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Abstract

In the medical multi-modal frameworks, the alignment of cross-modality features
presents a significant challenge. However, existing works have learned features that
are implicitly aligned from the data, without considering the explicit relationships
in the medical context. This data-reliance may lead to low generalization of the
learned alignment relationships. In this work, we propose the Eye-gaze Guided
Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better
alignment of medical visual and textual features. We explore the natural auxil-
iary role of radiologists’ eye-gaze data in aligning medical images and text, and
introduce a novel approach by using eye-gaze data, collected synchronously by
radiologists during diagnostic evaluations. We conduct downstream tasks of image
classification and image-text retrieval on four medical datasets, where EGMA
achieved state-of-the-art performance and stronger generalization across different
datasets. Additionally, we explore the impact of varying amounts of eye-gaze data
on model performance, highlighting the feasibility and utility of integrating this
auxiliary data into multi-modal alignment framework.

1 Introduction

With the development of multi-modal learning, pre-trained models can now utilize large amounts
of paired multi-modal data, such as image-text pairs, audio-text pairs, etc., to optimize the multi-
modal feature extraction and alignment capabilities. With the emergence of the CLIP [42] model,
contrastive learning has become the prominent framework of multi-modal learning. The advantage
of this framework lies in its simplicity of structure and it does not require sample-level annotations.
However, the main drawback is its heavy reliance on the scale of training data. Subsequent works
have optimized this framework by leveraging potential auxiliary information between image and text
data. For instance, GLIP [32] and RegionCLIP [61] utilized pre-predicted annotation information to
perform fine-grained region-level pre-training. They introduced detection networks firstly to predict
image regions relevant to the text prompt, and then trained the model to align these image regions
with their corresponding text descriptions. However, these models heavily rely on the performance of
the ROI detector and have high computational complexity. FILIP [57] proposed a refined multi-modal
alignment operation after the encoder, relying solely on image patches and text tokens. Although this
further explores the local feature relationships between multi-modal data, it still requires sufficient
data support. When training on small-scale datasets, especially in the medical field, accurately
learning alignment features between modalities becomes more challenging [6, 60].
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To address the scarcity of medical data, studies [4, 58] have introduced self-supervised training into
the CLIP framework to further enhance encoder performance. Additionally, weak labels between
images and texts have been incorporated during pre-training to aid multi-modal alignment [55]. Some
studies [15, 53] utilized fine-grained alignment between chest image patches and text tokens for
pre-training [57]. However, unlike natural images and text, the relationship between medical images
and diagnostic text is often more complex and challenging to learn. Moreover, with insufficient
data, models are prone to learning shortcut features unrelated to disease diagnosis, resulting in poor
generalization ability [10, 36, 35]. Therefore, it is crucial to learn useful alignment information from
relatively limited medical multi-model datasets.
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Figure 1: The guiding role of radiologists’ eye-gaze data. The text provided by radiologists during
diagnosis aligns naturally with the attention regions.

In this study, we fully explore the auxiliary role of eye-gaze data from radiologists in multi-model
alignment. Eye-gaze data can intuitively reflect the image regions radiologists focus on, providing
insights into their cognitive behavior during diagnosis [7]. Therefore, compared to refined annotations
like bounding boxes and masks, eye-gaze data can also provide useful auxiliary information for the
model [24, 54, 35]. Moreover, collecting eye-gaze data from radiologists during the diagnostic process
is more time-efficient than annotating bounding boxes and masks [25, 35]. For the multi-modal
medical dataset, EYE GAZE [22] and REFLACX [31] collected eye-gaze data from radiologists
while diagnosing chest X-rays. Additionally, these datasets recorded synchronized voice data, where
radiologists verbalized their diagnoses while observing the images. As shown in Fig. 1, we found
that the radiologists’ attention regions on the image naturally align with the diagnostic text over time.
Therefore, we believe this type of eye-gaze data can provide expert prior knowledge for training the
alignment between medical visual and textual features. Thus, considering the utilization of eye-gaze
data to assist in multi-modal model training, we propose the Eye-gaze Guided Multi-modal Alignment
framework (EGMA). Our model first segments the transcribed text into individual sentences and
obtains radiologists’ attention heatmaps. Subsequently, we obtain encoded features of image patches
and sentences through image and text encoders, generating instance-level similarity matrix. Then,
we compute the loss between this matrix and the attention heatmaps, integrating refined feature
representations for subsequent contrastive loss. To further leverage the assisting role of eye-gaze
data in aligning images and texts, we combine the eye-gaze heatmaps with the similarity matrix
derived from model, serving as weights to calculate cross-modality mapping loss. Experimental
results on zero-shot classification and retrieval tasks reveal that our framework surpasses other leading
methods in performance across diverse datasets and under multiple dataset size scenarios. Specifically,
the EGMA framework yielded a remarkable 3.9% improvement in image-to-text matching tasks
and an impressive 19.75% increase in text-to-image matching tasks. These results underscore the
cutting-edge and efficacious nature of our approach, highlighting its substantial advancements over
existing methodologies. We also explore the auxiliary effect of using eye-gaze data of different scales
on the model, finding that even a small portion of eye-gaze data can enhance the model’s multi-modal
processing capability. Moreover, the fine-tuned classification results of EGMA achieved the best
performance across multiple datasets. The code of this work is available on Github2.

In summary, the main contributions of this work are as follows:

2https://github.com/MoMarky/EGMA
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• We propose EGMA, a novel framework for medical multi-modal alignment, marking the
first attempt to integrate eye-gaze data into vision-language pre-training.

• EGMA outperforms existing state-of-the-art medical multi-modal pre-training methods, and
realizes notable enhancements in image classification and image-text retrieval tasks.

• EGMA demonstrates that even a small amount of eye-gaze data can effectively assist in
multi-modal pre-training and improve the feature representation ability of the model.

2 Related Works

Medical Vision-language Pre-training (Med-VLP): In pursuit of Artificial General Intelligence
(AGI), Vision-language Pre-training (VLP) has become a pivotal area in AI research. The advent of
the transformer architecture [51] has significantly accelerated progress in the multi-modal domain
by integrating vision and language, with VLP frameworks focusing on fusion encoders that use
cross-attention mechanisms to amalgamate visual and textual features [34, 47]. The introduction of
CLIP [42] marked a breakthrough, leading to numerous CLIP-based VLP frameworks incorporating
contrastive loss as a core component [57, 32]. In the medical field, ConVIRT [59] serves as an equiv-
alent to CLIP, while MedCLIP [55] addresses the challenge of insufficient paired image-text data by
integrating knowledge extraction techniques. BioViL [2] enhances performance through specialized
biomedical text BERT encoders in contrastive learning tasks. GLoRIA [15] proposes multi-modal
global-local representation learning, and MGCA [53] introduces alignment at pathological region,
instance, and disease levels. Furthermore, study [56] incorporates knowledge bases to infuse expert
medical knowledge into the system.

Eye-tracking Technology in Radiology: In medical imaging diagnostics, eye-tracking technology
has proven valuable for decades, revealing how experienced radiologists can quickly identify hidden
lesions through comprehensive observation [28, 29, 7, 26]. Integrating radiologists’ eye-gaze data
with deep learning models has significantly advanced the field. For instance, merging eye-gaze data
with Convolutional Neural Networks (CNNs) has enhanced lesion detection accuracy [24], and visual
search patterns in mammography have linked human visual attention with CNN performance [37].
Comprehensive datasets combining eye-gaze data and disease diagnoses have facilitated multi-task
processing [21], while attention consistency modules have improved CNN accuracy in diagnosing
osteoarthritis from knee X-rays [54]. Recently, integrating eye-gaze data with Vision Transformer
(ViT) models has further pushed the boundaries of medical image processing [35]. Additionally, multi-
modal guidance systems replicating eye tracking and probe manipulation in ultrasound examinations
have significantly enhanced scanning accuracy and efficiency [38]. Despite these advancements, fully
integrating eye-gaze data with image-text alignment strategies in medical vision-language models
remains an ongoing research challenge.

3 Method

As shown in Fig. 2, the framework of our proposed method consists of four main components. Firstly,
we extract features from image and text in part A to obtain a refined instance-level similarity matrix.
Secondly, in part B, we integrate textual transcripts derived from radiologists’ audio, images, and
eye-gaze data, to visualize and map radiologists’ attention onto specific regions of images during
diagnosis. This process establishes alignment between texts and images, facilitating model training.
The detailed gaze data processing methods are described in Sec. 3.1. Given that eye-gaze data tightly
links textual and localized visual information, after obtaining auxiliary information from part B,
we introduce eye-gaze guided refined alignment training strategies, as depicted in Parts C and D
of Fig. 2. Specifically, we introduce the optimization algorithm for eye-gaze guided fine-grained
text-image similarity matrix in Part C in Sec. 3.2. Finally, in Sec. 3.3, we present the algorithm for
eye-gaze guided cross-modality mapping.

3.1 Multi-modal Data Processing

With the development of data collection technologies such as eye-tracking and speech recognition, it
has become possible to collect and process multi-modal interaction data of radiologists during the
diagnostic process. In this work, we utilize MIMIC-EYE [14] datasets as our training set, consisting
of 3689 images extracted from the MIMIC datasets [19, 20, 18, 17]. Each sample is accompanied
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Figure 2: The framework of EGMA. After images and text are processed by the encoder in Part A,
patch feature and sentence feature representations are obtained, resulting in a fine-grained similarity
matrix for instances. Subsequently, the two types of eye-gaze-based auxiliary information obtained
in Part B are used for fine-grained and cross-mapping alignment in Part C and Part D, respectively.

by corresponding eye-tracking data and transcripts text. These eye-tracking data are provided by
the publicly available EYE GAZE [22] and REFLACX [31] datasets on PhysioNet [12]. Since each
modality is synchronized, the audio data is aligned with the eye-gaze data in time. By segmenting the
audio based on the time before and after the pronunciation of each word, we can align the transcripts
with the audio, thereby aligning sentence-level text with eye-gaze data. Subsequently, we generate
attention heatmap based on eye-gaze data and images to represent the image regions the radiologist
focuses on. Through the aforementioned data processing steps, we achieve precise alignment between
sentence-level text and image regions. Detailed processing method of eye-gaze and audio transcripts
can be found at Appendix D.

3.2 Eye-gaze Guided Fine-grained Alignment

The core idea of contrastive learning is to bring the features of related samples closer while pushing
away the features of unrelated samples. During the training progress of CLIP [42] model, assuming a
batch size of b and input data

{
xI
k, x

T
k

}
(k = 1, · · · , b) representing image-text pairs, global features

zIk = EI(x
I
k) ∈ R1×d and zTk = ET (x

T
k ) ∈ R1×d are obtained through image encoder EI and

text encoder ET . Subsequently, the cosine similarity sI2Tk,l and sT2I
k,l between the two modalities is

computed, with the following formula:

sI2Tk,l = cossim(zIk, z
T
l ), s

T2I
k,l = cossim(zTk , z

I
l ) 1 ≤ l ≤ b (1)

where cossim is cosine similarity, sI2Tk,l is the image-to-text similarity, sT2I
k,l is the text-to-image

similarity, and l is the index number of the another modality. Then, the image-to-text contrastive loss
LI2T
k for xI

k and text-to-image contrastive loss LT2I
k for xT

k can be formulated as:

LI2T
k (xI

k,
{
xT
l

}b

l=1
) = −1

b
log

exp(sI2Tk,k /τ)∑
l(exp(s

I2T
k,l /τ))

, LT2I
k (xT

k ,
{
xI
l

}b

l=1
) = −1

b
log

exp(sT2I
k,k /τ)∑

l(exp(s
T2I
k,l /τ))

(2)

where τ is a learned temperature. It is worth noting that in the calculation of the loss mentioned
above, both the image and text utilize global-level features, while the auxiliary information generated
from eye-gaze data emphasizes the local-level features between modalities. Therefore, based on [57],
we replace instance feature zIk and zTk with Pn

k ∈ Rn×d and Sm
k ∈ Rm×d, where P i

k(1 ≤ i ≤ n)
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is the i-th patch feature of xI
k and Sj

k(1 ≤ j ≤ m) is the j-th sentence feature of xT
k , and n,m are

the image patch number and the sentence number of report. Then we calculate the similarities of
sentence-to-patch xS2P

k ∈ Rm×n and patch-to-sentence xP2S
k ∈ Rn×m in one instance:

xS2P
k = cossim(Sj

k, P
i
k), x

P2S
k = cossim(P i

k, S
j
k) (3)

For each heatmap corresponding to a sentence, we initially divide it into n patches similar to the image.
Subsequently, we concatenate the heatmaps of m sentences to obtain the Gaze-guided Similarity
matrix GSk for input

{
xI
k, x

T
k

}
(as illustrated in Fig. 2.B). In this matrix, non-zero elements indicate

the semantic correlation between the corresponding sentences and image patches. Thus, we binarize
GSk, setting non-zero regions to 1, resulting in the Gaze-guided Label matrix GLk. After this
step, we compute the multi-label cross-entropy (MLCE) loss for xS2P

k and xP2S
k , completing the

optimization for fine-grained alignment between positive sample pairs
{
xI
k, x

T
k

}
, as follows:

fLS2P
k = mlce(xS2P

k , GLk), fL
P2S
k = mlce(xP2S

k , (GLk)
T) (4)

where mlce is the multi-label cross-entropy loss. Subsequently, we calculate the fine-grained features
ẑIk and ẑTk as follows:

ẑIk =
1

n

n∑
i=1

max
j

[(xP2S
k )ij ], ẑ

T
k =

1

m

m∑
j=1

max
i

[(xS2P
k )ji] (5)

Then, we replace the zIk, z
T
k with the updated ẑIk, ẑ

T
k in Eq. 1. Finally, the fine-grained image-to-text

loss L̂I2T
k and text-to-image loss L̂T2I

k are computed based on Eq. 2. The formula for our Eye-gaze
Guided Fine-grained (EGF) alignment loss is as follows:

LEGF =
1

2b

b∑
k=1

(fLS2P
k + fLP2S

k ) +
1

2

b∑
k=1

(L̂T2I
k + L̂I2T

k ) (6)

3.3 Eye-gaze Guided Cross-modality Mapping

In the previous section, we replaced the global instance logits in the traditional batch clip loss with
fine-grained instance logits that consider local features and optimized the alignment between these
local features using gaze information. The text in our work is recorded by radiologists while observing
images, implying a close semantic relationship between the focus region and the corresponding text.
To further optimize the alignment between modalities, we continue to incorporate eye-gaze data
assistance into the cross-modality mapping process. In this work, we first utilize matrices GSk, xP2S

k

and xS2P
k to generate the image-to-text and text-to-image alignment weight matrix W I2T ∈ Rn×m

and WT2I ∈ Rm×n. The calculation formula is as follows:

W I2T = norm(ω(xP2S
k ) +GSk), W

T2I = norm(ω(xS2P
k ) + (GSk)

T) (7)

where norm is normalization and ω consists of sparse and binarize operations. After obtaining the
weight matrix, we perform the mapping from text features Sm

k to image features Cross_Pn
k ∈ Rn×d

and from image features Pn
k to text features Cross_Sm

k ∈ Rm×d according to the following formula:

Cross_P i
k =

m∑
j=1

Sj
k ·W I2T

ij , Cross_Sj
k =

n∑
i=1

P i
k ·WT2I

ji (8)

where i ∈ [1, n] is the i-th patch feature of Pn
k and j ∈ [1,m] is the j-th sentence feature of Sm

k .
Subsequently, we use the mapped features along with the target features as inputs to compute the
alignment contrastive loss defined in Eq. 2, obtaining the image mapping loss mLI

k and the text
mapping loss mLT

k . The formula for our Eye-gaze Guided cross-model Mapping (EGM) loss is as
follows:

LEGM =
1

2

b∑
k=1

(mLI
k +mLT

k ) (9)

Finally, the total loss of our model within a batch is L = LEGF + LEGM . In our training
process, considering the proportion of eye-gaze data, batches may contain both types of data. When
encountering samples without eye-gaze data, the EGF module does not compute the loss from Eq. 4,
and the weight matrix in the Eq. 7 of EGM module also excludes the GSk.
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4 Experiments

In this study, we first conduct supervised and zero-shot classification as well as zero-shot retrieval
experiments in Sec. 4.1 to validate the model’s generalization performance and its representation
capability of multi-modal features. Then, in Sec. 4.2, we perform ablation studies on various modules
of EGMA. Additionally, to further investigate the auxiliary effect of eye-gaze data, we compare the
performance when guided by different amounts of eye-gaze data. Finally, in Sec. 4.3, we visualize
the model’s feature representations and the learned image-text relationships, further demonstrating
the model’s performance and interpretability.

4.1 Comparison with State-of-the-Arts

Image Classification We conduct supervised classification experiments on the CheXpert [16],
RSNA [44], and SIIM-ACR [45] datasets. CheXpert [16] is a large-scale public dataset for chest
radiograph interpretation, it comprises 224,316 chest radiographic images. Following [53], we
utilize the official training split as our training set, and the official validation set of 202 images with
expert-label as our test set. RSNA [44] is a comprehensive dataset for Pneumonia diagnosing. It
contains 29,700 chest X-ray images categorized into normal and pneumonia positive category.
We follow [53] to divide the data into 70% for training, 15% for validation, and 15% for testing.
SIIM-ACR [45] is a chest dataset used for pneumothorax diagnosing. It consists of 2379 images with
pneumothorax and 8300 images without pneumothorax. In this work, we utilize a subset defined
in [43] as our test set, with the remaining data used for training and validation. More details of dataset
can be found in the Appendix C.

In the supervised classification experiments, we adopt the linear classification settings [15], where
the pre-trained image encoder is frozen, and only a randomly initialized linear classification head
is trained. We adopt area under ROC curve (AUROC) metric to evaluate all model’s performance.
And for better validate the model’s efficiency, we test its performance using 1%, 10%, and 100% of
the training set. As shown in Tab. 1, our model achieved the best results compared to other models.
Additionally, with only 1% of the training set, our model outperformed the second-best model by
1.11%, 0.8%, and 1.94% on the CheXpert, RSNA, and SIIM-ACR datasets, respectively. Moreover,
as the amount of training data increased, the model’s performance improved significantly. This
demonstrates that, with the assistance of radiologists’ eye-gaze data, our model possesses strong
multi-modal feature representation capabilities.

Table 1: Comparison results of supervised classification task with other SOTA models on CheXpert,
RSNA, and SIIM-ACR datasets. Area under ROC curve (AUROC) is reported with different portions
of training data: 1%, 10%, 100%. Red and blue denote the best and second-best results.

Method CheXpert[16] RSNA [44] SIIM-ACR [45]

1% 10% 100% 1% 10% 100% 1% 10% 100%

ConVIRT [59] 85.90 86.80 87.30 77.40 80.10 88.60 - - -
BioViL [2] 81.95 85.37 88.62 81.76 85.68 88.64 80.26 82.79 90.51
MedKLIP [56] - - - 87.31 87.99 89.31 85.27 90.71 91.88
MGCA [53] 85.80 87.66 89.30 85.22 87.54 89.24 86.12 89.66 92.16
GLoRIA [15] 86.60 87.80 88.10 86.10 88.00 88.60 - - -
PRIOR [5] 86.16 87.08 89.08 86.72 88.07 89.19 88.35 89.72 92.49
MedCLIP [55] 85.74 87.49 88.02 87.61 88.19 89.10 88.84 91.13 92.18
EGMA(Ours) 87.71 88.92 89.50 88.41 89.40 90.10 90.78 92.17 93.29

We further conduct zero-shot classification tasks on the CheXpert5x200 [15], RSNA [44], and
SIIM-ACR [45] datasets. CheXpert5x200 includes five common chest diseases, Atelectasis,
Cardiomegaly, Consolidation, Edema, and Pleural Effusion, each with 200 chest X-rays. It
is important to note that the CheXpert training set does not include any data from CheXpert5x200, so
there is no data leakage issue. The test sets for RSNA and SIIM-ACR are the same as those used in
the supervised classification task. All text prompts are provided by a professional radiologist [15].
During testing, we calculated the similarity between image features and text prompt features for all
diseases, with the highest similarity indicating the predicted category. As shown in Tab. 2, CLIP [42]
performs poorly on medical images due to its training data primarily consisting of natural images. The
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Table 2: Comparison results of zero-shot classification tasks with other SOTA models on CheXpert
5x200, RSNA, and SIIM-ACR datasets. The Accuracy (Acc.) and F1-score (F1) metrics are reported.
Red and blue denote the best and second-best results.

Method CheXpert 5x200 [15] RSNA [44] SIIM-ACR [45]

Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑

CLIP [42] 20.10 9.12 25.03 22.07 49.39 47.98
GLoRIA [15] 53.30 48.99 29.15 28.54 22.57 22.57
PRIOR [5] 34.90 30.56 76.77 51.80 50.00 33.33
MGCA [53] 43.60 41.37 60.83 57.77 30.03 25.45
MedCLIP [55] 57.50 55.97 43.09 31.01 58.40 57.85
EGMA(Ours) 61.30 60.38 76.97 43.49 63.62 61.46

models in rows two to five use encoders pre-trained on medical datasets, and thus, their performance
is better than that of CLIP. Interestingly, the GLoRIA [15] and MGCA [53] perform worse than the
CLIP model in diagnosing pneumonia on the SIIM-ACR dataset. This indicates that these models
are significantly influenced by the data distribution, resulting in poor generalization performance.
Conversely, our EGMA achieves the best results in all other metrics, except for the F1-score on the
RSNA dataset. This demonstrates that our model, enhanced by eye-gaze data, has learned more
generalizable feature relationships between medical images and text, significantly improving its
generalization performance.

Image-text Retrieval To further validate the alignment capability of our model between visual and tex-
tual features, we compare the zero-shot retrieval performance of EGMA with other models on CheX-
pert 8x200 dataset [59]. Unlike CheXpert5x200 [15], CheXpert8x200 includes eight common chest
diseases, No Finding, Cardiomegaly, Edema, Pneumonia, Atelectasis, Pneumothorax,
Pleural Effusion, and Fracture, each with 200 chest X-rays and five corresponding text prompts.
It is worth noting that the prompts for retrieval tasks are different from those for classification tasks in
the previous section, but all are written by board-certified radiologists. In the image-to-text retrieval
task, we first compute the similarity between the image and all candidate texts, and then rank the
retrieved results. Similarly, in the text-to-image task, we compute the similarity between the textual
prompts and all images, and rank the retrieval results. We report Precision at Top-1, Top-5, and
Top-10, which reflect how many relevant examples are retrieved. As shown in Tab. 3, our model
achieves the best results in both retrieve tasks. Our model outperforms the second-best model in the
image-to-text and text-to-image retrieval tasks by 3.9%, 5.88%, and 4.33%, and 19.75%, 14.50%,
and 12% in terms of P@1, P@5, and P@10 metrics, respectively. This indicates that our model has
fully learned the relationship between images and texts, achieving better alignment effects.

Table 3: Comparison results of zero-shot retrieval task with other SOTA models on CheXpert 8x200
dataset. The Precision at Top-1, Top-5, and Top-10 are reported. Red and blue denote the best and
second-best results.

Method Image-to-text Text-to-image

P@1↑ P@5↑ P@10↑ P@1↑ P@5↑ P@10↑

CLIP [42] 12.75 12.48 10.03 5.00 12.50 12.50
MedCLIP [55] 14.50 15.98 15.86 12.50 12.50 15.00
MGCA [53] 35.00 27.80 23.33 45.00 47.50 44.00
GLoRIA [15] 38.75 31.62 24.51 52.50 49.00 50.25
ConVIRT [59] - - - 60.25 60.00 57.50
EGMA(Ours) 42.65 37.50 28.84 80.00 74.50 69.50

4.2 Ablation Study

To further validate the model’s performance, we conducted ablation experiments on the proposed EGF
and EGM modules, while also assessing the impact of the proportion of eye-gaze data on the model
results. As shown in the upper half of Tab. 4, the first row represents our Baseline model, where we
utilize the initialized weights pre-trained on CheXpert [16] and MIMIC-CXR [20] datasets [55]. The
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second row “MLCE” indicates that within our EGF module, the EGF loss is not further computed
beyond the Eq. 4, instead, only the multi-label cross-entropy (MLCE) loss between the eye-gaze
guided similarity matrix and the model’s output similarity matrix is calculated. The third row “EGF”
utilizes the Eye-gaze Guided Fine-grained loss described in Eq. 6. The fourth row “EGM” indicates
that the model is trained solely through the Eye-gaze Guide cross-model Mapping method. Finally,
the fifth row presents our proposed EGMA model, which integrates the aforementioned modules
guided by eye-gaze data.

Table 4: Comparison results of zero-shot classification ablation experiments on CheXpert 5x200,
RSNA, and SIIM-ACR datasets. The Accuracy (Acc.) and F1-score (F1) metrics are reported. Each
value in the lower part is the average of three runs. Red and blue denote the best and second-best
results.

Method CheXpert5x200 [16] RSNA [44] SIIM-ACR [45]

Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑

Baseline 57.50 55.97 43.09 31.01 58.40 57.85
MLCE 60.90 59.59 47.06 33.04 27.43 22.81
EGF 60.30 58.44 53.81 35.52 63.54 65.70
EGM 59.30 57.74 54.68 35.80 52.61 47.85
Unified(Ours) 61.30 60.38 76.97 43.49 63.62 61.46

1% Gaze 58.93±0.06 56.62±0.05 40.38±0.01 29.75±0.01 57.90±0.21 57.37±0.24
5% Gaze 58.93±.006 56.69±0.06 53.00±0.05 35.13±0.01 59.20±0.11 58.51±0.10
10% Gaze 59.30±0.01 57.82±0.01 53.78±0.01 35.37±.001 58.27±0.11 57.71±0.12
50% Gaze 59.55±0.07 58.84±0.01 58.54±0.07 37.01±0.20 61.41±0.31 58.88±0.22

In Tab. 4, it can be observed that the method using only gaze-guided MLCE loss significantly improves
performance compared to the baseline on CheXpert 5x200 dataset, with a slight improvement on
RSNA but a severe decline on SIIM-ACR dataset. However, models using EGF or EGM show
significant improvements on SIIM-ACR. This indicates that while MLCE improves performance on
some datasets, it simultaneously reduces the model’s generalization ability. Thus, relying solely on
simple loss for similarity matrix is insufficient. In this work, by combining eye-gaze guided image-
text relationships with fine-grained feature alignment (EGF), although the model’s performance
slightly decreases on CheXpert 5x200, its overall generalization improves. Similarly, to enhance the
model’s multi-modal alignment ability, introducing eye-gaze guided cross-modal mapping results
in improved performance and generalization, with EGM achieving optimal performance on RSNA
dataset. Finally, when optimizing both fine-grained alignment and cross-modal alignment using
eye-gaze, the model achieves dominant performance on all three datasets, demonstrating further
enhancement in generalization.

Numerous studies [24, 54, 35, 36] have demonstrated that training models using eye-gaze data can
achieve comparable performance to models trained with fine-grained manual annotations. Meanwhile,
the cost of collecting fine-grained manual annotations is significantly higher than that of collecting
eye-gaze data. Therefore, incorporating eye-gaze into pre-training tasks is a feasible approach to
enhancing model performance. To further validate the efficiency of our model using eye-gaze data,
we conduct ablation experiments on the proportion of it in the training set. Our training dataset,
MIMIC-EYE, consists of a total of 3695 samples. We perform ablation experiments using 1%,
5%, 10%, and 50% of the eye-gaze data, resulting in 37, 185, 370, and 1848 samples with prior
information from radiologists, respectively. We repeat each experiment three times to eliminate the
bias caused by random sampling, and report the average results. As shown in the lower part of Tab. 4,
the model’s performance on the CheXpert 5x200 dataset improved when trained with 1% of eye-gaze
data. However, due to the limited data volume, the model’s performance on other datasets is inferior
to the baseline. When increasing the eye-gaze data to 5%, the model shows significant improvements
on all three datasets. With the continuous increase in eye-gaze data, the performance of the model also
improves. Therefore, even with a small amount of eye-gaze data (185 samples), our framework can
effectively guide the model’s multi-modal processing capability, ensuring performance enhancement.
This further illustrates the applicability of our model and its low training cost characteristics.
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Figure 3: Results of cross-modality attention
maps visualization. Related text content: (a)
"heart size borderline enlarged"; (b) "increased
bibasilar opacities are the combination of in-
creased bilateral pleural effusions and bibasilar
atelectasis".

Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

CLIP EGMA

Figure 4: t-SNE visualization on CheXpert 5x200
dataset by CLIP and our EGMA. The figures dis-
play points of different colors representing vari-
ous ground truth disease types and their cluster
assignments. The color-coded points illustrate the
clustering results of each algorithm.

4.3 Visualization

To better demonstrate the correspondence learned by the EGMA framework between text and
radiographic images, we conducted a cross-modality attention maps visualization in Fig. 3. Guided
by eye-gaze data, the EGMA framework clearly outperforms other state-of-the-art methods in the
field in accurately localizing disease regions. In Fig. 4, we visualize the feature representations of
CLIP [42] and our EGMA model on images of CheXpert 5x200 dataset using the t-SNE [50]. It
can be observed that our model exhibits better clustering representation. The CLIP model, which
was not trained on medical data, is unable to effectively differentiate these diseases. More results
of t-SNE visualization can be referred to the Appendix E, clustering performance of other SOTA
methods [15, 53] also inferior to our EGMA.

5 Discussion and Conclusion

In this work, we reveal the significant role of radiologists’ eye-gaze data in multi-modal alignment
and propose an Eye-gaze Guided Multi-modal Alignment framework called EGMA. In fact, the EGF
and EGM modules in our EGMA framework are similar to the diagnostic process of radiologists.
Many studies [39, 46, 30, 8] have pointed out that radiologists perform a global search first and then
conduct a detailed examination of the local areas when suspicious lesions are found. Firstly, the EGF
module of EGMA corresponds to the global search by radiologists, aligning the local image patch
features with the individual sentence features. Secondly, EGM uses the key values from the local
similarity matrix computed in the first step as weights, focusing the alignment on certain important
image patches and texts, akin to the detailed observation stage after identifying suspicious lesions.
Thus, by mimicking the real diagnostic behavior of radiologists, our EGMA further enhances the
model’s multimodal processing capability and diagnostic accuracy. We evaluate EGMA’s zero-shot
capabilities and fine-tuned performances on multiple datasets and observe significant improvement in
classification and retrieval tasks. Additionally, we investigate the impact of eye-gaze data scale on
performance, finding that even small amounts of eye-gaze data can enhance the model’s multi-modal
alignment capabilities during pre-training. Overall, our EGMA framework explores the feasibility
of incorporating eye-gaze data from radiologists to assist in multi-modal feature alignment during
model training, laying the foundation for the application of eye-gaze data in the medical multi-modal
domain.

Limitations and Discussion Our work only compared state-of-the-art methods in classification and
retrieval tasks, without conducting downstream tasks such as lesion localization or segmentation.
Additionally, our model heavily relies on multi-modal datasets like MIMIC-EYE [14], which can
simultaneously collect eye-gaze data, medical images, and diagnostic text. The scenarios for collecting
these data are also a significant consideration. For instance, in clinical ultrasound diagnosis [38],
radiologists often use both hands to operate the equipment and verbally communicate their diagnostic
information to an assistant. In this context, it is convenient to simultaneously record ultrasound images,
eye-gaze data, and audio. In contrast, during chest X-ray diagnosis in MIMIC-EYE, radiologists
typically record diagnostic information directly in text form rather than verbally. Fortunately, some
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recent efforts [25, 35] are focusing on how to naturally collect multi-modal data of radiologists
during diagnosing. They have designed more flexible collection systems that better accommodate the
routine work of radiologists, which is crucial for the widespread adoption of collecting multi-modal
diagnostic data such as eye-gaze information.

Potential Impacts Although the eye-gaze data we used is publicly available and we have permission
to use it, some studies [27, 23] have indicated that private information such as gender, age, and mental
state of observers can be extracted from eye-gaze data. Therefore, privacy concerns have always been
a focal point in using eye-gaze data. To address this, we recommend using de-identification methods
to filter eye-gaze data or releasing the data in the form of heatmaps rather than the raw data.

Future Work In the future, we will continue to optimize these proposed collection systems [27, 23]
and explore the guidance role of eye-gaze data between images and handwritten diagnostic reports
to accelerate their application in real medical diagnostic scenarios. This will provide a research
foundation to alleviate data annotation pressure and enhance model interpretability. Additionally,
we will continue to analysis the eye-gaze features, such as temporal features, and further optimize
their role in multi-modal feature alignment. We believe this work can serve as a valuable reference
for the application of eye-gaze data in multi-modal frameworks and promote its development in the
field of medical multi-modality. Moreover, thanks to the inherent flexibility of the EGMA model,
it is well-suited for multi-modal alignment tasks involving natural images, such as in human-robot
interaction and control as well as for education/training purposes. Therefore, we believe this is a
promising direction for future expansion.
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A Appendix

This appendix is organized as follows. In Sec. B, we provide more experimental settings, including
training parameters, detailed parameters of image and text encoders. In Sec. C, we introduce
the detailed information of the datasets used in this work. In Sec. D, we provide more details
of multi-modal data processing of MIMIC-EYE [14] dataset. In Sec. E, we provide additional
visualization results of feature representation. In Sec. F, we provide additional experiments of
zero-shot classification task after continue pre-training using the backbones of other SOTA models in
our EGMA framework.

B Experimental Details

B.1 Image/Text Encoder

In this study, we use SwinTransformer [33] as the image encoder, BioClinicalBERT [1] as the text
encoder. Specifically, we use a 4 stages SwinTransformer, including 2, 2, 6, and 2 SwinTransformer
blocks. Other parameters are: patch size 4; window size 7. And we use a 6 layers BioClinicalBERT
with 12 attention heads. In our EGMA framework, we add a linear projection layer after both the
image encoder and text encoder to map the embeddings’ dimension to 512, and we use a learnable
temperature τ in contrastive loss calculation initialized on 0.07.

B.2 Training Settings

Pre-training Settings In the pre-training process, we utilize the following image augmentations to
the chest X-ray images: scale to images to 224× 224; color jittering with brightness and contrast
ratios from [0.8, 1.2]; randomly change the contrast(probability = 0.5). And we train our model
with 50 epochs with an initial learning rate 1× 10−6 and weight decay 1× 10−4 and 10 epochs of
warm-up.

Fine-tuning Settings In the supervised classification experiments, we adopt the linear classification
settings [15], where the pre-trained image encoder is frozen, and only a randomly initialized linear
classification head is trained. We choose the same image augmentations to the above pre-training
settings. And we fine-tune our model with 30 epochs with an initial learning rate 5 × 10−7 and
weight decay 1× 10−4 and 6 epochs of warm-up. And all our training tasks are completed on four
RTX 3090 GPUs.

C Dataset Descriptions

C.1 MIMIC-EYE

The MIMIC-EYE [14] dataset includes a comprehensive range of patient information, including
medical images and reports, clinical data, patient’s hospital journey, and eye-tracking data and audio
of radiologists during diagnosis. The dataset comprises a total of 3689 images from the MIMIC-
IV v1.0 dataset [18], each accompanied by transcripts text from audio and eye-tracking data of
radiologists. In this work, we use this dataset as our training set.

C.2 CheXpert

CheXpert [16] is a large-scale public dataset for chest radiograph interpretation, developed by a
team from Stanford University. The dataset comprises 224,316 chest radiographic images involving
65,240 patients, annotated for the presence of 14 common chest radiographic findings [13]. These
annotations are categorized into three types: positive, negative, or uncertain. In our study, we
follow [15] and [59], using two subsets of this dataset, namely CheXpert 5x200 and CheXpert 8x200,
for our zero-shot classification and zero-shot retrieval testing tasks. The CheXpert 5x200 dataset [15]
comprises five common chest diseases, Atelectasis, Cardiomegaly, Consolidation, Edema, and
Pleural Effusion, each with 200 chest X-rays. In [15], a radiologist provided possible sub-types,
severities, and locations for these five diseases. As depicted in Tab. 5, all combinations of these three
types of information form the text queries for CheXpert 5x200 dataset. In the zero-shot classification
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Table 5: Examples of possible sub-types, severities, and locations provided by the radiologist in
CheXpert 5x200 dataset.

Atelectasis Consolidation Pleural Effusion

severity
mild increased small
minimal improved stable

apperance of

subtype

subsegmental atelectasis bilateral consolidation bilateral pleural effusion
linear atelectasis reticular consolidation subpulmonic pleural effusion
trace atelectasis patchy consolidation bilateral pleural effusion
bibasilar atelectasis airspace consolidation
retrocardiac atelectasis partial consolidation
bandlike atelectasis

location

at the mid lung zone at the lower lung zone left
at the upper lung zone at the upper lung zone right
at the right lung zone at the left lower lobe tiny
at the left lung zone at the right lower lobe
at the lung bases at the left upper lobe

task, image embeddings are compared with the embeddings of these text queries, and the class
with the highest similarity is assigned as the predicted classification for the image. The CheXpert
8x200 dataset [59] comprises eight categories, NoFinding, Cardiomegaly, Edema, Pneumonia,
Atelectasis, Pneumothorax, Pleural Effusion, and Fracture, each with 200 images. In [59],
a radiologist expert was also invited to compose five expert queries for each category, used for
image-text retrieval tasks. Specific queries are detailed in Tab. 6.

C.3 RSNA

The RSNA Pneumonia Detection Dataset [44], encompasses a comprehensive set of medical imaging
data types, including X-rays, CT (Computed Tomography), and MRI (Magnetic Resonance Imaging)
images. In this work, we utilized the stage 2 version of this dataset, comprising 29,700 chest X-ray
images categorized into normal and pneumonia positive category. Following [15], we allocated
15% of this dataset for our zero-shot classification testing set. And we utilize the text queries from
the “no finding” and “Pneumonia” categories in the CheXpert 8x200 dataset as the text queries for
zero-shot classification in this data.

C.4 SIIM-ACR

The SIIM-ACR [45] dataset is a chest dataset used for pneumothorax classification and segmenta-
tion. It consists of 2379 images with pneumothorax and 8300 images without pneumothorax. In this
study, we utilized a subset of the dataset filtered by Saab et al. [43] as the test data to evaluate the
zero-shot classification performance of the model for pneumothorax disease. And we utilize the text
queries from the “no finding” and “Pneumothorax” categories in the CheXpert 8x200 dataset as the
text queries for zero-shot classification in this data.

D Details of Multi-modal Data Processing

As illustrated in Fig. 5, the presentation of multi-modal data in the MIMIC-EYE [14] dataset includes
radiologists’ audio, text transcript, eye-gaze data, and image. Since each modality is synchronized,
the audio data is aligned with the eye-gaze data in time. By segmenting the audio based on the time
before and after the pronunciation of each word, we can align the transcripts with the audio, thereby
aligning word-level text with eye-gaze data. Subsequently, we generate attention heatmap based on
eye-gaze data and images to represent the image regions the radiologist focuses on. Through the
aforementioned data processing steps, we achieve precise alignment between word-level text and
image regions. It is noteworthy that due to the rapid speech rate of radiologists, there may be no
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Table 6: Examples of text queries for different categories in the CheXpert 8x200 dataset.
Categories Text Query

No Finding

The lungs are clear.
No abnormalities are present.
The chest is normal.
No clinically significant radiographic abormalities.
No radiographically visible abnormalities in the chest.

Cardiomegaly

The heart is mildly enlarged.
Cardiomegaly is present.
The heart shadow is enlarged.
The cardiac silhouette is enlarged.
Cardiac enlargement is seen.

Edema

Mild interstitial pulmonary edema is present.
The presence of hazy opacity suggests interstitial pulmonary edema.
Moderate alveolar edema is present.
Mild diffuse opacity likely represents pulmonary edema.
Cardiogenic edema likely is present.

Pneumonia

A consolidation at the base likely represents pneumonia.
Pneumonia is present.
The presence of air bronchograms suggest pneumonia.
A fluffy opacity suggests pneumonia.
A pulmonary opacity with ill defined borders likely represents pneumonia.

Atelectasis

Platelike opacity likely represents atelectasis.
Geometric opacity likely represents atelectasis.
Atelectasis is present.
Basilar opacity and volume loss is likely due to atelectasis.
Patchy atelectasis is seen.

Pneumothorax

An apical pneumothorax is present.
A basilar pneumothorax is seen.
A medial pneumothorax is present adjacent to the heart.
A lateral pleural line suggests pneumothorax.
Pleural air is present.

Pleural Effusion

A pleural effusion is present.
Blunting of the costophrenic angles represents pleural effusions.
Trace pleural fluid is present.
The pleural space is partially filled with fluid.
Layering pleural effusions are present.

Fracture

An angulated fracture is present.
An oblique radiolucent line suggests a fracture.
A cortical step off indicates the presence of a fracture.
A communuted displaced fracture is present.
A fracture is present.
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hyper-inflated lungs with prominent interstitial markings.

Word-level Sentence-level

Audio

Transcript

Gaze 

Point

Timeline

Heatmap

Figure 5: The generation methods for heatmap at both word-level and sentence-level.

available eye-gaze data within the time interval corresponding to a single word. In Fig. 5, the word
“with” in the transcript has no corresponding gaze data. Another common and unavoidable issue is
the loss of eye-gaze data caused by blinking and intense head movement of radiologist, as seen in the
last two words of the transcript. Due to these technical challenges, achieving perfect pairing between
words and image regions is difficult. However, as shown in the right side of Fig. 5, adjusting the text
to the sentence level largely mitigates the issue of missing word-level heatmap (Heatmap with red
edge), and the semantic information of the entire sentence also encompasses the information of each
word. Therefore, in this work, we process text features at the sentence level.

During the pre-training of EGMA, the size of the input heatmap is determined by the number of
patches in the image. For example, after the image is processed by the image encoder, the size of
image embedding is 196× 768, where 196 represents the number of image patches. Therefore, we
resize the heatmap directly to 14× 14 to match the image embedding and further process it into the
Gaze-guided Similarity and Gaze-guided Label mentioned in the main manuscript.

D.1 Eye-gaze Data Denoising

In fact, noise and errors in eye-gaze data are as common as noise in images, and these can all affect
the model’s final performance. In this work, the errors in eye-gaze data primarily stem from two
factors: involuntary saccades and microsaccades of the radiologists’ eyes [9], and subjective fixation
errors [3].

Human eye movements can be categorized into two main types: saccades and fixations [9]. Saccades
are the rapid movements between different areas of the visual field and are generally considered
noise data that do not involve cognitive processes. Fixations, on the other hand, are brief pauses
of the eyes on a small area and are regarded as the primary cognitive behavior. Additionally, due
to the structure of the eye, fixations are accompanied by microsaccades, causing the fixation point
to drift within the fixation area. Thus, microsaccades are also a major source of noise in eye-gaze
data. Fortunately, eye-tracking technology has evolved significantly over the past century, and noise
reduction techniques for eye-gaze data have become highly advanced. Currently, all commercial
eye-tracking devices come with preprocessing software that uses adaptive methods (e.g., [41]) to filter
out noise and output fixations, greatly facilitating the use of eye-tracking technology. Fig. 6 shows
an example of MIMIC-EYE data used in our work. All gaze data is denoised by the filter operation,
ensuring that noise from blinks, saccades, and microsaccades of the radiologists has been eliminated.

Additionally, due to variations in radiologists’ expertise and cognitive levels, fixation data may
contain errors, such as the reviewer mentioned, “occasionally shift to locations not exactly on the
objects.”
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(a) Raw Gaze

(b) Raw Gaze
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(c) Speed of Raw Gaze Points t
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Figure 6: Attention heatmap (b) generated from raw gaze data (a) is susceptible to noise. The
adaptive filter employed in the preprocessing step of this work removes noisy data (saccades and
microsaccades) based on characteristics such as the speed of gaze points (c), resulting in more
accurate fixation data (d) and heatmap (e).

For the minor shift error of fixations, where the duration of incorrect fixations is small compared
to the overall duration, their values in the attention heatmap are low, thus having minimal impact
on the mlce loss utilized in our work (Eq. 4 in main paper). In our EGMA, EGF module (Sec. 3.2
in main paper) selects the highest similarity value of local features before averaging, ensuring that
these minor errors do not affect the model. Additionally, in the EGM module (Sec. 3.3 in main
paper), the sparse operation for alignment weight also filters out minor errors in the heatmap. For
the significant fixation errors, MIMIC-EYE data has been cleaned to address this issue at the first
time. Specifically, during data collection, radiologists were required to provide a diagnostic label.
These data were then reviewed by professionals to exclude inconsistent diagnoses and fixation errors.
Moreover, the MIMIC-EYE dataset includes eye-gaze data from six radiologists. Even if one or two
radiologists’ fixations for a specific diagnostic text are incorrect, the correct fixation data from the
other radiologists under the same semantic context can mitigate the adverse effects. Fig. 7 shows an
example of this compensation.

(a) Inaccurate gaze (b) The accurate gaze of other radiologists

Figure 7: Inaccurate eye-gaze data of one radiologist (a) in the heart region and several correct
eye-gaze data (b) of other radiologists in the same region that compensate for this error, which are
included in the dataset used in this work.

In summary, EGMA was designed with considerations for the noise and errors inherent in eye-gaze
data from the beginning. And effectively identifying and mitigating errors in radiologists’ diagnostic
behavior during model training will be a focus of our future work.

D.2 Eye-gaze Data Properties

Numerous studies have investigated and proven the close relationship between radiologists’ gaze
behavior, image content, and diagnostic results. For example, studies [40, 52, 11, 49, 48] have found
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that radiologists fixate more on diseased areas than on healthy ones. Moreover, they discovered that
novice radiologists, due to their lack of experience, repeatedly look at diseased areas, resulting in
even more fixations in these areas than those of expert radiologists. Fig. 8 shows some comparison
cases. Additionally, the abnormal regions with more fixations have higher weights in the attention
heatmap. Our EGMA model can leverage these weights, along with image content and text, to learn
better disease diagnosis capabilities and feature representations.

(a) Cardiomegaly (b) Normal Heart (c) Pneumonia (d) Clear Lungs

Figure 8: Comparison of eye-gaze data in normal and abnormal cases. For the heart region, there are
more fixations on disease area (a) compared to normal heart (b). For the lung region, fixations on
disease area (c) are more concentrated, whereas fixations on normal lungs are more dispersed.

E Additional Visualization Results

Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

CLIP GLoRIA MGCA EGMA

Figure 9: Visualization of feature representation of CheXpert 5x200 dataset by CLIP, GLoRIA,
MGCA, and our EGMA.

In Fig. 9, we visualize the feature representations of CLIP [42], GLoRIA [15], MGCA [53], and our
EGMA model on images of CheXpert 5x200 dataset using the t-SNE [50]. It can be observed that our
model exhibits better clustering representation. The CLIP model, which was not trained on medical
data, is unable to effectively differentiate these diseases. Additionally, while the representation
capability of GLoRIA and MGCA has improved noticeably, their clustering performance still inferior
to our EGMA.

F Additional Analysis Results

To further validate the generality of our framework, we utilize the encoders and pre-training weights
provided by CLIP [42], GLoRIA [15], and MGCA [53] in our EGMA framework. Subsequently, we
continue training on the MIMIC-EYE [14] dataset and present the zero-shot classification results on
the CheXpert 5x200 [16], RSNA [44], and SIIM-ACR [45] datasets in Tab. 7.

We present accuracy Accuracy and F1 score metrics on three datasets. The values in parentheses
indicate the improvement over the baseline metrics (as shown in Tab. 2). It can be observed that,
all models show improvement after training with our EGMA framework, except for the decrease
in metrics for the trained MGCA model on the RSNA dataset. For MGCA, when tested with its
provided pre-trained weights, it performs the best F1-score on the RSNA dataset (as shown in Tab. 2),
but after training with the EGMA framework, its performance improves on CheXpert 5x200 and
SIIM but decreases on RSNA dataset. This may reflect that the features extracted by MGCA on
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Table 7: Comparison results of zero-shot classification after continue pre-training using the backbones
of other SOTA models in our EGMA framework. Red and blue denote the best and second-best
results. The values in (parentheses) represents the improvement over the baseline metrics in Table 1
of main manuscript.

Method CheXpert 5x200 [16] RSNA [44] SIIM-ACR [45]

Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑

CLIP [42] 20.30(0.2) 10.73(1.61) 34.04(9.01) 33.68(11.61) 50.19(0.8) 49.03(1.05)
GLoRIA [15] 54.40(1.1) 49.31(0.32) 49.11(19.96) 38.82(7.81) 31.07(8.5) 31.10(8.53)
MGCA [53] 50.20(6.6) 48.29(6.92) 57.08(-3.75) 40.40(-17.37) 32.65(2.62) 27.78(2.33)
EGMA(Ours) 61.30 60.38 76.97 43.49 63.62 61.46

RSNA dataset are not truly disease-related features but rather shortcut features, indicating that the
high baseline metrics were based on easily distinguishable shortcut features. Furthermore, after
training with EGMA, the performance of other models significantly improves on all three datasets.
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NeurIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors.
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

22



Justification: The paper provides the full set of assumptions and a complete experimental
proof.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full details are provided with the main context and supplemental materials.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the statistical significance of the experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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figures symmetric error bars that would yield results that are out of range (e.g. negative
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they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describes safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Meet the requirements.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Meet the requirements.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not Applicable.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: Not Applicable.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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