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Abstract: We propose Wolf, a WOrLd summarization Framework for accurate
video captioning. Wolf is an automated captioning framework that adopts a mixture-
of-experts approach, leveraging complementary strengths of Vision Language
Models (VLMs). By combining image and video models, our framework captures
different levels of information and summarizes them efficiently. Our approach
can be applied to enhance video understanding, auto-labeling, and captioning. To
evaluate caption quality, we introduce CapScore, an LLM-based metric to assess the
similarity and quality of generated captions compared to the ground truth captions.
We further build four human-annotated datasets in three domains: autonomous
driving, general scenes, and robotics, to facilitate comprehensive comparisons.
We show that Wolf achieves superior captioning performance compared to state-
of-the-art approaches from the research community (VILA-1.5, CogAgent) and
commercial solutions (Gemini-Pro-1.5, GPT-4V). For instance, in comparison with
GPT-4V, Wolf improves CapScore both quality-wise by 55.6% and similarity-wise
by 77.4% on challenging driving videos. Finally, we establish a benchmark for
video captioning and introduce a leaderboard, aiming to accelerate advancements
in video understanding, captioning, and data alignment.
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Figure 1: Overview of proposed Wolf framework. Wolf utilizes both image-level and video-level
models to generate diverse and detailed captions, which are then summarized for cross-checking.
On the right side, we also provide an example of how we obtain motion captions based on object
locations extracted from image captions.

Video captioning is crucial as it facilitates content understanding and retrieval by providing accurate,
searchable descriptions. It also provides pairwise data for effective training of foundation models for
tasks like video generation, such as Sora [1], Runaway [2] and Wan2.1 [3] . However, generating
descriptive, accurate, and detailed video captions remains a challenging research problem for several
reasons: firstly, high-quality labeled data are scarce. Video captions from the internet can be faulty
and misaligned and human annotation is prohibitively expensive for large datasets. Secondly, video
captioning is inherently more challenging than image captioning due to the additional complexity of



temporal correlation and camera motion. Existing captioning models [4, 5] struggle with temporal
reasoning and fail to achieve accurate scene understanding. Thirdly, there is no established benchmark
to measure captioning progress. Existing video QA benchmarks [6] are often limited to short answers,
making it difficult to measure hallucinations in detailed long captions. Fourthly, the correctness and
completeness of the captions are crucial for safety-critical tasks. In the era of large language models
(LLMs), text descriptions of scenarios used by embodied agents for planning and control become
increasingly common [7, 8, 9, 10]. Consequently, a false or incomplete description of the scenario
may lead to the decision-making module overlooking a critical object after training on such caption
data, resulting in safety risks. For instance, missing the presence of a human in the vicinity of a
vegetable-chopping manipulator can lead to an injury.

To handle these challenges, we introduce WOrLd summarization Framework (Wolf), a novel summa-
rization captioning framework, along with a captioning metric CapScore, and the Wolf captioning
benchmark with corresponding datasets. Unlike previous works that utilize a single model to generate
captions, we propose to use multiple models to collaborate [11], producing much more accurate
captions. By leveraging multiple models, we can provide more fine-grained details while reducing hal-
lucinations. We show that Wolf achieves superior captioning performance compared to state-of-the-art
approaches from the research community (such as VILA [12], CogAgent [4]) to commercial solutions
(such as Gemini-Pro-1.5 [13], GPT-4V [14]). In summary, we have three main contributions:

1. We design the first world summarization framework Wolf for video captioning and introduce
an LLM-based metric CapScore for evaluating the quality of captions. We have further
verified that CapScore aligns with human evaluations and is more effective than several
widely used captioning metrics. The results show that our method improves CapScore by a
large margin.

2. We introduce four benchmark datasets. These datasets include autonomous driving, general
scenes from Pexels, and robotics videos, along with human-annotated captions, referred to
as the Wolf Dataset.

3. The code, data and benchmark will be open-sourced and maintained 1. Continuous efforts
and improvements will be made to refine the Wolf Dataset, codebase, and CapScore. We
hope that Wolf will raise awareness about the quality of video captioning, set a standard for
the field, and boost community development.

2 Related Works
Image Captioning. Visual language models (VLMs) have shown rapid advancements, achieving
leading performance in image captioning tasks, largely due to the success of LLMs. CLIP [15]
pioneered this field by training a shared feature space for vision and language modalities on image-
caption pairs. Building on CLIP, BLIP [16] and BLIP-2 [17] improved performance by aligning
the pre-trained encoder with LLMs. Following the direction, LLaVA [18] and InstructBLIP [19]
demonstrated that jointly training on diverse datasets as an instruction-following task leads to strong
generalization across various tasks. VILA [12] highlighted the importance of pre-training with diverse
data, and therefore significantly scaled up the pre-training dataset. Kosmos-2 [20] and PaLI-X [21]
further introduced pseudo-labeling bounding boxes from open-vocabulary object detectors to scale
up the size of pre-training dataset.

Video Captioning. As image-based VLMs are not trained with video data, they are limited in
describing details present in the video data [22, 23, 24]. To improve video captioning, PLLaVa [25]
builds on top of LLaVa and introduced a parameter-free pooling strategy to enhance the caption quality.
Video-LLaVA [26] achieves state-of-the-art performance on several benchmarks by conducting joint
training on images and videos, thereby learning a unified visual representation. Video-LLaMA [5]
incorporates both video and audio into LLMs by introducing two Q-formers to extract features.
Vid2seq [27] conducts large-scale pre-training with narrated videos for dense video captioning.

1We also provide ethical statement and reproducibility in Appendix.
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Meanwhile, MV-GPT [28] employs an automated speech recognition (ASR) model to provide
additional labeling for the videos.

LLM-based Summarization. Recently many works have found that it is efficient to summarize
useful information using LLMs. For example, LLaDA [9] can provide users with helpful instructions
based on the user request and corresponding traffic rules in the desired location. OpenAI team finds
re-captioning [29] via LLMs can be very helpful.

3 Wolf Framework

We propose Wolf, which is an automated dense captioning summarization framework that adopts a
mixture of experts approach to generate long, accurate, and detailed captions for videos. Figure 1
provides an overview of our framework. In this paper, we use CogAgent [4], GPT-4V [7] to generating
image-level captions, and use VILA-1.5-7B [12], Gemini-Pro-1.5 [13] to generate video captions.

Cascading Visual Summarization. As image-level models (image-based VLMs) have been pre-
trained with a larger amount of data than video-level models (video-based VLMs), we first use
image-based VLMs to generate captions. We design a cascading visual summarizing program to
obtain video captions from image-level models. As illustrated in Figure 1, we first split the video into
sequential images, sampling two key-frames every second. We start by feeding Image 1 into the
Image-level Model to obtain Caption 1, where we require the model to generate detailed scene-level
information and object locations. Given the temporal correlation between key frames in a video,
we then feed both Caption 1 and Image 2 into the model to generate Caption 2. By repeating this
procedure, we generate captions for all sampled frames. Finally, we use GPT-4 to summarize the
information from all captions with the prompt “Summarize all the captions to describe the video with
accurate temporal information”. We also extract the bounding box locations for each object in each
frame, then feed them into LLMs to summarize the trajectory of the moving object. For example, in a
driving video, a blue car is driving into the right lane, and the centers of the bounding boxes are (0,0),
(1,1), (1,2). We provide the car’s location to the LLM, and it outputs ‘the blue car is driving to the
right,’ which we refer to as a ‘Motion Caption’.

LLM-based Video Summarization. Besides obtaining the captions from image-level models, we
then summarize all captions into one. We use the prompt “Please summarize on the visual and
narrative elements of the video in detail from descriptions from Image Models (Image-level Caption
and Motion Caption) and descriptions from Video Models (Video-level Caption)”. Optionally, we
can also add the Annotated Caption to the summarization. Based on this scheme, Wolf can capture a
rich variety of details of the video and reduce hallucinations (in Figure 2). We assume this is because
Wolf can compare the captions and reduce redundant and hallucinated information. After obtaining
the descriptions from the image-level and video-level models, we next apply the prompt “Please
describe the visual and narrative elements of the video in detail, particularly the motion behavior”.

4 Benchmarking Video Captioning

To showcase the effectiveness of Wolf, we constructed four distinct datasets (please check the
examples in Figure 2. These include two autonomous driving video captioning datasets based on the
open-sourced NuScenes [30] dataset (Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International Public License), a general daily video captioning dataset from Pexels 2, and a
robot manipulation video captioning dataset from an open-source robot learning dataset [31]. These
benchmark datasets are tailored to assess the caption model’s scene comprehension and its behavior
understanding capabilities, both of which are vital for auto-labeling in embodied AI tasks. All
captions were generated using a combination of ground truth information, rule-based heuristics,
human labeling, and rewriting.

2https://www.pexels.com/
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Caption: The video shows a yellow industrial robotic arm positioned over a
table with a green cover. The robotic arm is attempting to push a green
bottle from the left side to the right side. However, during the process, the
bottle falls onto the table.

t = 4 [s]. Key features:
robot arm, bottle, table.

t = 6 [s]. Key features: 
push the bottle.

t = 8 [s]. Key features: 
the bottle falls onto table.

t = 0 [s]. Key features: lane.

Caption: The footage captures a car navigating through an urban
area where traffic cones are placed in its path. The cones
indicate a construction zone ahead and block the vehicle's
lane. The car maintains a steady speed and smoothly switches
lanes to pass by each traffic cone on the right side.

t = 2 [s]. Key features: lane, traffic cones, construction zone.

t = 5 [s]. Key features: lane, traffic cones, construction zone, lane 
change.

t = 1 [s]. Key features: 
person, beach, ocean, 
long hair, sunglass.

Caption: The video opens with a person standing on a rocky beach, holding a
smartphone. They are dressed in a white shirt and dark shorts, with long
hair and sunglasses. In the background, there are other beachgoers and the
ocean. The person is seen taking a selfie, with the smartphone's screen
visible in some frames. The lighting suggests it is late afternoon or early
evening, with the sun low on the horizon, casting a warm glow on the scene.
The person's actions are casual and relaxed, as they pose and interact with
the camera. The ocean is calm, and the sky is clear, indicating good
weather.

t = 4 [s]. Key features: 
person, ocean, smile, 
sunglass, phone.

t = 8 [s]. Key features: 
person, ocean, white 
shirt, dark shorts.

Figure 2: Wolf Dataset examples. We display the videos and corresponding human-annotated captions
of autonomous driving (Left), Pexels (Top-Right), and Robot learning video dataset (Bottom-Right),
totaling 25.7 hours. Our Wolf dataset is fully manually annotated to ensure a robust evaluation for the
community. We present our dataset’s statistics in Table 1.

Figure 3: Illustration of homotopy types of different relative motions between a pair of vehicles.

4.1 Wolf Dataset Curation

4.1.1 Autonomous Driving Dataset
High-quality captions of driving videos are crucial not only for training video generation models
but also for training VLMs to interpret the dynamic traffic environment. The NuScenes dataset is
a large-scale collection of driving videos designed to accelerate autonomous driving research. It
features 1,000 annotated scenes from Boston and Singapore. Each scene consists of a 20-second
driving video clip that provides an ego-centric view from the ego vehicle. We split each scene
into 5-second segments and provide the corresponding captions. Our captions emphasize the high-
level driving behavior of the ego vehicle to stress-test the scene understanding ability and the
behavior understanding ability of a captioning model. Our dataset contains 500 intensely interactive
video-caption pairs (≈0.7 hours) in which the ego vehicle is involved in intense interactions with
its surrounding traffic agents (such as navigating around construction zones and overtaking static
obstacles) and 4785 normal driving scene video-caption pairs (≈6 hours). Our caption generation
process consists of three steps: i) agent-level motion annotation, ii) ego-centric interaction annotation,
and iii) information aggregation via LLM.

Step 1: agent-level motion annotation. The NuScenes dataset provides full annotations of traffic
elements in each scene, including 3D bounding boxes, element categories, and semantic map
information. Similar to DriveVLM [32], we utilize this ground truth data along with lane topology
information [33] to generate text descriptions of both speed and angular motion characteristics for the
ego vehicle and other traffic participants within a video clip. Specifically, we classify agent actions
into 11 categories, including Stopping, Accelerating, Decelerating, Lane Changes, Turns, and more,
based on their observed movements and behaviors.

Step 2: egocentric interaction annotation. Beyond each agent’s dynamics information, we also
aim to capture the ego vehicle’s interactions with other traffic participants (e.g., crossing pedestrians,
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blocking traffic cones) depicted in the video clip. To efficiently describe interactions, we use two
categorical modes: the lane relationship (agent-ego lane mode) and relative motion (homotopy)
between a traffic participant and the ego vehicle [34]. At each time step t, the agent-ego lane mode
encodes the topological relationship between the ego vehicle’s current lane and the traffic agent’s lane.
The categories include LEFT, RIGHT, AHEAD, BEHIND, and NOTON, where NOTON indicates
that the traffic agent is on a lane that cannot directly reach the ego vehicle’s lane. To compute the
agent-ego lane mode, we follow [34] by identifying each agent’s lane and using a lane topology map
for annotation. Homotopy describes the relative motion between agents in a video and is categorized
as: [S, CW, CCW] (static, clockwise, counterclockwise), as shown in Figure 3.

Step 3: information aggregation. By combining agent-ego lane mode, homotopy, traffic agents’
ground truth dynamics, and scene context (e.g., the ego vehicle is near an intersection), we can apply
heuristics to annotate interaction descriptions. For example, in a video clip, a static object’s agent-ego
lane mode changes from AHEAD, to LEFT, to BEHIND, and the ego vehicle’s first performs RIGHT-
LANE-CHANGE, KEEP-LANE, then LEFT-LANE-CHANGE, indicating the ego vehicle overtakes
that object from the ego vehicle’s left side. We identified six interaction categories from the NuScenes
dataset: 1) bypass blocking traffic cones to navigate around construction zone; 2) yield to crossing
pedestrians; 3) yield to incoming vehicles; 4) overtake traffic agents via straddling the lane dividers;
5) overtake traffic agent via lane-change; 6) other non-intensive interactions. With both agent-level
motion annotations and ego-centric interaction annotations, we employ an LLM to aggregate this
information and generate a human-like scene description. While any off-the-shelf LLM could be
used for this task, we opted for the GPT-3.5 model. Additionally, we experimented with the llama 3
model and observed similar performance.

Task Type Source Size Annotation Type

Normal Driving Scenes Nuscenes 4,785 Manually
Challenging Driving Scenes Nuscenes 500 Manually

General Daily Scenes Pexels 473 Manually
Robot Manipulation UCB 100 Manually

Table 1: Statistics of the Wolf dataset.

4.1.2 Robot Manipulation Dataset

In addition to the driving environment, we collect 100 robot manipulation videos (each has a length
ranging from 5 seconds to 1 minute) from Padalkar et al. [31] that demonstrate complex robot
manipulations (e.g., pick and place, push, ect.) in various environments, including kitchen, office, lab,
and open world. We manually caption each video. The captions focus on the description of the scene
and the interaction between the robot and the objects.

4.1.3 Pexels Dataset

To evaluate caption models in general daily environments, we further collect high quality (360p
to 1080p) videos from Pexels. It consists of 473 high-quality videos sourced globally, where each
video has a length varying between 10 seconds and 2 minutes and the content includes 15 popular
categories (details in Appendix). This diversity not only adds depth to our dataset but also provides a
wide range of scenarios and contexts for our analysis.

4.2 Wolf Evaluation Metric

4.2.1 CapScore: Evaluating Captions with LLMs

Video captioning has been an ill-posed problem since there is no metric to evaluate the quality
of captions and the alignment between the video and the caption. Inspired by BERTScore [35],
CLIPScore [36] and the stability of LLMs on evaluation [37, 38, 39], we introduce CapScore
(Captioning Score), a quantitative metric to use LLMs to evaluate the similarity between predicted
and human-annotated (ground truth) captions. We tried both GPT-4 (model=“gpt-4”) and Llama
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(a) Comparison on Caption Similarity. (b) Comparison on Caption Quality.

Figure 4: Comparisons on Human-Evaluation Score and Llama 3.2-based CapScore and GPT4-based
CapScore (proposed).

3.2 [40] as our LLM to summarize the captions. We noticed that GPT-4 can always obtain stable
results over 3 runs. However, for Llama 3.2, the results varied over different runs. We tried to lower
the temperature (from 0.9 to 0.5) to make the inference stable, however, we noticed that the scores
are not consistent with human evaluation. Therefore we select GPT-4 as our LLM to conduct the
experiments. Assume we have 6 captions, we feed all the captions into GPT-4 and add the prompt
“Can you give a score (two decimal places) from 0 to 1 for captions 1, 2, 3, 4 and 5, indicating which
one is closer to the ground truth caption (metric 1) and which contains fewer hallucinations and less
misalignment (metric 2)? Please output only the scores of each metric separated only by a semicolon.
For each metric, please output only the scores of captions 1, 2, 3, 4 and 5 separated by commas, in
order—no text in the output. ”. We ask GPT-4 caption similarity and caption quality scores.

We set the range [0,1] to align with several widely used NLP metrics, such as BLEU [41],
ROUGE [42], and BERTScore [35]. To address the potential concern, we followed the same
settings as Table 1 and used the range [0,5] to calculate CapScore. The trend remains precisely the
same, with Wolf achieving scores of 3.61 for similarity and 3.70 for quality - almost five times the
values shown in Table 1, demonstrating CapScore’s stability and robustness regardless of the range.

Caption Similarity. Caption similarity is based on how well each caption aligns with the ground
truth description on a scale from 0 to 1, considering the key criteria mentioned. GPT-4 lists the
requirements that affect the score: this metric measures how similar each caption is to the ground
truth caption. The evaluation focuses on the content and context described in the captions, assessing
whether they capture the main themes and details of the ground truth.

Caption Quality. Caption quality evaluates whether the caption contains reduced hallucination
and mistakes compared to the ground truth captions on a scale from 0 to 1. GPT-4 lists the criteria
that affect the score: this metric evaluates the accuracy and relevance of each caption, identifying
any extraneous or incorrect details (hallucinations). Captions with fewer hallucinations and better
alignment receive higher scores.

4.2.2 Human-Evaluation Score and CapScore

Through our experiments, we find that GPT-4 is very robust for calculating the scores. We have run
the experiments for 1-3 times, the results appear to be stable and less than 0.05 changes. To alleviate
concerns related to human alignment and correlation, we randomly selected 10 users to evaluate our
set of 100 robotics videos, as detailed in Table 1 of the paper. The evaluators were presented with
the videos, the generated captions, and the corresponding ground truth captions. We asked them to
assign human-evaluation scores based on the CapScore standard, with the following prompt: “After
reviewing the video and all the captions, please assign the caption similarity and caption quality
score (floating point values) from 0 to 1 for different captions, indicating which caption is closest to
the ground truth (caption similarity) and which one has fewer hallucinations and less misalignment
(caption quality).” We show the results in Figure 4. Beyond that, we also conduct experiments
comparing CapScore with other widely used image captioning evaluation metrics, as is shown in
Appendix (Sec A.5). We observe that CapScore aligns with trends observed in other metrics but
highlights a larger performance gap between models as a more effective evaluation metric.

6



Method Caption Similarity ↑ Caption Quality (eg. reduced hallucination) ↑

Nuscenes Pexels Robotics Nuscenes Pexels Robotics

CogAgent [4] 0.18 0.68 0.38 0.24 0.72 0.43
GPT-4V [44] 0.31 0.72 0.34 0.36 0.75 0.35
VILA-1.5-7B [12] 0.21 0.85 0.62 0.25 0.86 0.67
Gemini-Pro-1.5 [13] 0.42 0.87 0.63 0.45 0.87 0.67

Wolf 0.55 0.88 0.72 0.56 0.89 0.75

Table 2: Comparison on 500 highly interactive (difficulty and challenging) Nuscenes videos, 473
Pexels videos and 100 robotics videos. Our Wolf exhibits better performance than both open- and
closed-source models.

4.2.3 Benchmarking Video Captioning

To our best knowledge, no standard evaluation benchmarks have been established for video under-
standing and captioning. To accelerate the advancement of this field, we have developed the first
leaderboard for video captioning. As LLM evaluation has become increasingly popular [43], we
realized the lack of a standard platform to evaluate VLM’s performance on video understanding.
We assume this is due to the difficulty of collecting ground truth captions that accurately align with
videos. We will release the initial version of our captioning leaderboard upon publication.

5 Experiments
5.1 Experimental Setup

Data Setup. We use four sets of data to evaluate the validity of Wolf: 1) 500 Nuscences Interactive
Videos; 2) 4,785 Nuscences Normal Videos; 3) 473 general videos and 4) 100 robotics videos. We
extract 2 frames per second for autonomous driving videos. For robotics videos, we extract 1 frame
per second. For short videos that sample less frames, we will increase fps to capture more details.

Comparison Setup. We use our proposed CapScore to evaluate the similarity between predicted
and ground truth captions. CogAgent and GPT-4V are image-level methods, so we upload sequential
frames into the model to obtain the output. VILA-1.5-7B and Gemini-Pro 1.5 are video-based, so we
directly feed a video into the model. As for the prompt for each captioning model, we use “elaborate
on the visual and narrative elements of the video in detail, particularly the motion behavior". We
compare with four state-of-the-art image-level and video-level captioning Vision-Language Models
(VLMs) CogAgent [4], GPT-4V [44], VILA-1.5 [12] and Gemini-Pro-1.5 [13]. As for CogAgent, we
feed the middle frame of the video into the model to obtain captions. As for GPT-4V, we uniformly
sample 16 frames from a video and feed the sequential images into the model to obtain captions. As
for VILA-1.5-7B and Gemini-Pro-1.5, we feed the video into the model to obtain the captions.

5.2 Qualitative and Quantitative Results

To illustrate enhanced captioning ability by Wolf, we show the qualitative results in Section C of
the Appendix. We compare Wolf with various state-of-the-art captioning models and display the
results on 4 datasets in 2 and Table 2 of the Appendix. In the default setting, Wolf uses CogAgent,
GPT-4V, VILA-1.5-7B, and Gemini-Pro-1.5 as Video-level models. Due to the running cost, we
use Wolf (based on VILA-1.5) on the Nuscenes Normal dataset, which only uses CogAgent and
VILA-1.5-7B. We notice that existing image-level models fail to capture the temporal information in
detail. Video-level models perform better, while Wolf can achieve the best results compared to all
state-of-the-art captioning models.

5.3 Finetuning VLMs with Wolf Captions

5.3.1 Comparison on Wolf Dataset

To further verify the effectiveness of Wolf, we finetune VILA-1.5-7B based on Wolf’s captions on
4,785 normal Nuscenes videos and evaluate it on 500 highly interactive Nuscenes videos, which
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VILA-1.5-7B Caption Similarity ↑ Caption Quality ↑

Default 0.21 0.25
Fine-tuned with Wolf annotation 0.36 0.37

Table 3: Comparison on 500 highly interactive Nuscenes videos.

VILA-1.5-13B ActivityNet MSRVTT

Default 54.7 60.2
Fine-tuned with Wolf annotation 55.2 60.9

Table 4: QA Accuracy comparison of the fine-Tuned Model on Activity and MSRVTT datasets.

have much more difficult captions and complex scenarios. We follow the original VILA’s training
setup and launch supervised-finetuning with Wolf generated video-caption pairs for one epoch. The
training is performed on 8xA100 GPUs with batch size 8. We set the learning rate to 10−4 with
warmup strategy. No weight decay is applied. We demonstrate the results in Table 3, corresponding
to Table 2. We observe that finetuning with Wolf boosts the model performance to 71.4% on caption
similarity and 48.0% on caption quality, which outperforms GPT-4V and approaches Gemini-Pro-1.5.
This suggests that Wolf captions can be easily applied to push VLMs’ performance to a higher level.

5.3.2 Comparison on Other Benchmark Datasets

To scalable measure the quality of captions, we compare the VILA-1.5-13B trained w/ Wolf captions
and w/o Wolf captions to study the effectiveness. We benchmark the Wolf-finetuned models on two
widely used video datasets ActivityNet [45] and MSRVTT [46] and display the results in Table 4, the
improved performance effectively demonstrates the efficiency of Wolf.

Method Caption Similarity ↑ Caption Quality ↑
CogAgent 0.18 0.24
Wolf CogAgent part (Cascading Visual Summarization) 0.26 0.32
Wolf video part (VILA-1.5-7B+Gemini-Pro-1.5+GPT-4V) 0.40 0.42

Wolf (based on VILA-1.5-7B) 0.35 0.37
Wolf (based on VILA-1.5-7B+Gemini-Pro-1.5) 0.48 0.49
Wolf (based on VILA-1.5-7B+Gemini-Pro-1.5+GPT-4V) 0.55 0.56

Table 5: Ablation study on 500 highly interactive Nuscenes videos. Note: The first row shows the
results using only image-level models, the second row shows the results using only video-level models,
and the last row used both image-level models (CogAgent part) and various video-level models.

5.4 Ablation Study on Video-level Model Selection

To further evaluate how various video-level models affect the performance, we conduct an ablation
study on the components of the models in Table 5. We first compare the caption from the middle
frame of CogAgent with Wolf Caption based on the visual cascading summarization approach (only
using CogAgent). The visual cascading summarization procedure could largely improve the video
understanding quality from an image-level model such as CogAgent. Then, we conduct an ablation
using only the video-level models. Finally, we compare Wolf with various combinations of video
captions. We notice that Wolf consistensly shows better CapScore as its dense framework reduces
hallucination and incorporate video details from different models.

Additionally, we include an ablation study on token efficiency, please see Section D of the Appendix.

6 Conclusion

In this work, we propose Wolf, a captioning framework designed to automatically and accurately
annotate any video, with significant improvements in data alignment. We find out that adopting
a mixture of captioning models and summarization can largely boost the quality of the captions.
This enables obtaining long, detailed, and accurate video captioning. We will also establish a
comprehensive library that includes various types of videos with high-quality captions, regional
information such as 2D and 3D bounding boxes and depth, as well as multiple object motions and
interactions. For discussion and future works, please check Section E of the Appendix for details.
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