
FlowLLM: Flow Matching for Material Generation
with Large Language Models as Base Distributions

Anuroop Sriram
FAIR, Meta

anuroops@meta.com

Benjamin Kurt Miller
University of Amsterdam
b.k.miller@uva.nl

Ricky T. Q. Chen
FAIR, Meta

rtqichen@meta.com

Brandon M. Wood
FAIR, Meta

bmwood@meta.com

Abstract

Material discovery is a critical area of research with the potential to revolutionize
various fields, including carbon capture, renewable energy, and electronics. How-
ever, the immense scale of the chemical space makes it challenging to explore all
possible materials experimentally. In this paper, we introduce FlowLLM, a novel
generative model that combines large language models (LLMs) and Riemannian
flow matching (RFM) to design novel crystalline materials. FlowLLM first fine-
tunes an LLM to learn an effective base distribution of meta-stable crystals in a text
representation. After converting to a graph representation, the RFM model takes
samples from the LLM and iteratively refines the coordinates and lattice parameters.
Our approach significantly outperforms state-of-the-art methods, increasing the
generation rate of stable materials by over three times and increasing the rate for
stable, unique, and novel crystals by ∼ 50% – a huge improvement on a difficult
problem. Additionally, the crystals generated by FlowLLM are much closer to their
relaxed state when compared with another leading model, significantly reducing
post-hoc computational cost.

1 Introduction

Material discovery holds transformative potential across numerous industries including carbon
capture[38], batteries[28], photovoltaics[9], and energy storage[1]. However, the vastness of the
chemical space has hindered experimental synthesis of the majority of possible materials. Generative
models offer a promising avenue for exploring this untapped potential.

Generating crystalline materials is particularly challenging as it involves simultaneously generating
both discrete (atomic types) and continuous values (atomic positions and lattice geometry). While
existing approaches, namely autoregressive large language models (LLMs)[11, 6] and denoising
models, e.g., denoising diffusion and flow matching [47, 16, 49, 48, 30, 26, 17], have demonstrated
success, they exhibit complementary strengths and weaknesses. LLMs excel at modeling discrete
values, but they can struggle with continuous values due to their reliance on finite precision
representations. Conversely, denoising models more effectively handle continuous values and can
easily ensure equivariances, but they face challenges with discrete elements.

LLMs also offer the distinct advantage of natural language prompting, enabling versatile and intuitive
conditional generation. This capability is further enhanced by training LLMs on vast corpora of
chemistry text, equipping them with valuable prior knowledge to generate chemically valid outputs.
Queries like “Generate materials with a high bandgap and thermal stability” or “Propose a novel
perovskite structure for efficient solar energy conversion” can be directly integrated into the LLM

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: FlowLLM generative process: the fine-tuned LLM is first prompted with an unconditional
query to generate an initial material representation. This material is then iteratively transformed by
the RFM model to update its atom positions and lattice parameters. The atom types are static in RFM.

prompt, while denoising models typically require bespoke changes to the architecture and training
procedure to handle conditional generation.

To harness the strengths of both paradigms, we introduce FlowLLM, a novel hybrid approach
that uses an LLM to generate an initial material representation, which is iteratively refined with a
Riemannian Flow Matching (RFM; [2]) model. This synergistic approach allows us to effectively
bridge the gap between discrete and continuous modeling, resulting in a significant improvement in
the rate of generation of stable, unique, and novel (S.U.N.) materials. Such materials expand the
limited knowledge we have of “material space” and are much more likely to be synthesizable than
unstable generations. Our experiments demonstrate that FlowLLM generates stable materials at
over 300% higher rate, and S.U.N. materials at ∼ 50% higher rate compared to prior models,
while retaining the LLM’s ability to be prompted with natural language instructions.

We offer two interpretations for the effectiveness of our approach. 1) The LLM learns a good base
distribution for RFM: the LLM’s output distribution serves as a learned base distribution for RFM,
replacing the common practice of using the uniform base distribution. Since the LLM has been trained
on material data, this learned base distribution is closer to the target distribution, greatly simplifying
integration with RFM. 2) RFM refines the output of the LLM: The LLM generates an approximate
material representation due to its finite precision when handling continuous values. The RFM then re-
fines this approximation through iterative denoising, to generate a much more accurate representation.

Our contributions are as follows:

• We introduce FlowLLM, a novel hybrid approach for materials generation that combines
LLMs and RFM, effectively leveraging their complementary strengths.

• We demonstrate that FlowLLM significantly outperforms existing state-of-the-art generative
models in generating novel and stable materials.

• We show through ablation experiments that our method of combining LLM and RFM models
through FlowLLM significantly outperform simpler combination approaches.

Code for training the FlowLLM model is available at https://github.com/facebookresearch/flowmm.

2

https://github.com/facebookresearch/flowmm

2 Related Work

In the past, computational materials discovery relied on generating numerous candidate materials
through random atomic substitutions in known materials[42], followed by computationally expensive
quantum mechanical screening[19] to assess stability. Genetic algorithms[8, 33], and machine
learning models trained to predict energies[37, 25] have accelerated this process, but the fundamental
bottleneck of brute force search remains.

Recent research has focused on generative models that directly produce stable materials, bypassing
brute-force search. Diffusion models, either combined with Variational Autoencoders (VAEs) for
partial variable prediction[47] or jointly diffusing all variables[16, 48, 49] have shown promise. Addi-
tionally, Riemannian Flow Matching[26], Normalizing Flows [45], and Variational Autoencoders[34]
have also been adapted for material generation.

A parallel line of work utilizes autoregressive Large Language Models (LLMs) for material generation
[6, 11], representing materials as a sequence of discretized tokens. Pretraining these models on
natural language imbues them with powerful prior knowledge not attainable by other approaches.

3 Preliminaries

Our approach models probability distributions over crystal lattices, defined as periodic arrangements
of atoms in three-dimensional space. A crystal lattice is created by tiling a fundamental unit cell,
where the unit cell contains a specific atomic configuration, forming the entire lattice when repeated.
In this section, we present a high-level overview of crystal representations, building up to explain our
model in section 4. Background details for the crystal representation are in appendix A.

Crystal representation In the paper, we represent an n ∈ N atom crystal in a product space:
c := (a,f , l) ∈ C, indicating the atom types, positions and unit cell geometry, respectively [47,
26]. The atom types are represented by a matrix of categorical vectors: a :=

[
a1, . . . , an

]
, where

ai ∈ A. The atomic coordinates are represented using fractional coordinates within the unit cell,
f :=

[
f1, . . . , fn

]
, where f i ∈ F = T3 with T denoting the unitary length, flat torus manifold, i.e.,

the fractional coordinates satisfy periodic boundary conditions; that is, the atoms “wrap around” the
unit cell. The unit cell geometry is defined using lattice parameters l ∈ L, where L is the space
formed by a 6-tuple of three side lengths (a, b, c) ∈ R+ (Å, i.e. Angstrom) and three internal angles
(α, β, γ) ∈ [60◦, 120◦]. This representation is not unique as the same crystal can be produced by
different choices of unit cell. To make the representation unique, we select the minimum-volume unit
cell and employ Niggli reduction [10] that uniquely determines the unit cell parameters.

Equivariance & Invariance Given a group G with g· denoting a group action for some g ∈ G,
a function f : X → Y is called G-equivariant if ∀x ∈ X ,∀g ∈ G, f(g · x) = g · f(x), while it is
called G-invariant if ∀x ∈ X ,∀g ∈ G, f(g · x) = f(x). Since a crystal is not uniquely defined by
any particular representation c but an infinite set, we know that the data distribution has a G-invariant
density, where G represents symmetries of a crystal.

Symmetries of crystals Concretely, our crystal representation exhibits multiple symmetries
that we detail here. The symmetric group Sn on n atoms permutes the atom indices: σ · c =([
aσ(1), . . . , aσ(n)

]
,
[
fσ(1), . . . , fσ(n)

]
, l
)
. The special Euclidean group SE(3) consists of orien-

tation preserving rigid rotations and translations: (Q,T) where Q ∈ SO(3) and T ∈ [− 1
2 ,

1
2]

3×1

denote 3D rotations and translations respectively. This element transforms the crystal as: (Q,
T) · c = (a,f +τ 1− ⌊f +τ 1⌋, l). We emphasize that the representation c is completely invariant
w.r.t. Q because lattice parameters do not contain orientation information. Since these represent
symmetries fundamental to crystals, the data distribution q(c) is invariant to these group operations.

4 Method

Our goal is to fit a parametric generative model p(c; θ) to approximate the distribution of known
meta-stable materials q(c) using a dataset of samples. The distributions p and q are defined on the
Riemannian manifold C. Our FlowLLM model generates samples from the parametric distribution

3

Figure 2: Left: String encoding of materials used to train the LLM based on Gruver et al.[11]. Right:
An example prompt used during training. The conditioning information in blue is optional, and can
be replaced with conditioning on other properties as well. The text in red is replaced with the crystal
string representation shown on the left.

using a two-step procedure (see figure 1). First it samples the LLM, then it refines the LLM output
using RFM, like so:

c0 ∼ pLLM(c; θ0), (1)
c1 ∼ pRFM(c|c0; θ1) (2)

where pLLM is modeled using a large language model[6, 11], and pRFM is modeled using Riemannian
Flow Matching (RFM)[3, 26], and θ = (θ0, θ1). Both the LLM and RFM frameworks are trained to
estimate the data distribution over meta-stable crystals on samples from the Materials Project [15].

Overview of training First, we fine-tune an LLM to generate string representations of meta-stable
materials [11]. Once trained, we can sample the LLM distribution using next token prediction,
optionally conditioning on a prompt (see figure 2). Next, we train the RFM model using the FlowMM
objective [26] where, conditioned on the chemical formula, will learn to transport between the LLM’s
model distribution and the data distribution. The full training process is described in Algorithm 1.

Overview of sampling We give the standard prompt to the LLM and allow it to do next token
prediction until it produces a stop token. As long as all atom types are actual elements and the lattice
parameters are physical, we move forward. Otherwise we reject the sample. Then, we convert the
text to a crystal representation that serves as the initial sample. This sample’s fractional coordinates
f and lattice parameters l are iteratively refined by the RFM model to produce the final sample of
FlowLLM. This sampling process is illustrated in figure 1.

4.1 Large Language Model (pLLM) for Crystals

LLMs define a distribution over sequences through an autoregressive decomposition,∏T
t=1 p(wt+1|w0:t), where each p(wt+1|w0:t) follows a categorical distribution conditioned

on all previous tokens (w0:t) in the sequence. Our LLM model closely follows Gruver et al. [11].

Tokenization Language models interact with strings in text datasets after the string is converted
into a sequence of tokens. The choice of tokenizer can have a large impact on the performance of
the language model. In terms of tokens, we represent a crystal c using fixed precision numbers –
two decimal places for fractional coordinates, and one for lattice lengths. Angles are represented as
integers. Atom types are represented as discrete tokens. We use LLaMA-2 models [41] for our LLM
architecture since these models break numbers into a sequence of digits, which has been shown to
dramatically improve performance on arithmetic tasks [23].

Training We rely on the extensive pretraining of LLaMA-2 models to instill useful biases over
numerical operations. To train pLLM, we fine-tune a pre-trained LLaMA-2 model on a dataset of
crystal structures represented as strings along with a prompt indicating that the model should generate
bulk materials by writing the lattice in lengths and angles along with atom types and coordinates. An
example of such a representation along with a prompt is shown in figure 2.

The flexibility of LLMs allows us to optionally include different kinds of conditional information in
the prompt such as the chemical formula. We can also solve other tasks such as infilling by making
changes to the prompt. For this hypothetical conditional generation, the prompt could include a desired

4

Algorithm 1 FlowLLM training

1: Input: Training dataset of materials: D = {ci}, Pre-trained LLM: pLLM, RFM velocity network:
vθ1t , Number of RFM training samples: Ntr.

// Step 1: Fine-tune the LLM
2: Fine-tune pLLM on D following the procedure from Gruver et al.[12]

// Step 2: Sample the LLM to generate training data for the RFM model
3: Initialize D̃ ← ∅
4: for i = 1: Ntr do
5: Sample ci1 ∼ D with replacement
6: Sample ci0 ∼ pLLM(·|θ0) using a prompt conditioned on the formula of ci1
7: D̃ = D̃ ∪ {(ci0, ci1)}
8: end for
// Step 3: Train the RFM model on D̃
9: while not converged do

10: Sample (c0, c1) ∼ D̃, t ∼ U([0, 1])
11: ct := expc0

(t logc0
(c1))

12: L(θ1) = ∥vθ1t (ct)− ut(ct|c1)∥2
13: Take gradient descent step on∇θ1L(θ1)
14: end while

chemical formula, material properties, or a combination of such information. In this work, we used the
same conditioning used in Gruver et al.[11], and we leave a more detailed study of this to future work.

Sampling To generate sequences from the model, the conditional distribution is sampled
sequentially. The sampling procedure is modulated to control the diversity and sampling speed using
the temperature (τ) and nucleus size (P) hyperparameters of nucleus sampling [13]. Temperature con-
trols the entropy of the conditional distributions, introducing a trade-off between diversity and mode
sampling. The nucleus size limits the number of tokens that can be sampled. Given a nucleus size
P with 0 < P ≤ 1, sampling is restricted to the most probable tokens with cumulative probability P .

Symmetries in LLMs The LLM architecture does not inherently produce a symmetric density, i.e.,
the distribution of meta-stable crystals that the LLM learns is not symmetric according to the funda-
mental properties of crystals. We perform no fractional coordinate data augmentation via translation,
and no token permutation data augmentation. Unlike the other symmetries, rotation invariance holds
for the learned LLM distribution due to our choice of representing the unit cell with lattice parameters.

4.2 Riemannian Flow Matching (pRFM) for Crystals

Riemannian Flow Matching RFM produces a Continuous Normalizing Flow [3], i.e., a continuous,
parametric, diffeomorphism between the LLM base distribution p0 := pLLM and an approximation
to our target distribution p1 ≈ q. To model pRFM := p1, we fit a time-dependent vector field vθ1t
that has been adapted to crystals and is implemented using a neural network with parameters θ1.
Continuous Normalizing Flows are computationally expensive to train using maximum likelihood,
but an alternative objective called Conditional Flow Matching [22] is more stable and scales better.
The objective was generalized to Riemannian manifolds [2], and specifically to labeled point clouds
with periodic boundary conditions, i.e. crystals, by Miller et al. [26].

Concretely, each point c ∈ C has an associated tangent space TcC with an inner product ⟨u, v⟩
for u, v ∈ TcC, enabling the definition of distances, volumes, angles, and minimum length curves
(geodesics). The geodesics for any C that we consider can be written in closed form using the
exponential and logarithmic maps. The geodesic connecting c0, c1 ∈ C at time t ∈ [0, 1] is

ct := expc0
(t logc0

(c1)), (3)

where exp□ and log□ are the exponential and logarithm maps for the manifold C. These geodesics
help define the supervision signal used to train RFM.

5

Our RFM generative model vθ1t : [0, 1] × C → T C is parameterized as a time-dependent, smooth
vector field. Training proceeds by regressing onto conditional vector fields ut(c|c1) that generate
single data points c1. For the geodesic path, this corresponds to ut(c|c1) = − 1

1−t logc1
(c). The

general RFM training objective is then:

L(θ1) = Et,p(c0)q(c1)∥v
θ1
t (ct)− ut(ct|c1)∥2. (4)

Since we only use flat manifolds, ∥·∥ is the Euclidean norm. At the optimal solution, vθ1t generates
pt with endpoints p0 = p, p1 = q. At sampling time, we draw a sample from c0 ∼ p and solve the
ordinary differential equation d

dtct = vθ1t (ct) with initial value c0 at t = 0; the solution at t = 1 is
then the sample from our RFM model.

Geometry ofF We apply the conditional vector field for a point cloud living on a n×3-dimensional
product of flat tori invariant to global translations, i.e. fractional coordinates with periodic boundary
conditions [26]. This is a geodesic path, which may cross the periodic boundary:

expfi(ḟ i) := f i + ḟ i − ⌊f i + ḟ i⌋, logfi
0
(f i

1) :=
1

2π
atan2

[
sin(ωi), cos(ωi)

]
, (5)

where ωi := 2π(f i
1 − f i

0), and ḟ i ∈ TfiF i for i = 1, . . . , n. Computing the geodesic of n atoms
amounts to an atom-wise application of logf0

on f1 and expf on ḟ ∈ TfF respectively. Additionally,
following Miller et al. [26] we address translation-invariance by removing the mean torus translation:

uF
t (f | f1) := logf1

(f)− 1

n

n∑
i=1

logfi
1
(f i). (6)

Geometry of L The space of lattice parameters, L := R+3 × [60, 120]
3, is a Euclidean space

with boundaries. We can ignore these boundaries for the lattice lengths in R+3 since (i) the data
does not lie on the boundary (a, b, c > 0) and (ii) we can clamp our base distribution to be positive
with rejection. The boundary issue for the lattice angles α, β, γ can be addressed [26] using a
diffeomorphism φ : [60◦, 120◦]→ R to unconstrained space, applied element-wise to each angle:

φ(η) := logit
(
η − 60

120

)
, φ−1(η′) = 120σ (η′) + 60, (7)

where σ(.) and logit are the sigmoid and the log-odds functions, respectively. We directly apply RFM
in the unconstrained space, and for sampling, we map the angles back into [60◦, 120◦] using φ−1.

The RFM training objective With this formulation, our training objective based on (4) becomes:

Et,pLLM(f0,l0|a)q(f1,l1,a)

[λf

3n

∥∥∥∥∥vF,θ1
t (ct) + logf1

(f0)−
1

n

n∑
i=1

logfi
1
(f i

0)

∥∥∥∥∥
2

(8)

+
λl

6

∥∥∥vL,θ1
t (ct) + l0 − l1

∥∥∥2],
where we now use pLLM as the base distribution, and ct = (f t, lt,a). The loss coefficients λf , λl ∈
R+ are hyperparameters. We use a graph neural network (GNN) inspired by [36, 16, 26] for vθ1t (c).
This GNN enforces equivariance to atom permutations via message passing, invariance to atom
translation by featurizing graph edges as relative displacements of nodes, and invariance to rotations
by our choice of lattice representation. See appendix B for more details about the GNN architecture.

4.3 Consequences of using an LLM as the base distribution

Model symmetries Just like the LLM, the orientation-invariant representation of the unit cell
leads to global rotation invariance. However, permutation and translation symmetries are not so
simple. If the parameterization of the RFM velocity field is G-equivariant, and the base distribution
is G-invariant, then the model density is G-invariant [18]. We use graph neural networks [36, 40, 27,
44, 7, 21, 31, 51], and additional projections [26], to ensure that the RFM velocity predictions are G-
equivariant to both permutation and translation. However, we will generally not recover a translation

6

invariant density because the base distribution defined by the LLM is not invariant to translation. The
density will be permutation invariant in our RFM representation because the each atom is a node in an
unordered point cloud and the LLM ordering is ignored by the RFM, but the density will not be per-
mutation invariant in the text representation, due to the LLM’s lack of token permutation invariance.

Empirically, we do not find the lack of exact invariance to be a problem, and FlowLLM outperforms
methods with exact invariance (section 5). This is because an LLM trained to generate crystals is
approximately invariant to crystal symmetries. This was verified by Gruver et al.[11] who proposed a
new metric, Increase in Perplexity under Transformation (IPT), to quantify this approximation:

IPT(s) = Eg∈G[PPL(tg(s))− PPL(tg∗(s))] (9)

where g∗ = argminPPL(tg∗(s)), and PPL is the perplexity of the sequence, the exponent of the
length-normalized cross entropy loss, PPL(s) = 2CE(s)/n. They find that a well-trained LLM obtains
a small IPT value, implying that it is approximately invariant.

Invalid crystals The LLM base distribution is not constrained to C, i.e. the LLM can generate
invalid crystals. We find that this is extremely rare and easy to detect. In such cases, we simply reject
that sample, and draw a new sample until we get a valid crystal. Empirically, we found this rejection
rate to be ∼ 0.5% with a softmax temperature of 0.7.

Text is not continuous in L or F The LLM base distribution only takes non-zero values over a
small number of discrete points due to the use of finite precision representations. For example, we
represent fractional coordinates with only 2 decimal places, so they can only take one of 100 distinct
values. We can mitigate this problem by adding a small amount of random zero-mean gaussian
noise to all continuous values predicted by the LLM. Empirically, we do not observe any noticeable
difference in performance due to this added noise (see appendix F).

5 Experiments

5.1 Setup

We trained our model on the widely used MP-20 dataset1 of inorganic crystalline materials[47].
MP-20 comprises 45,231 materials, a subset of the Materials Project[15] containing up to 20 atoms
known to be metastable (see section 5.2).

We first train our LLM independently using the various prompting strategies described in Section 4.
Unless otherwise specified, we employed a pretrained LLaMA-2 70B model [41] for all experiments,
that was fine-tuned with the Low-Rank Adapters (LoRA) method [14] using PyTorch[32] and
Transformers[46].

Next, we trained the RFM model using the fine-tuned LLM (with frozen weights) as the base
distribution and the MP-20 dataset as the target distribution. For computational efficiency, we
sampled a large number (Ntr) of examples from the base distribution in advance, and used the same
set for all of our training runs. To create this set, we sampled Ntr materials, with replacement from
MP-20, and queried the LLM with a prompt conditioned on the chemical formula of each of these
materials. This results in a set of Ntr pairs, {(ci0, ci1)}

Ntr
i=0, of LLM generated materials and ground

truth materials that constitutes the training set for the RFM model. We list the hyperparameter values
used in our experiments in appendix C.

To generate new samples, we first generate a material from the LLM using an unconditional query. We
then perform an integration with the RFM model, starting from this LLM-generated material. During
sampling, we can adjust hyperparameters such as temperature τ , nucleus probability P , and the
number of integration steps to achieve different trade-offs between diversity, accuracy, and efficiency.

5.2 Metrics

Our primary metrics are Stability Rate, the percentage of generated materials that are thermodynami-
cally stable, a key indicator of synthesizability, and the S.U.N. rate, the percentage of materials that

1Publicly available at https://github.com/txie-93/cdvae/tree/main/data/mp_20

7

https://github.com/txie-93/cdvae/tree/main/data/mp_20

Method LLM Params Integ. Steps Validity (%) ↑ Coverage (%) ↑ Property ↓ Stability Rate (%) ↑ SUN Rate(%) ↑
Structural Composition Recall Precision wdist (ρ) wdist (Nel) MP-2023

CDVAE [47] – 5000 100.00 86.70 99.15 99.49 0.688 0.278 1.57 –
DiffCSP [16] – 1000 100.00 83.25 99.71 99.76 0.350 0.125 5.06 3.34
FlowMM [26] – 1000 96.85 83.19 99.49 99.58 0.239 0.083 4.65 2.34

CrystalLLM (70B) [11] τ = 0.7 – 99.6 95.4 85.8 98.9 0.81 0.44 5.28 –

FlowLLM-Types τ = 0.5, P = 0.9 750 99.96 93.32 96.85 99.78 0.846 0.209 8.79 –
τ = 0.9, P = 0.9 750 99.88 91.69 97.18 99.76 1.14 0.20 8.95 –

FlowLLM τ = 1.0, P = 0.9 250 99.81 89.05 99.06 99.68 0.66 0.09 10.07 4.89
τ = 0.7, P = 1.0 250 99.88 89.45 99.06 99.71 0.73 0.14 13.03 4.88
τ = 0.7, P = 0.9 250 99.94 90.84 96.95 99.82 1.14 0.15 17.82 4.92

Table 1: Results for material generation on the MP-20 dataset. Stability rate is the percentage of
generated materials with Ehull < 0.0 & N -ary ≥ 2.

are stable, unique and novel. Since computing stability is computationally expense, Xie et al. [47]
proposed a number of proxy metrics. We explain these metrics in more detail in appendix D.

One key difference in evaluation between the proxy metrics and the stability metrics is the use
of pre-relaxation and relaxation techniques. Proxy metrics are computed on raw samples without
any further processing. Stability metrics are computed on structures that are first pre-relaxed using
CHGNet[5] then relaxed using Density Functional Theory.

Density Functional Theory is extremely expensive, even with speedups using pseudo-potentials[20].
Ideally, the generative model can generate many S.U.N. structures that are already close to their
relaxed ground state. Generating structures close to ground state may also indicate that the model has
done a better job capturing the data distribution. It can also speed up or obviate the need for relaxing
the generated structures, which has huge computational benefits. We include several additional
metrics to measure the closeness of generated and corresponding ground state structures, that are
described in appendix E.

5.3 Results

We compare our model to four prior methods: CD-VAE[47], a hybrid Variational Autoencoder &
diffusion model; DiffCSP[16], a diffusion model; FlowMM[26], a Riemannian Flow Matching model;
and CrystalLLM[11], which fine-tunes a LLaMA-2 model on materials represented as sequences.
The LLM and RFM components of FlowLLM closely resemble the formulations in CrystalLLM and
FlowMM , respectively. To compare different models, we generate 10,000 new structures from each
model and compare the metrics described in section 5.2.

Our main results are presented in table 1. On the most important metrics, namely the Stability &
S.U.N. rates, FlowLLM significantly outperforms all prior methods across various LLM sampling
parameters. For our best FlowLLM model (τ = 0.7, P = 0.9), 17.82% of the generated structures
are stable, out of which 48% are novel (not similar to any training or validation structure). Of the
remaining structures, 58% are unique, leading a to a S.U.N. rate of 4.92%. FlowLLM obtains a
∼ 300% higher stability rate and ∼ 50% higher S.U.N. rate than the best prior model!

Figure 3a shows histograms comparing the Ehull values of generated materials from FlowLLM com-
pared to prior models. Clearly, FlowLLM generates many more materials with lower Ehull values
than the other models.

The results on proxy metrics, on the other hand, remain mixed. Diffusion and flow matching methods
excel on Coverage Recall, while CrystalLLM has the best Composition Validity. FlowLLM achieves
the best compromise between coverage and validity, potentially explaining its superior Stability &
S.U.N. rates. It is important to note that many of these metrics have become saturated, offering
limited discriminatory power for evaluating state-of-the-art models. As a result, we anticipate a
decreased reliance on these metrics in future research.

Comparison of generated and relaxed structures While the stability rate and S.U.N metrics
capture whether the generated structures can be relaxed to stable / S.U.N. states, they do not address
the question: How close are the generated structures to their relaxed state? To answer this question,
we compared generated structures to those same generated structures after relaxation using CHGNet,
computing the following metrics between generated and CHGNet relaxed states: Match Rate and
RMSD, as defined by StructureMatcher, along with the ∆-Energy and the average Num steps
between the states. Definitions for these metrics can be found in appendix E.

8

Method Match Rate (%) ↑ RMSD (Å) ↓ ∆-Energy (eV/atom) ↓ Num Steps ↓
FlowMM 74.3 0.096 0.3031 191.98
FlowLLM 94.9 0.023 0.0898 37.97

Table 2: Comparison of generated and corresponding ground state structures from the CHGNet
relaxation. Compared to FlowMM, FlowLLM generates structures much closer to the ground state.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Ehull (eV/atom)

0

250

500

750

1000

1250

1500

1750

Co
un

t

CD-VAE
FlowLLM (=0.7, p=0.9)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Ehull (eV/atom)

DiffCSP
FlowLLM (=0.7, p=0.9)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Ehull (eV/atom)

FlowMM
FlowLLM (=0.7, p=0.9)

(a)

1 2 3 4 5 6+
Number of unique elements per material

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f m
at

er
ia

ls

Model
MP-20
CD-VAE
DiffCSP
FlowMM
FlowLLM (=1.0, p=0.9)

(b)

0 50 100 150 200 250
Number of integration steps

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

St
ru

ct
ur

al
 v

al
id

ity

FlowLLM
FlowMM

(c)

Figure 3: (a) Histogram of Ehull values comparing FlowLLM with prior models. The dashed line
shows thermodynamic stability threshold (Ehull = 0). (b) Histogram of N-ary compared to the data
distribution. (c) Structural validity as a function of number of integration steps.

Table 2 shows a comparison of FlowMM and FlowLLM. The samples generated by FlowLLM are
significantly closer to ground state compared to FlowMM, according to our metrics.

Importance of learned base distribution One motivation for a hybrid LLM-RFM model is
to leverage the LLM’s superior ability to generate accurate atom types compared to denoising
models. To isolate this effect, we trained the FlowLLM-Types model, following a similar procedure
as FlowLLM but using simple base distributions for lattice parameters and fractional coordinates
identical to those used in FlowMM[26]. Thus, the LLM only contributes to atom type prediction in
this model. Despite this simplification, FlowLLM-Types still surpasses prior models on the Stability
Rate metric (table 1), highlighting the benefits of employing an LLM for atom type prediction. The
stability rate of FlowLLM-Types remains considerably lower than that of FlowLLM, underscoring
the substantial value of using learned base distributions.

N-ary analysis The number of distinct element types in a material is called the N -ary value of that
material. Figure 3b compares the distribution of N-ary values for different models with the target data
distribution. FlowMM and FlowLLM match the data distribution better than the diffusion models,
which tend to generate too many materials with high n-ary.

Number of RFM integration steps Compared to diffusion and flow matching models which
require hundreds or thousands of integration steps, FlowLLM is able to converge in as little as 50
steps (figure 3c). This is not surprising given our use of a learned base distribution.

9

6 Discussion

The discovery of novel, stable materials holds the potential to help revolutionize numerous industries,
but progress has been slow due to the high computational costs involved. Widely used random
structure search methods[33] yield less than a 1% success rate in identifying stable materials. Given
the substantial cost of validating generated structures using density functional theory, improving this
rate is of paramount importance.

Recent breakthroughs with denoising models[16, 26] and large language models[11] have increased
the stability rate to ∼ 5%, a significant improvement over traditional approaches. In this work, we
propose a novel generative model which harnesses the strengths of both paradigms to further increase
this number by over 3×, representing a major advancement in the field.

Limitations While FlowLLM excels at generating stable materials, a key limitation is its lack of
end-to-end differentiability. This hinders its direct application to inverse design, where generative
models are optimized to generate material with specific properties, as explored in prior work using
denoising models[49, 47]. Future research could investigate extending FlowLLM for inverse design.

Broader impact This work can accelerate the discovery of new materials for renewable energy,
electronics, and carbon capture, ultimately benefiting society by enabling more efficient and sus-
tainable technologies. However, the adoption of generative models also raises concerns, such as the
creation of harmful substances and access inequalities.

References
[1] Lowik Chanussot et al. “Open Catalyst 2020 (OC20) Dataset and Community Challenges”. In:

ACS Catalysis (2021). DOI: 10.1021/acscatal.0c04525.
[2] Ricky T. Q. Chen and Yaron Lipman. “Riemannian flow matching on general geometries”.

In: The Twelfth International Conference on Learning Representations. 2024. URL: https:
//openreview.net/forum?id=g7ohDlTITL.

[3] Ricky T. Q. Chen et al. “Neural ordinary differential equations”. In: Advances in neural
information processing systems 31 (2018).

[4] Daniel W Davies et al. “SMACT: Semiconducting materials by analogy and chemical theory”.
In: Journal of Open Source Software 4.38 (2019), p. 1361.

[5] Bowen Deng et al. “CHGNet as a pretrained universal neural network potential for charge-
informed atomistic modelling”. In: Nature Machine Intelligence 5.9 (2023), pp. 1031–1041.

[6] Daniel Flam-Shepherd and Alán Aspuru-Guzik. “Language models can generate molecules,
materials, and protein binding sites directly in three dimensions as XYZ, CIF, and PDB files”.
In: arXiv preprint arXiv:2305.05708 (2023).

[7] Mario Geiger and Tess Smidt. “e3nn: Euclidean neural networks”. In: arXiv preprint
arXiv:2207.09453 (2022).

[8] Colin W Glass, Artem R Oganov, and Nikolaus Hansen. “USPEX—Evolutionary crystal
structure prediction”. In: Computer physics communications 175.11-12 (2006), pp. 713–720.

[9] Martin Green, Anita Ho-Baillie, and Henry Snaith. “The emergence of perovskite solar cells”.
In: Nature Photonics 8 (July 2014). DOI: 10.1038/NPHOTON.2014.134.

[10] Ralf W Grosse-Kunstleve, Nicholas K Sauter, and Paul D Adams. “Numerically stable al-
gorithms for the computation of reduced unit cells”. In: Acta Crystallographica Section A:
Foundations of Crystallography 60.1 (2004), pp. 1–6.

[11] Nate Gruver et al. “Fine-Tuned Language Models Generate Stable Inorganic Materials as
Text”. In: arXiv preprint arXiv:2402.04379 (2024).

[12] Nate Gruver et al. “Large Language Models Are Zero-Shot Time Series Forecasters”. In:
Thirty-seventh Conference on Neural Information Processing Systems. 2023.

[13] Ari Holtzman et al. “The Curious Case of Neural Text Degeneration”. In: International
Conference on Learning Representations. 2020. URL: https://openreview.net/forum?
id=rygGQyrFvH.

[14] J. Edward Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: ArXiv
abs/2106.09685 (2021).

10

https://doi.org/10.1021/acscatal.0c04525
https://openreview.net/forum?id=g7ohDlTITL
https://openreview.net/forum?id=g7ohDlTITL
https://doi.org/10.1038/NPHOTON.2014.134
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

[15] Anubhav Jain et al. “The Materials Project: A materials genome approach to accelerating
materials innovation”. In: APL Materials 1.1 (July 2013), p. 011002. ISSN: 2166-532X. DOI:
10.1063/1.4812323. eprint: https://pubs.aip.org/aip/apm/article-pdf/doi/10.
1063/1.4812323/13163869/011002_1_online.pdf. URL: https://doi.org/10.1063/
1.4812323.

[16] Rui Jiao et al. “Crystal Structure Prediction by Joint Equivariant Diffusion”. In: arXiv preprint
arXiv:2309.04475 (2023).

[17] Rui Jiao et al. “Space Group Constrained Crystal Generation”. In: The Twelfth International
Conference on Learning Representations. 2024. URL: https://openreview.net/forum?
id=jkvZ7v4OmP.

[18] Jonas Köhler, Leon Klein, and Frank Noé. “Equivariant flows: exact likelihood generative
learning for symmetric densities”. In: International conference on machine learning. PMLR.
2020, pp. 5361–5370.

[19] Walter Kohn and Lu Jeu Sham. “Self-consistent equations including exchange and correlation
effects”. In: Physical review 140.4A (1965), A1133.

[20] Georg Kresse and Jürgen Furthmüller. “Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set”. In: Computational materials science
6.1 (1996), pp. 15–50.

[21] Yi-Lun Liao et al. “EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-
Degree Representations”. In: arXiv preprint arXiv:2306.12059 (2023).

[22] Yaron Lipman et al. “Flow Matching for Generative Modeling”. In: The Eleventh International
Conference on Learning Representations. 2022.

[23] Tiedong Liu and Bryan Kian Hsiang Low. “Goat: Fine-tuned LLaMA Outperforms GPT-4 on
Arithmetic Tasks”. In: arXiv preprint arXiv:2305.14201 (2023).

[24] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In: International
Conference on Learning Representations. 2018.

[25] Amil Merchant et al. “Scaling deep learning for materials discovery”. In: Nature (2023),
pp. 1–6.

[26] Benjamin Kurt Miller et al. “FlowMM: Generating Materials with Riemannian Flow Match-
ing”. In: Forty-first International Conference on Machine Learning. 2024. URL: https :
//openreview.net/forum?id=W4pB7VbzZI.

[27] Benjamin Kurt Miller et al. “Relevance of rotationally equivariant convolutions for predicting
molecular properties”. In: arXiv preprint arXiv:2008.08461 (2020).

[28] K. Mizushima et al. “LixCoO2 (0<x<-1): A new cathode material for batteries of high
energy density”. In: Materials Research Bulletin 15.6 (1980), pp. 783–789. ISSN: 0025-
5408. DOI: https://doi.org/10.1016/0025-5408(80)90012-4. URL: https://www.
sciencedirect.com/science/article/pii/0025540880900124.

[29] Shyue Ping Ong et al. “Python Materials Genomics (pymatgen): A robust, open-source python
library for materials analysis”. In: Computational Materials Science 68 (2013), pp. 314–319.

[30] Teerachote Pakornchote et al. “Diffusion probabilistic models enhance variational autoencoder
for crystal structure generative modeling”. In: Scientific Reports 14.1 (2024), p. 1275.

[31] Saro Passaro and C Lawrence Zitnick. “Reducing SO (3) Convolutions to SO (2) for Efficient
Equivariant GNNs”. In: arXiv preprint arXiv:2302.03655 (2023).

[32] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Neural Information Processing Systems. 2019.

[33] Chris J Pickard and RJ Needs. “Ab initio random structure searching”. In: Journal of Physics:
Condensed Matter 23.5 (2011), p. 053201.

[34] Zekun Ren et al. “An invertible crystallographic representation for general inverse design
of inorganic crystals with targeted properties”. In: Matter (2021). ISSN: 2590-2385. DOI:
https://doi.org/10.1016/j.matt.2021.11.032.

[35] Janosh Riebesell. “Matbench Discovery v1.0.0”. In: figshare (Jan. 2024). DOI: 10.6084/m9.
figshare.22715158.v12. URL: https://figshare.com/articles/dataset/Matbench_
Discovery_v1_0_0/22715158.

[36] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E (n) equivariant graph neural
networks”. In: International conference on machine learning. PMLR. 2021, pp. 9323–9332.

11

https://doi.org/10.1063/1.4812323
https://pubs.aip.org/aip/apm/article-pdf/doi/10.1063/1.4812323/13163869/011002_1_online.pdf
https://pubs.aip.org/aip/apm/article-pdf/doi/10.1063/1.4812323/13163869/011002_1_online.pdf
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://openreview.net/forum?id=jkvZ7v4OmP
https://openreview.net/forum?id=jkvZ7v4OmP
https://openreview.net/forum?id=W4pB7VbzZI
https://openreview.net/forum?id=W4pB7VbzZI
https://doi.org/https://doi.org/10.1016/0025-5408(80)90012-4
https://www.sciencedirect.com/science/article/pii/0025540880900124
https://www.sciencedirect.com/science/article/pii/0025540880900124
https://doi.org/https://doi.org/10.1016/j.matt.2021.11.032
https://doi.org/10.6084/m9.figshare.22715158.v12
https://doi.org/10.6084/m9.figshare.22715158.v12
https://figshare.com/articles/dataset/Matbench_Discovery_v1_0_0/22715158
https://figshare.com/articles/dataset/Matbench_Discovery_v1_0_0/22715158

[37] Jonathan Schmidt et al. “Large-scale machine-learning-assisted exploration of the whole
materials space”. In: arXiv preprint arXiv:2210.00579 (2022).

[38] Anuroop Sriram et al. “The Open DAC 2023 Dataset and Challenges for Sorbent Discovery
in Direct Air Capture”. In: ACS Central Science 0.0 (0), null. DOI: 10.1021/acscentsci.
3c01629. eprint: https://doi.org/10.1021/acscentsci.3c01629. URL: https://doi.
org/10.1021/acscentsci.3c01629.

[39] Wenhao Sun et al. “The thermodynamic scale of inorganic crystalline metastability”. In:
Science advances 2.11 (2016), e1600225.

[40] Nathaniel Thomas et al. “Tensor field networks: Rotation-and translation-equivariant neural
networks for 3d point clouds”. In: arXiv preprint arXiv:1802.08219 (2018).

[41] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In: ArXiv
abs/2307.09288 (2023).

[42] Hai-Chen Wang, Silvana Botti, and Miguel AL Marques. “Predicting stable crystalline com-
pounds using chemical similarity”. In: npj Computational Materials 7.1 (2021), p. 12.

[43] Logan Ward et al. “A general-purpose machine learning framework for predicting properties
of inorganic materials”. In: npj Computational Materials 2.1 (2016), pp. 1–7.

[44] Maurice Weiler et al. “Coordinate Independent Convolutional Networks–Isometry and Gauge
Equivariant Convolutions on Riemannian Manifolds”. In: arXiv preprint arXiv:2106.06020
(2021).

[45] Peter Wirnsberger et al. “Normalizing flows for atomic solids”. In: Machine Learning: Science
and Technology 3.2 (2022), p. 025009.

[46] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational Linguistics, Oct. 2020, pp. 38–
45. URL: https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[47] Tian Xie et al. “Crystal Diffusion Variational Autoencoder for Periodic Material Generation”.
In: International Conference on Learning Representations. 2021.

[48] Mengjiao Yang et al. “Scalable diffusion for materials generation”. In: arXiv preprint
arXiv:2311.09235 (2023).

[49] Claudio Zeni et al. “MatterGen: a generative model for inorganic materials design”. In: arXiv
preprint arXiv:2312.03687 (2023).

[50] Nils ER Zimmermann and Anubhav Jain. “Local structure order parameters and site fingerprints
for quantification of coordination environment and crystal structure similarity”. In: RSC
advances 10.10 (2020), pp. 6063–6081.

[51] Larry Zitnick et al. “Spherical Channels for Modeling Atomic Interactions”. In: Advances in
Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates,
Inc., 2022, pp. 8054–8067. URL: https://proceedings.neurips.cc/paper_files/
paper/2022/file/3501bea1ac61fedbaaff2f88e5fa9447-Paper-Conference.pdf.

12

https://doi.org/10.1021/acscentsci.3c01629
https://doi.org/10.1021/acscentsci.3c01629
https://doi.org/10.1021/acscentsci.3c01629
https://doi.org/10.1021/acscentsci.3c01629
https://doi.org/10.1021/acscentsci.3c01629
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper_files/paper/2022/file/3501bea1ac61fedbaaff2f88e5fa9447-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3501bea1ac61fedbaaff2f88e5fa9447-Paper-Conference.pdf

A Crystal Representations Details

Atomic types The representation of atomic number is dependent on the model processing the data.
In the LLM, the name of the element can be written into the text representation directly. This can be
a string or single token, depending on LLaMA-2’s tokenization. In the RFM framework, we applied
a one-hot representation.

Unit cell geometry Throughout the paper and in our implementation, we represent the unit cell
using lengths and angles; however, there is another representation relevant for defining the fractional
coordinates and better expressing crystal symmetries. The unit cell can be defined by a matrix
of Cartesian column vectors l̃ :=

[
l̃1, l̃2, l̃3

]
∈ L̃ = R3×3. This representation has strictly more

information than l, since it also defines the orientation of the unit cell. This orientation is irrelevant in
our paper, since we want rotation invariance. That’s why we choose l in the first place.

Fractional coordinates Now that we have the representation l̃, we can define fractional coordinates.
Recall, atomic positions are typically represented using Cartesian coordinates x :=

[
x1, . . . , xn

]
∈

X = R3×n with coordinates in the rows and atoms in the columns. The Fractional coordinate
representation is defined f := l̃

−1
x =

[
f1, . . . , fn

]
∈ F = [0, 1)3×n.

B Graph Neural network in the RFM Model

In this section, we describe the graph neural network used in our RFM model. Our GNN model is
inspired by the GNNs used in FlowMM[26] and DiffCSP[16], which in turn adapted the EGNN [36]
model for fractional coordinates,

hi
(0) = ϕh(0)

(ai) (10)

mij
(s) = φm(hi

(s−1),h
j
(s−1), l,SinusoidalEmbedding(f j − f i)), (11)

mi
(s) =

N∑
j=1

mij
(s), (12)

hi
(s) = hi

(s−1) + φh(h
i
(s−1),m

i
(s)), (13)

ḟ i = φḟ

(
hi
(max s)

)
(14)

l̇ = φl̇

(
1

n

n∑
i=1

hi
(max s)

)
(15)

where mij
(s),m

i
(s) represent messages at layer s between nodes i and j, hj

(s) represents hidden
representation of node j at layer s; φm, φh, ϕh(0)

, φḟ , φl̇ represent parametric functions with all
parameters noted together as θ. Finally, we define

SinusoidalEmbedding(x) := (sin(2πkx), cos(2πkx))
T
k=0,...,nfreq

, (16)

where nfreq is a hyperparameter. We standardized the l input to the network with z-scoring. We also
standardized the outputs for predicted tangent vectors ḟ , l̇. Models were trained using the AdamW
optimizer [24].

C Hyperparameters

We used Ntr = 3.3× 106 and trained the model for 20 epochs with early stopping. To generate the
Ntr training pairs, we used temperature τ = 0.9 and nucleus probability P = 0.99. While other
values might be explored, the high computational cost of experimentation limited our exploration of
these parameters. For training the RFM model, we swept over a few values of learning rates: {1e-3,
7e-4, 5e-4, 3e-4, 1e-4}. To compute the loss function, we used loss weights λf = 200, and λl = 1
in the training objective (equation (8)). These values were chosen by running a grid search over
λf ∈ {100, 200, 300, 400}, λl ∈ {1}. Additional hyperparameter settings are given in table 3.

13

The LLM was trained for 10 epochs with a batch size of 16, and cosine annealed learning rate of
0.0005, with LoRA rank = 8 and α = 32.

Compute resources We trained our LLM model on 8x 80GB A100 GPUs for roughly 1 day. We
used 4-bit quantization and LoRA to optimize training. Sampling from the trained LLM required a
total of ∼ 250 A100 GPU days, that were parallelized over 300 A100 GPUs.

Each of our RFM models were trained for 2 days on a single 32GB V100 GPU. All experiments were
performed on an internal GPU cluster.

Evaluations required running DFT computations that were run on a large internal CPU cluster with
5000 nodes, each equipped with a 26-core Intel Cooper Lake-SP CPU, and 64GB memory. Each
DFT computation took about 1 hour of compute on a single node, and we ran nearly 50,000 such
computations to evaluate all of our models.

Table 3: RFM model hyperparameters
Value

Hidden Dimension 512
Time Embedding Dimension 256
Number of Layers 6
Activation Function silu
Layer Norm True
Batch Size 256
Max Epochs 20
Inference anti-annealing scale 5

D Metrics

Thermodynamic stability is a key indicator of synthesizability, and generating novel stable materials
is of keen interest in material science. Stability is determined by comparing a material’s energy to
those of competing crystals with the same elements. Formally, stability is measured by constructing
a convex hull of all competing materials from a reference set and computing the distance from
this hull (called Energy above the Hull, or Ehull). Stable materials have Ehull < 0, while materials
with Ehull < 0.08 eV/atom are called metastable [39] With this defintion of stability, we define our
Stability Rate metric as the percentage of generated materials that are stable (Ehull < 0, and n-ary
≥ 2). For our reference set of materials, we use the Materials Project database recorded by [35] in
February 2023.

Following Miller et al. [26], we compute Ehull values by running structure relaxations on the generated
structures with the CHGNet model [5] followed by density functional theory (DFT)[19] calculations.

While stability rate is an important metric, it does not capture novelty. Therefore, we define a second
metric, the S.U.N. rate which measures the percentage of generated structures which are Stable,
Unique, and Novel. To determine novelty, we exclude generated structures that are similar to any
structure in the training dataset. Similarity is measured using pymatgen’s StructureMatcher[29] with
default settings. A generated structure that is not similar to any training data structure is considered
novel.

To compute uniqueness, we use StructureMatcher to do pairwise comparisons between all generated
structures, and group similar structures into equivalence classes. Each group is only counted as a
single unique structure for the purpose of computing the S.U.N. rate. Formally,

Stability Rate :=
Nstable

Ngen
(17)

S.U.N. Rate :=
NS.U.N.

Ngen
(18)

(19)

14

Method Noise Std Integ. Steps Validity (%) ↑ Coverage (%) ↑
Structural Composition Recall Precision

FlowLLM

0 250 99.64 91.99 94.36 94.38
0.01 250 99.85 91.99 94.74 94.50
0.02 250 99.99 91.99 93.41 94.58
0.04 250 99.97 91.99 93.24 94.54

Table 4: Proxy metrics for a FlowLLM trained with different levels of random gaussian noise added to
continuous values predicted by the LLM. Added noise increases the support of the base distribution,
but we do not see an appreciable difference in the metrics.

where Ngen is the number of generated samples, Nstable is the number of generated samples which are
stable, and NS.U.N. is the number of generated samples which are stable, unique, and novel.

Due to the computational expense of DFT needed to compute stability and S.U.N. rates, a number of
proxy metrics have been proposed by Xie et al.[47] to benchmark model performance:

1. Structural Validity: Percentage of structures with valid atomic arrangements, where all
pairwise interatomic distances exceed 0.5 Å.

2. Compositional Validity: Percentage of charge-neutral crystals, as determined by the SMACT
heuristic system [4].

3. Coverage Recall & Precision: Standard recall and precision metrics assessing the model’s
ability to generate structures close to those in the test dataset. Closeness is evaluated using
structural and compositional fingerprints [50, 43].

4. Wasserstein Distances of Property Distributions: Wasserstein distances between the distri-
butions of computed properties (density, and Nel – the number of unique atoms) for crystal
samples from the test set and generated structures.

E Comparison of generated structures to ground state structures

For many practical applications in chemistry, it is important to find the local energy minimum of
a generated structure. This is done by performing computationally expensive structure relaxations.
Thus, it is beneficial to generate structures close to their ground state. To compare how close the
generated structures are to their ground state (i.e. local energy minimum), we define 4 additional
metrics (shown in table 2):

1. Match Rate: What fraction of generated structures and corresponding ground state structures
are similar (where similarity is computed using pymatgen’s StructureMatcher with default
settings).

2. RMSD: Average RMS distance between generated structures and corresponding ground
state structures computed using pymatgen’s StructureMatcher whenever there is a match.

3. ∆-Energy: Difference in energy between the generated structure and ground state structure
of the DFT relaxation. This measures the reduction in energy during the structure relaxation
process.

4. Num Steps: Number of optimizer steps needed to pre-relax the generated structure using
CHGNet.

F Adding noise to the base distribution

Table 4 shows the effect of adding noise to the base distribution. We do not see a significant impact
from the added noise.

G Material Generation Time

We compare the time to generate 10,000 materials between FlowLLM with FlowMM. Inference for
both models was run on a machine with a 32 core Intel(R) Xeon(R) Platinum 8488C CPU, and a
single 80GB A100 GPU. FlowMM used 750 integration steps, and the RFM step of FlowLLM used

15

250 integration steps. With this setup, the FlowMM model takes 65.1 minutes to generate 10,000
materials, while FlowLLM takes 89.6 minutes, which is comparable to FlowMM.

A more useful metric is the time to generate a S.U.N. material, which is computed by dividing the
inference time by the number of generated S.U.N. materials. With this metric, FlowMM takes 16.14
seconds to generate S.U.N. material, while FlowLLM takes only 10.9 seconds.

16

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made are about designing a hybrid model (described in section 4)
and 3× higher stability rate (experimental results in section 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Lack of exact invariance is discussed in section 4. Lack of end-to-end differ-
entiability, and the difficulty in applying inverse design as a result are explained in section
6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

17

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include any theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our method has been described in detail (section 4) with all relevant hyperpa-
rameters (appendix C). The MP-20 dataset we use is publicly available. We have made our
code available on Github.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same

18

dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have released our code on Github. The dataset we use is already publicly
available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The dataset with train/val/test splits is available publicly (url provided in
section 5). All hyperparameters and training details are described in section 5 and appendix
C.
Guidelines:

• The answer NA means that the paper does not include experiments.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars due to high computational costs in training and
evaluating our model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are mentioned in appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, we conform to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

20

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impact in section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not plan to release trained models or any new datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use a publicly available dataset and we cite the appropriate source for the
data (section 5).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

21

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve any crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve any crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

paperswithcode.com/datasets

	Introduction
	Related Work
	Preliminaries
	Method
	Large Language Model () for Crystals
	Riemannian Flow Matching () for Crystals
	Consequences of using an LLM as the base distribution

	Experiments
	Setup
	Metrics
	Results

	Discussion
	Crystal Representations Details
	Graph Neural network in the RFM Model
	Hyperparameters
	Metrics
	Comparison of generated structures to ground state structures
	Adding noise to the base distribution
	Material Generation Time

