
A Statistical Perspective on Retrieval-Based Models

Soumya Basu * 1 Ankit Singh Rawat * 2 Manzil Zaheer * 3

Abstract

Many modern high-performing machine learning
models increasingly rely on scaling up models,
e.g., transformer networks. Simultaneously, a par-
allel line of work aims to improve the model per-
formance by augmenting an input instance with
other (labeled) instances during inference. Exam-
ples of such augmentations include task-specific
prompts and similar examples retrieved from the
training data by a nonparametric component. De-
spite a growing literature showcasing the promise
of these retrieval-based models, their theoretical
underpinnings remain under-explored. In this pa-
per, we present a formal treatment of retrieval-
based models to characterize their performance
via a novel statistical perspective. In particular,
we study two broad classes of retrieval-based clas-
sification approaches: First, we analyze a local
learning framework that employs an explicit local
empirical risk minimization based on retrieved
examples for each input instance. Interestingly,
we show that breaking down the underlying learn-
ing task into local sub-tasks enables the model to
employ a low complexity parametric component
to ensure good overall performance. The second
class of retrieval-based approaches we explore
learns a global model using kernel methods to
directly map an input instance and retrieved ex-
amples to a prediction, without explicitly solving
a local learning task.

1. Introduction
As our world is complex, we need expressive machine learn-
ing (ML) models to make high-accuracy predictions on
real-world problems. There are multiple ways to increase
the expressiveness of an ML model. A popular way is to
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homogeneously scale the size of a parametric model, such
as neural networks, which has been behind many recent
high-performance models such as GPT-3 (Brown et al.,
2020) and ViT (Dosovitskiy et al., 2021). Their performance
(accuracy) exhibits a monotonic behavior with increasing
model size, as demonstrated by “scaling laws” (Kaplan et al.,
2020; Hoffmann et al., 2022). Such large models, however,
have their own limitations, including high computation cost,
catastrophic forgeting (hard to adapt to changing data), lack
of provenance, and poor explainability. Classical instance-
based models (Fix & Hodges, 1989), on the other hand, offer
many desirable properties by design — efficient data struc-
tures, incremental learning (easy addition and deletion of
knowledge), and some provenance for its prediction based
on the nearest neighbors w.r.t. the input. However, these
models often suffer from weaker empirical performance as
compared to deep parametric models.

Increasingly, a middle ground combining the two paradigms
and retaining the best of both worlds is becoming popular
across various domains, ranging from natural language (Das
et al., 2021; Wang et al., 2022; Liu et al., 2022; Izacard et al.,
2022), to vision (Liu et al., 2015; 2019; Iscen et al., 2022;
Long et al., 2022), to reinforcement learning (Blundell et al.,
2016; Pritzel et al., 2017; Ritter et al., 2020), to even protein
structure prediction (Cramer, 2021). In such approaches,
given a test input, one first retrieves relevant entries from
a data index and then processes the retrieved entries along
with the test input to make the final predictions using an ML
model. This process is visualized in Fig. 1c.

While classical learning setups (cf. Fig. 1a and 1b) have
been studied extensively over decades, even basic prop-
erties and trade-offs pertaining to retrieval-based models
(cf. Fig. 1c), despite their aforementioned remarkable suc-
cesses, remain highly under-explored. Most of the existing
efforts on retrieval-based models solely focus on develop-
ing end-to-end domain-specific models, without identifying
the key dataset properties or structures that are critical in
realizing performance gains by such models. Furthermore,
at first glance, due to the highly dependent nature of an
input and the associated retrieved set, direct application of
existing statistical learning techniques does not appear as
straightforward. This prompts a natural question:

What is the right theoretical framework to rigorously
showcase the value of the retrieved set in ensuring superior

performance of modern retrieval-based models?
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Figure 1. An illustration of a retrieval-based classification model. Given an input instance x, similar to an instance-based model, it retrieves
similar (labeled) examples Rx = {(x′j , y′j)}j from training data. Subsequently, it processes input instance along with the retrieved
examples (potentially via a nonparametric method) to make the final prediction ŷ = f(x,Rx).

In this paper, we take the first step towards answering
this question, while focusing on the classification setting
(Sec. 2.1). We begin with the hypothesis that the model
might be using the retrieved set to do local learning im-
plicitly and then adapt its predictions to the neighborhood
of the test point. Multiple recent works (Garg et al., 2022;
Akyürek et al., 2022; von Oswald et al., 2022) have stud-
ied the feasibility of such a mechanism in widely popular
Transformer models. Notably, these works show that a Trans-
former network can emulate gradient descent to optimize
a local learning objective when presented with multiple la-
beled examples as inputs. Such local learning is potentially
beneficial in cases where the underlying task has a local
structure, where a much simpler function class suffices to
explain the data in a given local neighborhood but overall
the data can be complex (formally defined in Sec. 2.2). For
example, to solve an issue at hand (a problem instance), it
is often faster to search for solutions to similar problems on
Stackoverflow and utilize those (i.e., locally learning from
the retrieved similar labeled examples) than understanding
the whole system (i.e., learning the entire global function).

Inspired by Bottou & Vapnik (1992), we analyze an explicit
local learning framework: For each test input, 1) we retrieve
a few (labeled) training examples located in the vicinity of
the test input, 2) train a local model by performing empirical
risk minimization (ERM) with only these retrieved examples
– local ERM; and 3) apply the resulting local model to make
prediction on the test input. For the aforementioned retrieval-
based local ERM, we derive finite sample generalization
bounds that highlight a trade-off between the complexity of
the underlying function class and size of the neighborhood
where local structure of the data distribution holds in Sec. 3.
Under this assumption of local regularity, we show that by
using a much simpler function class for the local model, we
can achieve a similar loss/error to that of a complex global
model (Thm. 3.7). Thus, we show that breaking down the
underlying learning task into local sub-tasks enables the

model to employ a low complexity parametric component to
ensure good global accuracy via a retrieval-based model.

We acknowledge that such local learning cannot be the
complete picture behind the effectiveness of retrieval-based
models. As noted in Zakai & Ritov (2008), there always ex-
ists a model with global component that is more “preferable”
to a local-only model. In Sec. 3.4, we extend local ERM to
a two-stage setup: First learn a global representation using
entire dateset, and then utilize the representation at the test
time while solving the local ERM as previously defined.
This enables the local learning to benefit from good quality
global representations, especially in sparse data regions.

Finally, we move beyond explicit local learning to a setting
that resembles more closely the empirically successful sys-
tems such as REINA (Wang et al., 2022), WebGPT (Nakano
et al., 2021), and AlphaFold (Cramer, 2021): A model that
directly learns to predict from the input instance and asso-
ciated retrieved similar examples end-to-end. Towards this,
we take a preliminary step in Sec. 4 by studying a novel
formulation of classification over an extended feature space
(to account for the retrieved examples) by using kernel meth-
ods (Deshmukh et al., 2019).

To summarize, our main contributions include: 1) Setting
up a formal framework for classification via retrieval-based
models under local structure; 2) Finite sample analysis of ex-
plicit local learning framework; 3) Comparison with simple
parametric and nonparametric paradigms 4) Extending the
analysis to a globally learnt model; and 5) Providing the first
rigorous treatment of an end-to-end retrieval-based model
to study its generalization by using kernel-based learning.

2. Problem setup
We first provide a brief background on (multiclass) classifi-
cation along with the necessary notations. Subsequently, we
discuss the problem setup considered in this paper, which
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deals with designing retrieval-based classification models
for the data distributions with local structures.

2.1. Multiclass classification

In this work, we restrict ourselves to (multi-class) classi-
fication setting, with access to n training examples S =
{(xi, yi)}i∈[n] ⊂ X × Y, sampled i.i.d. from the data dis-
tribution D := DX,Y . Let PD(A) := E(X,Y )∼D

[
1{A}

]
for

any random variable A.

Given S, one is interested in learning a classifier h : X→ Y

that minimizes miss-classification error. It is common to de-
fine a classifier via a scorer f : x 7→

(
f1(x), . . . , f|Y|(x)

)
∈

R|Y| that assigns a score to each class in Y for an instance x.
For a scorer f , the corresponding classifier takes the form:

hf (x) = arg maxy∈Y fy(x).

Given a set of scorers Fglobal ⊆ {f : X→ R|Y|}, learning
a model implies finding a scorer in Fglobal that minimizes
the miss-classification error or expected 0/1-loss:

f∗0/1 = arg minf∈Fglobal PD(hf (X) 6= Y ). (1)

One typically employs a surrogate loss (Bartlett et al., 2006)
` for the miss-classification error 1{hf (X) 6=Y } and aims to
minimize the associated population risk:

R`(f) = E(X,Y )∼D
[
`
(
f(X), Y

)]
.

Since the underlying data distribution D is only accessible
via examples in S, one learns a good scorer by minimizing
the (global) empirical risk over the function class Fglobal as
follows:

f̂ = arg min
f∈Fglobal

1

n

∑
i∈[n]

`
(
f(xi), yi

)
. (2)

We denote R̂`(f) := 1
n

∑
i∈[n] `

(
f(xi), yi

)
.

2.2. Classification with local structure

In this work, we assume that the underlying data distribution
D has a local structure, where a much simpler (paramet-
ric) function class suffices to explain the data in each local
neighborhood. Formally, for x ∈ X and r > 0, we define
Bx,r := {x′ ∈ X : d(x, x′) ≤ r}, an r-radius ball around
x, w.r.t. a metric d : X × X → R. Let Dx,r be the data
distribution restricted to Bx,r, i.e.,

Dx,r(A) = D(A)/D (Bx,r × Y) A ⊆ Bx,r × Y. (3)

Further, let us define the local population risk of a function
f at a given instance x ∈ X:

Rx` (f) = E(X′,Y ′)∼Dx,r
[
`
(
f(X ′), Y ′

)]
.

Now, the local structure condition of the data distribution
ensures that, for each x ∈ X, there exists a low-complexity
function class Fx, with |Fx| � |Fglobal|, that approximates

the Bayes optimal (w.r.t. Fglobal) for the local classification
problem defined by Dx,r. That is, for a given εX > 0 and
∀ x ∈ X, we have that 1

min
f∈Fx

Rx` (f) ≤ min
f∈Fglobal

Rx` (f) + εX. (4)

As an example, if Fglobal is linear in Rd (possibly dense)
with bounded norm τ , then Fx can be a simpler function
class such as linear in Rd with sparsity k � d and with
bounded norm τx ≤ τ .

2.3. Retrieval-based classification model

This work focuses on retrieval-based methods that can lever-
age the aforementioned local structure of the data distribu-
tion. In particular, we focus on two such approaches:

Local empirical risk minimization. Given a (test) instance
x, the local empirical risk minimization (ERM) approach
first retrieves a neighboring set Rx = {(x′j , y′j)} ⊆ S. Sub-
sequently, it identifies a (local) scorer f̂x from a ‘simple’
function class Floc ⊂ {f : X→ R|Y|} as follows:

f̂x = arg min
f∈Floc

1

|Rx|
∑

(x′,y′)∈Rx
`
(
f(x′), y′

)
. (5)

By convention if |Rx| = 0, f̂x ∈ Floc is chosen arbitrarily.

Note that the local ERM approach requires solving a lo-
cal learning task for each test instance. Such a local learn-
ing algorithms was introduced by Bottou & Vapnik (1992).
Another point worth mentioning here is that (5) employs
the same function class Floc for each x, whereas the local
structure assumption (cf. (4)) allows for an instance depen-
dent function class Fx. We consider Floc that approximates
∪x∈XFx closely. In particular, we assume that, for some
εloc > 0, we have ∀ x ∈ X that

min
f∈Floc

Rx` (f) ≤ min
f∈Fx

Rx` (f) + εloc. (6)

Continuing with the example following (4), where Fx is
linear with sparsity k � d and bounded norm τx, one can
take Floc to be linear with the same sparsity k and bounded
norm τ ′ < supx∈X τx.

Classification with extended feature space. We also con-
sider the setting where the scorer f can implicitly solve the
local-ERM using retrieved neighboring labeled instances to
make the classification prediction. In other words, the scorer
directly maps the augmented input x×Rx ∈ X×(X×Y)? to
per-class scores. One can learn such a scorer over extended
feature space X× (X× Y)? as follows:

f̂ ex = arg minf∈Fex R̂ex
` (f), (7)

where R̂ex
` (f) := 1

n

∑
i∈[n] `

(
f
(
xi,R

xi
)
, yi) and a func-

tion class of interest over the extended space is denoted

1As stated, we require the local structure condition to hold for
each x. This can be relaxed to hold with high probability with the
increased complexity of exposition.
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as Fex ⊂
{
f : X× (X× Y)? → R|Y|

}
. Examples of such

a function class include prompting transformers with the
retrieved labeled examples. Moreover, it has been recently
shown that a transformer can express certain algorithms for
optimizing a local learning objective based on the examples
from the prompt using gradient descent (Garg et al., 2022;
Akyürek et al., 2022; von Oswald et al., 2022).

Our goal is to develop a statistical understanding of these
two retrieval-based methods for classification when the un-
derlying data distribution has local structure. We present our
theoretical treatment of local ERM and classification with
extended feature space in Sec. 3 and 4, respectively.

3. Local empirical risk minimization
In this section, our objective is to characterize the excess
risk of local ERM. In particular, we aim to bound

E(X,Y )∼D
[
`(f̂X(X), Y )− `(f∗(X), Y )

]
. (8)

Note that f̂X (cf. (5)) in the above equation is a function of
RX , and expectation over RX is taken implicitly.

3.1. Assumptions

Before presenting an excess risk bound for the local ERM
method, we introduce various necessary definitions and as-
sumptions that play a critical role in our analysis.

We define the margin of scorer f at a given label y ∈ Y as

γf (x, y) = fy(x)−maxy′ 6=y fy′(x). (9)

In order to ensure the margin of the scorer f has smooth
deviation as x varies, we introduce L-coordinate Lipschitz
condition: A scorer f is L-coordinate Lipschitz iff for all
y ∈ Y and x, x′ ∈ X, we have

|fy(x)− fy(x′)| ≤ L‖x− x′‖2. (10)

Following Döring et al. (2018), we define the weak margin
condition for a scorer f : Given a distribution D, a scorer f
satisfies (α, c)-weak margin condition iff, for all t ≥ 0,

P(X,Y )∼D(|γf (X,Y )| ≤ t) ≤ c tα. (11)

One of the key assumptions that we rely on is the existence
of an underlying scorer f true that explains the true labels,
while ensuring the weak margin condition. Here, we note
that the true function f true may neither lie in the function
class Fglobal, nor in Floc.

Assumption 3.1 (True scorer function). There exists a
scorer f true such that, for all (x, y) ∈ X× Y, f true gener-
ates the true label, i.e., γftrue(x, y) > 0. Furthermore, we
assume f true is Ltrue-coordinate Lipschitz, and satisfies the
(αtrue, ctrue)-weak margin condition.

Furthermore, we restrict ourselves to smooth loss functions
that act on the margin of a scorer (cf. (9)).

Assumption 3.2 (Margin-based Lipschitz loss). For
any given example (x, y) and any scorer f , we have
`(f(x), y) = `(γf (x, y)) and ` is a decreasing function of
the margin. Furthermore, the loss function ` is L`-Lipschitz
function, i.e., |`(γ)− `(γ′)| ≤ L`|γ − γ′|, ∀γ ≥ γ′.

Recall that Rx corresponds to the samples in S that belong to
Bx,r; hence, it follows the distribution Dx,r. For the rest of
the paper, we limit ourselves to X ⊆ Rd. We can extend this
to more general metric spaces with the increased complexity
of exposition. Let the density of the distribution of x ∈ X ⊆
Rd be ρD(x). A common assumption in the nonparametric
estimation literature is the weak density condition (see, e.g.,
Döring et al., 2018). Moreover, we need to ensure that with
high probability the density ρD(x) is not too low. We do
so following the idea of density level sets from Steinwart
(2011). Accordingly, we make the following assumption.
Assumption 3.3 (Data regularity condition).

1. (Weak density condition) There exists constants
cwdc > 0, and δwdc > 0, such that for all x ∈ X

and ρD(x)rd ≤ δdwdc,

PX′∼D[d(X ′, x) ≤ r] ≥ cdwdcρD(x)rd.

2. (Density level-set) There exists a function fρ(δ) with
fρ(δ)→ 0 as δ → 0, such that for any δ > 0,

PX∼D[ρD(X) ≤ fρ(δ)] ≤ δ. (12)

For example, for d-dimensional multivariate Gaus-
sian with the covariance matrix Σ, we have
fρ(δ) = Θ(2−d/2|Σ|−1/2δ ln(1/δ)−d/2). This result
can be extended to mixture of Gaussian and sub-gaussian
random variables (see Appendix B.6 for details).
Assumption 3.4 (Weak+ density condition). There exists
constants cwdc+ ≥ 0, and αwdc+ > 0, such that for all
x ∈ X and r ∈ [0, rmax],∣∣PX′∼D[d(X ′, x) ≤ r]

ρD(x)vold(r)
− 1
∣∣ ≤ cwdc+r

αwdc+ .

The above assumption implies Assumption 3.3.1. We will
show that under Assumption 3.4 the local ERM error bounds
can be tightened further. For example, in d-dimensional
multivariate Gaussian with the covariance matrix Σ, we
have cwdc+ = dλmax(Σ−1)

2(d+2) , and αwdc+ = 2 for rmax =√
(d+ 2)λmax(Σ), where λmax(·) denotes the maximum

eigenvalue.

3.2. Excess risk bound for local ERM

We now proceed to our main results on the excess risk
bound of local ERM. Recall that, at x ∈ X, fx,∗ denotes the
minimizer of the population version of the local loss, and
f∗ the population risk minimizer for the global loss, i.e.,

fx,∗ = arg min
f∈Floc

Rx` (f); f∗ = arg min
f∈Fglobal

R`(f). (13)
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To bound the excess risk defined in Eq. (8), we first obtain
the following upper bound on (8).
Lemma 3.5 (Risk decomposition). The expected excess risk
of the local ERM solution f̂X is bounded as

E(X,Y )∼D

[
`(f̂X(X), Y )− `(f∗(X), Y )

]
≤ E(X,Y )∼D

[
RX` (fX,∗)−RX` (f∗)

]
︸ ︷︷ ︸

Local vs Global Population Optimal Risk

+
∑

F∈{Fglobal,Floc}

E(X,Y )∼D

[
sup
f∈F

∣∣RX` (f)− `(f(X), Y )
∣∣]

︸ ︷︷ ︸
Global and Local: Sample vs Retrieved Set Risk

+ E(X,Y )∼D

[
supf∈Floc

∣∣∣RX` (f)− R̂X` (f)
∣∣∣]︸ ︷︷ ︸

Generalization of Local ERM

+ E(X,Y )∼D

[∣∣∣RX` (fX,∗)− R̂X` (fX,∗)
∣∣∣]︸ ︷︷ ︸

Central Absolute Moment of fX,∗

.

We delegate the proof of Lem. 3.5 to Appendix B. Now, as a
strategy to obtain desired excess risk bounds, we separately
bound the four terms appearing in Lem. 3.5. Note that the
first term captures the expected difference between the loss
incurred by global population optima f∗ ∈ Fglobal and
the local population optima fx,∗ ∈ Floc in a local region
around the test instance x. The second term aims to capture
the loss for a scorer evaluated at x vs. the expected value of
the loss for the scorer at a random instance sampled in the
local region of x based on Dx,r. The third term corresponds
to the standard ‘generalization error’ for the local ERM
with respect to the local data distribution DX,r, whereas the
fourth term is the empirical variation of the local population
optima fX,∗ around its population mean under DX,r.

Let the coordinate-Lipschitz constants for scorers in Floc

and Fglobal be Lloc and Lglobal, respectively. We define
a function class G(X,Y ) := {(x′, y′) 7→ `(γf (·, ·)) −
`(γf (X,Y )) : f ∈ Floc}. Here, by subtracting `

(
f(X), Y

)
from the loss, we center the losses on RX for any function
f ∈ Floc, and obtain a tighter bound by utilizing the lo-
cal structure of the distribution DX,r. For any L > 0, for
notational convenience let us define

Mr(L; `, ftrue,F) :=

2L`

(
Lr +

(
2‖F‖∞ − Lr

)
ctrue

(
2Ltruer

)αtrue
)
.

(14)

For any x ∈ X, the weak density condition provides high
probability lower bound on the size of the retrieved set Rx.

Proposition 3.6. Under the Assumption 3.3, for any x ∈ X,
radius r > 0, and δ > 0,

PD

[
|Rx| < N(r, δ)

]
≤ δ, (15)

forN(r, δ) = n
(
cdwdc min{fρ(δ/2)rd, δdwdc} −

√
log(2/δ)

2n

)
.

Now, by controlling different terms appearing in the bound
in Lem. 3.5, we obtain the following.

Theorem 3.7 (Excess risk bound). Let (4) and (6); and
Assumptions 3.1, 3.2 and 3.3 hold. For any δ > 0, and
N(r, δ) as defined in Proposition 3.6, the expected excess
risk of the local ERM solution f̂X is bounded as

E(X,Y )∼D

[
`(f̂X(X), Y )− `(f∗(X), Y )

]
≤ (εX + εloc)︸ ︷︷ ︸

Local vs Global Optimal loss (I)

+ Mr(Lloc; `, ftrue,F
loc) + Mr(Lglobal; `, ftrue,F

global)︸ ︷︷ ︸
Global and Local: Sample vs Retrieved Set Risk (II)

+

E(X,Y )∼D

[
RRX

(
G(X,Y )

)∣∣RX ≥ N(r, δ)
]

+ 5Mr(Lloc; `, ftrue,F
loc)

√
2 ln(4/δ)

N(r, δ)

+ 8δL`‖Floc‖∞,︸ ︷︷ ︸
Generalization of Local ERM and Central Absolute Moment of fX,∗ (III)

where RRX
(
G(X,Y )

)
denotes the empirical Rademacher

complexity of G(X,Y ). Under Assumption 3.4 and r ≤
rmax, Sample vs Retrieved Set Risk (II) is O(cwdc+r

αwdc+).

The above result shows a trade-off in approximation vs.
generalization error as retrieval radius r varies.

Approximation error. It comprises two components, de-
fined by (I) and (II) in Thm. 3.7. εX shows the gap in
approximating the r-radius neighborhood around X with a
simple local function class FX which varies with X ∈ X.
Next, εloc shows the gap in approximating the union of the
local function class ∪x∈XFx with a single function class
Floc (possibly with smaller complexity) but while allow-
ing for choosing a different optimizer fX ∈ Floc for each
X ∈ X. Both εX and εloc typically increases with r.

The second component of the approximation error (II)
corresponds to the difference of risk for the sample
X and the retrieved set RX for Fglobal and Floc, i.e.,
Mr(Lglobal; `, ftrue,F

global) and Mr(Lloc; `, ftrue,F
loc).

Eq. (14) suggests that the terms increase as O(poly(r)).
When the data follows multivaraite Gaussian then term (II)
increases as O(r2).

Generalization error. It (III) depends on the size of the re-
trieved set RX and the Rademacher complexity of G(X,Y )
which is induced by Floc. With increasing radius r, the term
N(r, δ) increases. The Rademacher complexity decays with
increasing radius, r, typically at the rate of O(1/

√
N(r, δ)).

Thus, under the local ERM setting the total approximation
error increases with increasing radius r, given Floc is fixed.
On the contrary, the generalization error decreases with in-
creasing radius r for a fixed Floc. This suggests a trade-off
between the approximation and generalization error as we
make a design choice about r. (We empirically validate this
in Fig. 3.) Due to centering within the set G(X,Y ) we have
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the upper bound on this term as Mr(Lloc; `, ftrue,F
loc),

which is effective for small r. This does not decay with
|RX |, hence becomes worse with increasing r and comple-
ments the above standard.

3.3. Illustrative examples

Assume the Fglobal admits qx-th order derivative in the
region B(x, r). Then a natural choice for |Fx| is the set
of multivariate polynomial functions of degree qx, namely
P(qx), for some qx ≥ 1. The L1 approximation error be-
tween Fx ≡ P(qx) and Fglobal can be quantified using
the remainder in Taylor’s approximation. This remainder
typically grows as C(Fglobal, qx)r(qx+1) for our choice of
radius r for the neighborhood, where C(Fglobal, qx) de-
pends on the function class and the degree. Therefore, we
have εX ≤ C(Fglobal, qx)r(qx+1).

Radius r

Ex
ce

ss
 ri

sk

Fit loc globally

En
tir

e 
da

ta

Figure 2. Behavior of excess risk of local ERM

Local linear models. Let us consider this setting where
Floc is the class of linear classifiers in d-dimension. The
error in approximating Fx = P(qx) for any qx > 1 with
a linear classifier in the B(x, r) neighborhood for any x ∈
X is bounded by εloc = Θ(r2). Therefore, the term (I)
admits the bound O(r2). The generalization term varies
as O(1/

√
N(r, δ)). For r ≥ Ω(n−1/2d log(n)1/2) and δ =

n−1/2d thenN(r, δ) = Ω(
√
n(2d−1)/2drd). Combining this

we obtain:

Excess Risk ≤ O
(
r2
)︸ ︷︷ ︸

(I)

+O(rmin{αtrue,1})︸ ︷︷ ︸
(II)

+

O
(

d
n(2d−1)/2drd/2 + rmin{αtrue,1}

n(2d−1)/4drd/2
+ 1

n1/2d

)
.︸ ︷︷ ︸

(III)

For r = n−1/2d log(n)1/2 the excess risk bound is
O(n−1/2d log(n)1/2), where the bottleneck comes from the
term (II), i.e., the sample vs retrieved risk. This is depicted
in Fig. 2. Moreover, when the data has multivariate Gaussian
distribution we have the term (II) scale as O(r2), leading to
excess risk of O(n−1/d log(n)1/2). However, global ERM
with linear classifiers increases the approximation error con-
siderably. In particular, now approximation error becomes a
constant O(diam(X)2), and dwarfs the generalization that
decreases as O(1/

√
n).

Feed-forward classifiers. As another concrete example
we study the setting where Floc is a the class of fully con-
nected deep neural networks (FC-DNN). We have fy(·) to
be an L layer feed-forward network with 1-Lipschitz non-
linearities (Bartlett et al., 2017). Let, for layers l = 1 to
L, the dimension of the weight matrix be (dl × dl−1) with
dL = |Y|. Also, let bl and sl be the `2,1 norm and spectral
norm upper bounds for layer l weight matrix, respectively,
with bl/sl ≤ κ. We define dmax = maxl∈[L] dl and let
B̃ = maxx∈X ‖x‖2

∏L
l=1 sl.

Approximation Error εloc: For bounding εloc in (6), we re-
quire L1 error of Floc in approximating polynomials of
degree qmax = maxx∈X q

x. An FC-DNN that can approxi-
mate polynomials with degree at most qmax upto L1 error
εloc has (see, Theorem 9 in Liang & Srikant (2016))2

depth, L = O
(
qmax + log(dqmaxC

′(Fglobal, qmax)/εloc)
)
,

width, dmax = O
(
d log(dqmaxC

′(Fglobal, qmax)/εloc)
)
.

Here, C ′(Fglobal, qx) is a constant independent of r and ε.

Rademacher complexity: We now bound the term
E(X,Y )∼D[RRX

(
G(X,Y )

)
||RX | > N(r, δ)] for this class.

Following (Bartlett et al., 2017), for some universal constant
C ′′ > 0 and any δ > 0, we can bound the term as

C ′′
(L`B̃√κ ln(dmax)L3/4 ln(L`B̃

√
n)3/2√

N(r,δ)
+ 2δB̃

)
.

We now provide an excess risk bound when Floc is the
class of FC-DNN. Let r ≥ Ω(n−1/2d log(n)1/2) and
δ = n−1/2d. Then, N(r, δ) = Ω(

√
n(2d−1)/2drd). Now,

by setting εloc = r(qmax+1), it follows from Thm. 3.7 that

Excess Risk ≤ O
(
r(qmax+1)

)︸ ︷︷ ︸
(I)

+O(rmin{αtrue,1})︸ ︷︷ ︸
(II)

+

O
( q3/4

max ln(dqmax/r)
3/4 ln(n)3/2

n(2d−1)/2drd/2 + rmin{αtrue,1}

n(2d−1)/4drd/2 + 1
n1/2d

)
.︸ ︷︷ ︸

(III)

With r = n−1/2d log(n)1/2, the excess risk is bounded
as O(n−1/2d log(n)1/2). Again (II) is the bottleneck. This
bottleneck can be improved for multivariate Gaussian distri-
bution with excess risk O(n−1/d log(n)1/2.

Note that, it’s also worth comparing local-ERM with conven-
tional (non-local) ERM. Under the local structure condition
(Sec. 2.2), one would utilize a simple Floc for local-ERM.
This would correspond to the Rademacher complexity term
in Thm. 3.7 being small. In contrast, the generalization
bound for the traditional (non-local) ERM approach would
depend on the Rademacher complexity of a function class
Fglobal that can achieve a low approximation error on the
entire domain. Such a function class (even under the local
structure assumption) would be much more complex than

2Although width is not explicitly mentioned in (Liang &
Srikant, 2016), it can be inferred from the constructions.
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Floc, resulting in a large Rademacher complexity. For the
right design choice of r, and Floc, the approximation error
increase of local-ERM can be offset by large generalization
error of Fglobal. As a consequence, local ERM with simple
function class Floc can outperform (non-local) ERM with a
complex class Fglobal.

3.4. Endowing local ERM with global representations

Note that the local ERM method takes a somewhat myopic
view and does not aim to learn a global hypothesis that (par-
tially or entirely) explains the entire data distribution. Such
an approach may potentially result in poor performance in
those regions of input domains that are not well represented
in the training set. Here, we explore a two-stage approach
leveraging the global pattern present in the training data to
address this apparent shortcoming of local ERM.

Given training data S and a simple function class Gloc :
Rd → R|Y|, the first stage involves learning a d-dimensional
feature map ΦS : X → Rd that simultaneously ensures
good representation for the entire data distribution (Radford
et al., 2021; Grill et al., 2020; Cer et al., 2018; Reimers &
Gurevych, 2019). Subsequently, given a test instance x and
its retrieved neighboring points Rx = {(x′j , y′j)} ⊆ S, one
employs local ERM with the function class:

FΦS
= {x 7→ g ◦ ΦS(x) : g ∈ Gloc}. (16)

At this point, it is tempting to invoke the proof strategy out-
lined following Lem. 3.5, with Floc replaced with FΦS

to
characterize the performance of the aforementioned two-
stage method. Note that one can indeed bound the first two
terms appearing in Lem. 3.5 for the two-stage method as
well. However, bounding the third term that corresponds to
generalization gap for local ERM becomes challenging as
FΦS

depends on S via the global representation ΦS learned
in the first stage. Interestingly, Foster et al. (2019) explored a
general framework to address such dependence for standard
(non retrieval-based) learning. In fact, as an instantiation of
their general framework, Foster et al. (2019, Sec. 5.4) con-
sider the ERM in feature space defined by a representation.
We employ their techniques to obtain the following result
on the generalization gap for local ERM with FΦS

.
Proposition 3.8. Assuming the representation learned dur-
ing the first stage is ∆-sensitive, i.e., for S and S′ that differ
in a single example, we have ‖ΦS(x)−ΦS′(x)‖ ≤ ∆ ∀x ∈
X. Furthermore, we assume that each g ∈ Gloc (cf. 16) is
L-Lipschitz, the loss ` : R|Y| × |Y| → R is L`,1-Lipschitz
w.r.t. ‖ · ‖∞-norm in the first argument, and ` is bounded by
M`. Then, following holds with probability at least 1− δ:

sup
f∈FΦS

∣∣∣ E
(X′,Y ′)∼Dx,r

[`(f(X ′), Y ′)]− R̂x` (f)
∣∣∣

≤
(
M` + 2∆LL`,1|Rx|

)√
log(1/δ)/2|Rx| +

E
Rx∼Dx,r

[
sup

f∈FΦS

∣∣∣R`(f)−R̂x` (f)
∣∣∣] .

(17)

Furthermore,

E
Rx∼Dx,r

[
sup

f∈FΦS

∣∣∣R`(f)−R̂x` (f)
∣∣∣]≤ 2R�(` ◦ FΦS

), (18)

where ` ◦ FΦS
= {(x, y) 7→ `(f(x), y) : f ∈ FΦS

} and
R� denotes the Rademacher complexity of data dependent
hypothesis sets (Foster et al., 2019).

We defer the proof of Prop. 3.8 and necessary background
on Foster et al. (2019) to Appendix D.

As a potential advantage of utilizing a global representation
with local ERM, one can realize high-performance local
learning with an even simpler function class. For example,
it’s a common approach to only train a linear classifier on
learned representations. Furthermore, a high-quality global
representation can ensure good performance for those local
regions that are not well represented in the training set. We
leave a formal treatment of these topics for a longer version
of this manuscript.

4. Classification in extended feature space
Next, we focus on a family of retrieval-based methods that
directly learn a scorer to map an input instance and its neigh-
boring labeled instance to a score vector (cf. (7)). In fact, as
discussed in Sec. 1, many successful modern instances of
retrieval-based models such as REINA (Wang et al., 2022)
and KATE (Liu et al., 2022) belong to this family. In this
section, we provide the first rigorous treatment (to the best
of our knowledge) for such models.

As introduced in Sec. 2.3, our objective is to learn a function
f : X × (X × Y)? → R|Y|. For a given instance x, such a
function can leverage its neighboring set Rx ∈ (X × Y)?

to improve the prediction on x. In this work, we restrict
ourselves to a sub-family of such retrieval-based methods
that first map Rx ∼ Dx,r to D̂x,r — an empirical estimate of
the local distribution Dx,r, which is subsequently utilized to
make a prediction for x. In particular, the scorers of interest
are of the form: (x,Rx) 7→ f(x, D̂x,r), with

f(x, D̂x,r) =
(
f1(x, D̂x,r), . . . , f|Y|(x, D̂

x,r)
)
∈ R|Y|.

Here, fy(x, D̂x,r) denotes the score assigned to the y-th
class. Thus, assuming that ∆X×Y denotes the set of distri-
bution over X× Y, we restrict to a suitable function class in
{f : X×∆X×Y → R|Y|}. Note that, given a surrogate loss
` : R|Y| × Y → R and scorer f , the empirical risk R̂ex

` (f)
and population risk Rex

` (f) take the following form:

R̂ex
` (f) =

1

n

∑
i∈[n]

`
(
xi, D̂

xi,r
)

and

Rex
` (f) = E(X,Y )∼D

[
`
(
f(X,DX,r), Y

)]
.
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Figure 3. Performance of local ERM with size of retrieved set across models of different complexity.

Note that that the general framework for learning in the
extended feature space X̃ := X × ∆X×Y provides a very
rich class of functions. In this paper, we focus on a specific
form of learning methods in the extended feature space
by using the kernel methods. The method as well as its
analysis is obtained by adapting the work on utilizing kernel
methods for domain generalization (Blanchard et al., 2011;
Deshmukh et al., 2019).

In particular, we study generalization of a kernel-based clas-
sifier over X̃ learnt via regularized ERM. Due to space con-
straints, we present an informal version of our result below.
See Appendix E for the precise statement (cf. Thm. E.4),
necessary background, and detailed proof.

Theorem 4.1 (Informal). Let 0 ≤ δ ≤ 1 and N(r, δ) be as
defined in (15). Then, under appropriate assumptions, with
probability at least 1− δ, we have

sup
f∈F

∣∣R̂ex
` (f)−Rex

` (f)
∣∣ . C1n

− 1
2

(
1 + log

3
2

√
2n|Y|

)
+ C2

√
log(nδ )

N(r, δn )
+ C3

√
log( 1

δ )

n ,

where F is extended feature kernel function class; and
R̂ex
` (f) and Rex

` (f) are empirical and population risks.

Interestingly, the bound in Thm. 4.1 implies that the size of
the retrieved set Rx (as captured by N(r, δn )) has to scale
at least logarithmically in the size of the training set n to
ensure convergence.

5. Experiments
There have been numerous successful practical applications
of retrieval-based models in the literature (e.g., Wang et al.,
2022; Das et al., 2021). Here, we present a brief empirical
study for such models in order to corroborate the benefits
predicted by our theoretical results. We also present pre-
liminary experiments to empirically verify the kernel based

extended feature space-based approach in Appendix E.3.

Task and dataset. We perform experiments on both syn-
thetic and real datasets, as summarized below. Further de-
tails are relegated to Appendix F.

(i) Synthetic. We consider a task of binary classification on
a Gaussian mixture. Each mixture component is endowed
with its local linear decision boundary. We randomly gen-
erate a train set of size n = 10000 in a 10-dimensional
space. We use Euclidean distance for retrieval and perform
a 10-fold cross-validation.
(ii) CIFAR-10. Next, we consider a task of binary classi-
fication on a real data for object detection. In particular,
we consider a subset of CIFAR-10 dataset where we only
restrict to images from ”Cat” and ”Dog” classes. We ran-
domly partition the data into a train set of size n = 10000
points and remaining 2000 points for test. We use Euclidean
distance for retrieval and do a 10-fold cross-validation.
(iii) ImageNet. Finally, we consider 1000-way classifica-
tion task on ImageNet dataset. We use the standard train-test
split with n = 1281167 training and 50000 test examples.
Following standard practice in literature, we use unsuper-
vised but globally learned features from ALIGN (Jia et al.,
2021) to do image retrieval. This also showcases benefits of
endowing local ERM with global representation (Sec. 3.4).
Given large computational cost, we could only run each
experiment once in this setting.

Methods. On all datasets, as baseline, we consider sim-
ple linear classifier and multi-layer perceptron (MLP) of
two layers. For retrieval-based models, we consider each
of the above methods as the local model to fit on retrieved
data points via local ERM framework (Sec. 3). For syn-
thetic datasets, we also considered support vector machines
with polynomial kernel (of degree 3) and with radial basis
function (RBF) kernel, both for baseline and local ERM.
For ImageNet, we additionally consider the state-of-the-
art (SoTA) single model published for this task, which is
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from the most recent CVPR 2022 (Zhai et al., 2022), as a
baseline. In addition, for ImageNet, we also consider the
pretrain-finetune version of local ERM, where using the
retrieved set we fine-tune a MobileNetV3 (Howard et al.,
2019) model that has been pretrained on entire ImageNet.

Observations. In Fig. 3, we observe the tradeoff of varying
the size of the retrieved set (as dictated by the neighbor-
hood radius) on the performance of retrieval-based methods
across all settings. We see that when the number of retrieved
samples is small, local ERM has lower accuracy, this is due
to large generalization error. When the size of the retrieved
sample space is high, local ERM fails to minimize the loss
effectively due to the lack of model capacity. We see that this
effect being more pronounced for simpler function classes
such as linear classifier as compared to MLP. In Fig. 3c, we
see that, via local ERM with a small MobileNet-V3 model,
we are able to achieve the top-1 accuracy of 82.78 whereas
a regularly trained MobileNet-V3 model achieves the top-1
accuracy of only 65.80. Also the result is very competitive
with SoTA of 90.45 with a much larger model. Thus, our em-
pirical evaluation demonstrates the utility of retrieval-based
models via simple local ERM framework. In particular, it
allows small sized models to attain very high performance.

6. Related work and discussion
Local polynomial regression. Perhaps the most similar to
our setup is the rich set of work on local polynomial re-
gression, which has been around for a long time since the
pioneering works of Stone (1977; 1980) . This line of work
aims to fit a low-degree polynomial at each point in the data
set based on a subset of data points. Such approaches gained
a lot of attention as parametric regression was not adequate
in various practical applications of the time. The perfor-
mance of this approach critically depends on subset selected
to locally fit the data. Towards this, various selection ap-
proaches have been considered: fixed bandwidth (Katkovnik
& Kheisin, 1979), nearest neighbors (Cleveland, 1979), ker-
nel weighted (Ruppert & Wand, 1994), and adaptive meth-
ods (Ruppert et al., 1995). All these work only analyze
under mean squared error loss and do not handle classifica-
tion nor provide finite sample generalization bounds, which
we obtain in this work.

Multi-task and meta learning. At a surface level, our setup
might resemble multi-task and meta learning frameworks.
In multi-task learning, we are given the examples from T
tasks/distributions and the objective is to ensure good clas-
sification performance on all the tasks. In meta-learning,
the setting is made harder by requiring good performance
on a new target task. As a common approach in these set-
tings, we learn a shared representation across the tasks and
then learn a simple task-specific mapping on top of these
learned shared features (Vilalta & Drissi, 2002, interalia).
Theoretical investigations is quite limited: a few works study

upper-bounds of generalization error in multi-task environ-
ments (Ben-David & Borbely, 2008; Ben-David et al., 2010;
Pentina & Lampert, 2014; Amit & Meir, 2017), and even
fewer in case of meta-learning (Balcan et al., 2019; Khodak
et al., 2019; Du et al., 2020; Tripuraneni et al., 2021). How-
ever, most of these works assume linear or other simple class,
whereas we consider general function class using kernel
methods. It is not clear if the aforementioned representation
based approach can apply to our setting because: each tasks
have little overlap, very large number of tasks, and most
importantly a priori an example belongs is not assigned to a
task. Interestingly, in this work, we show that retrieval-based
approach alleviate the needs to identify the task-membership.
Here, we would like to highlight a contemporary work (Li
et al., 2023) that studies in-context learning by Transformer
models in a multi-task/meta-learning setting. In particular,
this work relies on the notion of algorithm stability (Bous-
quet & Elisseeff, 2002) and presents generalization bounds
for Transformers as in-context learners.

7. Conclusion and future direction
In this work, we initiate the development of a theoretical
framework to study the statistical properties of retrieval-
based modern machine learning models. Our treatment of
an explicit local learning paradigm, namely local-ERM,
establishes an approximation vs. generalization error trade-
off. This highlights the advantage realized by access to a
retrieved set during classification as it enables good per-
formance with much simpler (local) function classes. As
for the retrieval-based models that leverage a retrieved set
without explicitly performing local learning, we present a
systematic study by considering a kernel-based classifier
over extended feature space. Studying end-to-end retrieval-
based models beyond kernel-based classification is a natural
and fruitful direction for future work. It’s also worth explor-
ing if existing retrieval-based end-to-end models inherently
perform implicit local learning via architectures such as
Transformers.

References
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A. Preliminaries
Definition A.1 (Rademacher complexity). Given a sample S = {zi = (xi, yi)}i∈[n] ⊂ Z and a real-valued function class
F : Z→ R, the empirical Rademacher complexity of F with respect to S is defined as

RS(F) =
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(zi)

]
, (19)

where σ = {σi}i∈[n] is a collection of n i.i.d. Bernoulli random variables. For n ∈ N, the Rademacher complexity R̄n(F)
and worst case Rademacher complexity Rn(F) are defined as follows.

R̄n(F) = ES∼Dn [RS(F)] , and Rn(F) = sup
S∼Zn

RS(F). (20)

Definition A.2 (Covering Number). Let ε > 0 and ‖ · ‖ be a norm defined over Rn. Given a function class F : Z→ R and
a collection of points S = {zi}i∈[n] ⊂ Z, we call a set of points {uj}j∈[m] ⊂ Rn an (ε, ‖ · ‖)-cover of F with respect to S,
if we have

sup
f∈F

min
j∈[m]

‖f(S)− uj‖ ≤ ε, (21)

where f(S) =
(
f(z1), . . . , f(zn)

)
∈ Rn. The ‖ · ‖-covering number N‖·‖(ε,F, S) denotes the cardinally of the minimal

(ε, ‖ · ‖)-cover of F with respect to S. In particular, if ‖ · ‖ is an normalized-`p norm (‖v‖ = ( 1
dim(v)

∑dim(v)
i=1 |vi|p)1/p),

then we simply use Np(ε,F, S) to denote the corresponding `p-covering number.

B. Proofs for Section 3.2
B.1. Proof of Lemma 3.5

Note that

E(X,Y )∼D

[
`(f̂X(X), Y )− `(f∗(X), Y )

]
// We add and subtract loss of the local optimizer fX,∗(·) expected over DX,r

= E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
+ E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
− `(f∗(X), Y )

]
// We add and subtract loss of the global optimizer f∗(·) expected over DX,r

= E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
+ E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]
− `(f∗(X), Y )

+ E(X′,Y ′)∼DX,r
[
`
(
fX,∗(X ′), Y ′

)]
− E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]]
// We group (1) local vs global optimizer, (2) global optimizer at X vs expected over DX,r,

// and (3) ERM loss at X vs local optimizer loss expected over DX,r

= E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]
− `(f∗(X), Y )

]
+ E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]]
// We add and subtract loss of the empirical optimizer f̂X(·) expected over DX,r

= E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]
− `(f∗(X), Y )

]
13
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+ E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r [`

(
f̂X(X ′), Y ′

)
]

+ E(X′,Y ′)∼DX,r [`
(
f̂X(X ′), Y ′

)
]− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]]
// We (1) bound difference of loss at X and loss expected over DX,r

by maximizing over function class,
// and (2) subtract empirical loss of empirical optimizer and add (larger) empirical

loss of local optimizer

≤ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
+ E(X,Y )∼D

[
sup

f∈Fglobal

∣∣E(X′,Y ′)∼DX,r
[
`
(
f(X ′), Y ′

)]
− `(f(X), Y )

∣∣]
+ E(X,Y )∼D

[
sup
f∈Floc

∣∣`(f(X), Y )− E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]|
]

+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r [`

(
f̂X(X ′), Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
`
(
f̂X(x′), y′

)]
+ E(X,Y )∼D

[ 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)
− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]]
(22)

// We (1) bound difference of empirical vs expected loss of empirical optimizer
by maximizing over function class,

≤ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
+ E(X,Y )∼D

[
sup

f∈Fglobal

∣∣E(X′,Y ′)∼DX,r
[
`
(
f(X ′), Y ′

)]
− `(f(X), Y )

∣∣]
+ E(X,Y )∼D

[
sup
f∈Floc

∣∣`(f(X), Y )− E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]|
]

+ E(X,Y )∼D

[
sup
f∈Floc

∣∣∣E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
`
(
f(x′), y′

)∣∣∣]
+ E(X,Y )∼D

[∣∣∣E(X′,Y ′)∼DX,r
[
`
(
fX,∗(X ′), Y ′

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)∣∣∣] (23)

B.2. Proof of Theorem 3.7

As discussed in Sec. 3, the proof of Theorem 3.7 requires bounding three terms in Lemma 3.5. We now proceed to
establishing the desired bounds.

Local vs global loss. The local vs global loss can bounded easily using the local regularity condition, and due to the fact
that Floc ≈ ∪xFx. Let

fX,loc = arg min
f∈FX

E(X′,Y ′)∼DX,r
[
`
(
f(X ′), Y ′

)]
.

E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
≤ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
fX,loc(X ′), Y ′

)]]
+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,loc(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
≤ εloc + εX.
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Global and local: Sample vs retrieved set risk. The following lemma bounds the second term in Lemma 3.5. Recall the
definition, for any L > 0,

Mr(L; `, ftrue,F) = 2L`

(
Lr +

(
2‖F‖∞ − Lr

)
ctrue

(
2Ltruer

)αtrue
)
. (24)

Lemma B.1. Under Assumption 3.1, for aL-coordinate Lipschitz function class F with ‖F‖∞ := supx∈X supf∈F ‖f(x)‖∞
we have

E(X,Y )∼D

[
sup
f∈F

∣∣`(f(X), Y )− E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]|
]

≤ 2L`

(
Lr +

(
2‖F‖∞ − Lr

)
ctrue(2Ltruer)

αtrue

)
.

Proof. We are given the example (X,Y ). Let us fix an arbitrary f ∈ F, and any arbitrary example (x′, y′) in the r
neighborhood of X .

We first bound the perturbation in γf (·) for a given label Ỹ .

|γf (X1, Ỹ ))− γf (X2, Ỹ )| ≤ |fỸ (X1)−max
s6=Ỹ

fs(X1)− fỸ (X2) + max
s′ 6=Ỹ

fs′(X2)|

≤ |fỸ (X1)− fỸ (X2)|+ |max
s6=Ỹ

fs(X1)−max
s′ 6=Ỹ

fs′(X2)|

≤ |fỸ (X1)− fỸ (X2)|+ max
s 6=Ỹ
|fs(X1)− fs(X2)|

≤ 2L‖X1 −X2‖2

We can now proceed with bounding the loss.

|`(f(X), Y )− `(f(x′), y′)| = |`(γf (X,Y ))− `(γf (x′, y′))|
≤ L`|γf (X,Y )− γf (x′, y′)|

≤

{
4L`‖f‖∞;Y 6= y′

2L`Lr;Y = y′

Under Assumption 3.1, if we have γftrue(X,Y ) > 2Ltruer, then following the above argument we have γftrue(X ′, Y ) > 0,
thus Y is the true label of X ′. In other words, γftrue(X,Y ) > 2Ltruer imply for any X ′ in the r neighborhood of X its true
label Y ′ = Y .

|`(f(X), Y )− `(f(x′), y′)|
≤ 2L`Lr1(γftrue(X,Y ) > 2Ltruer) + 4L`‖f‖∞1(γftrue(X,Y ) ≤ 2Ltruer)

≤ 2L`Lr + 2L`
(
2‖f‖∞ − Lr

)
1(γftrue(X,Y ) ≤ 2Ltruer)

As (x′, y′) was an arbitrary r-neighbor, we have

|`(f(X), Y )− E(X′,Y ′)∼DX,r`(f(X ′), Y ′)|
≤ E(X′,Y ′)∼DX,r |`(f(X), Y )− `(f(X ′), Y ′)|
≤ 2L`Lr + 2L`

(
2‖f‖∞ − Lr

)
1(γftrue(X,Y ) ≤ 2Ltruer)

Furthermore, as f was arbitrary, we have

sup
f∈F
|`(f(X), Y )− E(X′,Y ′)∼DX,r`(f(X ′), Y ′)|

≤ sup
f∈F

2L`Lr + 2L`
(
2‖f‖∞ − Lr

)
1(γftrue(X,Y ) ≤ 2Ltruer)
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= 2L`Lr + 2L`
(
2‖F‖∞ − Lr

)
1(γftrue(X,Y ) ≤ 2Ltruer).

Note f true is independent of f , which was used in the derivation of above inequalities. Taking expectation over (X,Y ), and
using the margin condition as given in assumption 3.1 we obtain

E(X,Y )∼D

[
sup
f∈F
|`(f(X), Y )− E(X′,Y ′)∼DX,r`(f(X ′), Y ′)|

]
= 2L`Lr + 2L`

(
2‖F‖∞ − Lr

)
P(X,Y )∼D

[
γftrue(X,Y ) ≤ 2Ltruer

]
≤ 2L`Lr + 2L`

(
2‖F‖∞ − Lr

)
ctrue(2Ltruer)

αtrue = Mr(L; `, ftrue,F).

Plugging in the Lipschitz bounds for the function classes Floc and Fglobal in the above lemma bounds the second term.

An alternative way of bounding the risk difference is as follows:

E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
f(X ′), Y ′

)]
− `(f(X), Y )

]
=

∫
x∈X

( ∫
x′∈B(x,r)∩X

h(x′)ρD(x′)
PD[B(x,r)∩X]dx

′)ρD(x)dx−
∫
x∈X

h(x)ρD(x)dx

=

∫
x′∈X

h(x′)
( ∫

x∈B(x′,r)∩X

ρD(x)
PD[B(x,r)∩X]dx

)
ρD(x′)dx′ −

∫
x∈X

h(x)ρD(x)dx

=

∫
x′∈X

h(x′)
( ∫

x∈B(x′,r)∩X

ρD(x)
PD[B(x,r)∩X]dx− 1

)
ρD(x′)dx′

≤ hmax

∫
x′∈X

∣∣ ∫
x∈B(x′,r)∩X

ρD(x)
PD[B(x,r)∩X]dx− 1

∣∣ρD(x′)dx′

≤ hmax

∫
x′∈X

max
(∣∣ 1

1±cwdc+r
αwdc+ − 1

∣∣)ρD(x′)dx′ =
hmaxcwdc+r

αwdc+

1− cwdc+rαwdc+
.

We can express `(f(X), Y ) = h(X) because Y is a deterministic function of X .

Under Assumption 3.4, with constants cwdc+ and αwdc+, recall that∣∣PX′∼D[d(X ′, x) ≤ r]
ρD(x)vold(r)

− 1
∣∣ ≤ cwdc+r

αwdc+ .

Plugging this in gives us the final inequality.

Example: Let us consider the term PD[B(x′,r)]
PD[B(x,r)∩X] for D being multivariate Gaussian N(µ,Σ). Let vold(r) imply the

volume, and Sd(r) the surface area of a d-sphere of radius r in dimension d.

PD[B(x, r) ∩ X] =

∫
z∈B(x,r)∩X

1√
(2π)d|Σ|

exp(− 1
2 (z − µ)TΣ−1(z − µ))dz

= 1√
(2π)d|Σ|

exp(− 1
2 (x− µ)TΣ−1(x− µ))

∫
z∈B(x,r)∩X

exp(− 1
2 (z + x− 2µ)TΣ−1(z − x))dz

= ρD(x)

∫
u∈B(0,r)

exp(− 1
2 (u+ 2(x− µ))TΣ−1u)du

= ρD(x)
(
vold(r)− c

∫
u∈B(0,r)

(u+ 2(x− µ))TΣ−1udu
)

for some c ∈ [1/4, 1/2]

= ρD(x)
(
vold(r)− c

∫
u∈B(0,r)

(c1‖u‖22 + 2(x− µ)TΣ−1u)du
)

for some c1 ∈ [λmin(Σ−1), λmax(Σ−1)]

We have used exp(−x) ∈ (1− x, 1− x/2) for x ≤ 1.59. Also, u
TΣ−1u
‖u‖22

∈ [λmin(Σ−1), λmax(Σ−1)].
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Then using polar coordinate transform we obtain∫
u∈B(0,r)

‖u‖22du =

∫ r

0

l2Sd(l)dl =

∫ r

0

l2 d l
d−1πd/2

Γ(1+d/2) dl = rd+2 d πd/2

(d+2)Γ(1+d/2) = vold(r)
dr2

d+2 .

Let ξ = 2(x− µ)Σ−1. We want to integrate ξTu over B(0, r). Through a somewhat different polar transform where the
polar axis is parallel to ξ and the angle of u and ξ is θ we can do the integral as follows for d ≥ 2.∫
u∈B(0,r)

ξTudu =

∫ r

l=0

∫ π

θ=0

|ξ|l cos(θ)Sd−1(l) sind−2(θ)dθdl = dπd/2

Γ(1+d/2)

∫ r

l=0

|ξ|ld−1dl

∫ π

θ=0

cos(θ) sind−2(θ)dθ︸ ︷︷ ︸
=0

= 0.

Substituting, these values in the above inequality we get

PD[B(x, r) ∩ X] = ρD(x)vold(r)
(
1− c2r2

)
, for some c2 = [dλmin(Σ−1)

4(d+2) , dλmax(Σ−1)
2(d+2) ].

Therefore, the difference of Retrieved vs Sample risk for multi-variate Gaussian is bounded as

lmax(f)dr2

(d+ 2)λmax(Σ)
for r ≤

√
(d+ 2)λmax(Σ).

Generalization of local ERM. Recall the function class G(X,Y ) = {`(γf (·, ·)) − `(γf (X,Y )) : f ∈ Floc}. Here
G(X,Y ) : X×Y→ R. Note that the function class is parameterized by (X,Y ). Let us define some quantities of the function
class on a set S ⊆ X× Y as

Gmax((X,Y );S) = sup
g∈G(X,Y )

sup
(x′,y′)∈S

|g(x′, y′)|

By centering each function f ∈ Floc at the point (X,Y ) we can transform the generalization over the function class Floc, to
the generalization over the function class G(X,Y ). In particular, we have

E(X,Y )∼D

[
sup
f∈Floc

∣∣∣E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
`
(
f(x′), y′

)∣∣∣]
≤ E(X,Y )∼D

[
sup
f∈Floc

∣∣∣E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
− `
(
f(X), Y

)
]

− 1

|RX |
∑

(x′,y′)∈RX
`
(
f(x′), y′

)
− `
(
f(X), Y

)∣∣∣∣∣∣|RX | ≥ N(r, δ)
]

+ 4δL`‖Floc‖∞

= E(X,Y )∼D

[
sup

g∈G(X,Y )

∣∣∣E(X′,Y ′)∼DX,r [g(X ′, Y ′)]− 1

|RX |
∑

(x′,y′)∈RX
g(x′, y′)

∣∣∣∣∣∣|RX | ≥ N(r, δ)
]

+ 4δL`‖Floc‖∞.

We next state a standard result of learning theory that bounds the final term using the Rademacher complexity of the function
class G(X,Y ) (Shalev-Shwartz & Ben-David, 2014).

Lemma B.2 (Adapted from Theorem 26.5 in Shalev-Shwartz & Ben-David (2014).). For any (X,Y ) ∈ X × Y and a
neighborhood set RX , and any function g ∈ G(X,Y ), for each δ > 0 with probability at least (1− δ) the following holds

∣∣∣E(X′,Y ′)∼DX,r [g
(
X ′, Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
g
(
x′, y′

)∣∣∣ ≤ 2RRX
(
G(X,Y )

)
+ 4Gmax((X,Y );RX)

√
2 ln(4/δ)

|RX |
.

Taking expectation with respect to (X,Y ), we obtain

E(X,Y )∼D

[
sup

g∈G(X,Y )

∣∣E(X′,Y ′)∼DX,r [g
(
X ′, Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
g
(
x′, y′

)∣∣∣∣∣|RX | ≥ N(r, δ)
]
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≤ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)∣∣∣|RX | ≥ N(r, δ)
]

+

4E(X,Y )∼D

[
Gmax((X,Y );RX)

√
2 ln(4/δ)

|RX |

∣∣∣|RX | ≥ N(r, δ)
]

+ 4δL`‖Floc‖∞

≤ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)∣∣∣|RX | ≥ N(r, δ)
]

+

4E(X,Y )∼D

[
Gmax((X,Y );RX)

∣∣∣|RX | ≥ N(r, δ)
]
E(X,Y )∼D

[√2 ln(4/δ)

|RX |

∣∣∣|RX | ≥ N(r, δ)
]

+ 4δL`‖Floc‖∞

≤ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)∣∣∣|RX | ≥ N(r, δ)
]

+ 4Mr(Lloc; `, ftrue,F
loc)E(X,Y )∼D

[√2 ln(4/δ)

N(r, δ)

]
+ 4δL`‖Floc‖∞.

In the first inequality, with probability (1− δ) we apply the bound from Lemma B.2, whereas we use the bound 4L`‖Floc‖∞
with remaining probability δ. Also from the proof of Lemma B.1 we have that

Gmax((X,Y );RX) ≤ 2L`

(
Lr +

(
max{Lr, 2‖Floc‖∞} − Lr

)
1
(
γftrue(X,Y ) ≤ 2Ltruer

))
.

Taking expectation with respect to D completes the bound. While taking expectation we crucially use the fact that
γftrue(X,Y ) is independent of |RX | to arrive at the Mr(Lloc; `, ftrue,F

loc) bound.

Central absolute moment of fX,∗. As the function fX,∗ is fixed using centering, and then Hoeffding bound, we can
directly bound the remaining term. We have with probability at least (1− δ)∣∣∣E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)∣∣∣
=
∣∣∣E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
fX,∗(X), Y

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)
− `
(
fX,∗(X), Y

)∣∣∣
≤ Gmax((X,Y );RX)

√
ln(2/δ)

|RX |

Taking expectation similar to the previous case we obtain,

E(X,Y )∼D

[∣∣∣E(X′,Y ′)∼DX,r
[
`
(
fX,∗(X ′), Y ′

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)∣∣∣]

≤ E(X,Y )∼D

[
min{4L`‖Floc‖∞,Gmax((X,Y );RX)

√
ln(2/δ)

|RX |
}
]

≤Mr(Lloc; `, ftrue,F
loc)E(X,Y )∼D

[√ ln(2/δ)

N(r, δ)

]
+ 4δL`‖Floc‖∞.

Here, we use the fact that γftrue(X,Y ) is independent of |RX |. This concludes the proof of Theorem 3.7.

B.3. Bounding the Rademacher complexity RRX
(
G(X,Y )

)
We now derive bounds on the Rademacher complexity of the class G(X,Y ). We use the covering number based bounds for
that purpose. We then start by relating it to the covering number of the Floc function class. Finally, we provide a bound on
the class of functions residing in bounded norm Reproducing Kernel Hilbert Space.

We will use Gmax(X,Y ) instead of Gmax((X,Y );RX) when the context is clear. Similar to G(X,Y ), we define the function
class G = {`(γf (·, ·)) : f ∈ Floc} which does not depend on the locality centered around (X,Y ). On a set S ⊆ X× Y we
can define Gmax(S) = supg∈G sup(x′,y′)∈S |g(x′, y′)|.
Lemma B.3. Under Assumption 3.1 we have for any retrieved set within radius r of X , RX , for any p ≥ 1

RRX
(
G(X,Y )

)
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≤


Gmax(X,Y )

infε∈[0,Gp,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gp,max(X,Y )/2

ε

√
log
(

2Gmax

ν

)
log
(
Np(ν/2,G,RX)

)
dν
)

infε∈[0,Gmax(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gmax(X,Y )/2

ε

√
log
(
N∞(ν/2,G,RX ∪ {(X,Y )})

)
dν
)
.

As a corollary we obtain the following rates, as the log-covering number varies with ν at different rates.

Corollary B.4. Under Assumption 3.1 we have for any retrieved set within radius r of X , RX , for any p ≥ 1

RRX
(
G(X,Y )

)
≤


C ′(p,Floc)

log2
(

2 max{|RX |,Gmax}
)

√
|RX |

; if log
(
Np(ε,G, n)

)
≤ C2(p,Floc) log(n/ε)/ε2,

C′(p,Floc)Gp,max(X,Y )1−α/2 log
(

2 max{|RX |,Gmax}
)

√
|RX |

; if log
(
Np(ε,G, n)

)
≤ C2(p,Floc) log(n/ε)/εα, α ∈ [0, 2).

Proof. Case log
(
Np(ε,G, n)

)
≤ C2(p,Floc) log(n/ε)/εα, α ∈ [0, 2):

RRX
(
G(X,Y )

)
≤ 4Gp,max(X,Y )√

|RX |
+ C ′C(p,Floc)√

|RX |

∫ Gp,max(X,Y )/2

Gp,max(X,Y )/
√
|RX |

√
log
(

2Gmax

ν

)
log
( 2|RX |

ν

)
ν−α/2dν

≤ 4Gp,max(X,Y )√
|RX |

+ C ′C(p,Floc)√
|RX |

∫ Gp,max(X,Y )/2

Gp,max(X,Y )/
√
|RX |

log
( 2 max{|RX |,Gmax}

ν

)
ν−α/2dν

≤ 4Gp,max(X,Y )√
|RX |

+ C ′′C(p,Floc)√
|RX |

(
Gp,max(X,Y )1−α/2 log

(
2 max{|RX |,Gmax}

)
+ (1− α/2)−1e−1

)
.

The last inequality follows from

(1− α/2)2

∫ b

c

x−α/2 log(a/x)dx = b1−α/2(1 + (1− α/2) log(a/b))− c1−α/2(1 + (1− α/2) log(a/b))

= (b1−α/2 − c1−α/2)(1 + (1− α/2) log(a)) + b1−α/2 log(1/b)− c1−α/2 log(1/c)

≤ (b1−α/2 − c1−α/2)(1 + (1− α/2) log(a)) + (1− α/2)−1e−1

Case log
(
Np(ε,G, n)

)
≤ C2(p,Floc) log(n/ε)/ε2:

RRX
(
G(X,Y )

)
≤ 4√

|RX |
+ C ′C(p,Floc)√

|RX |

∫ Gp,max(X,Y )/2

1/
√
|RX |

√
log
(

2Gmax

ν

)
log
( 2|RX |

ν

)
ν−1dν

≤ 4√
|RX |

+ C ′C(p,Floc)√
|RX |

∫ Gp,max(X,Y )/2

1/
√
|RX |

log
( 2 max{|RX |,Gmax}

ν

)
ν−1dν

≤ 4√
|RX |

+ C ′C(p,Floc)√
|RX |

(
log2

(
2 max{|RX |,Gmax}

√
|RX |

)
− log2

( 4 max{|RX |,Gmax}
Gp,max(X,Y )

))
≤ 4√

|RX |
+ C ′C(p,Floc)√

|RX |
log2

(
2 max{|RX |,Gmax}

√
|RX |

)
.

Proof of Lemma B.3. Given the set RX , and some function g ∈ G(X,Y ) let us define for p ≥ 1

‖g‖p,RX =
(

1
|RX |

∑
(x′,y′)∈RX

|g(x′, y′)|p
)1/p

.
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Then, we have Gp,max

(
(X,Y );RX

)
= maxg∈G ‖g‖p,RX for all g ∈ G(X,Y ). For the sake of brevity we will

use Gp,max(X,Y ) in place of Gp,max

(
(X,Y );RX

)
. Note that we have from previous definition Gmax(X,Y ) =

G∞,max(X,Y ) ≥ Gp,max(X,Y ) for any p ≥ 1.

A simple bound on the Rademacher complexity comes as a function of the radius r but which is independent of the size of
|RX |. Specifically, we have for Rademacher random variable σi-s

RRX
(
G(X,Y )

)
≤ 1
|RX |Eσ

[
|

∑
(X′i,Y

′
i )∈RX

σigi|
]
≤ max
gi∈G(X,Y )

|gi| ≤ Gmax(X,Y ).

Next using the Chaining method (Shalev-Shwartz & Ben-David, 2014, Chapter 27) we can bound the Radamacher complexity
as

RRX
(
G(X,Y )

)
≤ inf
ε∈[0,Gp,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gp,max(X,Y )/2

ε

√
logNp(ν,G(X,Y ),RX)dν

)
.

To finish the proof we need to show, for p ≥ 1

Np(ν,G(X,Y ),RX) ≤ Np(ν/2,G,RX)Np(ν/2,G, {(X,Y )}).

First we fix any p ≥ 1. Let Û (a set of real numbers) be a ν/2 cover (in `p norm) of G with respect to {(X,Y )}. We have
Np(ν,G(X,Y ),RX) ≤ 2Gmax

ν for any p ≥ 1 and any ν > 0. Further, let Ũ be a ν/2 cover of G with respect to RX . Note
for any ũ ∈ Ũ we have ũ ∈ R|RX |.

Now, we fix any g′ ∈ G. We have at least one ũ ∈ Ũ, and û ∈ Û such that(
1
|RX |

∑
(x′,y′)∈RX

|g′(x′, y′)− ũ(x′, y′)|p
)1/p

≤ ν/2, and |g′(X,Y )− û| ≤ ν/2.

Therefore, (
1
|RX |

∑
(x′,y′)∈RX

|
(
g′(x′, y′)− g′(X,Y )

)
−
(
ũ(x′, y′)− û

)
|p
)1/p

=
(

1
|RX |

∑
(x′,y′)∈RX

|
(
g′(x′, y′)− ũ(x′, y′)

)
+
(
û− g′(X,Y )

)
|p
)1/p

≤
(

1
|RX |

∑
(x′,y′)∈RX

|g′(x′, y′)− ũ(x′, y′)|p
)1/p

+ |û− g′(X,Y )|

≤ ν/2 + ν/2 ≤ ν

The first inequality follows by applying Minkowski’s inequality. Whereas, for the second inequality we apply Jensen’s
inequality for (·)1/p being a concave function for p ≥ 1, and applying the appropriate scaling. Therefore, given the covers Ũ
and Û , we can construct the set U′ with entries u′ ∈ R|RX | as: U′ := {u′ = (ũ(x, y)− û) : ũ ∈ Ũ, û ∈ Û}. In particular,
|U′| = |Û||Ũ|. As the choice of g′ ∈ G and (x′, y′) ∈ RX were arbitrary, we have U′ to be the cover of G(X,Y ).

For p = ∞ we can specialize the bound. In particular, consider U to be a ν/2 cover (in `∞ norm) of G with respect to
RX ∪ {(X,Y )}. Then U′ := {u′ = (ũ(x, y) − û(X,Y )) : ũ ∈ U} creates a (normalized) `∞ cover for G with respect

to RX . This is true because
(

1
|RX |

∑
(x′,y′)∈RX |g′(x′, y′) − ũ(x′, y′)|p

)1/p

≤ |g′ − ũ|∞ = ν/2 and |û − g′(X,Y )| ≤
|g′ − ũ|∞ = ν/2. This concludes the proof.

The first term in the above Lemma is similar to the Chaining based Rademacher bounds (Shalev-Shwartz & Ben-David,
2014, Chapter 28) for G, but the ε (in inf and in the integral) varies in [0,Gmax(X,Y )] instead of [0,Gmax]. For small r we
have Gmax(X,Y ) << Gmax, which can be leveraged to give tight bounds in certain situations.
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Example: Floc ≡ `∞-bounded RKHS (Zhang, 2004): Let us consider the setting of Zhang (2004). In this setting, given
some Reproducing Kernel Hilbert Space (RKHS) H , and a function f̃ ∈ H , we can define the function f̃(·) = f̃ ◦ hx where
for some h ∈ H . We further define the set of functions with bounded norm

HA = {f̃(·) ∈ H : ‖f̃‖H sup
x∈X
‖hx‖H ≤ A}.

Finally, our local function class can be defined as

Floc = H
|Y|
A = {f(·) : fy(·) ∈ HA,∀y ∈ Y}.

We have ‖Floc‖∞ = A. Recall that loss function for any y ∈ Y is given as `(γf (x, y)), for any f ∈ Floc. We also have for
all y ∈ Y, |`(γf (x, y))− `(γf ′(x, y))| ≤ 2L` supy |fy(x)− f ′y(x)| (Zhang, 2004, Assumption 15) with γA = 2L`).

Given the above setting, following Lemma 17 in Zhang (2004) 3, we have for a universal constant c

log
(
N∞(2L`ν,G,R

X ∪ {(X,Y )})
)
≤ c|Y|‖Floc‖2∞

ln(2 + ‖Floc‖∞/ν) + ln(|RX |+ 1)

ν2
.

This gives us the following bound for the Rademacher complexity of Floc

RRX ≤ O
(√
|Y|L`‖Floc‖∞ ln(|RX |+1)3/2√

|RX |

)
. (25)

Proof of Equation (25). Without optimizing over ε above, we plug in ε = Gmax(X,Y )√
|RX |

. We obtain

RRX
(
G(X,Y )

)
≤ 4Gmax(X,Y )√

|RX |
+ 12√

|RX |

∫ Gmax(X,Y )/2

Gmax(X,Y )√
|RX |

√
log
(
N∞

(
ν/2,G,RX ∪ {(X,Y )}

))
dν

≤ 4Gmax(X,Y )√
|RX |

+
48
√
c|Y|L`‖Floc‖∞√
|RX |

∫ Gmax(X,Y )/2

Gmax(X,Y )√
|RX |

√
ln(2 + 4L`‖Floc‖∞/ν) + ln(|RX |+ 1)

ν2
dν

≤ 4Gmax(X,Y )√
|RX |

+
48
√
c|Y|L`‖Floc‖∞√
|RX |

∫ Gmax(X,Y )/2

Gmax(X,Y )√
|RX |

√
ln((Gmax(X,Y )+4L`‖Floc‖∞)/ν)+ln(|RX |+1)

ν2 dν

≤ 4Gmax(X,Y )√
|RX |

+
48
√
c|Y|L`‖Floc‖∞√
|RX |

∫ 1/2

1√
|RX |

√
ln((1+4L`‖Floc‖∞/Gmax(X,Y ))/ν′)+ln(|RX |+1)

ν′2 dν′

≤ 4Gmax(X,Y )√
|RX |

+
32
√
c|Y|L`‖Floc‖∞√
|RX |

(
ln
(
(1 + 4L`‖Floc‖∞/Gmax(X,Y ))

√
|RX |

)
+ ln(|RX |+ 1)

)3/2

We use
∫
x

√
ln(a/x) + b/xdx = −2/3(ln(a/x) + b)3/2 for the final inequality, and ignore the negative part.

Example: Floc ≡ `2 bounded RKHS (Lei et al., 2019): We consider a fixed kernelK(x, x′) = 〈φ(x), φ(x′)〉 for x, x′ ∈
X, and let HK be the RKHS induced by K. Let us define the `p,q norm for the vectors W = (w1, w2, . . . , w|Y|) ∈ H

|Y|
K as

‖(w1, . . . , w|Y|)‖p,q = ‖(‖w1‖p, . . . , ‖w|Y|‖p)‖q .

For some norm bound Λ > 0, the local hypothesis space is defined as

Floc = {f(·) : fy(·) = 〈wy, φ(·)〉, wy ∈ HK ,∀y ∈ Y, ‖(w1, . . . , w|Y|)‖2,2 ≤ Λ}.

Recall that we have the loss function class G = {`(γf (·, ·)) : f ∈ Floc}, where the loss function `(·) is assumed to be
L-Lipschitz continuous w.r.t. `∞ norm.

3We correct for a typographical error in Zhang (2004), where the n ≡ |RX | comes in the denominator of the bound presented in
Lemma 17. But Theorem 4 of Zhang (2002) shows this is a typographical error. Indeed, the covering number is not suppossed to decrease
with increasing number of points.
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Given the retrieved set RX for some positive integer n ≥ 1, F̃X after Equation (8) in Lei et al. (2019) induced by RX . 4

Let the worst case Rademacher complexity of a function class F over n points be defined as Rn(F). Also, for a set S let
B̂(S) = max(x,y)∈S supW :‖W‖2,2≤Λ〈wy, φ(x)〉. We have from Theorem 23 in Lei et al. (2019) that the covering number is
bounded as follows: for any set S = {(xi, yi) : i = 1, . . . , n} of size n ≥ 1, for any ε > 4LRn|Y|

(
F̃X
)

log
(
N∞

(
ε,G, S

))
≤ 16n|Y|L2(Rn|Y|

(
F̃X
)

)2

ε2 log
( 2en|Y|B̂(S)L

ε

)
.

Furthermore, from equation (18) in Lei et al. (2019) we have for any set

Λ max(x,y)∈S ‖φ(x)‖2√
2n|Y|

≤ Rn|Y|
(
F̃X
)
≤ Λ max(x,y)∈S ‖φ(x)‖2√

n|Y|
.

Therefore, we have for all ε ≥ 4L
Λ max(x,y)∈S ‖φ(x)‖2√

2n|Y|

log
(
N∞

(
ε,G, S

))
≤ 16 max(x,y)∈S ‖φ(x)‖22Λ2L2

ε2 log
( 2en|Y|B̂(S)L

ε

)
.

Plugging this covering number in in our Rademacher bound with ε ≥ 4L
Λ max(x,y)∈S ‖φ(x)‖2√

2(|RX |+1)|Y|
and taking S = RX∪{(X,Y )}

we get

RRX
(
G(X,Y )

)
≤ inf
ε∈[0,Gmax(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gmax(X,Y )/2

ε

√
logN∞(ν/2,G,RX ∪ {(X,Y )})dν

)
≤

16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2ΛL√
2(|RX |+ 1)|Y|

+
12× 16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖ΛL√

|RX |
×

×
∫ Gmax(X,Y )/2

4LΛ max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2√
2(|RX |+1)|Y|

1
ν

√
log
( 4e(|RX |+1)|Y|B̂(RX∪{(X,Y )})L

ν

)
dν

≤
16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2ΛL√

2(|RX |+ 1)|Y|
+

8× 16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖ΛL√
|RX |

×

×
(

log
( 4
√

2eLB̂(RX∪{(X,Y )})(|RX |+1)|Y|
√

(|RX |+1)|Y|
4LΛ max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2

))3/2

≤
16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2ΛL√

2(|RX |+ 1)|Y|
+

8× 16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖ΛL√
|RX |

×

×
(

log
(√

2e
(
(|RX |+ 1)|Y|

)3/2))3/2

In the final inequality we use the fact that

B̂(RX ∪ {(X,Y )}) ≤ max
(x,y)∈RX∪{(X,Y )}

‖φ(x)‖2 sup
W :‖W‖2,2≤Λ

‖W‖2,∞

≤ max
(x,y)∈RX∪{(X,Y )}

‖φ(x)‖2Λ

Therefore, the final bound on the Rademacher complexity can be given as

RRX ≤ O
(
L`‖Floc‖∞ ln(|Y||RX |)3/2√

|RX |

)
. (26)

Example: Floc ≡ L-layer fully connected deep neural network (DNN)(Bartlett et al., 2017): Following Bartlett et al.
(2017), we consider a L-layer deep neural network (DNN) fA = σL(ALσL−1(AL−1σL−2(. . . A1x)) for x ∈ X where

4We need F̃X only to state some theorems in Lei et al. (2019). We refer interested readers to Lei et al. (2019) for the details.
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A = (A1, A2, . . . , AL) is the sequence of weight matrices. The matrix Al ∈ Rdl−1×dl for l = 1 to L, with dL = |Y|, and
d0 = d given X ⊆ Rd. Furthermore, σl(·) : Rdl → Rdl denotes the non-linearity (including pooling and activation), σl-s are
taken to be 1-Lipschitz, and σl(0) = 0. We assume that the Al matrix is initialized at M l, for each l = 1 to L. We consider
the local function class

Floc = {fA : ‖Al −M l‖2,1 ≤ bl, ‖Al‖σ ≤ sl, ∀l ≤ l ≤ L− 1}.

Furthermore, we have for any f ∈ Floc and any x ∈ X the function (f(x), y)→ `(γf (·, ·)) is 2L` -Lipschitz. Therefore, for a
fixed set S, we have from Theorem 3.3 in Bartlett et al. (2017) that the covering number of the G = {`(γf (·, ·)) : fA ∈ Floc}
is given as

log
(
N2

(
ε,G, S

))
≤ 4L2

`B
2ln(2d2

max)

ε2

( L∏
l=1

sl
)2( L∑

l=1

(bl/sl)
2/3
)3/2

=
R

ε2
,

where dmax = maxLl=1 dl,
√

1
|S|
∑
x∈S ‖x‖22 ≤ B, and

R = 4L2
`B

2ln(2d2
max)

( L∏
l=1

sl
)2( L∑

l=1

(bl/sl)
2/3
)3/2

.

Using a the covering number based bound on Rademacher complexity we obtain

RRX
(
G(X,Y )

)
≤ inf
ε∈[0,G2,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ G2,max(X,Y )/2

ε

√
log(

4L`B
∏L
l=1 sl

ν ) log
(
N2

(
ν/2,G,RX

))
dν
)

≤ inf
ε∈[0,G2,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gmax(X,Y )/2

ε

√
log(

4L`B
∏L
l=1 sl

ν ) Rν2 dν
)

≤ inf
ε∈[0,G2,max(X,Y )/2]

(
4ε+ 8

√
R√
|RX |

log3/2(
4L`B

∏L
l=1 sl

ε )
)
− 8

√
R√
|RX |

log3/2(
8L`B

∏L
l=1 sl

G2,max(X,Y ) )

≤
(

4G2,max(X,Y )√
|RX |

+ 8
√
R√
|RX |

log3/2(
4L`B

∏L
l=1 sl
√
|RX |

G2,max(X,Y ) )
)
− 8

√
R√
|RX |

log3/2(
8L`B

∏L
l=1 sl

G2,max(X,Y ) )

B.4. Function approximation

The following proposition states that the expected loss between Floc classes can be bounded by the L1 regression error
between these two.

Proposition B.5. Let F1 and F2 be two classes for scorer functions, and loss ` satisfy Assumption 3.2 with Lipschitz
constant L`. Then for any x ∈ X the following holds

min
f∈F1

EDx,r [`(f(X), Y )] ≤ min
f∈F2

EDx,r [`(f(X), Y )]

+ 2L` max
f ′∈F2

min
f∈F1

EDx,r [max
s
|fs(X)− f ′s(X)|].

Proof. We compare the loss from two arbitrary (measurable w.r.t. DX,r) functions f and f̃ next, where we are trying to
approximate f̃ with f .

E[`(f(X), Y )] = E[`(γf (X,Y ))]

= E[`(γf̃ (X,Y ))] + E[`(γf (X,Y ))− `(γf̃ (X,Y ))]

≤ E[`(γf̃ (X,Y ))] + L`E[|γf (X,Y )− γf̃ (X,Y )|]

= E[`(f̃(X), Y )] + L`E[|fY (X)− f̃Y (X)−max
s6=Y

fs(X) + max
s6=Y

f̃s(X)|]

≤ E[`(f̃(X), Y )] + 2L`E[max
s
|fs(X)− f̃s(X)|]
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Let fX,∗ := arg minf∈FX E[`(f(X), Y )]. Replacing the f̃ = fX,∗ and taking minima over F loc on both sides, we obtain.

min
f∈F loc

E[`(f(X), Y )] ≤ min
f∈FX

E[`(f(X), Y )] + 2L` min
f∈F loc

E[max
s
|fs(X)− fX,∗s (X)|].

Applying the above result, we have εloc = 2L` minf∈F loc E[maxs |fs(X)− fX,∗s (X)|] in Eq. (6).

A similar argument establishes that εX = 2L` minf∈FX E[maxs |fs(X)− f∗s (X)|] in Eq. (4), where the function f∗ is the
population minimizer of the loss over distribution DX among the function class Fglobal.

B.5. Proof of Proposition 3.6

Under the weak density condition, for any r > 0 we have PD

[
|RX | = 0

]
= 0. Furthermore, for any N ≥ 1, and x ∈ X

PD

[
|Rx| < N

]
≤ PD

[ n∑
i=1

1
(
d(Xi, x) ≤ r

)
< N

]
≤ PD

[ n∑
i=1

1
(
d(Xi, x) ≤ min{r, δwdcρD(x)−1/d}

)
< N

]
≤ exp(−2(p(x, r)−N/n)2n)

Let p(x, r) := min{cdwdcρD(x)rd, cdwdcδ
d
wdc}, then PD

(
d(Xi, x) ≤ min{r, δwdcρD(x)−1/d}

)
≥ p(x, r). Using Chernoff

bound we obtian the final inequality for the above definition of p(x, r). It can be shown that choosing

N = n
(

min{cdwdcρD(x)rd, cdwdcδ
d
wdc} −

√
log(1/δ)

2n

)
,

we obtain PD

[
|Rx| < N

]
≤ δ for any δ > 0.

Recall, PD[ρD(X) < fρ(δ)] ≤ δ} for any δ > 0. Let

N(r, δ) ≥ n
(

min{cdwdcfρ(δ)r
d, cdwdcδ

d
wdc} −

√
log(2/δ)

2n

)
.

Then, we have

PD

[
|RX | < N(r, δ)

]
≤ PD

[
|RX | < N(r, δ)|ρD(X) ≥ fρ(δ/2)

]
+ PD[ρD(X) < fρ(δ/2)]

≤ δ/2 + δ/2 = δ

For the first term in the final inequality, we use the fact that for all x ∈ X such that ρD(x) ≥ ρ−1
D (δ/2), we have

PD

[
|Rx| < N(r, δ)

]
≤ δ/2. For the second term in the final inequality, we just use the definition of fρ(δ).

B.6. Computation of the function fρ(δ) in Proposition 3.6

For non-degenerate multi-dimensional Gaussian distributions we have

ρN(µ,Σ)(x) = (2π)−d/2|Σ|−1/2 exp(− 1
2 (x− µ)TΣ−1(x− µ))

Therefore, the level sets are given as

PN(µ,Σ)

[
x : ρN(µ,Σ)(x) ≥ (2π)−d/2|Σ|−1/2γ

]
=

∫
x:(x−µ)TΣ−1(x−µ)≤2 ln(1/γ)

(2π)−d/2|Σ|−1/2 exp(− 1
2 (x− µ)TΣ−1(x− µ))dx

=

∫
x:(x−µ)TΣ−1(x−µ)≤2 ln(1/γ)

(2π)−d/2|Σ|−1/2

∫ ∞
t=

1
2 (x−µ)TΣ−1(x−µ)

exp(−t)dtdx
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= (2π)−d/2|Σ|−1/2

∫ ∞
t=0

(∫
x:(x−µ)TΣ−1(x−µ)≤min{2t,2 ln(1/γ)}

dx
)

︸ ︷︷ ︸
volume of ellipsoid

exp(−t)dt

= (2π)−d/2|Σ|−1/2|Σ|1/2 πd/2

Γ(d/2+1)

(∫ ∞
t=ln(1/γ)

(2 ln(1/γ))d/2 exp(−t)dt+

∫ ln(1/γ)

t=0

(2t)d/2 exp(−t)dt
)

= 1
Γ(d/2+1)

(
Γ(d/2 + 1)−

∫ ∞
ln(1/γ)

(td/2 − ln(1/γ)d/2) exp(−t)dt
)

= 1− 1
Γ(d/2+1)

∫ ∞
0

((t′ + ln(1/γ))d/2 − ln(1/γ)d/2) exp(−(t′ + ln(1/γ)))dt′

≥ 1− γ
Γ(d/2+1)

∫ ∞
0

(q(t′/q)d/2 + r(ln(1/γ)/r)d/2 − ln(1/γ)d/2) exp(−t′))dt′ [(qα+ rβ)p ≤ qαp + rβp : q + r = 1]

≥ 1−
(

ln(1/γ)d/2−1γ + ((1−1/ln(1/γ))−d/2+1−1)
Γ(d/2+1) γ ln(1/γ)d/2

)
≥ 1−

(
ln(1/γ)d/2−1γ + ((1−1/ln(1/γ))−d/2+1−1)

Γ(d/2+1) γ ln(1/γ)d/2
)
≥ 1− 2.45γ ln(1/γ)d/2, ∀γ ≤ 1/2

We now extend the results to mixture of distributions. It is easily shown below that if each of the mixture component k ≤ K
satisfies PDk

[
x : ρDk(x) ≤ γ

]
≤ cγ ln(1/γ)d/2 then

PDmix

[
x : ρDmix

(x) ≤ γ
]

=
∑
k

wkPDk

[
x :
∑
l

wlρDl(x) ≤ γ
]
≤
∑
k

wkPDk

[
x : ρDk(x) ≤ γw−1

k

]
≤
∑
k

wkcγw
−1
k ln(wk/γ)d/2 ≤ cKγ ln(1/γ)d/2.

C. Comparison of risk bounds
We now compare the risk bounds of the proposed explicit local ERM (which we think of as proxy towards understanding
the implicit local learning happening in Retrieval augmented models) between different parametric, and non-parametric
methods.

C.1. Sobolev spaces (Yarotsky, 2017)

In the following paragraph we briefly describe the setting of (Yarotsky, 2017) for the most part borrowing the notations
from the authors. The authors study the approximation of functions f : Rd → R, with Relu networks with the metrics
maxx∈[0,1]d |f(x)− f̃(x)| for some approximation f̃ . They consider the Sobolev spacesWk,∞([0, 1]d) for n = 1, 2, . . . .
For a function in Sobolev spacesWk,∞([0, 1]d) the weak derivatives upto order k are bounded in L∞ norm. In particular,
we define the norm inWk,∞([0, 1]d) as .

‖f‖Wk,∞([0,1]d) = max
|k|≤k

ess sup
x∈[0,1]d

‖Dkf(x)‖∞,

where k ∈ {0, 2, . . . , k}d is the multi-index of the weak derivative Dk, and |k| =
∑d
ki=1 ki.

5 The function class

Fk,d = {f ∈ Wk,∞([0, 1]d) : ‖f‖Wk,∞([0,1]d) ≤ 1}.

From Theorem 4 we know that to approximate Fk,d within accuracy ε ∈ (0, 1/2) we require Ω(ε−d/2k) weights in general,
and with a depth O(lnp(1/ε)) network, for any p ≥ 0, we require Ω(ε−d/k ln−(2p+1)(1/ε)) weights.

A standard bound of Taylor series ensures that a degree (k − 1) Taylor polynomial will approximate the function class Fk,d
for any x′ in the L2-radius r of x (hence L∞-radius r as L2 norm upper bounds L∞ norm) with accuracy dkrk/k!, i.e. for
any f ∈ Fk,d there exists f̃(x′) ∈ P(k)

max
x′:‖x′−x‖2≤r

|f(x′)− f̃(x′)| ≤ dkrk

k! ‖f‖Wk,∞([0,1]d) ≤ dkrk

k! .

5Note we adopt bold symbol only for multi-indices, whereas vectors in Rd are denoted without bold symbol.
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In particular, f̃(x′) can be taken as the Taylor polynomial of degree at most k f̃(x′) =
∑
|k|≤k−1 ak(x − x′)k where

|ak| ≤ 1. Hence, we have
∑
|k|≤k−1 ak ≤

(
d+k−1
k−1

)
.

Connecting back to our approximation with the approximation error εloc we have for Fglobal = Fk,d the degree qx = (k−1)

for all x ∈ X , C(Fk,d, k − 1) = dkrk

k! , and C ′(Fk,d, k − 1) =
(
d+k−1
k−1

)
.

D. Proofs for Section 3.4
This section focuses on providing a proof of Proposition 3.8. It follows the proof technique of (Foster et al., 2019, Eq. (9)).
Before presenting the proof of Proposition 3.8, we need to introduce a slight variation of the Rademacher complexity for
data-dependent hypothesis set.

Let Z = X× Y. Let R = {zRj },T = {zTj } ∈ Zm be two m-sized samples and σ ∈ {+1,−1}m be a vector of independent

Rademacher variables. Now define RT,σ = {zRT,σ

j } ∈ Zm such that

z
RT,σ

j =

{
zRj , if σj = 1,

zTj , if σj = −1,
(27)

i.e., RT,σ is obtained by replacing i-th element of R by i-th element of T iff σi = −1. Let U ∈ Zn−m be an m− n-sized
sample; for R ∈ Zm, SR = U ∪ R ∈ Zn. Note that, following this notation, we have SRT,σ

= U ∪ RT,σ. For S ∈ Zn, let
H(S) be a data dependent function class (hypothesis set), which does not depend on the ordering of the elements in S.
Definition D.1 (Rademacher complexity for data-dependent function class). Let H = {H(S)}S∈Zn be a family of data
dependent function classes. Given R = {zRj∈[m]},T = {zTj∈[m]} ∼ Dm and U = {zUm+i}i∈[n−m], the empirical Rademacher
complexity R�U,R,T(H) and Rademacher complexity R�U,m(H) are defined as follows.

R�U,R,T(H) =
1

m
Eσ

[
sup

h∈H(SRT,σ
)

m∑
i=1

σih(zTi )

]

R�U(H) =
1

m
ER,T∼Dm

σ

[
sup

h∈H(SRT,σ
)

m∑
i=1

σih(zTi )

]
(28)

D.1. Proof of Proposition 3.8

We are now ready to establish the proof of Proposition 3.8. As discussed above, we extend the proof technique of (Foster
et al., 2019, Eq. (9)) to obtain this result. Our setting differs from that of (Foster et al., 2019) as the local ERM objective only
depends on the retrieve samples Rx while the function class of interest FS = FΦS

in (16) depends on the entire training set
S via representation ΦS. We suitably modify the proof techniques of (Foster et al., 2019) to handle this difference.

Let |Rx| := m and U = S\Rx. For R,T ∈ Zm, we define

Ξ(R,T) = sup
f∈FΦU∪R

∣∣∣∣E(X′,Y ′)∼Dx,r [`(f(X ′), Y ′)]︸ ︷︷ ︸
:=R`(f ;Dx,r)

− 1

m

∑
(x′,y′)∈T

`(f(x′), y′)

︸ ︷︷ ︸
:=R̂`(f ;T)

∣∣∣∣
= sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;T)
∣∣.

Note that we are interested in bounding

Ξ(Rx,Rx) = sup
f∈FΦS

∣∣∣∣E(X′,Y ′)∼Dx,r [`(f(X ′), Y ′)]︸ ︷︷ ︸
R`(f ;Dx,r)

− 1

m

∑
(x′,y′)∈T

`(f(x′), y′)

︸ ︷︷ ︸
R̂`(f ;Rx)=R̂x` (f)

∣∣∣∣,

where we have used the fact that U ∪ Rx = S. Towards this, we first establish that Ξ(R,R) satisfies the
(
M`

m + 2∆LL`,1
)
-

bounded difference property, i.e., for R,R′ ∈ Zm that only differ in one element, we have

Ξ(R,R)− Ξ(R′,R′) ≤ M`

m
+ 2∆LL`,1. (29)
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Note that

Ξ(R,R)− Ξ(R′,R′) ≤ Ξ(R,R)− Ξ(R,R′)︸ ︷︷ ︸
I

+ Ξ(R,R′)− Ξ(R′,R′)︸ ︷︷ ︸
II

. (30)

Now, we will separately bound the two terms in the RHS. Let z̆ = (x̆, y̆) ∈ R\R′ and z̆′ = (x̆′, y̆′) ∈ R′\R. Thus, we have
the following bound on the first term.

I = Ξ(R,R)− Ξ(R,R′)

= sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R)
∣∣− sup

f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣

≤ sup
f∈FΦU∪R

∣∣∣∣∣R`(f ;Dx,r)− R̂`(f ;R)
∣∣− ∣∣R`(f ;Dx,r)− R̂`(f ;R′)

∣∣∣∣∣
≤ sup
f∈FΦU∪R

[
R`(f ;Dx,r)− R̂`(f ;R)−R`(f ;Dx,r) + R̂`(f ;R′)

]
= sup
f∈FΦU∪R

∣∣R̂`(f ;R′)− R̂`(f ;R)
∣∣

= sup
f∈FΦU∪R

1

m

∣∣`(f(x̆′), y̆′)− `(f(x̆), y̆)
∣∣ ≤ M`

m
, (31)

where the last inequality follows from our boundedness assumption for the loss function `.

Now we move to term II. Towards this, note that, it follows from the definition of supremum that, for any ε > 0, there exists
f̃ ∈ FΦU∪R such that

sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣− ε ≤ ∣∣R`(f̃ ;Dx,r)− R̂`(f̃ ;R′)

∣∣ (32)

Let f̃ = g̃ ◦ ΦU∪R ∈ FΦU∪R and f̃ ′ = g̃ ◦ ΦU∪R′ ∈ FΦU∪R′ . Note that, for any (x, y) ∈ Z,∣∣`(f̃(x), y
)
− `
(
f̃ ′(x), y

)∣∣ =
∣∣`(g̃ ◦ ΦU∪R(x), y

)
− `
(
g̃ ◦ ΦU∪R′(x), y

)∣∣
(i)

≤ L`,1‖g̃ ◦ ΦU∪R(x)− g̃ ◦ ΦU∪R′(x)‖∞
≤ L`,1‖g̃ ◦ ΦU∪R(x)− g̃ ◦ ΦU∪R′(x)‖2
(ii)

≤ L`,1L‖ΦU∪R(x)− ΦU∪R′(x)‖2
(iii)

≤ L`,1L∆, (33)

where we use L`,1-Lipschitzness of ` w.r.t. ‖ · ‖∞ norm, L-Lipschitzness of g, and ∆-sensitivity of the representation Φ in
(i), (ii), and (iii), respectively.

Now, we have

II = Ξ(R,R′)− Ξ(R′,R′)

= sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣− sup

f∈FΦ
U∪R′

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣

(i)

≤
∣∣R`(f̃ ;Dx,r)− R̂`(f̃ ;R′)

∣∣+ ε− sup
f∈FΦ

U∪R′

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣

≤
∣∣R`(f̃ ;Dx,r)− R̂`(f̃ ;R′)

∣∣+ ε−
∣∣R`(f̃ ′;Dx,r)− R̂`(f̃ ′;R′)∣∣

=
∣∣∣[R`(f̃ ;Dx,r)−R`(f̃ ′;Dx,r)

]
−
[
R̂`(f̃ ;R′)− R̂`(f̃ ′;R′)

]∣∣∣+ ε

≤
∣∣R`(f̃ ;Dx,r)−R`(f̃ ′;Dx,r)

∣∣+
∣∣R̂`(f̃ ;R′)− R̂`(f̃ ′;R′)

∣∣+ ε

(ii)

≤ 2L`,1L∆ + ε, (34)
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where (i) and (ii) follow from (32) and (33), respectively. Now, since ε in (32) can be chosen arbitrarily small, it follows
from (30), (31), and (34) that

Ξ(R,R)− Ξ(R′,R′) ≤ M`

m
+ 2∆LL`,1,

i.e., Ξ(R,R) indeed satisfies the
(
M`

m + 2∆LL`,1
)
-bounded difference property. Now, it follows from the McDiarmid’s

inequality that, for δ > 0, we have with probability at least 1− δ:

Ξ(Rx,Rx) ≤ E
[
Ξ(Rx,Rx)

]
+
(
M` + 2∆LL`,1m

)√ log(1/δ)

2m

or

sup
f∈FΦS

∣∣R`(f ;Dx,r)− R̂x` (f)
∣∣ ≤ ERx

∣∣∣ sup
f∈FΦS

[
R`(f ;Dx,r)− R̂x` (f)

]∣∣∣ +

(
M` + 2∆LL`,1m

)√ log(1/δ)

2m
. (35)

Now, first statement of Proposition 3.8 follows from (35) and the fact that m = |Rx|.

It follows from the proof steps in Foster et al. (2019, Section E.1) that

ERx

[
sup

f∈FΦS=U∪Rx

∣∣R`(f ;Dx,r)− R̂x` (f)
∣∣] ≤ 2R�U(` ◦ F), (36)

where F = {FΦU∪R}R∈Zm and R�U is defined in (28). This completes the proof of Proposition 3.8.

E. Classification in extended feature space: A kernel-based approach
As introduced in Sec. 2.3, our objective is to learn a function f : X × (X × Y)? → R|Y|. For a given instance x, such a
function can leverage its neighboring set Rx ∈ (X× Y)? to improve the prediction on x. In this work, we restrict ourselves
to a sub-family of such retrieval-based methods that first map Rx ∼ Dx,r to D̂x,r — an empirical estimate of the local
distribution Dx,r, which is subsequently utilized to make a prediction for x. In particular, the scorers of interest are of the
form:

(x,Rx) 7→ f(x, D̂x,r) =
(
f1(x, D̂x,r), . . . , f|Y|(x, D̂

x,r)
)
∈ R|Y|, (37)

where fy(x, D̂x,r) denotes the score assigned to the y-th class. Thus, assuming that ∆X×Y denotes the set of distribution over
X×Y, we restrict to a suitable function class in {f : X×∆X×Y → R|Y|}. Note that, given a surrogate loss ` : R|Y|×Y→ R
and scorer f , the empirical risk R̂ex

` (f) and population risk Rex
` (f) take the following form:

R̂ex
` (f) =

1

n

∑
i∈[n]

`
(
xi, D̂

xi,r
)

and Rex
` (f) = E(X,Y )∼D

[
`
(
f(X,DX,r), Y

)]
. (38)

Note that that the general framework for learning in the extended feature space X̃ := X×∆X×Y provides a very rich class
of functions. In this paper, we focus on a specific form of learning methods in the extended feature space by using the
kernel methods. The method as well as its analysis is obtained by adapting the work on utilizing kernel methods for domain
generalization (Blanchard et al., 2011; Deshmukh et al., 2019).

E.1. Kernel-based classification

Before introducing a kernel method for the classification, we need to define a suitable kernel k : X̃ × X̃ → R on the
extended feature space X̃ := X × ∆X×Y. Towards this, let kZ be a kernel over Z := X × Y. Assuming that HkZ is the
reproducing kernel Hilbert space (RKHS) associated with kZ, we can define a kernel mean embedding (Smola et al., 2007)
Ψ : ∆Z → HkZ as follows:

Ψ(P ) =

∫
Z

kZ
(
z, ·
)
dP. (39)
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For an empirical distribution D̂x,r defined by Rx, kernel embedding in (39) takes the following form.

Ψ(D̂x,r) =
1

|Rx|
∑

(x′,y′)∈Rx
kZ
(
(x′, y′), ·

)
. (40)

Now, using a kernel kX over X and a kernel-like function κ over Ψ(∆Z), we define a desired kernel k : X̃ × X̃ → R as
follows:

k
(
X̃1, X̃2

)
= k

(
(X1,D

X1,r), (X2,D
X2,r)

)
= kX(X1, X2) · κ

(
Ψ(DX1,r),Ψ(DX2,r)

)
. (41)

Let Hk be the RKHS corresponding to the kernel k in (41), and ‖ · ‖Hk be the norm associated with Hk. Equipped with the
kernel in (41) and associated Hk, for λ > 0, we propose to learn a scorer f = (f1, . . . , f|Y|) ∈ H

|Y|
k := Hk × · · · ×Hk via

the following regularized ERM problem.

f̂ ex = arg min
f∈H|Y|k

1

n

n∑
i=1

`
(
f(x̃i), yi

)
+ λ · Ω(f), (42)

where x̃i = (xi, D̂
xi,r) and Ω(f) := ‖f‖2

H
|Y|
k

:=
∑
y∈Y ‖fy‖2Hk . It follows from the representer theorem that the solution of

(42) takes the form f̂ ex(·) =
∑
i∈[n] αik

(
(xi, D̂

xi,r), ·
)
. One can apply multiclass extensions of SVMs to learn the weights

{αi} (Deshmukh et al., 2019). Next, we focus on studying the generalization behavior of the scorer f̂ ex recovered in (42).

E.2. Generalization bounds for kernel-based classification
Before presenting a generalization bound for kernel-based classification over the extended feature space X̃, we state the
three key assumptions that are utilized in our analysis.

Assumption E.1. The loss function ` : R|Y| × Y is L`,1-Lipschitz w.r.t. the first argument, i.e.,

|`(s1, y)− `(s2, y)| ≤ L`,1 · ‖s1 − s2‖∞ ∀s1, s2 ∈ R|Y| and y ∈ Y. (43)

Furthermore, assume that sup(x,y) `(x, y) := M` ≤ ∞.

Assumption E.2. Kernels kX, kZ, and κ are bounded by MkX ,MkZ , and Mκ, respectively.

Assumption E.3. Let HkZ and Hκ be the RKHS associated with kZ and κ, respectively. Then, the canonical feature map
ϕκ : HkZ → Hκ is α-Hölder continuous with α ∈ (0, 1], i.e.,

‖ϕκ(h1)− ϕκ(h2)‖Hκ ≤ L′ · ‖h1 − h2‖αHkZ ∀h1, h2 ∈ {h ∈ HkZ : ‖h‖HkZ ≤MkZ} (44)

The following result states our generalization bound for the kernel-based classification method described in Sec. E.1.
Theorem E.4. Let 0 ≤ δ ≤ 1 and Assumptions E.1–E.3 hold. Furthermore, let N(r, δ) be as defined in (15). Then, for any
B > 0, the following holds with probability at least 1− 3δ

sup
f∈Fk

B

∣∣R̂ex
` (f)−Rex

` (f)
∣∣ ≤ 32

√
log 2L`,1BMκMkXn

− 1
2

(
1 + log

3
2
√

2n|Y|
)

+ L`,1L
′MkXB

(
MkZ

√
2 log(n

δ
)

N(r, δ
n

)
+MkZ

√
1

N(r, δ
n

)
+

4MkZ log(n
δ

)

3N(r, δ
n

)

)α
+M

√
log( 1

δ
)

2n
,

where FkB =
{
f = (f1, . . . , f|Y|) ∈ H

|Y|
k : Ω(f) ≤ B2

}
and M := M` + L`,1BMkXMκ.

Before presenting the proof of Theorem E.4, we state two key results from the literature that are used in our analysis.

Proposition E.5 ((Steinwart & Christmann, 2008)). Let (Ω,A, P ) be a probability space, H be a separable Hilbert space,
and M > 0. Let η1, . . . , ηm : Ω → H be m independent H-valued random variables satisfying ‖ηj‖∞ ≤ M , for all
j ∈ [m]. The, for δ > 0, the following holds with probability at least 1− δ.∥∥∥ 1

m

m∑
j=1

(ηj − EP [ηj ]
∥∥∥
H
≤M

√
2 log(1/δ)

m
+M

√
1

m
+

4M log(1/δ)

3m
. (45)
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Proposition E.6. (Deshmukh et al., 2019; Lei et al., 2019) Let Z̃ = X̃× Y be (extended) input and output space pair and
S̃ =

{
z̃1, . . . , z̃n

}
. Let Hk be a RKHS defined on X̃, with k being the associated kernel. Let

FkB =
{

(f1, . . . , f|Y|) : fy ∈ Hk ∀y ∈ Y and
(∑
y∈Y

‖fy‖pHk
)1/p

≤ B
}

and ` : R|Y| × Y→ R be a Lipschitz function in its first argument, i.e.,

|`(s1, y)− `(s2, y)| ≤ L`,1‖s1 − s2‖∞ ∀s1, s2 ∈ R|Y| and y ∈ Y.

Then the Rademacher complexity of the induced function class ` ◦ FkB := {` ◦ f : f ∈ FkB} satisfies

RS̃

(
` ◦ FkB

)
:= Eσi

[
sup
f∈FkB

1

n

∑
i∈[n]

σi`
(
f(x̃i), yi

)]
≤ 16L`,1

√
log 2B sup

x̃∈X̃

√
k(x̃, x̃)n−

1
2 |Y|

1
2−

1
max{2,p}

(
1 + log

3
2

√
2n|Y|

)
. (46)

Note that σ = (σ1, . . . , σn) denotes n i.i.d. Rademacher random variable.

Proof of Theorem E.4. Note that

sup
f∈FkB

∣∣R̂ex
` (f)−Rex

` (f)
∣∣ = sup

f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi, D̂

xi,r), yi
)
− E(X,Y )∼D

[
`
(
f(X,DX,r), Y

)] ∣∣∣∣
≤ sup
f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi, D̂

xi,r), yi
)
− 1

n

n∑
i=1

`
(
f(xi,D

xi,r), yi
)∣∣∣∣︸ ︷︷ ︸

I

+

sup
f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi,D

xi,r), yi
)
− E(X,Y )∼D

[
`
(
f(X,DX,r), Y

)] ∣∣∣∣︸ ︷︷ ︸
II

(47)

Bounding the term-I in (47). Note that

I = sup
f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi, D̂

xi,r), yi
)
− 1

n

n∑
i=1

`
(
f(xi,D

xi,r), yi
)∣∣∣∣

≤ L`,1
n

∑
i∈[n]

‖f(xi, D̂
xi,r)− f(xi,D

xi,r)‖∞

≤ L`,1
n

∑
i∈[n]

max
y∈Y
|fy(xi, D̂

xi,r)− fy(xi,D
xi,r)|

≤ L`,1 ·max
y∈Y

max
i∈[n]
|fy(xi, D̂

xi,r)− fy(xi,D
xi,r)| (48)

It follows from the reproducing property of the kernel k that, for any y ∈ Y,

|fy(xi, D̂
xi,r)− fy(xi,D

xi,r)| = |〈fy, k((xi, D̂
xi,r), ·)− k((xi,D

xi,r), ·)〉|

≤ ‖fy‖Hk · ‖k((xi, D̂
xi,r), ·)− k((xi,D

xi,r), ·)‖Hk . (49)

Now,

‖k((xi, D̂
xi,r), ·)− k((xi,D

xi,r), ·)‖Hk

=
(
k((xi, D̂

xi,r), (xi, D̂
xi,r)) + k((xi,D

xi,r)), (xi,D
xi,r))− 2k((xi, D̂

xi,r), (xi,D
xi,r))‖Hk

)1/2
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=
√
kX(xi, xi)

(
κ(Ψ(D̂xi,r),Ψ(D̂xi,r)) + κ(Ψ(Dxi,r)),Ψ(Dxi,r)) −

2κ(Ψ(D̂xi,r),Ψ(Dxi,r))‖Hk
)1/2

=
√
kX(xi, xi)‖κ(Ψ(D̂xi,r), ·)− κ(Ψ(Dxi,r), ·)‖Hκ

≤MkX‖κ(Ψ(D̂xi,r), ·)− κ(Ψ(Dxi,r), ·)‖Hκ (50)

= MkX‖ϕκ(Ψ(D̂xi,r))− ϕκ(Ψ(Dxi,r))‖Hκ
≤ L′MkX · ‖Ψ(D̂xi,r)−Ψ(Dxi,r)‖αHkZ (51)

By combining (49) and (50), we obtain that

|fy(xi, D̂
xi,r)− fy(xi,D

xi,r)| ≤ L′MkX · ‖fy‖Hk · ‖Ψ(D̂xi,r)−Ψ(Dxi,r)‖αHkZ . (52)

Now, Hoeffding’s inequality in Hilbert spaces (cf. Proposition E.5) implies that, for i ∈ [n], the following holds with
probability at least 1− δ.

‖Ψ(D̂xi,r)−Ψ(Dxi,r)‖αHkZ =
∥∥∥ 1

|Rxi |
∑

(x′,y′)∈Rxi
kZ((x′, y′), ·)− EDxi,r

[
kZ((X ′, Y ′), ·)

]∥∥∥
HkZ

≤MkZ

√
2 log(1/δ)

|Rxi |
+MkZ

√
1

|Rxi |
+

4MkZ log(1/δ)

3|Rxi |
. (53)

It follows from (52) and (53) that, for each i ∈ [n],

|fy(xi, D̂
xi,r)− fy(xi,D

xi,r)|

≤ L′MkX · ‖fy‖Hk ·
(
MkZ

√
2 log(1

δ )

|Rxi |
+MkZ

√
1

|Rxi |
+

4MkZ log( 1
δ )

3|Rxi |

)α
∀ y ∈ Y (54)

holds with probability at least 1− δ. Next, taking union bound over i ∈ [n] implies that the following holds for all i ∈ [n]
and y ∈ Y with probability at least 1− δ.

|fy(xi, D̂
xi,r)− fy(xi,D

xi,r)|

≤ L′MkX‖fy‖Hk

(
MkZ

√
2 log(n/δ)

|Rxi |
+MkZ

√
1

|Rxi |
+

4MkZ log(n/δ)

3|Rxi |

)α
. (55)

Recall that, for each i ∈ [n], we have |Rxi | ≥ N(r, δ) with probability at least 1 − δ (cf. (15)). Using union bound, we
have |Rxi | ≥ N(r, δ/n), ∀ i ∈ [n], with probability at least 1− δ. Thus, the following holds for all i ∈ [n] and y ∈ Y with
probability at least 1− 2δ

|fy(xi, D̂
xi,r)− fy(xi,D

xi,r)|

≤ L′MkX‖fy‖Hk

(
MkZ

√
2 log(n/δ)

N(r, δ/n)
+MkZ

√
1

N(r, δ/n)
+

4MkZ log(n/δ)

3N(r, δ/n)

)α
. (56)

By using ‖fy‖Hk ≤ B and combining (48) with (56), we obtain that

I ≤ L`,1L′MkXB

(
MkZ

√
2 log(n/δ)

N(r, δ/n)
+MkZ

√
1

N(r, δ/n)
+

4MkZ log(n/δ)

3N(r, δ/n)

)α
(57)

holds with probability at least 1− 2δ.

Bounding the term-II in (47). Note that

II = sup
f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi,D

xi,r), yi
)
− E(X,Y )∼D

[
`
(
f(X,DX,r), Y

)] ∣∣∣∣ (58)
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Using the Assumptions E.1 and E.2 and the fact that f ∈ FkB , we can argue that

`
(
f(x,Dx,r), y

)
= `(0, y) + |`

(
f(x,Dx,r), y

)
− `(0, y)|

≤M` + L`,1‖f(x,Dx,r)‖∞
≤M` + L`,1 max

y′∈Y

∣∣〈fy′ , k((x,Dx,r), ·)〉∣∣
≤M` + L`,1 max

y′∈Y
‖fy′‖HkMk

≤M` + L`,1RMk ≤M` + L`,1RMkXMκ := M

Now, it follows from the Azuma-McDiarmid’s inequality that the following holds with probability at least 1− δ.

sup
f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi,D

xi,r), yi
)
− E(X,Y )∼D

[
`
(
f(X,DX,r), Y

)] ∣∣∣∣
≤ E

[
sup
f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi,D

xi,r), yi
)
− E(X,Y )∼D

[
`
(
f(X,DX,r)Y

)]∣∣∣∣
]

+M

√
log(1/δ)

2n
, (59)

Using the standard symmetrization procedure, we get that

E

[
sup
f∈FkB

∣∣∣∣ 1n
n∑
i=1

`
(
f(xi,D

xi,r), yi
)
− E(X,Y )∼D

[
`
(
f(X,DX,r)Y

)]∣∣∣∣
]

≤ 2

n
· E(Xi,Yi)∼DEσi

∑
i∈[n]

σi`
(
f(xi,D

xi,r), yi

) ,
= 2R̄

S̃

(
` ◦ FkB

)
where σ = (σ1, . . . , σn) denotes n i.i.d. Rademacher random variables and R̄

S̃

(
`◦FkB

)
denote the Rademarcher complexity

of the function class

` ◦ FkB =
{

(x, y,Dx,r) 7→ `
(
f(x,Dx,r), y

)
: f ∈ FkB

}
.

Now, using Proposition E.6 with p = 2 and Assumption E.2, we have

R̄S̃

(
` ◦ FkB

)
≤ 16L`,1

√
log 2B sup

x̃∈X̃

√
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1
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1 + log
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√
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)
≤ 16L`,1

√
log 2BMκMkXn

− 1
2

(
1 + log

3
2

√
2n|Y|

)
(60)

Now, by combining (58), (59), and (60), we obtain that with probability at least 1− δ

II ≤ 32
√

log 2L`,1BMκMkXn
− 1

2

(
1 + log

3
2

√
2n|Y|

)
+M

√
log(1/δ)

2n
. (61)

Finally, combining (47), (57) and (61) completes the proof.

E.3. Empirical verification

We run an experiment to empirically verify the kernel based extended feature space-based approach. We design a kernel for
extended feature space as in (41). In particular, we use Gaussian-like function for

κ(Ψ(Dx1,r),Ψ(Dx2,r)) = exp(−‖Ψ(Dx1,r)−Ψ(Dx1,r)‖2/2σ2
κ).
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To empirically estimate the distance between kernel mean embeddings of the two distributions ‖Ψ(D̂x1,r)−Ψ(D̂x1,r)‖2 we
follow Muandet et al. (2017); Li et al. (2015) as:

‖Ψ(D̂x1,r)−Ψ(D̂x1,r)‖2 =
1

|Rx1 |2
∑

(x′,y′)∈Rx1

∑
(x′′,y′′)∈Rx1

kZ
(
(x′, y′), (x′′, y′′)

)
+

1

|Rx2 |2
∑

(x′,y′)∈Rx2

∑
(x′′,y′′)∈Rx2

kZ
(
(x′, y′), (x′′, y′′)

)
− 2

|Rx1 ||Rx2 |
∑

(x′,y′)∈Rx1

∑
(x′′,y′′)∈Rx2

kZ
(
(x′, y′), (x′′, y′′)

)
We took kZ

(
(x′, y′), (x′′, y′′)

)
= exp(−‖x′−x′′‖/2σ2

x−λ1{y′ 6= y′′}), which is basically like a normal L2 distance with
labels concatenated as one-hot vectors. Also, kX (x1, x2) = exp(−‖x1 − x2‖2/2σ2

x) with normal L2 distance, with which
we finally obtain the overall kernel for the extended feature space as:

k
(
X̃1, X̃2

)
= k

(
(X1,D

X1,r), (X2,D
X2,r)

)
= kX(X1, X2) · κ

(
Ψ(DX1,r),Ψ(DX2,r)

)
.

For the synthetic dataset from Sec. 5, results are tabulated below:

Table 1. Accuracy of kernel classifier over extended feature space kernel as a function of number of retrieved neighbors used to form the
extended feature space.

Neighbors Kernel machine

2 0.776± 0.023
5 0.769± 0.021

10 0.777± 0.019
20 0.835± 0.021
50 0.819± 0.021

100 0.792± 0.022
200 0.585± 0.020

Note that, as the generalization bound suggested, that the model performance only improves up to a specific number of
neighbors and starts degrading when further increasing the number of neighbors.

It’s also worth highlighting that a (4 layer) Transformer model that directly processes an instance along with the associated
retrieved neighboring examples achieves a much higher performance of 0.898 with 10 neighbors. This is consistent with
similar observations in the deep learning literature where kernel-based methods are often significantly outperformed by
end-to-end neural networks (Bai & Lee, 2019; Chen et al., 2020; Samarin et al., 2020).
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F. Additional details for experiments
F.1. Synthetic
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Figure 4. Performance of ERM and local ERM
for various models on synthetic data.

Task and data. We consider the task of binary classification on mixtures
using synthetic data: In particular, we assume k = 100 clusters in a D =
10-dimensional space. Each cluster is specified by a mean parameter µi ∈
RD ∼ Uniform(−10, 10) and a classification weight vector wi ∈ Rd ∼
N (0, I) for i = 1, 2, · · · , k. We randomly generate a train set of n = 10000
points as follows: To generate a labeled example (xj , yj), j ∈ [n]: 1) select
a cluster i uniformly at random, and 2) sample xj ∼ N (µi, I) and its label
yj = sign(wTi (xj − µi)). Additionally, we also generate another set of
points as test set using the same procedure.

Methods. As baseline, we consider models of various complexity, starting
from simple linear classifier, to support vector machines with polynomial
kernel (of degree 3) and with radial basis function (RBF) kernel, to a
multi-layer perceptron (MLP) of two layers. For retrieval-based models,
we consider each of the above method as the local model to fit on retrieved
data points via local ERM framework (Sec. 3). Additionally, we also report
simple kNN baseline. We compare all these methods using classification
accuracy on the held out test set. We repeat all the experiments 10 times.

Observations. In Figure 4, we observe the tradeoff of varying the size of the retrieved set (as dictated by the neighborhood
radius) on the performance of the proposed algorithms. We see that when the number of retrieved samples is small the local
methods have lower accuracy, this is due to large generalization error. When the size of the retrieved sample space is high,
the local methods fail to minimize the loss effectively due to the lack of model capacity. We see that this effect being more
pronounced for simpler function classes such as linear classifier as compared to RBF or polynomial classifiers.

F.2. CIFAR-10
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Figure 5. Performance of ERM and local ERM
for various models on (binary) CIFAR-10.

Task and data. We consider the task of binary classification on a real
image data for object detection. In particular, we consider a subset of
CIFAR-10 dataset where we only restrict to images from “Cat” and “Dog”
classes. We randomly partition the data into a train set of n = 10000 points
and remaining 2000 points for test. We do a 10-fold cross-validation.

Methods. We consider a subset of method from Appendix. F.1. In particu-
lar, we only consider a simple linear classifier and a multi-layer perceptron
(MLP) of two layers. For retrieval-based models, we consider each of the
above methods as the local model to fit on retrieved data points via local
ERM framework (Sec. 3). The retrieval is done using L2 distance in the
input space directly (no features is extracted). Additionally, we also report
simple kNN baseline. We compare all these methods using classification
accuracy on the held out test set. We repeat all the experiments 10 times.

Observations. Similar to Figure 4, Figure 5 exhibits a tradeoff, where
varying the size of the retrieved set (as dictated by the neighborhood
radius) impacts the performance of the proposed algorithms. We see when
the number of retrieved samples is small the local methods have lower
accuracy, this is due to large generalization error; and when the number of retrieved samples is large, simple local function
class incurs a large approximation error.

F.3. ImageNet

Task and data. We consider the task of 1000-way image classification on ImageNet ILSVRC-12 dataset. We use the
standard train-test set split, where we have of n = 1281167 points for training and 50000 points for test. Given large
computational cost, we could only run each experiment once.
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Figure 6. Performance of ERM and local ERM
for various models on on ImageNet.

Methods. We compare proposed Local ERM (Sec. 3) to state-of-the-art
(SoTA) single model published for this task, which is from the most re-
cent CVPR 2022 (Zhai et al., 2022). For the local parametric model we
use a small MobileNetV3 architecture (Howard et al., 2019) with 4.01M
parameters and 156 MFLOPs compute cost. Contrast this to SoTA model
ViT-G/14 with 1.84B parameters and 938 GFLOPs compute cost. Follow-
ing standard practice in literature, we use unsupervised learned features
from ALIGN (Jia et al., 2021) to do image retrieval using L2 distance. For
solving the local ERM, we fine-tune a MobileNetV3 model, which has
been pretrained on ImageNet, on the retrieved set using Adam optimizer
with a linear decay schedule. Additionally, we also report simple kNN
baseline. We compare all these methods using classification accuracy on
the held out test set.

Observations In Figure 6, we see that local ERM with a small MobileNet-
V3 model is able to achieve the top-1 accuracy of 82.78 whereas a regularly
trained MobileNet-V3 model achieves the top-1 accuracy of only 65.80.
Also the result is very competitive with SoTA of 90.45 with a much larger
model. Thus, the result suggest that the simple local ERM framework
(analyzed in our work) is able to demonstrate the utility of retrieval-based models. In particular, it allows a realistic small
sized model to attain very competitive numbers on the popular ImageNet benchmark. Furthermore, as pointed at end of
Sec. 3.4, using global representation from ALIGN embeddings help simplest linear model to outperform MobileNet-V3
working directly on image input, thereby showcasing the benefits of endowing local ERM with global representation.
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