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Abstract
Pre-trained language models are still far from001
human performance in tasks that need under-002
standing of properties (e.g. appearance, measur-003
able quantity) and affordances of everyday ob-004
jects in the real world since the text lacks such005
information due to reporting bias. In this work,006
we study whether integrating visual knowledge007
into a language model can fill the gap. We in-008
vestigate two types of knowledge transfer: (1)009
text knowledge transfer using image captions010
that may contain enriched visual knowledge011
and (2) cross-modal knowledge transfer using012
both images and captions with vision-language013
training objectives. On 5 downstream tasks014
that may need visual knowledge to solve the015
problem, we perform extensive empirical com-016
parisons over the presented objectives. Our ex-017
periments show that visual knowledge transfer018
can improve performance in both low-resource019
and fully supervised settings.1020

1 Introduction021

Pre-trained language models (PTLMs) such as022

BERT (Devlin et al., 2018), RoBERTa (Liu et al.,023

2019), and T5 (Raffel et al., 2020) have shown024

impressive results in various conventional natural025

language understanding (NLU) tasks by capturing026

syntactic and semantic knowledge from the pre-027

training tasks of masked language modeling and028

masked span infilling tasks on massive text corpora.029

Though yielding good performance on various030

NLU downstream tasks, these pre-training objec-031

tives suffer from a lack of out-of-domain knowl-032

edge that is not explicitly present in the pre-training033

corpus (Gururangan et al., 2020; Petroni et al.,034

2021; Schick and Schütze, 2020). Specifically, one035

type of knowledge that models often struggle with036

is the visual knowledge of common objects such as037

attributes (e.g. appearance, measurable quantity)038

and affordances. This is because this kind of knowl-039

edge is rarely explicitly described in the training040

1Code and data have been uploaded and will be published.

Interesting facts about orange !

1. Orange elevates mood levels.
2. Orange are often grown in the Mediterranean.
3. Oranges facing the sunnier tend to be sweeter.Human

Typical facts about orange …

1. Orange is a shape of circle.
2. Orange is a color of orange.

Report

Already knows... 
May not report

Figure 1: Reporting Bias. People tend to report what
interests them rather than typical and general facts.

text due to reporting bias. For example, as shown 041

in Figure 1, people tend to report what interests 042

them rather than general facts such as a shape or 043

color of oranges they already know. 044

Towards better knowledge-enhanced PTLMs, re- 045

cent works incorporate external knowledge bases 046

(e.g., knowledge graph, dictionary) to inject entity 047

knowledge into PTLMs (Zhang et al., 2019; Peters 048

et al., 2019; Wang et al., 2021; Yu et al., 2021) or 049

retrieve knowledge from external knowledge bases 050

to solve the problem (Lin et al., 2019; Wang et al., 051

2020). However, these approaches still suffer from 052

a lack of visual knowledge that is important to un- 053

derstand the real world. 054

In this paper, we conduct systematic experi- 055

ments to understand whether such visual knowl- 056

edge can be transferred into LMs, and if so, how 057

to perform effective knowledge transfer. Specifi- 058

cally, we look into a series of analysis question as 059

follows: (1) Can intermediate pre-training (Pruk- 060

sachatkun et al., 2020) on image-caption pairs help 061

transfer the knowledge? (2) What types of knowl- 062

edge sources are more helpful? To answer ques- 063

tions, we explore various intermediate pre-training 064

tasks (Pruksachatkun et al., 2020) on two different 065

sources: text-only (text knowledge transfer from 066

visual domains) and image-caption pairs (cross- 067

modal knowledge transfer). 068

For the text knowledge transfer, we utilize text 069

corpus from visual domain, e.g., image captions. 070

We leverage two training objectives for the lan- 071
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(a) Masked Language Modeling

(b) Text Contrastive Learning (TCL)
(e) Cross-modal Knowledge Distillation (CMKD)
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Figure 2: Illustration of different methods for transferring visual knowledge into transformer-based language
model. In this example, we assume image-caption pair as an input. (a) masked language model (Devlin et al.,
2018) on image captions. (b) text contrastive learning obtains positive example by dropout representation to learn
better sentence representation while negative augmentation is optional. (c) voken classification employs token-level
text-to-image retrieval to transfer visual knowledge. (d) cross-modal contrastive learning aims to train correct
paring of images and captions. (e) cross-modal knowledge distillation transfers knowledge from the teacher model,
which is trained by cross-modal contrastive learning, into student model.

guage model: (1) masked language modeling fol-072

lows the domain adaptive pre-training scheme (Gu-073

rurangan et al., 2020), assuming the corpus con-074

tains enriched visual knowledge or physical com-075

monsense knowledge; (2) text contrastive learning076

augments the sentence representation with dropout077

to create positive samples while considering all078

others in the batch as negative samples for the con-079

trastive learning (Gao et al., 2021), assuming train-080

ing better sentence representations leads to better081

understanding of the corpus.082

For the cross-modal knowledge transfer, we ex-083

plore multiple methods to transfer visual-related084

knowledge to LMs: (1) masked language model-085

ing with visual clues incorporates visual clues to086

capture dependencies between visual and linguis-087

tic contents (Su et al., 2019); (2) voken classifica-088

tion contextually aligns language tokens to their089

related images (called "vokens") to transfer visual090

knowledge into LMs (Tan and Bansal, 2020); (3)091

cross-modal contrastive learning aims to improve092

text representations by maximizing the agreement093

between correct image-text pairs versus random (in-094

batch) and adversarial negative pairs by contrastive095

learning between image and text modalities; and096

(4) cross-modal knowledge distillation transfers097

the knowledge from the teacher model, which is098

trained by cross-modal contrastive learning on im-099

age and text modalities, to the student language100

model using knowledge distillation.101

We perform comprehensive comparisons on102

five downstream tasks that may require visual 103

or physical commonsense knowledge, including 104

PIQA (Bisk et al., 2020), Visual Paraphrasing 105

(VP) (Lin and Parikh, 2015), CSQA (Talmor et al., 106

2018), OBQA (Mihaylov et al., 2018), and Rid- 107

dleSense (Lin et al., 2021). Results suggest that: 108

(1) Simple intermediate pre-training on captions 109

can help improving performance on commonsense 110

reasoning that needs physical or visual knowledge. 111

(2) Cross-modal knowledge transfer approaches 112

consistently improve the performance in a large 113

margin when only few train examples are available. 114

(3) Cross-modal contrastive learning shows that it 115

is best for packaging visual knowledge into LMs. 116

2 Analysis Setup 117

In this work, we study how to transfer the visual 118

knowledge into language models. For this study, 119

we introduce our analysis setup: problem formula- 120

tion, analysis questions, and knowledge corpora. 121

2.1 Problem Formulation 122

We focus on a pre-trained text encoder fL and 123

an image encoder fV if images are available. fL 124

and fV are initialized with pre-trained model and 125

we continue to pre-train the models on different 126

sources and tasks, which we call intermediate pre- 127

training. After the intermediate pre-training, we 128

fine-tune fL on downstream NLU tasks. Exist- 129

ing NLU benchmarks have been trained against 130

standard supervised learning paradigms that typi- 131
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cally require a large number of question answering132

examples which need a large annotation efforts.133

However, in scenarios where the number of labeled134

examples is small, the model tends to overfit the135

training examples and shows poor generalization136

performance on test set. Here, we evaluate the in-137

termediate pre-training objective’s generalization138

ability on test set in both fully supervised and low-139

resource settings.140

2.2 Analysis Questions141

In this paper, we provide a comprehensive study142

for transferring the visual knowledge into LMs.143

Visual knowledge transfer can be done in two ap-144

proaches, depending on the source to be trained:145

(1) Text knowledge transfer using the text corpus146

in the visual domain, e.g., image captions and (2)147

cross-modal knowledge transfer which passes vi-148

sual knowledge about common objects to LMs by149

training over paired image and captions. By evalu-150

ating the model on 5 downstream datasets that re-151

quire physical and visual commonsense knowledge,152

we explore following three research questions.153

Q1: Can intermediate pre-training on external154

knowledge sources help transfer visual knowl-155

edge to augment text encoders? We investigate156

diverse intermediate pre-training methods with ex-157

ternal knowledge sources including caption data to158

inject visual information from images and captions159

into LMs. We first analyze the performance of text160

and cross-modal knowledge transfer methods with161

a image-caption dataset, and we additionally study162

text knowledge transfer methods with other text cor-163

pora such as GenericsKB (Bhakthavatsalam et al.,164

2020), Wiki103 (Merity et al., 2016) and BookCor-165

pus (Zhu et al., 2015a).166

Q2: What types of knowledge sources are more167

helpful for visual knowledge transfer? As men-168

tioned above, we have two categories to exploit169

visual information: (1) text knowledge transfer and170

(2) cross-modal knowledge transfer. Here, we ex-171

plore which type of knowledge transfer is more172

useful to transfer the visual knowledge into LMs.173

Q3: What intermediate pre-training objectives174

are effective for cross-modal knowledge trans-175

fer? We present three pre-training objectives for176

cross-modal knowledge transfer: (1) voken clas-177

sification, (2) contrastive learning, and (3) knowl-178

edge distillation. Here, we want to present which179

strategy is best suited for cross-modal knowledge180

transfer. Furthermore, we study how to enhance181

Dataset # Train # Dev # Test # choices

PIQA 14,113 1,838 2,000 2
VP 21,988 2,000 6,057 2
CSQA 8,500 1,221 1,241 5
OBQA 4,957 500 500 4
RiddleSense 3,510 1,021 1,202 5

Table 1: Downstream task data statistics. We create
in-house test set for PIQA and CSQA, and in-house dev
set for VP by splitting the train set.

cross-modal contrastive learning with adversarial 182

negative samplings. 183

2.3 Pre-training Data 184

To transfer the visual knowledge, we collect 250K 185

image-caption pairs from MS COCO (Lin et al., 186

2014; Chen et al., 2015). MS COCO is a large 187

scale dataset that contains images reflecting the 188

composition of actual everyday scenes and corre- 189

sponding captions which describe contextual rea- 190

soning between objects in the scene. We only use 191

captions for text knowledge transfer while we use 192

both images and captions for cross-modal knowl- 193

edge transfer. As an ablation study, we explore 194

other text corpora such as GenericsKB (Bhaktha- 195

vatsalam et al., 2020), Wiki103 (Merity et al., 2016) 196

and BookCorpus (Zhu et al., 2015a). 197

2.4 Downstream Tasks and Datasets 198

For downstream benchmarks, we find tasks that can 199

benefit from visual knowledge: multiple choice 200

question answering tasks including PIQA (Bisk 201

et al., 2020) which requires physical common- 202

sense reasoning, CSQA (Talmor et al., 2018) for 203

general understanding of commonsense reason- 204

ing, OBQA (Mihaylov et al., 2018) that needs 205

elemenatry-level science knowledge, and Riddle- 206

Sense (RS) (Lin et al., 2021) for complex un- 207

derstanding of figurative language, and binary 208

classification task including Visual Paraphrasing 209

(VP) (Lin and Parikh, 2015) that needs scene un- 210

derstanding. We use in-house test sets made from 211

training sets for PIQA and CSQA since test set 212

is not provided to public. We list the data stat- 213

ics in Table 1. Moreover, We additionally test on 214

GLUE (Wang et al., 2018) to evaluate the general 215

text understanding. 216

2.5 Evaluation Protocol 217

We evaluate the models in both fully supervised 218

and low-resource settings. For both settings, we 219

consider accuracy for 5 different classification tasks 220
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and get average performance over tasks to check221

the final performance. In fully supervised setting,222

we evaluate models with 3 different random seeds223

and report the average accuracy. In a low-resource224

setting, we consider the size of train data to 64 or225

128. For each experiment, we run over 5 different226

sub-samples and show the average accuracy.227

3 Method228

In this section, we introduce the following two229

approaches to integrate visual knowledge into LMs:230

(1) text knowledge transfer; and (2) cross-modal231

knowledge transfer. Throughout this section, we232

assume the data is a collection of image-caption233

pairs
{
(xvi , x

l
i)
}m

i=1
and image encoder fV and text234

encoder fL are given.235

3.1 Text Knowledge Transfer236

For text knowledge transfer, we investigate follow-237

ing pre-training objectives: (1) masked language238

modeling; and (2) text contrastive learning.239

Masked Language Modeling (MLM) Follow-240

ing BERT (Devlin et al., 2018), we select 15% of241

input tokens and replace them with [MASK]. Of242

the selected tokens, 80% are replaced, 10% are not243

changed and 10% are replaced by random vocab-244

ulary token. Here, we employ dynamic masking,245

which performs random masking and replacement246

during training to prevent the same masking for247

the same examples (Liu et al., 2019). MLM ob-248

jective is the cross-entropy loss for masked token249

predictions :250

ℓMLM(xli) = − log p(xli|xmasked), (1)251

where xi is the i-th token and xmasked is a mask.252

Text Contrastive Learning (TCL) Contrastive253

learning aims to learn representations by pulling254

positive pairs closer and pushing negative pairs255

apart. Here, we employ the contrastive framework256

with cross-entropy objective and in-batch negatives257

(Chen et al., 2020a; Gao et al., 2021). Given a258

text encoder fL, and a caption xli, we first get text259

representations using the encoders hli = fL(x
l
i).260

Following Gao et al. (2021), we augment identical261

positive sample hl
+

i by different dropout represen-262

tations. The contrastive loss is defined as follows:263

264

ℓli = − log
esim(hl

i,h
l+

i )/τ∑N
j=1 e

sim(hl
i,h

l+
i )/τ

, (2)265

A girl puts an apple in her bag.

A girl puts an [MASK] in her bag.

Mask a token

A girl puts an envelope in her bag.

Top-k predictions 
from LM

Figure 3: LM perturbation. We create adversarial
negatives using language models.

where N is a batch size and sim(·) represents co- 266

sine similarity, i.e., sim(u, v) = u · v/∥u∥∥v∥. τ 267

represents a temperature parameter. 268

3.2 Cross-modal Knowledge Transfer 269

Language models might learn additional informa- 270

tion from visual sources such as images and cap- 271

tions. So we include a variety of vision-based ap- 272

proaches and investigate the approaches whether 273

they can benefit from visual sources. We introduce 274

vision-based approaches as follows. 275

Voken Classification Vokenization (Tan and 276

Bansal, 2020) employs token-level text-to-image 277

retrieval to transfer visual knowledge. It aligns 278

language tokens to their related images (called “vo- 279

kens”) to transfer visual knowledge into LMs, and 280

call “voken classification”. Given text x and a vo- 281

ken vi for the i-th token, the loss is defined as 282

ℓvoken
i = − log(p(vi|x)). (3) 283

Similar to masked language modeling, it classifies 284

each token to a corresponding voken. Vokenization 285

trains language models with the voken classifica- 286

tion task and MLM. 287

Masked Language Modeling with Visual Clues 288

VL-BERT (Su et al., 2019) adopts masked language 289

modeling with visual clues in which models are 290

given a caption with masked tokens and an im- 291

age and predict the masked tokens using visual 292

clues. VL-BERT is pre-trained on Conceptual Cap- 293

tions (Sharma et al., 2018) as an image-caption 294

corpus, and BooksCorpus (Zhu et al., 2015b) and 295

English Wikipedia as text-only corpora. It shows 296

its effectiveness in many vision-language tasks. We 297

investigate whether this model also succeed in NLP 298

tasks and compare it with others. 299

Cross-modal Contrastive Learning (CMCL) 300

To harness the visual knowledge from image- 301

caption datasets, we adopt contrastive loss on im- 302

age and text vectors. Given an image encoder fV , a 303
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text encoder fL, and an image-caption pair (xvi , x
l
i),304

we first get image and text representations using305

the encoders hvi = fV (x
v
i ), h

l
i = fL(x

l
i). Then306

the contrastive learning objective contains two loss307

functions: an image-to-text contrastive loss ℓ(v,l)308

and and a text-to-image contrastive loss ℓ(l,v). The309

image-to-text contrastive loss is defined as follows:310

311

ℓ
(v,l)
i = − log

esim(hv
i ,h

l
i)/τ∑N

j=1 e
sim(hv

i ,h
l
j)/τ

, (4)312

where N is a batch size and sim(·) represents co-313

sine similarity. This loss encourages a closer dis-314

tance between representations of aligned image-315

caption pairs than unaligned pairs given an image316

and multiple captions. Similarly, the text-to-image317

contrastive loss ℓ(l,v) is defined as follows:318

ℓ
(l,v)
i = − log

esim(hl
i,h

v
i )/τ∑N

j=1 e
sim(hl

i,h
v
j )/τ

. (5)319

The final loss is defined as320

L =
1

N

N∑
i=1

(ℓ
(v,l)
i + ℓ

(l,v)
i ). (6)321

CLIP (Radford et al., 2021) and ConVIRT (Zhang322

et al., 2020) also adopt contrastive learning, but we323

freeze the image encoder in training and use the324

trained text encoder for downstream tasks.325

CMCL with Adversarial Negative Samples326

(ANS) As in-batch negatives in CMCL are not327

challenging enough for models to distinguish, we328

present adversarial negative sampling strategy to329

improve CMCL. Given an image-caption pair330

(xvi , x
l
i), we define a LM-perturbed sentence xl

−
i ,331

which is a hard negative where n is replaced with a332

different word n′ from a probability distribution of333

PTLMs. We expect the l− is syntactically correct334

and plausible sentence even the word n is replaced335

to n′, while it does not semantically match to the336

corresponding image xvi . With such hard nega-337

tive, we try to make more challenging task so that338

models can effectively learn from the task. For ex-339

ample, we choose a word ‘girl’ in the sentence ‘A340

girl puts an apple in her bag.’ in Figure 3. Then we341

mask the word with [MASK] token to do masked342

token predictions by PTLMs. Then we get top-343

k predictions from language models and replace344

the masked tokens with one of the predicted ones.345

To avoid false negative sentences which may have346

the same semantics as the original sentence, we347

introduce an additional filtering step: if the masked 348

predictions are synonyms or hypernyms of the orig- 349

inal tokens, we discard the predictions. We use 350

WordNet (Miller, 1995) to find synonyms and hy- 351

pernyms. The contrastive loss with hard negative 352

is defined as follows: 353

− log
esim(hv

i ,h
l
i)/τ∑N

j=1 e
sim(hv

i ,h
l
j)/τ +

∑M
k=1 e

sim(hv
i ,h

l−
j )/τ

,

(7) 354

where M is the number of hard negative samples 355

per positive pair. This formula is only for image-to- 356

text contrastive loss ℓ(v,l) and final loss is defined 357

to same as equation (6). 358

CMCL with Positive Sample Augmentation 359

(PSA) In ANS, we filter perturbed sentences 360

where the masked predictions are synonyms or hy- 361

pernyms of the original tokens. Instead of exclud- 362

ing these perturbed sentences, another option is to 363

include them as additional positive samples l+ to 364

the paired images. We name this as positive sample 365

augmentation (PSA). It also adopts LM-perturbed 366

negative samples as in ANS. 367

Cross-modal Knowledge Distillation (CMKD) 368

Cross-model knowledge distillation is to transfer 369

knowledge between different modalities, e.g., im- 370

age modality and text modality. In this category, 371

CMKD is to transfer knowledge from a teacher 372

model which is knowledgeable about visual infor- 373

mation. VidLanKD (Tang et al., 2021) also uti- 374

lizes a cross-modal knowledge distillation method 375

to help with general language understanding. A 376

teacher model is first trained using contrastive 377

learning on a video-text dataset, and then it trans- 378

fers its knowledge to a student language model 379

using KD on a text corpus. Their contrastive learn- 380

ing loss (hinge loss) is defined as 381

382

L =
N∑
i

[max(0, α−sim(hvi , h
l
i)+sim(hv

′
i , h

l
i)) 383

+max(0, α− sim(hvi , h
l
i) + sim(hvi , h

l′
i ))], (8) 384

where v′ and l′ are a random image and caption text, 385

respectively. α is the margin between the similari- 386

ties of a positive pair and a negative pair. Instead of 387

video datasets, we use a MS COCO dataset to train 388

a teacher model and use two versions of contrastive 389

learning, equations (6) and (8). 390

As another version of CMKD, we consider dis- 391

tilling visual knowledge from a pre-trained vision- 392
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Model PIQA VP CSQA OBQA RiddleSense Average

64 128 64 128 64 128 64 128 64 128 64 128

- BERT-base 52.6±0.9 53.8±0.1 85.9±1.1 86.6±0.7 35.8±0.7 37.8±0.3 31.3±1.2 32.0±0.7 24.7±0.1 25.2±0.2 46.1 47.1

C
ap

tio
n MLM 53.1±0.2 54.3±0.3 86.5±0.3 87.3±0.4 35.7±0.3 36.7±0.1 33.4±0.6 34.2±0.3 26.3±0.1 26.5±0.2 47.0 47.8

TCL 52.6±0.5 52.9±0.6 86.4±0.1 88.0±0.1 35.7±0.2 36.1±0.3 34.2±1.4 35.2±0.7 30.3±0.5 30.7±0.4 47.8 48.5
TCL + MLM 53.6±0.7 54.6±0.2 84.2±0.2 87.6±0.3 33.6±2.2 35.1±0.6 31.8±2.3 34.3±0.5 20.6±0.0 20.6±0.0 44.7 46.4
TCL + ANS 50.0±0.7 50.5±0.6 67.3±0.4 68.2±0.7 26.8±1.2 27.5±0.5 33.4±1.1 35.0±1.0 26.1±1.7 26.5±1.8 40.7 41.5
TCL + PSA + ANS 51.1±0.1 51.2±0.4 66.0±0.0 66.0±0.0 22.7±0.9 22.9±0.1 30.2±3.1 31.8±0.4 23.5±1.2 25.2±1.5 38.7 39.4

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 53.1±0.6 53.9±0.4 88.5±0.3 88.4±0.5 36.2±0.7 36.8±0.8 33.4±1.2 34.6±1.2 26.1±0.8 26.1±0.9 47.7 48.5

Vokenization 50.5±0.5 51.1±0.4 68.8±1.6 78.1±1.9 19.2±1.4 21.5±0.8 31.2±2.7 33.2±2.2 17.1±0.5 16.7±0.7 37.3 40.1
VidLanKD 55.0±0.4 55.6±0.5 86.7±0.5 88.5±0.5 37.1±1.0 38.6±0.5 31.8±1.3 32.6±1.0 24.4±0 24.4±0 47.0 47.9
VidLanKD variant 55.3±0.3 55.2±0.4 87.4±0.1 88.2±0.6 37.3±1.2 38.9±0.5 32.4±2.1 32.2±1.1 24.4±0.0 24.4±0.0 47.3 47.7
CMKD (VL-BERT-large) 54.7±0.5 54.5±0.2 86.5±0.8 88.4±0.4 36.7±0.4 38.5±0.4 29.8±0.8 31.7±0.2 25.2±0.1 25.2±0.0 46.5 47.6
CMCL 54.7±0.4 55.1±0.1 87.9±0.3 88.9±0.2 36.3±0.3 38.4±0.4 31.1±1.1 32.8±0.9 25.0±0.2 25.4±0.4 47.0 48.1
CMCL + ANS 55.4±0.1 55.7±0.2 88.1±0.9 88.9±0.7 37.5±0.8 39.0±0.2 32.2±0.7 32.0±0.6 27.4±0.0 27.5±0.1 48.1 48.6
CMCL + PSA + ANS 55.4±0.2 55.1±0.2 88.8±1.0 88.2±0.2 37.0±0.3 38.1±0.3 34.1±0.4 34.8±0.9 26.7±0.4 28.8±0.7 48.4 49.0

Table 2: Performance (accuracy) in low-resource setting. We test models on diverse datasets with low-resource
learning (64 and 128 training samples). We use captions in the MS COCO dataset for text knowledge transfer
methods and images and captions for cross-modal knowledge transfer methods. We get average performance on 64
and 128 training samples. Bold and underlined numbers refer to the best and second-best performance, respectively.

language model, VL-BERT, which is knowledge-393

able about grounded language. We adopt masked394

language modeling on Wikitext103 (Merity et al.,395

2016), a subset of English Wikipedia, in the396

knowledge distillation step. For knowledge dis-397

tillation, we adopt Neuron Selectivity Transfer398

(NST) (Huang and Wang, 2017), which proves the399

effectiveness in VidLanKD (Tang et al., 2021).400

4 Experimental Settings401

For all the approaches, we use402

bert-base-uncased (Devlin et al., 2018)403

as text encoder fL and ResNeXt101 (Xie et al.,404

2017) as an image encoder fV . For text knowledge405

transfer, (1) MLM follows the exact setting of406

codebase in huggingface2 which uses dynamic407

masking strategy to conduct language modling408

task. (2) TCL conducts contrastive learning with409

fL. We choose the best checkpoint by the best410

spearman correlation on STSb (Cer et al., 2017).411

For cross-modal knowledge transfer, (1) CMKD412

explores VL-BERT, Vokenization, and VidLanKD413

approaches. Here, we use VL-BERT-large model414

to do CMKD. Vokenization uses a checkpoint415

from their official codebase3 and VidLanKD trains416

a teacher model by two versions of contrastive417

learning (equations (6) and (8)) on MS COCO418

dataset. We set α = 1 in VidLanKD (equation (8)).419

(2) CMCL conducts contrastive learning with fL420

and fV . Here, we set τ = 0.05 (equations (4) and421

(5)). (3) CMCL with ANS chooses three noun422

words or verb words to do masked prediction and423

2
https://github.com/huggingface/transformers/

tree/master/examples/pytorch/language-modeling
3
https://github.com/airsplay/vokenization

Model PIQA VP CSQA OBQA RiddleSense Average

- BERT-base 62.5±1.3 93.1±0.4 53.2±1.2 52.2±0.5 38.9±0.9 59.9
C

ap
tio

n
MLM 63.8±0.9 93.5±0.1 52.6±0.3 53.9±1.1 39.3±1.4 60.6
TCL 62.1±0.5 93.5±0.4 49.0±0.5 54.1±1.0 41.2±0.3 60.1
TCL + MLM 62.3±0.7 93.2±0.3 49.0±0.4 49.0±0.8 40.5±0.5 58.8
TCL + ANS 60.1±1.2 93.3±0.1 47.0±0.1 50.2±0.9 36.7±0.8 57.4
TCL + PSA + ANS 59.5±1.0 92.4±0.3 34.0±1.3 44.6±1.4 28.4±2.3 51.7

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 63.8±1.5 93.6±0.1 50.3±1.1 49.6±2.3 39.1±1.0 59.2

Vokenization 58.4±5.1 92.7±0.3 45.0±0.2 48.1±0.8 33.5±0.7 55.5
VidLanKD 63.1±1.1 93.7±0.4 52.4±0.8 50.6±3.9 39.5±1.7 59.8
VidLanKD variant 64.1±0.2 93.8±0.3 53.6±0.5 47.9±4.3 38.8±2.0 59.6
CMKD (VL-BERT-large) 63.8±0.0 93.7±0.7 53.3±1.4 48.7±3.0 38.7±0.4 59.6
CMCL 62.7±0.1 93.3±0.3 50.8±0.9 52.3±0.7 37.6±1.0 59.2
CMCL + ANS 63.5±0.1 93.3±0.3 50.3±0.1 52.9±0.3 38.4±0.9 59.7
CMCL + PSA + ANS 63.9±0.5 94.3±0.1 50.9±0.3 52.4±1.2 39.0±0.3 60.1

Table 3: Performance (accuracy) in fully supervised
setting. Bold and underlined numbers refer to the best
and second-best performance, respectively.

use top-5 predictions from fL as replacement. We 424

filter out synonyms and hypernyms of original 425

words using WordNet (Miller, 1995). (4) CMCL 426

with PSA includes the perturbed sentences with 427

synonyms and hypernyms as additional positive 428

samples. In CMCL, we adopt ResNeXt101 (Xie 429

et al., 2017) as an image encoder fV and BERT 430

as a text encoder fL. TCL and CMCL train with 431

batch size 64, maximum sequence length 20, 432

learning rate 1e-4 for 3 epochs. For fine-tuning on 433

downstream tasks, we do grid search on learning 434

rates {5e-5, 1e-4, 3e-4, 4e-4, 5e-4, 6e-4} and 435

choose the best learning rate. We set maximum 436

epochs to 30 in low-resource and 15 in fully 437

supervised settings. 438

5 Results and Analysis 439

We analyze the main results of intermediate pre- 440

training. Tables 2 and 3 show the main results of 441

low-resource learning and fully supervised learning 442

with the MS COCO captioning dataset, respectively. 443

We train the models with a few training examples, 444
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Model RTE MRPC STS-B CoLA SST-2 QNLI QQP Avg.

- BERT-base 70.0 87.9 89.1 57.4 91.3 90.4 89.3 82.3
C

ap
tio

n

MLM 62.8 87.0 89.1 53.9 92.6 91.1 90.9 81.0
TCL 58.4 83.1 88.2 55.5 91.9 91.4 90.9 79.9
TCL + MLM 54.8 81.6 87.2 53.6 91.9 90.9 89.2 78.5
TCL + ANS 56.3 83.9 87.0 51.5 91.3 91.2 89.4 78.6
TCL + PSA + ANS 52.3 75.6 81.5 17.4 90.0 85.8 88.2 70.1

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 57.4 85.7 89.5 58.1 90.6 89.7 88.7 80.0

Vokenization 53.0 87.0 83.3 51.3 91.4 89.2 88.5 77.7
VidLanKD 67.5 87.8 89.4 57.7 90.7 90.3 88.6 81.7
VidLanKD variant 68.5 87.9 89.7 54.9 91.1 90.5 88.6 81.6
CMKD (VL-BERT-large) 68.5 88.5 89.3 55.4 90.9 89.7 88.6 81.6
CMCL 63.5 82.5 89.5 51.1 90.4 90.0 88.4 79.3
CMCL + ANS 69.6 86.8 89.4 56.1 90.7 90.5 88.6 81.7
CMCL + PSA + ANS 69.8 86.2 89.0 55.3 90.4 90.5 88.6 81.6

Table 4: Performance (accuracy) on GLUE bench-
mark. Bold and underlined numbers refer to the best
and second-best performance, respectively.

64 and 128, to understand the better initialization.445

We argue that if a model obtains better performance446

in the low-resource setup, then it is a faster learner447

and has better generalization on downstream tasks.448

Can text intermediate pre-training help improve449

text encoders? Text intermediate pre-training us-450

ing MLM and TCL on a caption corpus improves451

the performance on downstream tasks in both low-452

resource and fully supervised settings. In particu-453

lar, TCL shows significant improvement on OBQA454

and RiddleSense over BERT. These results suggest455

that text intermediate pre-training on visual-related456

datasets helps performance on commonsense rea-457

soning tasks.458

Can cross-modal intermediate pre-training help459

transfer visual knowledge to augment text en-460

coders? We observe that cross-modal intermedi-461

ate pre-training is helpful in both fully supervised462

and low-resource settings (See Table 2 and 3).463

Specifically, CMKD with VidLanKD variant out-464

performs the baseline by 1.6% point on the PIQA465

dataset in fully supervised setting. CMCL also466

shows its effectiveness. However, we could find467

that it becomes more powerful when equipped with468

PSA and ANS. It suggests that data augmentation469

for positive and negative sampling is an important470

factor for CMCL. In low-resource setting, we find471

that cross-modal knowledge transfer helps better472

initialization and let models learn new tasks faster.473

What intermediate pre-training objectives are474

effective for cross-modal knowledge transfer?475

Among various cross-modal knowledge transfer476

methods, we study which method is the most effec-477

tive for cross-modal knowledge transfer. Overall,478

CMCL with PSA and ANS shows the best perfor-479

mance among all cross-modal methods. Interest-480

ingly, VL-BERT also shows better performance481

than BERT-base on all datasets in the low-resource 482

setting. This suggesting that exploiting images in 483

masked language modeling task help transfer the 484

knowledge to language models. 485

What types of knowledge sources are most help- 486

ful? Here, we investigate whether using an im- 487

age source in addition to a text source can further 488

improve the model. To answer this question, we 489

analyze methods from different types of sources: 490

text-only and text-image pair sources. We focus on 491

the methods that use the contrastive learning objec- 492

tive: TCL and CMCL. Note that these two methods 493

share the same objective but CMCL trains on cross 494

modalities which are images and captions while 495

TCL only trains on captions Overall, TCL performs 496

slightly better than CMCL in low-resource and 497

fully supervised settings. Interestingly, additional 498

negative samples (ANS) and positive samples in 499

TCL decreases the performance while they help 500

CMCL to improve the performance. We conjec- 501

ture that perturbed sentences in ANS might not be 502

semantically negative to the original sentence so 503

models learn from wrong labels. 504

5.1 Ablation Study 505

How do models perform on general NLU tasks? 506

Table 4 presents results on GLUE benchmark. 507

In GLUE, text intermediate pre-training methods 508

slightly underperform the original BERT-base. We 509

conjecture that the intermediate pre-training on cap- 510

tion data might sacrifice knowledge of general lan- 511

guage understanding. 512

Analysis on diverse text corpora Table 5 rep- 513

resents text approaches with different pre-training 514

corpora: MS COCO captions (Lin et al., 2014; 515

Chen et al., 2015), GenericsKB (Bhakthavatsalam 516

et al., 2020), BooksCorpus (Zhu et al., 2015a), and 517

WikiText103 (Merity et al., 2016). We notice that 518

caption datasets are useful on OBQA and Riddle- 519

Sense datasets while GenericsKB are the most help- 520

ful on PIQA datasets. Results are expected since 521

GenericsKB contains a lot of everyday statements 522

that contain various types of commonsense. 523

Different training sizes. We test different train- 524

ing sizes on PIQA in Fig. 4. In the experiment, 525

we observe that CMCL consistently outperforms 526

BERT on all training sizes. Additional negative 527

sample (ANS) improves the CMCL on different 528

training sizes, and positive sample augmentation 529

boosts the performance of CMCL further. This sug- 530
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Model PIQA VP CSQA OBQA RiddleSense

64 128 Full 64 128 Full 64 128 Full 64 128 Full 64 128 Full

- BERT-base 52.6±0.9 53.8±0.1 62.5±1.3 85.9±1.1 86.6±0.7 93.1±0.4 35.8±0.7 37.8±0.3 53.2±1.2 31.3±1.2 32.0±0.7 52.2±0.5 24.7±0.1 25.2±0.2 38.9±0.9

C
P. MLM 53.1±0.2 54.3±0.3 63.8±0.9 86.5±0.3 87.3±0.4 93.5±0.1 35.7±0.3 37.7±0.1 52.6±0.3 33.4±0.6 34.2±0.3 53.9±1.1 26.3±0.1 26.5±0.2 39.3±1.4

TCL 52.6±0.5 52.9±0.6 62.1±0.5 86.4±0.1 88.0±0.1 93.5±0.4 35.7±0.2 36.1±0.3 49.0±0.5 34.2±1.4 35.2±0.7 54.1±1.0 30.3±0.5 30.7±0.4 41.2±0.3

G
K

. MLM 53.2±0.1 53.6±0.4 64.9±0.1 86.2±0.9 87.6±0.3 93.0±0.3 34.6±0.7 35.3±1.3 51.6±0.5 31.7±0.9 32.3±1.0 53.1±0.9 25.8±0.6 26.3±0.1 39.3±0.7

TCL 56.0±1.0 56.4±0.2 64.4±0.1 88.9±0.7 89.4±0.2 93.3±0.5 37.8±1.2 38.7±0.5 51.0±0.5 31.7±0.9 32.3±1.0 52.6±0.8 27.4±0.2 28.1±0.7 40.9±0.8

B
C

. MLM 54.1±0.3 54.1±0.8 63.3±0.6 86.4±0.8 87.5±0.5 93.0±0.3 29.8±0.8 32.1±0.9 50.8±0.3 29.6±0.8 31.4±0.7 50.2±0.4 22.6±0.0 22.7±0.0 36.7±1.3

TCL 52.4±0.1 53.1±0.4 63.1±0.3 87.1±1.9 89.7±0.1 93.2±0.2 38.0±0.5 38.1±1.1 51.5±0.1 33.8±2.7 34.0 ±2.1 55.6±0.4 28.9±0.4 29.1±0.3 41.2±2.3

W
T. MLM 52.7±0.2 53.0±0.3 63.8±0.6 85.3±2.8 88.1±0.3 93.5±0.1 33.2±1.4 34.6±0.5 52.5±0.2 32.4±2.3 33.0±0.7 52.3±0.3 24.4±0.0 24.4±0.0 39.4±2.0

TCL 52.9±0.9 53.4±0.4 62.7±0.6 67.3±0.6 68.6±0.7 93.3±0.3 31.3±1.6 32.4±0.7 48.2±0.3 31.5±3.5 33.1±0.6 53.0±0.0 24.8±1.3 24.8±0.6 36.3±1.0

Table 5: Results of text knowledge transfer methods with different corpora. We pre-train text knowledge
transfer methods, MLM ans TCL, with different corpora. CP is MS COCO captions, GK is GenericsKB, BC is
BooksCorpus, and WT is WikiText. Bold and underlined numbers refer to the best and second-best performance,
respectively.
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Figure 4: Results on varying training sizes. We test
methods with different training sizes.

gests including perturbed sentences as positive and531

negative samples are useful to cross-modal knowl-532

edge transfer.533

6 Related Work534

Text Knowledge enhanced methods. Recently,535

huge efforts on integrating knowledge into PTLMs536

have been made. One typical form of knowledge537

is a knowledge graph. There have been efforts of538

using knowledge graph to inject entity and rela-539

tion representations, which are pre-computed from540

external source, into PTLMs (Zhang et al., 2019;541

Peters et al., 2019; He et al., 2020). Some other542

works try to retrieve or generate the sub-graph from543

the graph to solve the problem (Lin et al., 2019;544

Wang et al., 2020). Another existing form of knowl-545

edge is extra large-scale corpus. Works that use546

such corpus present knowledge-related pre-training547

objectives such as concept order recovering (Zhou548

et al., 2021), entity category prediction (Yu et al.,549

2020) and source of knowledge prediction (Wang550

et al., 2021). They are mostly focused on inject-551

ing world knowledge presented in text, rather than552

physical and visual commonsense knowledge that553

can be found in images.554

Cross-modal knowledge enhanced methods. 555

There is a extensive line of works for a variety 556

of vision-language tasks, such as VL-BERT (Su 557

et al., 2019), VisualBert (Li et al., 2019), and 558

Uniter (Chen et al., 2020b). These models aim to 559

improve vision-language tasks, e.g., VQA (Goyal 560

et al., 2017), and they are found to be not effec- 561

tive in improving language tasks (Tan and Bansal, 562

2020). Another line of works is to transfer visual 563

knowledge to language models: Vokenization (Tan 564

and Bansal, 2020) and VidLanKD (Tang et al., 565

2021). Vokenization employs token-level text-to- 566

image retrieval to transfer visual knowledge to lan- 567

guage models. For this, Vokenization introduces 568

30k vokens and matches each token into the lim- 569

ited voken space; it may have approximation errors. 570

VidLanKD adopts contrastive learning to train a 571

teacher model on video datasets and uses distilla- 572

tion approaches to distill visual knowledge from 573

the teacher to a student model. 574

7 Conclusion 575

We study whether intermediate pre-training on vi- 576

sual knowledge can help transfer visual knowledge 577

into LMs. We investigate text knowledge transfer 578

and cross-modal knowledge transfer using images 579

and captions. In our empirical analysis, we observe 580

that intermediate pre-training on captions can help 581

improving performance and cross-modal knowl- 582

edge transfer approaches consistently improve per- 583

formance. When the transfer methods are equipped 584

with additional positive and negative samples, they 585

show better performance. Future works include im- 586

proving both commonsense reasoning and general 587

language understanding. 588
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A Dataset Properties838

PIQA is a multiple-choice question answering task,839

which chooses the most appropriate solution for840

physical commonsense questions, which may need841

illustration or description of physical interaction in842

the real world. VP is to tell if two descriptions are843

describing the same scene or two different scenes.844

While they seem like purely textual tasks, they re-845

quire visual common sense to answer. CSQA is846

a multiple-choice question answering task that re-847

quires commonsense reasoning to answer. It is built848

from ConceptNet (Speer et al., 2017). OBQA is849

a multiple-choice question answering task, which850

is modeled after open book exams on elementary-851

level core science questions. The task generally852

requires open book fact but also additional com-853

monsense which can be learnt from scientific illus-854

tration. RiddleSense is a multiple-choice riddle-855

style question answering which requires complex856

commonsense reasoning ability and understanding857

of figurative language which may benefit from vi-858

sual knowledge.859
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