
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING SPARSE SCALING
THROUGH THE LENS OF
AVERAGE ACTIVE PARAMETER COUNT

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter pruning has emerged as a promising technique to address the growing
computational demand of large language models (LLMs). While many studies
focus on post-training pruning of LLMs, sparse pre-training offers a compelling
alternative: sparsifying during pre-training reduces both training and inference
costs. In this work, we conduct the first comprehensive study on optimal sparse
pre-training configurations for LLMs, exploring various pruning schedules across
different sparsity levels and training duration. We evaluate 80 unique configura-
tions and find that a pruning schedule starting at 25% of total training compute and
ending at 75% achieves near-optimal final evaluation loss. Our findings provide
valuable insights for efficient and effective sparse pre-training of LLMs. Further-
more, we propose a new scaling law that modifies the Chinchilla scaling law to
use the average number of active parameters during training. We present both
empirical and theoretical evidence that this modification accurately models evalu-
ation loss for both sparsely and densely pre-trained LLMs, thus offering a unified
scaling law for dense and sparse model training. Our insights suggest that, while
sparse pre-training yields similar model loss as dense pre-training for the same
compute budget, it offers a clear advantage: the final model is smaller, resulting
in significant potential computational savings during inference.

1 INTRODUCTION

Research consistently shows that larger language models, trained on more data, achieve better per-
formance (Brown et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022; Nakkiran et al., 2019).
However, their enormous size poses an increasingly pressing challenge to their efficient deployment
and equitable access. One promising approach to addressing these challenges is sparse training,
which reduces the computational burden by using only a subset of the neural network parameters
both during training and inference. This technique, closely related to neural network pruning (Han
et al., 2015; LeCun et al., 1989; Hassibi et al., 1993; He et al., 2017), gained prominence with the
Lottery Ticket Hypothesis (Frankle & Carbin, 2019), which provided compelling evidence for the
feasibility of sparse training. Subsequent work has introduced efficient algorithms to realize the
promised efficiency gains (Evci et al., 2021; Peste et al., 2021; Kuznedelev et al., 2024).

While a growing body of research investigates pruning pre-trained large language models (LLMs)
(Sun et al., 2024; Frantar & Alistarh, 2023; Xia et al., 2024), our work focuses on sparsely pre-
training LLMs. The significant computational and engineering cost associated with LLM pre-
training itself, in addition to designing the pruning algorithm presents substantial obstacle to this
line of research. For example, identifying sparse sub-networks that can be trained to good perfor-
mance as suggested by the Lottery Ticket Hypothesis (Frankle & Carbin, 2019) typically involves
iterative pruning and retraining, a process that becomes prohibitively expensive at the scale of large
language models. This expense effectively limits investigation to smaller-scale models, leaving the
optimal strategies for sparse pre-training of LLMs largely unknown. One way to bridge this gap and
extend small-scale insights to the realm of large models is through the analysis of scaling laws.

This leads to a critical question: how does sparsity influence the scaling laws that govern large
language model performance? Scaling laws have been instrumental in predicting the relationship

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

between the loss, model size, data size, and computational resources for dense models (Kaplan
et al., 2020; Hoffmann et al., 2022). But how do these laws adapt to the introduction of sparsity?

Previous work on sparse pre-training by Frantar et al. (2023) introduced a new sparsity-aware law
that departed from the established scaling laws for dense models. The modified laws included extra
terms dependent on the final sparsity, aiming to capture the sparsity-specific scaling effects.

Our approach. Instead, we revisit the original dense scaling laws and explore how to set the param-
eter count term for sparse pre-training, during which we gradually remove model parameters. We
show that the dense scaling law can effectively model sparse pre-training by updating the parame-
ter count to reflect the varying number of active parameters. This suggests that the core principles
of dense scaling laws remain applicable in the sparse pre-training regime, with the key adjustment
being a more nuanced consideration of parameter count.

Optimal sparse pre-training configuration. To validate this approach, we evaluate over 80 combi-
nations of sparse pre-training schedules, sparsity levels, and training durations. Our work provides
the first systematic analysis of these sparse pre-training configurations across design dimensions
critical to sparse pre-training. This comprehensive evaluation uncovers the optimal configurations
and offers new insights into the dynamics of sparse training.

Our results show that, for a fixed compute budget, training the dense model for 25% of the total
training compute and gradually removing weights over the next 50% leads to near-optimal final
evaluation loss across various training duration and sparsity levels. We find that the optimal learning
rates and batch sizes for sparse pre-training closely match those used for the original dense model
under the same compute budget, where the original dense model is the starting model for sparse
pre-training. We also provide additional analysis into failure modes that occur with non-optimal
sparse pre-training configurations, highlighting the importance of a properly tuned configuration.
Collectively, our analysis presents practical prescriptions to simplify the transition between dense
and sparse training configurations.

0 50 100 150
K Steps

0.0

0.5

1.0

1.5

Ac
tiv

e 
Pa

ra
m

 C
ou

nt

1e8 Sparsity=80 %
Sparse
Dense

0 25 50 75 100
K Steps

0.0

0.5

1.0

1.5

Ac
tiv

e 
Pa

ra
m

 C
ou

nt

1e8 Sparsity=60 %
Sparse
Dense

0 20 40 60 80
K Steps

0.0

0.5

1.0

1.5

Ac
tiv

e 
Pa

ra
m

 C
ou

nt

1e8 Sparsity=40 %

Sparse
Dense

0 20 40 60
K Steps

0.0

0.5

1.0

1.5

Ac
tiv

e 
Pa

ra
m

 C
ou

nt

1e8 Sparsity=20 %

Sparse
Dense

1086 × 107

Average # Active Parameters
2.65

2.70

2.75

2.80

2.85

2.90

Fi
na

l E
va

l L
os

s

Sparse
Dense

Figure 1: We show the predictive power of average active parameters by creating two families of
models. The first is sparse, starting from a dense model with 138 million prunable parameters in
the linear layers and targeting final sparsity levels of 20%, 40%, 60%, and 80%. The second is
dense, created by adjusting the hidden dimension to match the average number of active parameters
throughout sparse-pre-training for each sparse models. In the left plot, we represent sparse models
with dashed lines and dense models with solid lines. Each sparse-dense pair, with matching average
active parameters, is shown in the same subfigure. Each pairs of model shares the same total training
compute. In the right plot, despite differences in pre-training techniques, sparse and dense models
with matching average active parameters (indicated by matching colors) achieve similar final loss.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Scaling analysis. We propose a scaling law to model the final evaluation loss of sparse-pre-trained
language models. Our scaling law builds on the Chinchilla scaling law by incorporating the average
number of active parameters throughout pre-training, rather than the total number of dense param-
eters. A parameter is considered active if it receives gradient updates, whereas pruned parameters,
which do not receive updates, are inactive. This adaptation allows us to predict evaluation loss across
a range of model sizes, sparsity levels, and training regimes. Additionally, based on empirically ver-
ified assumptions about sparse pre-training dynamics, we provide a theoretical justification for using
the average active parameters to model the evaluation loss of sparsely pre-trained language models.

Average active parameters. To demonstrate the predictive power of average active parameters for
sparse scaling, we train four pairs of sparse and dense models. In each pair, we keep the average ac-
tive parameters throughout pre-training 1 and the total training data the same. Despite the difference
in active parameters during most of the pre-training, as illustrated in the left plot of Figure 1, each
pair of the sparse and dense model achieve similar final loss, as shown in the right plot of Figure 1.
These results show that, with all other factors held constant, the average number of active parameters
is an effective predictor of the final evaluation loss for sparse models, just as it is for dense models.

Contributions. We make the following contributions in our work:

1. We bridge the gap between sparse and dense scaling laws by modifying the parameter count term
in the Chinchilla scaling law, extending the same law to to model sparse pre-training. We show
this modified scaling law accurately models the evaluation loss across a range of model sizes,
sparsity levels and training duration.

2. We present a theoretical analysis, based on empirically validated assumptions about sparse pre-
training dynamics, that justifies using the average number of active parameters to model the loss
of sparsely pre-trained language models.

3. We search over 80 sparse pre-training configurations and present a simple prescription that
achieves optimal or near-optimal loss across different sparsity levels and training duration.

4. We present an analysis over the failure modes when sparse pre-training configurations deviate
from the said prescription, highlighting their practical importance.

Implications. Our work enables practitioners familiar with dense scaling laws to apply those same
principles to sparse scaling. Together with prescriptions for optimal sparse pre-training configura-
tions, our work aims to ease the transition from dense pre-training to sparse pre-training, promoting
the development of more energy-efficient large language models.

2 RELATED WORK

Neural scaling laws. Neural scaling laws provide a framework for understanding how neural net-
works’ performance scales with parameters, data, and compute (Banko & Brill, 2001; Goodman,
2001; Ghorbani et al., 2021; Kaplan et al., 2020; Hoffmann et al., 2022; Bansal et al., 2022; Gor-
don et al., 2021). Kaplan et al. (2020) showed that for modern transformer-based language models,
model loss decreases predictably with increasing model size, dataset size, and compute, following
a power-law relationship. Hoffmann et al. (2022) later refined these insights by optimizing hyper-
parameter configurations, such as learning rate schedules, and proposed a new scaling law that
emphasizes scaling training data more aggressively than Kaplan et al. (2020)’s original recommen-
dations. Most relevant to our work are Rosenfeld et al. (2021) and Frantar et al. (2023). Rosenfeld
et al. (2021) focused on small-scale CNNs for image classification, while Frantar et al. (2023) fo-
cused on transformer-based vision and language models; both modeled their respective performance
as a function of model size and pruning configurations. Our work is different in that we unify the
functional forms of scaling laws for both dense and sparse pre-training. This unification is partly
enabled by our novel exploration of optimal hyperparameter configurations for sparse pre-training.

Additionally, our study is the largest-scale investigation of sparsely pretrained LLMs to date, with
our largest model using over 5 times the compute of the largest model examined in prior work
(Frantar et al., 2023). The largest model we investigate requires 4.5×1020 FLOPs training compute.

1We adjust the hidden dimension of dense models to match the sparse models, but since it must be divisible
by the number of attention heads and chips, we create two dense models that approximate the target parameter
count and linearly interpolate between them.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Pruning. Sparse pre-training involves pruning parameters in an LLM during the pre-training pro-
cess. While there are many pruning algorithms available (LeCun et al., 1989; Hassibi et al., 1993;
Han et al., 2015; He et al., 2017; Frankle & Carbin, 2019; Renda et al., 2020; Peste et al., 2021;
Evci et al., 2021), we focus on a simple class of algorithms known as iterative magnitude pruning
(Zhu & Gupta, 2017; Frankle & Carbin, 2019; Renda et al., 2020). Since sparse pre-training results
in a sparse model at the end of training, our method can also be viewed as a pruning algorithm. In
contrast to prevailing approaches that train a large dense model and then prune it while preserving
accuracy (Frantar & Alistarh, 2023; Sun et al., 2024), our analysis shows that, within the sparsity
levels we examined, it is possible to directly train a sparse model that achieves the same final loss
using the same compute budget as training the large dense model. This simplifies the model devel-
opment process by eliminating the need for pruning as a post-training step.

Dynamic parameter schedule. While practitioners typically pre-train LLMs with a fixed number
of active parameters throughout the training process (Groeneveld et al., 2024; Shoeybi et al., 2020),
a growing line of work explores varying this number during pre-training to improve computational
efficiency (Yao et al., 2023; Panigrahi et al., 2024; Yano et al., 2024). This line of work often
focuses on gradually increasing the number of parameters during training. Yao et al. (2023) proposed
progressive growth during pre-training using a multi-stage, multi-axis growth schedule. Panigrahi
et al. (2024) introduced layer dropout, progressively reducing the number of dropped layers during
training. Yano et al. (2024) developed STEP, which begins pre-training with a small model and
gradually increases its size in stages. Our work may be viewed as proposing another dynamic
parameter schedule. However, it differs by focusing on compute-optimal strategies that gradually
reduce model size, optimizing for inference efficiency. Since the final model is smaller, our approach
leads to more efficient inference compared to methods that progressively increase model size.

3 PRELIMINARIES

Algorithm. We adapt the iterative magnitude pruning (IMP) algorithm for pre-training language
models (Zhu & Gupta, 2017; Renda et al., 2020; Frankle & Carbin, 2019; Samar, 2022). We score
each parameter’s importance based on its magnitude. At each pruning step, we rank all model pa-
rameters globally and prune those with the lowest magnitudes. No structural constraints are imposed
on the sparsity pattern. Our sparse pre-training algorithm consists of three phases:

1. Dense training phase: The model is trained with all parameters for Npre steps;
2. Iterative pruning phase: The weights are being removed iteratively. Each pruning iteration starts

by removing a fixed fraction of the remaining parameters, and then training for P gradient steps.
This continues for Nprune pruning iterations, until the model reaches the desired sparsity S.

3. Sparse recovery phase: The sparse model is further trained with a fixed mask for Npost steps to
recover any accuracy that is lost due to pruning.

Based on Frantar et al. (2023); Zhu & Gupta (2017); Bambhaniya et al. (2024), we fix P = 100.

Given a starting dense parameter count, a target sparsity S, length of each pruning iteration P , and
a compute budget, we search to find the optimal allocation of compute across these three phases,
Npre, Nprune and Npost, to achieve the best performance in Section 6.

Effective compute. Following (Kaplan et al., 2020; Hoffmann et al., 2022), we approximate the
total compute for a training run as 6 times the number of parameters multiplied by the number
of training tokens. We adjust for sparsity by scaling this value linearly with respect to sparsity,
following Frantar et al. (2023).

Chinchilla scaling law. Neural scaling laws model changes in final validation loss under the growth
of parameters, data, compute, etc. One widely used scaling law is the Chinchilla scaling law by
Hoffmann et al. (2022). This law models the relationship between the loss L, the number of param-
eters N , and the number of training tokens D using the following equation:

L(N,D) =
A

Nα
+

B

Dβ
+ E, (1)

where A, B, α, β, and E are free parameters: A and α describe how loss decreases with increasing
model size N , while B and β describe how loss decreases with increasing training tokens D. The

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

constant E represents an irreducible loss. Scaling laws allow practitioners to optimize training
configurations to fit within their compute budgets without running costly experiments (Sardana et al.,
2024). The laws also hold theoretical value, as they capture the dynamics of how loss changes with
data and parameter scaling. We present an overview of existing sparse scaling law in Appendix A.

4 METHODS

Name # Prunable # Tokens
58M-10x 42M 14.7B (205x)
58M-20x 42M 29.4B (409x)
162M-10x 138M 33.5B (207x)
162M-20x 138M 67.1B (414x)
468M-10x 435M 94.4B (217x)
468M-20x 435M 188.8B (434x)

Table 1: Training details for models by size and
token count. Numbers in parentheses show the
token-to-prunable parameter ratio.

Models. We pretrain a series of models with
sizes ranging from 58M to 468M parameters as
reference dense models, alongside sparse mod-
els that approximately match the training com-
pute of these dense models.

We use the LLaMA 2 (Touvron et al., 2023)
base model architecture. For each unique
model size, we train two versions: one using
over 10x the number of tokens corresponding
to Chinchilla optimal, and the other using over
20x the number of tokens.

Table 1 provides details for each model. The
model names are composed of two parts — the
total number of parameters and an indicator of
whether the number of training tokens exceeds
10x (but under 20x) or 20x the compute optimal value recommended by the Chinchilla scaling law
(Hoffmann et al., 2022). The number of prunable parameters includes those in all linear layers,
while parameters in embedding and normalization layers are left unpruned. Additionally, we report
the total number of tokens used to train the dense models, followed by the ratio of training tokens to
prunable parameters in parentheses.

Dataset. We use the ‘en’ partition of the C4 dataset (Raffel et al., 2019). Using the LLaMA 2
tokenizer, this dataset can be tokenized to 197.71 billion tokens.

Software and hardware. Our work uses TPUv4 and TPUv5 hardware for training LLMs. We
modify MaxText (AI-Hypercomputer, 2024) to support sparse pre-training of LLMs.

5 SCALING ANALYSIS

Here we show that a scaling law that is of the same functional form as in eq. (1) also models
the evaluation loss after sparse rather than dense pre-training when the parameter count variable
is replaced with an average parameter count instead. Below we present the scaling law and an
analytical argument that leads to it, and then validate this updated scaling law empirically.

5.1 A UNIFIED SCALING LAW THAT MODELS DENSE AND SPARSE PRE-TRAINING

Let T denote the total number of training iterations, where each iteration consists of a pruning step,
followed by training at that fixed sparsity. Thus, a sparse pre-training run can be represented as a
sequence (N1, D1), (N2, D2) . . . , (NT , DT ), where Nk is the number of remaining parameters, and
Dk is the number of tokens at iteration k ∈ {1, . . . , T}. Let N̄ denote the average parameter count
during training, i.e., N̄ = 1

T

∑T
k=1 Nk. When Nk = Nk′ for all k, k′, we recover dense training,

where the number of parameters does not change throughout training, and N̄ = N1.

We model the relationship between the final evaluation loss L, the average number of model param-
eters N̄ , and the total number of training tokens using the following equation:

L(N,D) =
A

N̄α
+

B

Dβ
+ E, (2)

where D is the total number of training tokens, and A, B, E, α, and β are free positive parameters.
Importantly, our proposed scaling law retains the same functional form as the Chinchilla scaling law

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

in Equation (1), but replaces the number of dense parameters N with the average parameter count
N̄ . When sparsity is set to 0, our scaling law reduces to the original Chinchilla scaling law.

5.2 THEORETICAL JUSTIFICATION

We provide an analytical derivation of the average parameter scaling law in eq. (2). We demon-
strate that, with certain assumptions—either standard in prior work or validated through empirical
observations—our version of the scaling law can be derived analytically.

Assumptions. Our analysis rests on two key assumptions, one justified empirically and the other
made in prior work:

1. Log loss decays linearly with log compute during pre-training;

2. Total compute for processing a fixed number of tokens is proportional to the number of active
parameters in the model.

Assumption (1) has been shown to hold in Kaplan et al. (2020) when each stage of sparse pre-
training follows the “compute optimal” regime , meaning that the model is appropriately sized to
fully utilize the available compute. In our experiments, we extensively tune our sparse pre-training
configurations to bring us close to this regime. In this setting, it is known that the loss L evolves as
a function of the training compute C as

L(C) = (A/C)
α
, (3)

where L(C) represents the loss at compute C, and α > 0 is a constant that governs the rate of loss
decay as compute increases. The constant A may depend on specific configurations of the sparse
pre-training run, such as the optimizer, sparsity level, and the training data distribution, but remains
fixed for a particular sparse pre-training configuration.

1016 1017 1018 1019 1020

Compute (FLOPs)

10.0

2

3

4
5
6
7
8
9

Fin
al

 E
va

l L
os

s

Fit for Compute <= 1e19
Fit for Compute > 1e19

100 101 102 103 104

Pruning Iteration (k)

0

1

2

3

4

Co
ef

fic
ie

nt
 C

_{
0:

k}
^{

-a
lp

ha
-1

} 1e 17
alpha=0.0416
alpha=0.203

Figure 2: Left: Loss vs effective compute ompute for 410M models. Right: Estimated α coefficient
in the scaling law for 410M model.

We also validate assumption (1) empirically. Figure 2 (left) shows the relationship between the
training loss of sparsely pretrained 410M models and effective training compute consumption. The
data confirms that the assumed predictable relationship largely holds. We empirically observe a
transition point around 1019 floating point operations, corresponding to the first 2.6% of training
steps. A linear fit on the loss data before and after this point estimates the scaling parameter α to be
approximately 0.203 and 0.041, respectively.

Assumption (2) has been heavily used in previous scaling law work (Kaplan et al., 2020; Sardana
et al., 2024; Frantar et al., 2023), which model compute as proportional to the number of parameters,
batch size, and number of iterations. Since the number of tokens processed per step is constant, the
total compute at each step is proportional only to the number of parameters in that step.

Loss modeling. To derive the average parameter scaling law, we start with a Taylor series expansion
of the loss, as modelled by eq. (3) (assumption 1), around the compute point C. This yields an

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

approximation for the change in loss due to an increase in compute by ∆C:

∆L ≈ −αAαC−α−1∆C. (4)

Applying the above approximation across all pruning iterations, and relying on assumption 2, we
express the total changes in loss over T training steps as proportional to

∆Ltotal ∝
T∑

k=1

C−α−1
0:k−1 ×Nk, (5)

where C0:k−1 is the accumulated compute up to step k (C0 = 1), and we have used the fact that
computation is known to be linear in the number of parameters (Kaplan et al., 2020) (assumption 2).

For realistic values of C and α, we find that the terms C−α−1
0:k−1 remain very stable. In Figure 2

(right), we plot C−α−1
0:k−1 as a function of pruning iterations for the 410M model experiments, with

α empirically set to 0.041 and 0.203. After about 100 pruning iterations, we observe that this
coefficient becomes essentially constant. Further, note that this sum of loss decreases does not take
into account the increase in loss due to pruning at a specific step. This is justified as we have
observed empirically that, during training, the loss spikes at the pruning step do not not effect the
final loss during the pruning-training iteration. Instead, the loss only depends on the number of
non-zero parameters and on the amount of computation during the iteration.

Finally, summing across iterations, we obtain that the total change in loss ∆L across all T iterations
is proportional to the average number of active parameters throughout sparse pre-training, which
matches our original claim.

5.3 EMPIRICAL ANALYSIS

In this subsection, we fit our proposed scaling law with empirical data.

2.25 2.50 2.75 3.00 3.25 3.50
Actual

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Pr
ed

ict
ed

Actual v.s. Predicted Eval Loss

Figure 3: Predicted eval loss from our fitted scal-
ing law versus the actual achieved final loss.

Fitting method. We optimize key aspects of
our sparse pre-training configuration, including
the learning rate, batch size, and compute al-
locations across the three stages of sparse pre-
training (see Section 6 for details). We fit
our proposed scaling law (eq. (2)) using the fi-
nal evaluation loss obtained from sparse pre-
training experiments with these optimal config-
urations. Our experiments cover 5 sparsity lev-
els (0%, 20%, 40%, 60%, 80%), 3 model sizes
(58M, 162M, 468M), and 2 training durations
(10x Chinchilla optimal and 20x Chinchilla op-
timal), producing 30 data points.

Following the methodology in Hoffmann et al.
(2022), we used the L-BFGS algorithm (Liu
& Nocedal, 1989) and a Huber loss with δ =
1×10−3 to improve robustness against outliers.
We set the maximum number of L-BFGS iter-
ations to 1000, which we empirically find suit-
able for ensuring convergence. We initialized the scaling law’s free parameters with the same ran-
dom values as in Hoffmann et al. (2022). To account for possible local minima, we sampled 100
initializations from the random grid and selected the parameters with the best Huber loss, following
the precedent in Hoffmann et al. (2022); Frantar et al. (2023).

Results. We present the predicted model evaluation loss and the actual final evaluation loss in
Figure 3. Across different model sizes and training durations, our fitted scaling law models the
final model loss with sufficient accuracy. Specifically, the average absolute difference between the
predicted and actual loss is 0.016. The distribution of prediction error varies across sparsity levels:
the maximum mean absolute difference occurs at 60% sparsity with 0.03, while the minimum occurs
at 0% sparsity with 0.007. We attribute this disparity to the scaling analysis not fully accounting for
the regularization effects of sparsity (Jin et al., 2022).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(0
%

, 2
5%

)

(0
%

, 5
0%

)

(0
%

, 7
5%

)

(0
%

, 1
00

%
)

(2
5%

, 2
5%

)

(2
5%

, 5
0%

)

(5
0%

, 2
5%

)

(5
0%

, 5
0%

)

(7
5%

, 2
5%

)

Sparsity Schedule

20
%

40
%

60
%

80
%

Sp
ar

sit
y

2.81 2.80 2.79 2.78 2.78 2.77 * 2.77 2.77 2.77

2.86 2.82 2.80 2.80 2.80 2.79 * 2.79 2.80 2.81

2.92 2.87 2.84 2.87 2.84 2.82 * 2.82 2.89 2.93

3.03 2.97 2.95 3.06 2.95 2.94 * 3.08 3.12 3.26

2.8

2.9

3.0

3.1

3.2

No
rm

al
ize

d 
lo

ss

(0
%

, 2
5%

)

(0
%

, 5
0%

)

(0
%

, 7
5%

)

(0
%

, 1
00

%
)

(2
5%

, 2
5%

)

(2
5%

, 5
0%

)

(5
0%

, 2
5%

)

(5
0%

, 5
0%

)

(7
5%

, 2
5%

)

Sparsity Schedule

20
%

40
%

60
%

80
%

Sp
ar

sit
y

2.74 2.73 2.72 2.71 * 2.72 2.71 2.71 2.71 2.71

2.79 2.76 2.74 2.73 2.73 2.72 * 2.72 2.73 2.74

2.85 2.80 2.78 2.80 2.77 2.76 * 2.76 2.81 2.85

2.96 2.90 2.89 2.97 2.89 2.88 * 2.99 3.02 3.10 2.75

2.80

2.85

2.90

2.95

3.00

3.05

3.10

No
rm

al
ize

d 
lo

ss

Figure 4: Optimal sparsity schedule sweep for 162M-10× (left) and 162M-20× (right) models.
Each tuple on the x-axis, (td, ts), represents the percentage of training time spent for dense traning
(td), and percentage of time spent gradually pruning (ts).

Conclusion. By replacing the total parameter count with the average parameter count in Chinchilla
scaling law (eq. (1)), we demonstrate that this modified scaling law, presented in eq. (2), can effec-
tively predict the final evaluation loss of sparse-pretrained language models.

6 SEARCHING FOR THE OPTIMAL SPARSE PRE-TRAINING CONFIGURATION

Recall that sparse pre-training has three stages: dense training, iterative pruning, and sparse recovery
phases (Section 3). Balancing the compute resource allocation among them is crucial for effective
sparse pre-training. In this section, we present experimental results from our search for the optimal
sparse pre-training configurations used to derive the scaling law in section 5.

6.1 SPARSE PRE-TRAINING CONFIGURATION SWEEP.

Sparsity schedule sweep. Given a dense model starting parameter count, a target sparsity, and an
effective compute budget, we optimize how much compute to invest in each of the three phases of
training (section 3) to find the best performing sparse network. Both empirical and theoretical studies
suggest that pruning too early can trap the model in suboptimal minima (Gale et al., 2019; Frankle
et al., 2020; Paul et al., 2022; Bambhaniya et al., 2024), indicating the need for substantial compute
investment in the dense training phase. Likewise, removing weights too rapidly can degrade pruning
outcomes (Renda et al., 2020), highlighting the importance of allocating sufficient compute to the
iterative pruning phase. Balancing these factors in the design of a sparsity schedule is therefore a
complex challenge.

Focusing on the 162M-10× and 162M-20× models, we systematically search for the optimal spar-
sity schedule by evaluating all valid combinations of compute allocated to the dense training phase
(0%, 25%, 50%, 75% of total training FLOPs) and the weight removal phase (25%, 50%, 75%,
100%). For a schedule to be valid, the combined compute for the dense training and weight removal
phases must not exceed 100%, with the remaining compute allocated to the sparse recovery phase.
For this sweep, we adopt the same hyperparameter configurations (learning rate, batch size, etc.)
used for equivalent model configurations in the Pythia suite of models (Biderman et al., 2023).

Sparsity Schedule Results. We present the results of our sparsity schedule sweep in Figure 4.
We encode each schedule on the x-axis with a 2-tuple. The first value represents the proportion of
compute allocated to the dense training phase, and the second value represents the compute allocated
to the weight removal phase. Our results consistently show that allocating 25% of total compute to
the dense training phase and 50% to the weight removal phase yields either the optimal training loss
or a result within 0.01 of the minimum.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 16 64

(x1e-4) Learning Rate

128K

512K

2MBa
tc

h 
Si

ze

2.7 2.72 2.92

2.73 2.67 * 2.77

2.83 2.7 2.82

31.2B Toks, 0%

4 16 64

(x1e-4) Learning Rate

2.72 2.74 2.92

2.74 2.68 * 2.78

2.83 2.7 2.84

35.0B Toks, 20%

4 16 64

(x1e-4) Learning Rate

2.73 2.76 2.93

2.75 2.7 * 2.8

2.84 2.71 2.83

40.8B Toks, 40%

4 16 64

(x1e-4) Learning Rate

2.76 2.79 2.97

2.78 2.72 * 2.85

2.87 2.75 2.88

51.2B Toks, 60%

4 16 64

(x1e-4) Learning Rate

2.85 2.87 3.03

2.88 2.82 * 2.91

2.99 2.85 2.93

78.3B Toks, 80%

4 16 64

(x1e-4) Learning Rate

128K

512K

2MBa
tc

h 
Si

ze

2.67 2.72 2.91

2.68 2.64 * 2.73

2.74 2.65 2.69

62.5B Toks, 0%

4 16 64

(x1e-4) Learning Rate

2.68 2.73 2.9

2.69 2.65 * 2.74

2.74 2.66 2.7

70.1B Toks, 20%

4 16 64

(x1e-4) Learning Rate

2.7 2.75 2.91

2.7 2.67 2.78

2.76 2.67 * 2.75

81.4B Toks, 40%

4 16 64

(x1e-4) Learning Rate

2.74 2.78 2.92

2.73 2.7 2.82

2.8 2.7 * 2.74

102.3B Toks, 60%

4 16 64

(x1e-4) Learning Rate

2.82 2.85 2.98

2.83 2.79 * 2.83

2.92 2.81 2.85

156.6B Toks, 80%

0.0

0.5

1.0

No
rm

al
ize

d 
lo

ss

0.0

0.5

1.0

No
rm

al
ize

d 
lo

ss

Figure 5: Batch size and learning rate sweep for 162M models.

Learning rate and batch size sweep. We subsequently investigate the optimal learning rate and
batch size to use for sparse pre-training. We sweep through a grid of [0.0004, 0.0016, 0.0064] for
learning rate and [0.125M, 0.5M, 2M] for batch size.

Learning rate and batch size results. We present our learning rate and batch size sweeps in Fig-
ure 5. Our findings consistently show that using the optimal hyper-parameters for dense pre-training
either achieves the optimal evaluation loss for sparse pre-training or comes very close (within 0.01
difference).

6.2 CLOSER LOOK AT PRUNING SCHEDULE

0 10 20 30 40 50
Dense Training (% Compute)

2.7
2.8
2.9
3.0
3.1
3.2

Fin
al

 E
va

l L
os

s

20%
40%

60%
80%

(a) Pruning Start (10x)

0 10 20 30 40 50
Dense Training (% Compute)

2.6
2.7
2.8
2.9
3.0
3.1

Fin
al

 E
va

l L
os

s

20%
40%

60%
80%

(b) Pruning Start (20x)

30 40 50 60 70
Iterative Pruning (% Compute)

2.7
2.8
2.9
3.0
3.1
3.2

Fin
al

 E
va

l L
os

s

20%
40%

60%
80%

(c) Pruning Duration (10x)

30 40 50 60 70
Iterative Pruning (% Compute)

2.6

2.7

2.8

2.9

3.0

3.1
Fin

al
 E

va
l L

os
s

20%
40%

60%
80%

(d) Pruning Duration (20x)

Figure 6: A closer look at failure modes for non-optimal sparsity schedules.

In this section, we visualize the impact of allocating different fractions of the total compute to the
dense training and iterative pruning phases on final evaluation loss.

Dense training compute. To determine the optimal fraction of compute to allocate to the dense
pre-training phase, we vary the dense compute between 0%, 25%, and 50%. Throughout these
experiments, we keep the iterative pruning phase compute fixed at 50%, as this was previously found
to be optimal, and adjust the sparse recovery phase compute to maintain a constant total compute
for sparse pre-training. The results are shown in Figures 6a and 6b.

Our findings indicate a clear optimal allocation of dense training compute at 25% of total compute,
where 7 out of 8 cases reach their lowest loss. This trend is consistent across different sparsity levels
(ranging from 20% to 80%) and both training regimes (10x and 20x Chinchilla-optimal).

Additionally, the results suggest that allocating too much compute to dense training (50%) leads to
worse final loss, particularly for high-sparsity models. This underscores the importance of allocating
sufficient compute to the sparse recovery phase.

Iterative pruning compute. We explore the effect of varying the compute allocation to the iterative
pruning phase. First, we fix the dense training compute at 25%, as this was previously found to be

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

optimal. Then, we vary the pruning duration while adjusting the sparse recovery phase to keep the
total compute constant. We visualize these results in Figures 6c and 6d.

We find that the optimal allocation of iterative pruning compute varies across training regimes. For
the 10x Chinchilla model, the lowest evaluation loss occurs with a 25% allocation to iterative prun-
ing (2.83), while for the 20x Chinchilla model, the optimal allocation is 50% (2.77). Despite these
differences, allocating 50% of total compute to iterative pruning consistently results in reasonable
evaluation loss across both regimes. Interestingly, extending the iterative pruning allocation beyond
50% tends to degrade performance, particularly in high-sparsity models (80%). These findings sug-
gest that high-sparsity models benefit most from moderate allocations to iterative pruning, ensuring
sufficient compute for sparse recovery after weight removal.

7 CONCLUDING REMARK

Our work examines pre-training large language models with parameter sparsity and presents a uni-
fied scaling law that effectively models both sparse and dense scaling.

Value of sparse pre-training. Our scaling analysis implies that sparsely pre-trained language mod-
els achieve a similar final evaluation loss to smaller dense models with the same average active
parameter count, as validated directly in Figure 1. When compared to their matching dense pre-
training configurations, sparse pre-training shifts the active parameter count across training steps.
Specifically, sparse pre-training begins with a higher active parameter count early in training and
reduces it later, while dense pre-training keeps the active parameter count constant throughout. Im-
portantly, one may design this shift (as we did in our work) without changing the total effective
training compute. Within the model scales, sparsity levels, and schedules we explored, this shift
does not negatively affect the trade-off between training compute and final evaluation loss.

For any dense pre-training configuration, our analysis suggests that one can apply this shift in active
parameter count to create a sparse pre-training configuration, with little impact on the final evalua-
tion loss and no change to the total effective training compute. As a result of applying this shift in
active parameters, the final model will be smaller than its dense counterpart, which has a size equiv-
alent to the average active parameters of the sparsely pre-trained model throughout pre-training.

Compression rate. Our findings suggest that up to a certain compression rate, sparse pre-training
effectively compresses the language model without loss in quality. This compression rate should
be computed as the ratio of the average active parameter count to the final active parameter count.
Within the language models we explore, the maximum compression rate is reached at 80% target
final sparsity, where our sparsity schedule results in an average active parameter count of approxi-
mately 40% of total the initial dense parameter count, yielding a 2x lossless compression rate.

Limitation. We note that, due to the lack of adequate software and hardware support for executing
matrix multiplications with unstructured sparsity, we are unable to demonstrate computational sav-
ings from sparse pre-training. For the same reason, the scale of our study is limited, as the actual
compute required may be up to 1/(1− sparsity) times the effective compute we estimate for sparse
pre-training. For experiments with 80% sparsity, this factor reaches 5x.

Another limitation of our work is the reliance on evaluation perplexity as a proxy for model quality.
It is well known, however, that perplexity does not always correlate with model utility. As a result,
we acknowledge the absence of downstream task evaluations as a limitation of this study.

In this work, we demonstrate that sparse pre-training offers a viable alternative to dense pre-training
by reducing the inference costs without sacrificing the trade-off between training compute and model
quality. We propose a scaling law that models both sparse and dense pre-training with a unified func-
tional form. Our proposed scaling law, which incorporates the average number of active parameters,
accurately predicts the loss of sparse-pretrained LLMs.

Reproducibility statement. We have detailed our dense LLM training configurations in Section 4,
along with our hardware and software setup. Additionally, in Section 6, we provide an extensive
discussion of the pruning configurations we explored and identified.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI-Hypercomputer. Maxtext: A framework for training large language models. https://
github.com/AI-Hypercomputer/maxtext, 2024. Accessed: 2024-10-01.

Abhimanyu Rajeshkumar Bambhaniya, Amir Yazdanbakhsh, Suvinay Subramanian, Sheng-Chun
Kao, Shivani Agrawal, Utku Evci, and Tushar Krishna. Progressive gradient flow for robust n:m
sparsity training in transformers, 2024. URL https://arxiv.org/abs/2402.04744.

Michele Banko and Eric Brill. Scaling to very very large corpora for natural language disambigua-
tion. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguis-
tics, pp. 26–33, Toulouse, France, July 2001. Association for Computational Linguistics. doi:
10.3115/1073012.1073017. URL https://aclanthology.org/P01-1005.

Yamini Bansal, Behrooz Ghorbani, Ankush Garg, Biao Zhang, Colin Cherry, Behnam Neyshabur,
and Orhan Firat. Data scaling laws in NMT: The effect of noise and architecture. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 1466–1482. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/bansal22b.html.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners, 2021. URL https://arxiv.org/abs/1911.11134.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019. URL https://arxiv.org/abs/1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis, 2020. URL https://arxiv.org/abs/
1912.05671.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023. URL https://arxiv.org/abs/2301.00774.

Elias Frantar, Carlos Riquelme, Neil Houlsby, Dan Alistarh, and Utku Evci. Scaling laws for
sparsely-connected foundation models, 2023. URL https://arxiv.org/abs/2309.
08520.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. CoRR,
abs/1902.09574, 2019. URL http://arxiv.org/abs/1902.09574.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation, 2021. URL
https://arxiv.org/abs/2109.07740.

Joshua Goodman. A bit of progress in language modeling, 2001. URL https://arxiv.org/
abs/cs/0108005.

11

https://github.com/AI-Hypercomputer/maxtext
https://github.com/AI-Hypercomputer/maxtext
https://arxiv.org/abs/2402.04744
https://aclanthology.org/P01-1005
https://proceedings.mlr.press/v162/bansal22b.html
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2309.08520
https://arxiv.org/abs/2309.08520
http://arxiv.org/abs/1902.09574
https://arxiv.org/abs/2109.07740
https://arxiv.org/abs/cs/0108005
https://arxiv.org/abs/cs/0108005


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mitchell A Gordon, Kevin Duh, and Jared Kaplan. Data and parameter scaling laws for neu-
ral machine translation. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5915–5922, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.478. URL
https://aclanthology.org/2021.emnlp-main.478.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkin-
son, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar,
Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Worts-
man, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle
Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of
language models, 2024. URL https://arxiv.org/abs/2402.00838.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks, 2015. URL https://arxiv.org/abs/1506.02626.

B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In
IEEE International Conference on Neural Networks, pp. 293–299 vol.1, 1993. doi: 10.1109/
ICNN.1993.298572.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works, 2017. URL https://arxiv.org/abs/1707.06168.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Pruning’s
effect on generalization through the lens of training and regularization. Advances in Neural In-
formation Processing Systems, 35:37947–37961, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Denis Kuznedelev, Eldar Kurtic, Eugenia Iofinova, Elias Frantar, Alexandra Peste, and Dan Alis-
tarh. Accurate neural network pruning requires rethinking sparse optimization. Transactions on
Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/
forum?id=vgthYeRBAF.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming, 45(1):503–528, Aug 1989. ISSN 1436-4646. doi:
10.1007/BF01589116. URL https://doi.org/10.1007/BF01589116.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt, 2019. URL https://arxiv.org/
abs/1912.02292.

Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale,
and Sanjiv Kumar. Efficient stagewise pretraining via progressive subnetworks. arXiv preprint
arXiv:2402.05913, 2024.

12

https://aclanthology.org/2021.emnlp-main.478
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1707.06168
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=vgthYeRBAF
https://openreview.net/forum?id=vgthYeRBAF
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://doi.org/10.1007/BF01589116
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mansheej Paul, Feng Chen, Brett W Larsen, Jonathan Frankle, Surya Ganguli, and Gintare Karolina
Dziugaite. Unmasking the lottery ticket hypothesis: What’s encoded in a winning ticket’s mask?
arXiv preprint arXiv:2210.03044, 2022.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alternating com-
pressed/decompressed training of deep neural networks, 2021. URL https://arxiv.org/
abs/2106.12379.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning, 2020. URL https://arxiv.org/abs/2003.02389.

Jonathan S. Rosenfeld, Jonathan Frankle, Michael Carbin, and Nir Shavit. On the predictability of
pruning across scales, 2021. URL https://arxiv.org/abs/2006.10621.

Anshul Samar. Creating sparse gpt-3 models with itera-
tive pruning, 2022. URL https://cerebras.ai/blog/
creating-sparse-gpt-3-models-with-iterative-pruning. Accessed:
2024-09-30.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws, 2024. URL https://arxiv.org/
abs/2401.00448.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism, 2020. URL https://arxiv.org/abs/1909.08053.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning, 2024. URL https://arxiv.org/abs/2310.
06694.

Kazuki Yano, Takumi Ito, and Jun Suzuki. Step: Staged parameter-efficient pre-training for large
language models. In Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 4: Student Research Workshop), pp. 607–614, 2024.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. arXiv preprint arXiv:2305.02869, 2023.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression, 2017. URL https://arxiv.org/abs/1710.01878.

13

https://arxiv.org/abs/2106.12379
https://arxiv.org/abs/2106.12379
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2006.10621
https://cerebras.ai/blog/creating-sparse-gpt-3-models-with-iterative-pruning
https://cerebras.ai/blog/creating-sparse-gpt-3-models-with-iterative-pruning
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/1710.01878


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXISTING SPARSE SCALING LAW

Frantar et al. (2023) propose a model for the evaluation loss of a sparsely pre-trained LLM based on
the final sparsity S, the number of non-zero parameters N at the end of pre-training, and the amount
of training data D, as follows:

L(S,N,D) =
(
aS(1− S)bS + cS

)
·
(

1

N

)bN

+
(aD
D

)bD
+ c

Compared to the Chinchilla scaling law, this model introduces the following modifications:

1. A sparsity term aS(1 − S)bS , which introduces two new sparsity-specific parameters, aS
and bS , allowing the model to account for the effect of sparsity on loss.

2. Instead of using the total number of parameters N as in dense training, the model uses the
number of non-zero parameters remaining at the end of sparse pre-training.

14


	Introduction
	Related Work
	Preliminaries
	Methods
	Scaling Analysis
	A Unified Scaling Law that Models Dense and Sparse Pre-training
	Theoretical Justification
	Empirical Analysis

	Searching for the Optimal Sparse Pre-training Configuration
	Sparse pre-training configuration sweep.
	Closer look at Pruning Schedule

	Concluding remark
	Existing sparse scaling law

