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ABSTRACT

Parameter pruning has emerged as a promising technique to address the growing
computational demand of large language models (LLMs). While many studies
focus on post-training pruning of LLMs, sparse pre-training offers a compelling
alternative: sparsifying during pre-training reduces both training and inference
costs. In this work, we conduct the first comprehensive study on optimal sparse
pre-training configurations for LLMs, exploring various pruning schedules across
different sparsity levels and training duration. We evaluate 80 unique configura-
tions and find that a pruning schedule starting at 25% of total training compute and
ending at 75% achieves near-optimal final evaluation loss. Our findings provide
valuable insights for efficient and effective sparse pre-training of LLMs. Further-
more, we propose a new scaling law that modifies the Chinchilla scaling law to
use the average number of active parameters during training. We present both
empirical and theoretical evidence that this modification accurately models evalu-
ation loss for both sparsely and densely pre-trained LLMs, thus offering a unified
scaling law for dense and sparse model training. Our insights suggest that, while
sparse pre-training yields similar model loss as dense pre-training for the same
compute budget, it offers a clear advantage: the final model is smaller, resulting
in significant potential computational savings during inference.

1 INTRODUCTION

Research consistently shows that larger language models, trained on more data, achieve better per-
formance (Brown et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022; Nakkiran et al., 2019).
However, their enormous size poses an increasingly pressing challenge to their efficient deployment
and equitable access. One promising approach to addressing these challenges is sparse training,
which reduces the computational burden by using only a subset of the neural network parameters
both during training and inference. This technique, closely related to neural network pruning (Han
et al., 2015; LeCun et al., 1989; Hassibi et al., 1993; He et al., 2017), gained prominence with the
Lottery Ticket Hypothesis (Frankle & Carbin, 2019), which provided compelling evidence for the
feasibility of sparse training. Subsequent work has introduced efficient algorithms to realize the
promised efficiency gains (Evci et al., 2021; Peste et al., 2021; Kuznedelev et al., 2024).

While a growing body of research investigates pruning pre-trained large language models (LLMs)
(Sun et al., 2024; Frantar & Alistarh, 2023; Xia et al., 2024), our work focuses on sparsely pre-
training LLMs. The significant computational and engineering cost associated with LLM pre-
training itself, in addition to designing the pruning algorithm presents substantial obstacle to this
line of research. For example, identifying sparse sub-networks that can be trained to good perfor-
mance as suggested by the Lottery Ticket Hypothesis (Frankle & Carbin, 2019) typically involves
iterative pruning and retraining, a process that becomes prohibitively expensive at the scale of large
language models. This expense effectively limits investigation to smaller-scale models, leaving the
optimal strategies for sparse pre-training of LLMs largely unknown. One way to bridge this gap and
extend small-scale insights to the realm of large models is through the analysis of scaling laws.

This leads to a critical question: how does sparsity influence the scaling laws that govern large
language model performance? Scaling laws have been instrumental in predicting the relationship
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between the loss, model size, data size, and computational resources for dense models (Kaplan
et al., 2020; Hoffmann et al., 2022). But how do these laws adapt to the introduction of sparsity?

Previous work on sparse pre-training by Frantar et al. (2023) introduced a new sparsity-aware law
that departed from the established scaling laws for dense models. The modified laws included extra
terms dependent on the final sparsity, aiming to capture the sparsity-specific scaling effects.

Our approach. Instead, we revisit the original dense scaling laws and explore how to set the param-
eter count term for sparse pre-training, during which we gradually remove model parameters. We
show that the dense scaling law can effectively model sparse pre-training by updating the parame-
ter count to reflect the varying number of active parameters. This suggests that the core principles
of dense scaling laws remain applicable in the sparse pre-training regime, with the key adjustment
being a more nuanced consideration of parameter count.

Optimal sparse pre-training configuration. To validate this approach, we evaluate over 80 combi-
nations of sparse pre-training schedules, sparsity levels, and training durations. Our work provides
the first systematic analysis of these sparse pre-training configurations across design dimensions
critical to sparse pre-training. This comprehensive evaluation uncovers the optimal configurations
and offers new insights into the dynamics of sparse training.

Our results show that, for a fixed compute budget, training the dense model for 25% of the total
training compute and gradually removing weights over the next 50% leads to near-optimal final
evaluation loss across various training duration and sparsity levels. We find that the optimal learning
rates and batch sizes for sparse pre-training closely match those used for the original dense model
under the same compute budget, where the original dense model is the starting model for sparse
pre-training. We also provide additional analysis into failure modes that occur with non-optimal
sparse pre-training configurations, highlighting the importance of a properly tuned configuration.
Collectively, our analysis presents practical prescriptions to simplify the transition between dense
and sparse training configurations.
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Figure 1: We show the predictive power of average active parameters by creating two families of
models. The first is sparse, starting from a dense model with 138 million prunable parameters in
the linear layers and targeting final sparsity levels of 20%, 40%, 60%, and 80%. The second is
dense, created by adjusting the hidden dimension to match the average number of active parameters
throughout sparse-pre-training for each sparse models. In the left plot, we represent sparse models
with dashed lines and dense models with solid lines. Each sparse-dense pair, with matching average
active parameters, is shown in the same subfigure. Each pairs of model shares the same total training
compute. In the right plot, despite differences in pre-training techniques, sparse and dense models
with matching average active parameters (indicated by matching colors) achieve similar final loss.
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Scaling analysis. We propose a scaling law to model the final evaluation loss of sparse-pre-trained
language models. Our scaling law builds on the Chinchilla scaling law by incorporating the average
number of active parameters throughout pre-training, rather than the total number of dense param-
eters. A parameter is considered active if it receives gradient updates, whereas pruned parameters,
which do not receive updates, are inactive. This adaptation allows us to predict evaluation loss across
a range of model sizes, sparsity levels, and training regimes. Additionally, based on empirically ver-
ified assumptions about sparse pre-training dynamics, we provide a theoretical justification for using
the average active parameters to model the evaluation loss of sparsely pre-trained language models.

Average active parameters. To demonstrate the predictive power of average active parameters for
sparse scaling, we train four pairs of sparse and dense models. In each pair, we keep the average ac-
tive parameters throughout pre-training 1 and the total training data the same. Despite the difference
in active parameters during most of the pre-training, as illustrated in the left plot of Figure 1, each
pair of the sparse and dense model achieve similar final loss, as shown in the right plot of Figure 1.
These results show that, with all other factors held constant, the average number of active parameters
is an effective predictor of the final evaluation loss for sparse models, just as it is for dense models.

Contributions. We make the following contributions in our work:

1. We bridge the gap between sparse and dense scaling laws by modifying the parameter count term
in the Chinchilla scaling law, extending the same law to to model sparse pre-training. We show
this modified scaling law accurately models the evaluation loss across a range of model sizes,
sparsity levels and training duration.

2. We present a theoretical analysis, based on empirically validated assumptions about sparse pre-
training dynamics, that justifies using the average number of active parameters to model the loss
of sparsely pre-trained language models.

3. We search over 80 sparse pre-training configurations and present a simple prescription that
achieves optimal or near-optimal loss across different sparsity levels and training duration.

4. We present an analysis over the failure modes when sparse pre-training configurations deviate
from the said prescription, highlighting their practical importance.

Implications. Our work enables practitioners familiar with dense scaling laws to apply those same
principles to sparse scaling. Together with prescriptions for optimal sparse pre-training configura-
tions, our work aims to ease the transition from dense pre-training to sparse pre-training, promoting
the development of more energy-efficient large language models.

2 RELATED WORK

Neural scaling laws. Neural scaling laws provide a framework for understanding how neural net-
works’ performance scales with parameters, data, and compute (Banko & Brill, 2001; Goodman,
2001; Ghorbani et al., 2021; Kaplan et al., 2020; Hoffmann et al., 2022; Bansal et al., 2022; Gor-
don et al., 2021). Kaplan et al. (2020) showed that for modern transformer-based language models,
model loss decreases predictably with increasing model size, dataset size, and compute, following
a power-law relationship. Hoffmann et al. (2022) later refined these insights by optimizing hyper-
parameter configurations, such as learning rate schedules, and proposed a new scaling law that
emphasizes scaling training data more aggressively than Kaplan et al. (2020)’s original recommen-
dations. Most relevant to our work are Rosenfeld et al. (2021) and Frantar et al. (2023). Rosenfeld
et al. (2021) focused on small-scale CNNs for image classification, while Frantar et al. (2023) fo-
cused on transformer-based vision and language models; both modeled their respective performance
as a function of model size and pruning configurations. Our work is different in that we unify the
functional forms of scaling laws for both dense and sparse pre-training. This unification is partly
enabled by our novel exploration of optimal hyperparameter configurations for sparse pre-training.

Additionally, our study is the largest-scale investigation of sparsely pretrained LLMs to date, with
our largest model using over 5 times the compute of the largest model examined in prior work
(Frantar et al., 2023). The largest model we investigate requires 4.5×1020 FLOPs training compute.

1We adjust the hidden dimension of dense models to match the sparse models, but since it must be divisible
by the number of attention heads and chips, we create two dense models that approximate the target parameter
count and linearly interpolate between them.
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Pruning. Sparse pre-training involves pruning parameters in an LLM during the pre-training pro-
cess. While there are many pruning algorithms available (LeCun et al., 1989; Hassibi et al., 1993;
Han et al., 2015; He et al., 2017; Frankle & Carbin, 2019; Renda et al., 2020; Peste et al., 2021;
Evci et al., 2021), we focus on a simple class of algorithms known as iterative magnitude pruning
(Zhu & Gupta, 2017; Frankle & Carbin, 2019; Renda et al., 2020). Since sparse pre-training results
in a sparse model at the end of training, our method can also be viewed as a pruning algorithm. In
contrast to prevailing approaches that train a large dense model and then prune it while preserving
accuracy (Frantar & Alistarh, 2023; Sun et al., 2024), our analysis shows that, within the sparsity
levels we examined, it is possible to directly train a sparse model that achieves the same final loss
using the same compute budget as training the large dense model. This simplifies the model devel-
opment process by eliminating the need for pruning as a post-training step.

Dynamic parameter schedule. While practitioners typically pre-train LLMs with a fixed number
of active parameters throughout the training process (Groeneveld et al., 2024; Shoeybi et al., 2020),
a growing line of work explores varying this number during pre-training to improve computational
efficiency (Yao et al., 2023; Panigrahi et al., 2024; Yano et al., 2024). This line of work often
focuses on gradually increasing the number of parameters during training. Yao et al. (2023) proposed
progressive growth during pre-training using a multi-stage, multi-axis growth schedule. Panigrahi
et al. (2024) introduced layer dropout, progressively reducing the number of dropped layers during
training. Yano et al. (2024) developed STEP, which begins pre-training with a small model and
gradually increases its size in stages. Our work may be viewed as proposing another dynamic
parameter schedule. However, it differs by focusing on compute-optimal strategies that gradually
reduce model size, optimizing for inference efficiency. Since the final model is smaller, our approach
leads to more efficient inference compared to methods that progressively increase model size.

3 PRELIMINARIES

Algorithm. We adapt the iterative magnitude pruning (IMP) algorithm for pre-training language
models (Zhu & Gupta, 2017; Renda et al., 2020; Frankle & Carbin, 2019; Samar, 2022). We score
each parameter’s importance based on its magnitude. At each pruning step, we rank all model pa-
rameters globally and prune those with the lowest magnitudes. No structural constraints are imposed
on the sparsity pattern. Our sparse pre-training algorithm consists of three phases:

1. Dense training phase: The model is trained with all parameters for Npre steps;
2. Iterative pruning phase: The weights are being removed iteratively. Each pruning iteration starts

by removing a fixed fraction of the remaining parameters, and then training for P gradient steps.
This continues for Nprune pruning iterations, until the model reaches the desired sparsity S.

3. Sparse recovery phase: The sparse model is further trained with a fixed mask for Npost steps to
recover any accuracy that is lost due to pruning.

Based on Frantar et al. (2023); Zhu & Gupta (2017); Bambhaniya et al. (2024), we fix P = 100.

Given a starting dense parameter count, a target sparsity S, length of each pruning iteration P , and
a compute budget, we search to find the optimal allocation of compute across these three phases,
Npre, Nprune and Npost, to achieve the best performance in Section 6.

Effective compute. Following (Kaplan et al., 2020; Hoffmann et al., 2022), we approximate the
total compute for a training run as 6 times the number of parameters multiplied by the number
of training tokens. We adjust for sparsity by scaling this value linearly with respect to sparsity,
following Frantar et al. (2023).

Chinchilla scaling law. Neural scaling laws model changes in final validation loss under the growth
of parameters, data, compute, etc. One widely used scaling law is the Chinchilla scaling law by
Hoffmann et al. (2022). This law models the relationship between the loss L, the number of param-
eters N , and the number of training tokens D using the following equation:

L(N,D) =
A

Nα
+

B

Dβ
+ E, (1)

where A, B, α, β, and E are free parameters: A and α describe how loss decreases with increasing
model size N , while B and β describe how loss decreases with increasing training tokens D. The
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constant E represents an irreducible loss. Scaling laws allow practitioners to optimize training
configurations to fit within their compute budgets without running costly experiments (Sardana et al.,
2024). The laws also hold theoretical value, as they capture the dynamics of how loss changes with
data and parameter scaling. We present an overview of existing sparse scaling law in Appendix A.

4 METHODS

Name # Prunable # Tokens
58M-10x 42M 14.7B (205x)
58M-20x 42M 29.4B (409x)
162M-10x 138M 33.5B (207x)
162M-20x 138M 67.1B (414x)
468M-10x 435M 94.4B (217x)
468M-20x 435M 188.8B (434x)

Table 1: Training details for models by size and
token count. Numbers in parentheses show the
token-to-prunable parameter ratio.

Models. We pretrain a series of models with
sizes ranging from 58M to 468M parameters as
reference dense models, alongside sparse mod-
els that approximately match the training com-
pute of these dense models.

We use the LLaMA 2 (Touvron et al., 2023)
base model architecture. For each unique
model size, we train two versions: one using
over 10x the number of tokens corresponding
to Chinchilla optimal, and the other using over
20x the number of tokens.

Table 1 provides details for each model. The
model names are composed of two parts — the
total number of parameters and an indicator of
whether the number of training tokens exceeds
10x (but under 20x) or 20x the compute optimal value recommended by the Chinchilla scaling law
(Hoffmann et al., 2022). The number of prunable parameters includes those in all linear layers,
while parameters in embedding and normalization layers are left unpruned. Additionally, we report
the total number of tokens used to train the dense models, followed by the ratio of training tokens to
prunable parameters in parentheses.

Dataset. We use the ‘en’ partition of the C4 dataset (Raffel et al., 2019). Using the LLaMA 2
tokenizer, this dataset can be tokenized to 197.71 billion tokens.

Software and hardware. Our work uses TPUv4 and TPUv5 hardware for training LLMs. We
modify MaxText (AI-Hypercomputer, 2024) to support sparse pre-training of LLMs.

5 SCALING ANALYSIS

Here we show that a scaling law that is of the same functional form as in eq. (1) also models
the evaluation loss after sparse rather than dense pre-training when the parameter count variable
is replaced with an average parameter count instead. Below we present the scaling law and an
analytical argument that leads to it, and then validate this updated scaling law empirically.

5.1 A UNIFIED SCALING LAW THAT MODELS DENSE AND SPARSE PRE-TRAINING

Let T denote the total number of training iterations, where each iteration consists of a pruning step,
followed by training at that fixed sparsity. Thus, a sparse pre-training run can be represented as a
sequence (N1, D1), (N2, D2) . . . , (NT , DT ), where Nk is the number of remaining parameters, and
Dk is the number of tokens at iteration k ∈ {1, . . . , T}. Let N̄ denote the average parameter count
during training, i.e., N̄ = 1

T

∑T
k=1 Nk. When Nk = Nk′ for all k, k′, we recover dense training,

where the number of parameters does not change throughout training, and N̄ = N1.

We model the relationship between the final evaluation loss L, the average number of model param-
eters N̄ , and the total number of training tokens using the following equation:

L(N,D) =
A

N̄α
+

B

Dβ
+ E, (2)

where D is the total number of training tokens, and A, B, E, α, and β are free positive parameters.
Importantly, our proposed scaling law retains the same functional form as the Chinchilla scaling law

5
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in Equation (1), but replaces the number of dense parameters N with the average parameter count
N̄ . When sparsity is set to 0, our scaling law reduces to the original Chinchilla scaling law.

5.2 THEORETICAL JUSTIFICATION

We provide an analytical derivation of the average parameter scaling law in eq. (2). We demon-
strate that, with certain assumptions—either standard in prior work or validated through empirical
observations—our version of the scaling law can be derived analytically.

Assumptions. Our analysis rests on two key assumptions, one justified empirically and the other
made in prior work:

1. Log loss decays linearly with log compute during pre-training;

2. Total compute for processing a fixed number of tokens is proportional to the number of active
parameters in the model.

Assumption (1) has been shown to hold in Kaplan et al. (2020) when each stage of sparse pre-
training follows the “compute optimal” regime , meaning that the model is appropriately sized to
fully utilize the available compute. In our experiments, we extensively tune our sparse pre-training
configurations to bring us close to this regime. In this setting, it is known that the loss L evolves as
a function of the training compute C as

L(C) = (A/C)
α
, (3)

where L(C) represents the loss at compute C, and α > 0 is a constant that governs the rate of loss
decay as compute increases. The constant A may depend on specific configurations of the sparse
pre-training run, such as the optimizer, sparsity level, and the training data distribution, but remains
fixed for a particular sparse pre-training configuration.

1016 1017 1018 1019 1020

Compute (FLOPs)

10.0

2

3

4
5
6
7
8
9

Fin
al

 E
va

l L
os

s

Fit for Compute <= 1e19
Fit for Compute > 1e19

100 101 102 103 104

Pruning Iteration (k)

0

1

2

3

4

Co
ef

fic
ie

nt
 C

_{
0:

k}
^{

-a
lp

ha
-1

} 1e 17
alpha=0.0416
alpha=0.203

Figure 2: Left: Loss vs effective compute ompute for 410M models. Right: Estimated α coefficient
in the scaling law for 410M model.

We also validate assumption (1) empirically. Figure 2 (left) shows the relationship between the
training loss of sparsely pretrained 410M models and effective training compute consumption. The
data confirms that the assumed predictable relationship largely holds. We empirically observe a
transition point around 1019 floating point operations, corresponding to the first 2.6% of training
steps. A linear fit on the loss data before and after this point estimates the scaling parameter α to be
approximately 0.203 and 0.041, respectively.

Assumption (2) has been heavily used in previous scaling law work (Kaplan et al., 2020; Sardana
et al., 2024; Frantar et al., 2023), which model compute as proportional to the number of parameters,
batch size, and number of iterations. Since the number of tokens processed per step is constant, the
total compute at each step is proportional only to the number of parameters in that step.

Loss modeling. To derive the average parameter scaling law, we start with a Taylor series expansion
of the loss, as modelled by eq. (3) (assumption 1), around the compute point C. This yields an
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approximation for the change in loss due to an increase in compute by ∆C:

∆L ≈ −αAαC−α−1∆C. (4)

Applying the above approximation across all pruning iterations, and relying on assumption 2, we
express the total changes in loss over T training steps as proportional to

∆Ltotal ∝
T∑

k=1

C−α−1
0:k−1 ×Nk, (5)

where C0:k−1 is the accumulated compute up to step k (C0 = 1), and we have used the fact that
computation is known to be linear in the number of parameters (Kaplan et al., 2020) (assumption 2).

For realistic values of C and α, we find that the terms C−α−1
0:k−1 remain very stable. In Figure 2

(right), we plot C−α−1
0:k−1 as a function of pruning iterations for the 410M model experiments, with

α empirically set to 0.041 and 0.203. After about 100 pruning iterations, we observe that this
coefficient becomes essentially constant. Further, note that this sum of loss decreases does not take
into account the increase in loss due to pruning at a specific step. This is justified as we have
observed empirically that, during training, the loss spikes at the pruning step do not not effect the
final loss during the pruning-training iteration. Instead, the loss only depends on the number of
non-zero parameters and on the amount of computation during the iteration.

Finally, summing across iterations, we obtain that the total change in loss ∆L across all T iterations
is proportional to the average number of active parameters throughout sparse pre-training, which
matches our original claim.

5.3 EMPIRICAL ANALYSIS

In this subsection, we fit our proposed scaling law with empirical data.
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Figure 3: Predicted eval loss from our fitted scal-
ing law versus the actual achieved final loss.

Fitting method. We optimize key aspects of
our sparse pre-training configuration, including
the learning rate, batch size, and compute al-
locations across the three stages of sparse pre-
training (see Section 6 for details). We fit
our proposed scaling law (eq. (2)) using the fi-
nal evaluation loss obtained from sparse pre-
training experiments with these optimal config-
urations. Our experiments cover 5 sparsity lev-
els (0%, 20%, 40%, 60%, 80%), 3 model sizes
(58M, 162M, 468M), and 2 training durations
(10x Chinchilla optimal and 20x Chinchilla op-
timal), producing 30 data points.

Following the methodology in Hoffmann et al.
(2022), we used the L-BFGS algorithm (Liu
& Nocedal, 1989) and a Huber loss with δ =
1×10−3 to improve robustness against outliers.
We set the maximum number of L-BFGS iter-
ations to 1000, which we empirically find suit-
able for ensuring convergence. We initialized the scaling law’s free parameters with the same ran-
dom values as in Hoffmann et al. (2022). To account for possible local minima, we sampled 100
initializations from the random grid and selected the parameters with the best Huber loss, following
the precedent in Hoffmann et al. (2022); Frantar et al. (2023).

Results. We present the predicted model evaluation loss and the actual final evaluation loss in
Figure 3. Across different model sizes and training durations, our fitted scaling law models the
final model loss with sufficient accuracy. Specifically, the average absolute difference between the
predicted and actual loss is 0.016. The distribution of prediction error varies across sparsity levels:
the maximum mean absolute difference occurs at 60% sparsity with 0.03, while the minimum occurs
at 0% sparsity with 0.007. We attribute this disparity to the scaling analysis not fully accounting for
the regularization effects of sparsity (Jin et al., 2022).
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Figure 4: Optimal sparsity schedule sweep for 162M-10× (left) and 162M-20× (right) models.
Each tuple on the x-axis, (td, ts), represents the percentage of training time spent for dense traning
(td), and percentage of time spent gradually pruning (ts).

Conclusion. By replacing the total parameter count with the average parameter count in Chinchilla
scaling law (eq. (1)), we demonstrate that this modified scaling law, presented in eq. (2), can effec-
tively predict the final evaluation loss of sparse-pretrained language models.

6 SEARCHING FOR THE OPTIMAL SPARSE PRE-TRAINING CONFIGURATION

Recall that sparse pre-training has three stages: dense training, iterative pruning, and sparse recovery
phases (Section 3). Balancing the compute resource allocation among them is crucial for effective
sparse pre-training. In this section, we present experimental results from our search for the optimal
sparse pre-training configurations used to derive the scaling law in section 5.

6.1 SPARSE PRE-TRAINING CONFIGURATION SWEEP.

Sparsity schedule sweep. Given a dense model starting parameter count, a target sparsity, and an
effective compute budget, we optimize how much compute to invest in each of the three phases of
training (section 3) to find the best performing sparse network. Both empirical and theoretical studies
suggest that pruning too early can trap the model in suboptimal minima (Gale et al., 2019; Frankle
et al., 2020; Paul et al., 2022; Bambhaniya et al., 2024), indicating the need for substantial compute
investment in the dense training phase. Likewise, removing weights too rapidly can degrade pruning
outcomes (Renda et al., 2020), highlighting the importance of allocating sufficient compute to the
iterative pruning phase. Balancing these factors in the design of a sparsity schedule is therefore a
complex challenge.

Focusing on the 162M-10× and 162M-20× models, we systematically search for the optimal spar-
sity schedule by evaluating all valid combinations of compute allocated to the dense training phase
(0%, 25%, 50%, 75% of total training FLOPs) and the weight removal phase (25%, 50%, 75%,
100%). For a schedule to be valid, the combined compute for the dense training and weight removal
phases must not exceed 100%, with the remaining compute allocated to the sparse recovery phase.
For this sweep, we adopt the same hyperparameter configurations (learning rate, batch size, etc.)
used for equivalent model configurations in the Pythia suite of models (Biderman et al., 2023).

Sparsity Schedule Results. We present the results of our sparsity schedule sweep in Figure 4.
We encode each schedule on the x-axis with a 2-tuple. The first value represents the proportion of
compute allocated to the dense training phase, and the second value represents the compute allocated
to the weight removal phase. Our results consistently show that allocating 25% of total compute to
the dense training phase and 50% to the weight removal phase yields either the optimal training loss
or a result within 0.01 of the minimum.
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Figure 5: Batch size and learning rate sweep for 162M models.

Learning rate and batch size sweep. We subsequently investigate the optimal learning rate and
batch size to use for sparse pre-training. We sweep through a grid of [0.0004, 0.0016, 0.0064] for
learning rate and [0.125M, 0.5M, 2M] for batch size.

Learning rate and batch size results. We present our learning rate and batch size sweeps in Fig-
ure 5. Our findings consistently show that using the optimal hyper-parameters for dense pre-training
either achieves the optimal evaluation loss for sparse pre-training or comes very close (within 0.01
difference).

6.2 CLOSER LOOK AT PRUNING SCHEDULE
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Figure 6: A closer look at failure modes for non-optimal sparsity schedules.

In this section, we visualize the impact of allocating different fractions of the total compute to the
dense training and iterative pruning phases on final evaluation loss.

Dense training compute. To determine the optimal fraction of compute to allocate to the dense
pre-training phase, we vary the dense compute between 0%, 25%, and 50%. Throughout these
experiments, we keep the iterative pruning phase compute fixed at 50%, as this was previously found
to be optimal, and adjust the sparse recovery phase compute to maintain a constant total compute
for sparse pre-training. The results are shown in Figures 6a and 6b.

Our findings indicate a clear optimal allocation of dense training compute at 25% of total compute,
where 7 out of 8 cases reach their lowest loss. This trend is consistent across different sparsity levels
(ranging from 20% to 80%) and both training regimes (10x and 20x Chinchilla-optimal).

Additionally, the results suggest that allocating too much compute to dense training (50%) leads to
worse final loss, particularly for high-sparsity models. This underscores the importance of allocating
sufficient compute to the sparse recovery phase.

Iterative pruning compute. We explore the effect of varying the compute allocation to the iterative
pruning phase. First, we fix the dense training compute at 25%, as this was previously found to be
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optimal. Then, we vary the pruning duration while adjusting the sparse recovery phase to keep the
total compute constant. We visualize these results in Figures 6c and 6d.

We find that the optimal allocation of iterative pruning compute varies across training regimes. For
the 10x Chinchilla model, the lowest evaluation loss occurs with a 25% allocation to iterative prun-
ing (2.83), while for the 20x Chinchilla model, the optimal allocation is 50% (2.77). Despite these
differences, allocating 50% of total compute to iterative pruning consistently results in reasonable
evaluation loss across both regimes. Interestingly, extending the iterative pruning allocation beyond
50% tends to degrade performance, particularly in high-sparsity models (80%). These findings sug-
gest that high-sparsity models benefit most from moderate allocations to iterative pruning, ensuring
sufficient compute for sparse recovery after weight removal.

7 CONCLUDING REMARK

Our work examines pre-training large language models with parameter sparsity and presents a uni-
fied scaling law that effectively models both sparse and dense scaling.

Value of sparse pre-training. Our scaling analysis implies that sparsely pre-trained language mod-
els achieve a similar final evaluation loss to smaller dense models with the same average active
parameter count, as validated directly in Figure 1. When compared to their matching dense pre-
training configurations, sparse pre-training shifts the active parameter count across training steps.
Specifically, sparse pre-training begins with a higher active parameter count early in training and
reduces it later, while dense pre-training keeps the active parameter count constant throughout. Im-
portantly, one may design this shift (as we did in our work) without changing the total effective
training compute. Within the model scales, sparsity levels, and schedules we explored, this shift
does not negatively affect the trade-off between training compute and final evaluation loss.

For any dense pre-training configuration, our analysis suggests that one can apply this shift in active
parameter count to create a sparse pre-training configuration, with little impact on the final evalua-
tion loss and no change to the total effective training compute. As a result of applying this shift in
active parameters, the final model will be smaller than its dense counterpart, which has a size equiv-
alent to the average active parameters of the sparsely pre-trained model throughout pre-training.

Compression rate. Our findings suggest that up to a certain compression rate, sparse pre-training
effectively compresses the language model without loss in quality. This compression rate should
be computed as the ratio of the average active parameter count to the final active parameter count.
Within the language models we explore, the maximum compression rate is reached at 80% target
final sparsity, where our sparsity schedule results in an average active parameter count of approxi-
mately 40% of total the initial dense parameter count, yielding a 2x lossless compression rate.

Limitation. We note that, due to the lack of adequate software and hardware support for executing
matrix multiplications with unstructured sparsity, we are unable to demonstrate computational sav-
ings from sparse pre-training. For the same reason, the scale of our study is limited, as the actual
compute required may be up to 1/(1− sparsity) times the effective compute we estimate for sparse
pre-training. For experiments with 80% sparsity, this factor reaches 5x.

Another limitation of our work is the reliance on evaluation perplexity as a proxy for model quality.
It is well known, however, that perplexity does not always correlate with model utility. As a result,
we acknowledge the absence of downstream task evaluations as a limitation of this study.

In this work, we demonstrate that sparse pre-training offers a viable alternative to dense pre-training
by reducing the inference costs without sacrificing the trade-off between training compute and model
quality. We propose a scaling law that models both sparse and dense pre-training with a unified func-
tional form. Our proposed scaling law, which incorporates the average number of active parameters,
accurately predicts the loss of sparse-pretrained LLMs.

Reproducibility statement. We have detailed our dense LLM training configurations in Section 4,
along with our hardware and software setup. Additionally, in Section 6, we provide an extensive
discussion of the pruning configurations we explored and identified.
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A EXISTING SPARSE SCALING LAW

Frantar et al. (2023) propose a model for the evaluation loss of a sparsely pre-trained LLM based on
the final sparsity S, the number of non-zero parameters N at the end of pre-training, and the amount
of training data D, as follows:

L(S,N,D) =
(
aS(1− S)bS + cS

)
·
(

1

N

)bN

+
(aD
D

)bD
+ c

Compared to the Chinchilla scaling law, this model introduces the following modifications:

1. A sparsity term aS(1 − S)bS , which introduces two new sparsity-specific parameters, aS
and bS , allowing the model to account for the effect of sparsity on loss.

2. Instead of using the total number of parameters N as in dense training, the model uses the
number of non-zero parameters remaining at the end of sparse pre-training.
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