effective methods to scale data collection in the real
world, yet the proposed architectures only absorb RGB observations and do not generalize to multiple
tasks or variations. PerAct2 [4] introduces both a new multi-task simulator benchmark and a 3D
model based on the Perceiver architecture [15]. VoxAct-B [5] further improves upon this formulation
by tasking foundation models to detect the pose of the object of interest. In our work, we address the
multimodality of action prediction, an underexplored question for bi-manual manipulation.

Diffusion models in robotics Diffusion models have been recently used as expressive policy repre-
sentations in imitation learning [8, 7], as well as to model cross-object and object-part arrangements
[16, 17, 18, 19, 20], visual image subgoals [21, 22, 23, 24], and in offline reinforcement learning
[25, 26, 27]. Most related to our approach is 3D Diffuser Actor [13], a policy scheme that marries
3D scene representations and diffusion models. We show that by generalizing the notation of robot
action into the form of bi-manual manipulation and tokenizing the robot action of two arms, we can
easily extend 3D Diffuser Actor to tackle bi-manual manipulation.

3 Method

Bi3D Diffuser Actor builds upon the state-of-the-art 3D diffusion policy 3D Diffuser Actor [13],
which is trained to generate the robot’s end-effector trajectories for single-arm manipulation. We first
summarize 3D Diffuser Actor and then describe our extension to bi-manual manipulation.

3.1 3D Diffuser Actor

3D Diffuser Actor is trained to imitate demonstration trajectories of the form of
{(o1,a1), (o2,a2), ...}, accompanied with a task language instruction l, where ot stands for the
visual observation and at stands for robot action at timestep t. Each observation ot is one or more
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posed RGB-D images. Each action at is a single-arm end-effector pose and is decomposed into 3D
location, rotation and binary (open/close) state: at = {aloct ∈ R3,arott ∈ R6,aopent ∈ {0, 1}}. Let
τt = (aloct:t+T ,a

rot
t:t+T ) denote the trajectory of 3D locations and rotations at timestep t, of temporal

horizon T . 3D Diffuser Actor, at each timestep t predicts a trajectory τt and binary states aopent:t+T .

3D Diffuser Actor is a conditional diffusion probabilistic model [28, 29] of trajectories given the
visual scene and a language instruction; it predicts a whole trajectory τ at once, non autoregressively,
through iterative denoising, by inverting a process that gradually adds noise to a sample τ 0. 3D
Diffuser Actor models a learned gradient of the denoising process with a 3D relative transformer
ϵ̂ = ϵθ(τ

i
t ; i,ot, l, ct) that takes as input the noisy trajectory τ i

t at timestep t, diffusion step i, and
conditioning information from the language instruction l, the visual observation ot and proprioception
ct of timestep t, to predict the noise component ϵ̂. At each timestep t and diffusion step i, the visual
observations ot, proprioception ct and noised trajectory estimate τ i

t are converted to a set of 3D
tokens. Each 3D token is represented by a latent embedding and a 3D position.

The model fuses all 3D tokens using a 3D Relative Denoising Transformer. This applies relative
self-attentions among all 3D tokens and cross-attentions to the language tokens. The final trajectory
tokens are fed to MLPs to predict: (1) the noise ϵlocθ (o, l, c, τ i, i) and ϵrotθ (o, l, c, τ i, i) added to
τ 0’s sequence of 3D translations and 3D rotations, respectively, and (2) the end-effector opening
fopen
θ (o, l, c, τ i, i) ∈ [0, 1]T .

3.2 Bi3D Diffuser Actor

To extend 3D Diffuser Actor to bi-manual manipulation, we first redefine the robot action in a
bi-manual form: at,l and at,r denote the robot action at timestep t, of the left and right robot
arm respectively. Our goal is to predict the corresponding trajectory τt,l = (aloct:t+T,l,a

rot
t:t+T,l) and

τt,r = (aloct:t+T,r,a
rot
t:t+T,r) of temporal horizon T for both arms.

We follow the same 3D tokenization procedure to map (1) the noisy estimate of pose ail of τ i
l and air

of τ i
r at diffusion step i, and (2) the left- and right-hand proprioceptive information cl and cr, into

3D tokens. We use the same 3D Relative Denoising Transformer architecture to contextualize these
tokens and predict the translation and rotation noise as well as the end-effector opening for both arms.

Training and inference During training, we randomly sample a time step t and a diffusion step
i and add noise (ϵlocl , ϵlocr , ϵrotl , ϵlocr ) to a ground-truth left- and right-hand trajectory (τ 0

t,l, τ
0
t,r).

We use the L1 loss for reconstructing the sequence of 3D locations and 3D rotations. We use
binary cross-entropy (BCE) loss to supervise the end-effector opening, we use the prediction from
i=1 at inference time. Let ϵlocθ,l (o, l, cl, τ

i
l , i) and ϵlocθ,r(o, l, cr, τ

i
r , i) be the predicted noise of 3D

translation, ϵrotθ,l (o, l, cl, τ
i
l , i) and ϵrotθ,r (o, l, cr, τ

i
r , i) be the predicted noise of 3D rotation, and

fopen
θ,l (o, l, cl, τ

i
l , i) and fopen

θ,r (o, l, cr, τ
i
r , i) be the end-effector opening of the left and the right

robot arm. Our objective reads:

Lθ = w1[∥(ϵlocθ,l (o, l, cl, τ
i
l , i)− ϵlocl ∥+ ∥(ϵlocθ,r(o, r, cr, τ

i
r , i)− ϵlocl ∥] (1)

+ w2[∥(ϵrotθ,l (o, l, cl, τ
i
l , i)− ϵrotl ∥+ ∥(ϵrotθ,r(o, l, cr, τ

i
r , i)− ϵrotr ∥] (2)

+ [BCE(fopen
θ,l (o, l, cl, τ

i
l , i),a

open
1:T,l) + BCE(fopen

θ,r (o, l, cr, τ
i
r , i),a

open
1:T,r)],

where w1, w2 are hyperparameters estimated using cross-validation. To draw a sample from the
learned distribution pθ(τl, τr|o, l, c), we start by drawing a sample of bi-manual trajectories τN

l ∼
N (0,1) and τN

r ∼ N (0,1). Then, we iteratively denoise the sample using the predicted noise
according to a specified sampling schedule [30, 31].

Implementation details Following PerAct2 [4], we segment demonstrations and train our model to
predict end-effector keyposes. During inference, we predict the next keypose and use a motion planner
to reach it [9, 32, 10]. We use the same model architecture as 3D Diffuser Actor, except that our
model has two sets of 3D trajectory tokens, one for each arm. We closely follow the hyper-parameters
of 3D Diffuser Actor except that we train our model for 200, 000 iterations and use 5 camera views.
Please check Table 7 in the paper of 3D Diffuser Actor for more details in the hyper-parameters.
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multi-task Avg. push lift push pick up put item put bottle
training Success box ball buttons plate into drawer into fridge

ACT ✗ 5.9 0 36 4 0 13 0
RVT-LF ✗ 10.5 52 17 39 3 10 0
PerAct-LF ✗ 17.5 57 40 10 2 27 0
PerAct2 ✗ 16.8 6 50 47 4 10 3
Bi3DDA (ours) ✓ 59.3 74 92 96 66 32 79

multi-taskhandoverpick upstraighten sweep lift handover take tray
training item laptop rope dust tray item (easy) out of oven

ACT ✗ 0 0 16 0 6 0 2
RVT-LF ✗ 0 3 3 0 6 0 3
PerAct-LF ✗ 0 11 21 28 14 9 8
PerAct2 ✗ 11 12 24 0 1 41 9
Bi3DDA (ours) ✓ 19 71 50 98 59 20 15

Table 1: Evaluation on PerAct2. Our model is trained under a multi-task setting, while all other
baselines are trained under single-task settings. Unlike baselines that report the best checkpoint
on separate tasks, we only evaluate the final checkpoint across all tasks. Bi3D Diffuser Actor
outperforms all prior arts on most tasks by a large margin under a more challenging setup.

4 Experiments

We evaluate Bi3D Diffuser Actor on PerAct2 [4], a recently-introduced learning-from-demonstrations
benchmark for multi-task bi-manual manipulation. PerAct2 is based on RLBench [33] and uses two
Franka Panda Robots to manipulate the scene. It has a suite of 13 bimanual tasks, each of which has
1-5 variations that concern the variability across object poses, appearance and semantics.

We follow PerAct2’s experimental setup and use 100 demonstrations per task for model training
and 100 episodes for evaluation. We use the same set of five RGB-D cameras, including the front,
left/right wrist and left/right shoulder cameras. The input image resolution of 256× 256. Similar to
[4, 9], we extract keyposes from demonstrations and employ the low-level motion planner BiRRT [34]
to reach the next keypose. We also note two major differences from the setup in [4]:

1. We train our model under a multi-task setting, while [4] trains baselines under single-
task settings. Multi-task learning is essential towards building a robot generalist [35, 36].

2. We test the final checkpoint on all tasks, instead of evaluating the best checkpoint
for each task. PerAct2 [4] saves intermediate checkpoints during training and selects the
best one for each task, which is impractical when the number of tasks grows. We instead
consistently use the final checkpoint for evaluation across all tasks.

We compare our model to the following baselines: i) ACT [2], a 2D transformer architecture that
is trained as a conditional VAE to predict a sequence of actions; ii) RVT-LF [11, 4], that unprojects
2D views to form a point cloud, renders virtual views and feeds them to a transformer to predict the
3D actions for each arm in sequence; iii) PerAct-LF [9, 4], that vozelizes the 3D space and uses to a
Perceiver [15] architecture to predict the 3D actions for each arm in sequence; iv) PerAct2 [4], which
shares the same architecture as PerAct-LF but predicts the actions for the two arms jointly.

Results We show quantitative results in Table 1. Bi3D Diffuser Actor achieves an average 59.3%
success rate among all tasks, an absolute improvement of 42.5% over PerAct2, even solving tasks
that previous approaches are unable to solve, such as put bottle into fridge.

5 Conclusion

We present Bi3D Diffuser Actor, a policy that extends 3D Diffuser Actor to bi-manual manipulation.
Our method sets a new state-of-the-art on PerAct2 by a large margin, using a more challenging setup
compared to all other baselines. Our future work includes to further extend the method to tackle
bi-manual multi-fingered manipulation tasks.
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