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ABSTRACT

This paper revisits multi-play multi-armed bandit with shareable arm capacities
problem (MP-MAB-SAC), for the purpose of revealing fundamental insights on
the statistical limits and data efficient learning. The MP-MAB-SAC is tailored
for resource allocation problems arsing from LLM inference serving, edge in-
telligence, etc. It consists of K arms and each arm k is associated with an un-
known but deterministic capacity mk and per-unit capacity reward with mean µk

and σ sub-Gaussian noise. The aggregate reward mean of an arm scales linearly
with the number of plays assigned to it until the number of plays hit the capac-
ity limit mk, and then the aggregate reward mean is fixed to mkµk. At each
round only the aggregate reward is revealed to the learner. Our contributions are
three folds. 1) Sample complexity: we prove a minmax lower bound for the sam-
ple complexity of learning the arm capacity Ω( σ

2

µ2
k
log δ−1), and propose an algo-

rithm to exactly match this lower bound. This result closes the sample complexity
gap of Wang et al. (2022a), whose lower and upper bounds are Ω(log δ−1) and
O(

m2
kσ

2

µ2
k

log δ−1) respectively. 2) Regret lower bounds: we prove an instance-

independent regret lower bound Ω(σ
√
TK) and instance-dependent regret lower

bound Ω(
∑K

k=1
cσ2

µ2
k
log T ). This result provides the first instance-independent

regret lower bound and strengths the instance-dependent regret lower bound of
Wang et al. (2022a) Ω(

∑K
k=1 log T ). 3) Data efficient exploration: we pro-

pose an algorithm named PC-CapUL, in which we use prioritized coordination
of arm capacities upper/lower confidence bound (UCB/LCB) to efficiently bal-
ance the exploration vs. exploitation trade-off. We prove both instance-dependent
and instance-independent upper bounds for PC-CapUL, which match the lower
bounds up to some acceptable model-dependent factors. This result provides the
first instance-independent upper bound, and has the same dependence on mk and
µk as Wang et al. (2022a) with respect to instance-dependent upper bound. But
there is less information about arm capacity in our aggregate reward setting. Nu-
merical experiments validate the data efficiency of PC-CapUL.

1 INTRODUCTION

Multi-play multi-armed bandit (MP-MAB) is a natural and popular variant of the vanilla multi-
armed bandits framework Anantharam et al. (1987a). MP-MAB has various applications such as
online advertising Lagrée et al. (2016); Komiyama et al. (2017); Yuan et al. (2023), power system
Lesage-Landry & Taylor (2017), mobile edge computing Chen & Xie (2022); Wang et al. (2022a);
Xu et al. (2023), etc. The canonical MP-MAB model consists of a number K ∈ N+ arms. Each
round the learner assigns K plays to arms, where each arm can be pulled by at most one play.
Once an arm is pulled, a reward is generated, which is modeled as a sample from a random variable
with unknown mean and known tail property such as standard sub-Gaussian tail. The research line
of MP-MAB is still active, evidenced by various recent generalizations of MP-MAB Chen & Xie
(2022); Moulos (2020); Xu et al. (2023); Wang et al. (2022a); Yuan et al. (2023).

One notable generalization of MP-MAB is MP-MAB-SAC, which enables each arm with a finite
number of shareable capacities Xu et al. (2023); Wang et al. (2022a). The key idea is modeling
each arm with a finite capacity and allowing multiple plays to be assigned to the same arm. This
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generalization provides a finer capturing of the resource sharing nature of resource allocation prob-
lems arising from LLM inference serving, edge intelligence, etc. Formally, Xu et al. (2023); Wang
et al. (2022a)’s model considers a finite number of K ∈ N+ arms and a finite number of N ∈ N+

plays. Each arm k is characterized by a tuple (mk, µk, σ), where mk ∈ N+ models the capacity
limit and µk ∈ R+ models the unit-capacity reward mean. Both mk and µk are unknown to the
learner and the arm capacity mk is deterministic. The reward function of assigning ak ∈ N+ to arm
k is modeled as:

Wang et al. (2022a)’s Reward Model : Rk(ak) = min{ak,mk}(µk + ϵk), (1)

where ϵk is a zero mean σ sub-Gaussian random noise. Wang et al. (2022a)’s main results can be
summarized as:

Sample complexity: Ω(log δ−1)(lower bound), O
(
σ2m2

k

µ2
k

log δ−1

)
(upper bound), (2)

Regret lower bound: Ω

(∑
k

log T

)
(rough bound, instance-dependent), (3)

Regret upper bound: O

(∑
k

wkσ
2m2

k

µ2
k

log T

)
(rough bound, instance-dependent). (4)

In fact, the sample complexity lower bound and regret lower bound stated in Wang et al. (2022a)
are Ω

(
(σ2m2

k/µ
2
k) log δ

−1
)

and Ω((
∑

k σ
2m2

k/µ
2
k) log T ) respectively. However these two bounds

hold under the same condition µ2
k/(σ

2m2
k) ≥ 2 (Theorem 4.1 and Theorem 4.3 of Wang et al.

(2022a)), which implies that (σ2m2
k)/µ

2
k ≤ 0.5, yielding the sample complexity lower bound

Ω(log δ−1) and regret lower bound Ω (
∑

k log T ).

Note that (2) implies a large sample complexity gap, while 3 and 4 implies a large regret gap.
Motivated by narrowing these gaps, we revisit the MP-MAB-SAC problem, aiming to reveal fun-
damental insights on statistical limits and data efficient learning. Note that the reward func-
tion (1), encodes the capacity in both the mean E[Rk(ak)] = min{ak,mk}µk. and variance
Var[Rk(ak)] = (min{ak,mk})2Var[ϵk]. To understand the essentials, first we reduce the capac-
ity information in the reward to the minimum such that only the reward mean contains the capacity
information. Formally, we propose a new reward function to achieve this goal:

Rk(ak) = min{ak,mk}µk + ϵk. (5)

Note that 5 finds its root in the reward model of conventional linear bandits with one dimensional
feature Lattimore & Szepesvári (2020). One can check that under (5), only the reward mean encodes
the arm capacity. Intuitively, the learning of the arm capacity would be harder than (1), and the
insights derived from (5) should be more fundamental. Wang et al. (2022a) considered the capacity-
abundant setting with N < M , where M :=

∑K
k=1mk, which is not suitable enough for real-

world severe competition under scarce resources. We thus focus on the capacity scarce setting with
N ≥ M , for the purpose of understanding the exploration vs. exploitation trade-off under severe
capacity constraint. Assigning a play to an arm generates a constant movement cost c ∈ R+, which
is assumed to satisfy c < mink µk and adds a cost constraint for exploration.

Applications of MP-MAB-SAC. MP-MAB-SAC is a versatile model with multiple applications
in real world. It is illustrated in Wang et al. (2022a) that MP-MAB-SAC can be applied to edge
computing, cognitive ratio applications , online advertisement placement etc. To avoid repetitive
narration, we will provide another instance of MP-MAB-SAC application. Here we elaborate on
how to map our model to LLM inference serving applications Li et al. (2024). Each arm model
can be mapped as a deployment instance of an LLM. Arm capacity models the number of queries
that an LLM can process at a given time slot. Due to multiplexing behavior of computing systems,
the capacity is unknown and the processing is uncertain Zhu et al. (2023). An LLM deployed on
more powerful computing facilities would be modeled with larger capacity. The reward mean µk

can be mapped as the capability of an LLM such as large, medium and small LLM mixed inference
serving. The cost c can be mapped as the communication cost generated by transmitting queries to
the commercial LLM server.
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1.1 MAIN RESULTS AND CONTRIBUTIONS

Contributions of this paper can be summarized into the following three folds.

Sample complexity. We prove a minmax lower bound for the sample complexity of learning the arm
capacity Ω( σ

2

µ2
k
log δ−1), and propose an active inference algorithm named ActInfCap to exactly

match this lower bound. This result closes the sample complexity gap of Wang et al. (2022a), whose
lower and upper bounds are Ω(log δ−1) and O(

m2
kσ

2

µ2
k

log δ−1) respectively. The new finding here
is that the difficulty of learning the arm capacity is determined by the per-capacity reward mean.
ActInfCap contributes new uniform confidence intervals for the arm capacity estimation and new
idea of actively probing an arm with its capacity’s UCB or LCB for data efficient learning of arm
capacity. And the UCB or LCB are adopted alternatively in the data gathering process. These
findings shed new lights on arm capacity estimation and serving building blocks for designing data
efficient exploration algorithms.

Regret lower bounds. We prove an instance-independent regret lower bound Ω(σ
√
TK) and

instance-dependent regret lower bound Ω(
∑K

k=1
cσ2

µ2
k
log T ). This result provides the first instance-

independent regret lower bound and strengths the instance-dependent regret lower bound of Wang
et al. (2022a) Ω(

∑K
k=1 log T ). Our regret lower bounds have no dependence on the arm capacity

mk. At the first glance, this looks counterintuitive, however it is aligned with our sample complexity
lower bound which states that the sample complexity is independent of the arm capacity. Also the
dependence on the reward mean is aligned with the sample complexity. The finding here is that
the difficulty of learning the optimal action is basically limited by the number of arms K and the
per-unit capacity reward mean µk. Increasing the number of arms or decreasing the reward mean
would make the learning more difficult.

Data efficient exploration. We propose an algorithm named PC-CapUL, in which we use pri-
oritized coordination of arm capacities upper/lower confidence bound (UCB/LCB) to efficiently
balance the exploration vs. exploitation trade-off. We prove both instance-dependent and instance-
independent upper bounds for PC-CapUL, which match the lower bounds up to some acceptable
model-dependent factors. These results provide the first instance-independent upper bound, and
have the same dependence onmk and µk as Wang et al. (2022a) in respect of the instance-dependent
upper bound. But there is less information about arm capacity in our aggregate reward setting. Nu-
merical experiments validate the data efficiency of PC-CapUL. The main idea of PC-CapUL has
four folds: (1) Preventing excessive UEs.At each time slot, ensure that the number of individual
exploration (IE), is no less than the number of united exploration (UE), where UE/IE means that the
number of plays assigned to an arm equals its capacities’ UCB/LCB. (2) Balancing UE and IE. At
each time slot, let as many arms as possible to do UEs, inspired by the insight from Lemma 5 reveal-
ing that both UE and IE are required to reach their corresponding limits. (3) Favorable arms win UE
first. At each time slot, in cases when multiple arms compete for UEs, we resolve this competition
via larger-empirical-reward-mean-first rule. The insight is that it is easier to learn the capacity mk

if the unit utility µk is larger. (4) Stop learning when converges. At each time slot, once an arm’s
capacity upper bound and lower bound meet with each other, there should be no more exploration
on that arm.

2 RELATED WORK

To the best of our knowledge, MP-MAB was first studied by Anantharam et al. Anantharam et al.
(1987a), where an asymptotic regret lower bound was established and an algorithm achieving the
lower bound asymptotically was proposed. The regret lower bound in the finite time is achieved
by et al. Komiyama et al. (2015) via Thompson sampling. Markovian rewards variant of MP-
MAB wa studied in Anantharam et al. (1987b). Some recent generalization of MP-MAB include:
cascading MP-MAB where the order of plays is captured into the reward function Lagrée et al.
(2016); Komiyama et al. (2017), MP-MAB with switching cost Agrawal et al. (1990); Jun (2004),
MP-MAB with budget constraint Luedtke et al. (2019); Xia et al. (2016); Zhou & Tomlin (2018)
and MP-MAB with a stochastic number of plays in each round Lesage-Landry & Taylor (2017),
sleeping MP-MAB et al. Yuan et al. (2023), MP-MAB with shareable arm capacities Chen & Xie
(2022); Wang et al. (2022a); Xu et al. (2023).
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Our work falls into the research line of MP-MAB with shareable arm capacities Chen & Xie (2022);
Wang et al. (2022a;b); Xu et al. (2023); Mo & Xie (2023). The shareable arm capacities models can
be categorized into two types: (1) stochastic arm capacity but with feedback on the realization of arm
capacity Chen & Xie (2022); Mo & Xie (2023); (2) deterministic capacity without any realization
of the arm capacity Wang et al. (2022a;b); Xu et al. (2023). Though the difference looks small, the
two settings lead to fundamentally different research problems and techniques for address it. For the
stochastic arm capacity line, Chen et al. Chen & Xie (2022) models the arm capacity as a random
variable, but in each round the sample of the arm capacity of all arms are revealed to the decision,
i.e., expert feedback on arm capacity. One can directly estimate the distribution of arm capacity
from the capacity samples. Mo & Xie (2023) generalizes this model to the distributed setting, and
uses the realization of the arm capacity as a signal for coordination. However, the deterministic
arm capacity is technically different. Though the capacity is deterministic, it is unknown and on
the decision maker can only access samples from the reward function, while no samples on the
arm capacity can be observed. Wang et al. (2022a;b); Xu et al. (2023). Xu et al. (2023) consider
the setting in which multiple strategic agents compete for the resource. Nash equilibrium in the
offline setting is established. Our work revisits this research line. Our work is motivated by the
observation that the condition µ2

k/σ
2
km

2
k ≥ 2 that guarantees the sample complexity lower bound

and regret lower bound of Wang et al. (2022a) implies that theses two bounds reduces to Ω(log δ−1)
and Ω(

∑
k log T ), namely trivial lower bound. This implies a huge gap between the upper and lower

bound. We thus revisit this problem, aiming for a deeper understanding of this problem. We close
the sample complexity gap and narrow the regret gap (please refer to introduction for details).

3 MODEL & PROBLEM FORMULATION

Notation: By default, for any integer N ∈ N+: [N ] := {1, . . . , N}.
Consider K ∈ N+ arms indexed by [K] and N ∈ N+ plays to be assigned to these arms. Each arm
k ∈ [K] is characterized by a tuple (mk, µk, σ), where mk ∈ [N ] and µk ∈ R and σ ∈ R. Here, mk

models the capacity of arm k, µk models the per-unit reward mean of arm k, and σ ∈ R+ models
tail property of the reward, i.e., σ sub-Gaussian. Both mk and µk are unknown to the learner, and
the capacity mk is deterministic. We consider the scarce arm capacity setting, such that N ≥ M ,
where M :=

∑K
k=1mk denotes the total amount of capacities across all arms. For every play there

is a constant movement cost c to an arm, which is known to the learner. The movement cost can
model the charge of each query in LLM inference serving applications, the transmission cost in edge
intelligence application, etc. From a learning perspective, it adds a cost constraint to exploration.
Let ak ∈ [N ] denotes the number of plays assigned to arm k ∈ [K]. The reward function associated
with ak is stated in (5).

Consider T ∈ N+ time slots. Let ak,t ∈ [N ] ∪ {0} denote the number of plays assigned
to the arm k at time slot t, and the action made in the slot t is characterized by the vector
at := (a1,t, a2,t, ..., aK,t). The action space A is:

A :=

{
(a1, a2, ..., aK) ∈ NK

∣∣∣∣∑k∈[K]
ak ≤ N

}
.

Denote the utility of the action at at time slot t on arm k as Uk,t, which is defiend as the reward
minus movement cost:

Uk,t (ak,t) := Rk(ak,t)− c · ak,t.

We then define the expected utility for action at as f (a):

f (a) := E

[∑
k∈[K]

Uk (ak)

]
=
∑

k∈[K]
(min {ak,mk} · µk − c · ak)

Let a∗ denote the optimal action a that maximizes the expected utility f (a),i,e.:

a∗ := argmax
a

f (a)

And it is obvious that the optimal action is a∗ = (m1,m2, ...,mK). The difficulty then lies on how
to distinguish the capacities of all the arms and the order is important in this problem. The objective

4
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is to minimize the regret over T time slots, which is defined as RegT (T ):

RegT (T ) := E
[
Tf (a∗)−

∑T

t=1
f (at)

]
.

4 SAMPLE COMPLEXITY OF ESTIMATING ARM CAPACITY

4.1 SAMPLE COMPLEXITY LOWER BOUND

We focus on understanding the hardness of inferring the arm capacities, since this determines the
optimal allocation of plays. We consider the setting that given a fixed arm k, an inference algorithm
πInf generates samples by assigning ak,t ∈ [N ] plays to it.
Definition 1 (Wang et al. (2022a)). An action ak,t is United Exploration (UE) if ak,t > mk. An
action ak,t is individual exploration (IE) if ak,t ≤ mk.

Note that 1 ≤ mk < N is taken as a prior, so both UE and IE are possible for πInf. We consider a
space of all the inference algorithm πInf that can adaptively vary the numbers of UE and IE.
Theorem 1. For any inference algorithm πInf, there exists an instance of arm k such that:

P
[
m̂k,t ̸= mk|t ≤

2σ2

µ2
k

log

(
1

4δ

)]
≥ 1− δ,

where m̂k,t denotes the estimator of arm capacity produced by πInf.

Remark. Theorem 1 establishes a minmax lower bound Ω( log δ−1

µ2
k

) for the sample complexity

of estimating arm capacity. It significantly strengths the lower bound Ω(log δ−1) of Wang et al.
(2022a). The new finding here is that the difficulty of learning the arm capacity is determined by the
per-capacity reward mean and it is independent of the arm capacity mk. This theorem is proved by
applying the Le Cam’s method with a careful tracking of the number of UEs.

4.2 SAMPLE EFFICIENT ALGORITHM

Uniform confidence interval for arm capacity. First we formally define τk,t and ιk,t as the number
of IE and UE on arm k up to time slot t:

τk,t =
∑t

s=1
1{ak,s ≤ mk}, ιk,t =

∑t

s=1
1{ak,s > mk}

And since in training process the real capacitymk is unknown, we should use the confidence interval
rather than the capacity itself to calculate an empirical version of τk,t and ιk,t. Then we define the
empirical version of τk,t and ιk,t as τ̂k,t and ι̂k,t:

τ̂k,t =
∑t

s=1
1{ak,s ≤ ml

k,s−1}, ι̂k,t =
∑t

s=1
1{ak,s ≥ mu

k,s−1}

Another term we need is the scaling factor of IE:

ψk,t =
1

τk,t

∑t

s=1
ak,s1{ak,s ≤ mk}, ψ̂k,t =

1

τ̂k,t

∑t

s=1
ak,s1{ak,s ≤ ml

k,s−1}

The estimator of µk up to time slot t is defined as µ̂k,t. Let υk := mkµk and the estimator of mkµk

up to time slot t is defined as υ̂k,t:

µ̂k,t =
(∑t

s=1
(Uk,s (ak,s) + c · ak,s)1

{
ak,s ≤ ml

k,s−1

})/
(τ̂k,tψ̂k,t), (6)

υ̂k,t =
(∑t

s=1
(Uk,s (ak,s) + c · ak,s)1

{
ak,s ≥ mu

k,s−1

})/
ι̂k,t. (7)

To simplify notation, we denote the function :

ϕ (x, δ) :=

√(
1 +

1

x

)
2 log

(
2
√
x+ 1/δ

)
x

.
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Lemma 1. Then the confidence intervals of the estimator µ̂k,t and υ̂k,t can be calculated as:

µ̂k,t ∈
[
µk − σϕ (τ̂k,t, δ) /ψ̂k,t, µk + σϕ (τ̂k,t, δ) /ψ̂k,t

]
(8)

υ̂k,t ∈ [υk − σϕ (ι̂k,t, δ) , υk + σϕ (ι̂k,t, δ)] (9)
For fixed k, these confidence intervals are correct for all t ∈ [T ] with probability at least 1− δ.

Noticing that υk = mkµk, we rearrange the terms in the confidence interval (8) (9) and get:

µk,t ∈
[
µ̂k,t − σϕ (τ̂k,t, δ) /ψ̂k,t, µ̂k,t + σϕ (τ̂k,t, δ) /ψ̂k,t

]
mkµk ∈ [υ̂k,t − σϕ (ι̂k,t, δ) , υ̂k,t + σϕ (ι̂k,t, δ)]

Use the endpoints of the interval above and then we can get the lemma about the arm capacity
confidence interval.
Lemma 2. For any adaptive algorithm thus uses first K time slots for initialization. If
σϕ (τ̂k,t, δ) /ψ̂k,t < µ̂k,t, the event Ak:

Ak :=

{
∀t ∈ [T ] , t > K,mk ∈

[
υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ (τ̂k,t, δ) /ψ̂k,t

,
υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ (τ̂k,t, δ) /ψ̂k,t

]}
⋂{
∀τ̂k,t ∈ N+, |ϵ̂IEk,τ̂k,t

| ≤ σϕ (τ̂k,t, δ)
}⋂{

∀ι̂k,t ∈ N+, |ϵ̂UE
k,ι̂k,t
| ≤ σϕ (ι̂k,t, δ)

}
holds with a probability of at least 1− δ, where:

ϵ̂IEk,τ̂k,t
=
∑t

i=1
ϵk,i1

{
ak,i ≤ ml

k,i−1

}
/τ̂k,t, ϵ̂

UE
k,ι̂k,t

=
∑t

i=1
ϵk,i1

{
ak,i ≥ mu

k,i−1

}
/ι̂k,t.

These lemma implies that our confidence intervals are correct during the learning process for large
probability. Let A =

⋂K
k=1Ak. A simple union bound inequality shows that A holds with a

probability of at least 1 − Kδ. When the event A happens, all estimators’ confidence bounds are
correct and the capacity confidence bounds are correct for all k ∈ [K] and t ∈ [T ], and thus one
arm’s capacity should be no more than the sum of lower bounds of other arms’ capacities. We now
can define the capacity confidence lower bound ml

k,t and the upper bound mu
k,t as the end points of

the capacity confidence interval ofmk, and refined the bounds with the assumption whenA happens
as:

ml
k,t=max

{⌈
υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ (τ̂k,t, δ) /ψ̂k,t

⌉
, 1

}
, (10)

mu
k,t=min


⌊

υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ (τ̂k,t, δ) /ψ̂k,t

⌋
, N −

K∑
i=1,i̸=k

ml
i,t

 (11)

Now we compare the arm capacity estimator confidence interval with Wang et al. (2022a):

Wang et al. (2022a): ml
k,t = max {⌈υ̂k,t/ (µ̂k,t + σϕ (τ̂k,t, δ) + σϕ (ι̂k,t, δ))⌉, 1}

Wang et al. (2022a): mu
k,t = min {⌊υ̂k,t/ (µ̂k,t − σϕ (τ̂k,t, δ)− σϕ (ι̂k,t, δ))⌋, N −K + 1}

Compared with the UCB and LCB in Wang et al. (2022a), one can observe that the key difference
between theirs and ours lies in how to handle the estimation error of UE, i.e., the term σϕ (ι̂k,t, δ).
Wang et al. (2022a) put it in the denominator, however, we put it above denominator. The reason is
that our UCB and LCB is smaller and larger respectively compared to theirs with the same ι̂k,t and
τ̂k,t. So it takes more rounds of UEs and IEs for their confidence intervals to converge. This will be
proved by the experiment.

Algorithm 1 states ActInfCap, which estimates the arm capacity by adaptively probing the arm
with different number of plays for generating samples. More specifically, ActInfCap uses the
UCB and LCB to generate samples from an arm. The core of ActInfCap is the above new confi-
dence interval of arm capacity which is tighter than Wang et al. (2022a). In ActInfCap, the UE
and IE are conducted in an alternating way and the UCB and LCB of arm capacity approach each
other with more utilities returned.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 ActInfCap(k, T )

1: Initialize: t← 0, ml
k,0 ← 1, mu

k,0 ← N .
2: Do two rounds of initialization, with one UE and one IE respectively.
3: Observe Uk,1 and Uk,2. mu

k,2 ← N,ml
k,2 ← 1, t← 2.

4: while t < T and ml
k,t−1 < mu

k,t−1 do
5: t← t+ 1
6: if t is an odd number then
7: Assign ak,t ← ml

k,t−1 plays to arm k

8: Observe Uk,t. Update ml
k,t,m

u
k,t via Equation (10) and (11)

9: else
10: Assign ak,t ← mu

k,t−1 plays to arm k

11: Observe Uk,t. Update ml
k,t,m

u
k,t via Equation (10) and (11)

12: end if
13: end while
14: Return mu

k,t

Theorem 2. The output of Algorithm 1, i.e., mu
k,t satisfies:

P
[
m̂u

k,t = mk|t ≥ ξ
2σ2

µ2
k

log

(
1

4δ

)
+ 2

]
≥ 1− δ,

where ξ is a universal constant factor independent of model parameters.

Remark. Theorem 2 states that Algorithm 1 has a sample complexity exactly matches the lower
bound. This closes the sample complexity gap.

5 REGRET LOWER BOUNDS AND SAMPLE EFFICIENT ALGORITHMS

5.1 REGRET LOWER BOUNDS

Theorem 3. Given K and M , for any learning algorithm or strategy π, its instance-independent
minmax regret lower bound is:

E [Reg (T, π)] ≥ σ

64e
√
2

√
TK.

Remark. Theorem 3 fills in the blank that previous works Wang et al. (2022a) failed to prove
instance-independent regret lower bound. It indicates that the minmax regret lower bound has a
dependence

√
K on the number of arms K and a dependence

√
T on learning horizon T . There

is no dependence on the arm capacity mk, which aligns with the sample complexity lower bound
stated in Theorem (2) and Algorithm 1. Though Theorem 3 is proved by the conventional paradigm
Lattimore & Szepesvári (2020), it is technically non-trivial. The key idea is to carefully balance the
trade-off between the per-time-slot regret and the difficulty to learn the capacities. If the utility is
small, the per-time-slot regret is small. But it is difficult to distinguish the capacities with returned
utilities, since the expected returned utilities’ gaps are small with the same capacity gaps.

Theorem 4. K ∈ N, {mk}k∈[K] ∈ NK , and {µk}k∈[K] ∈ R+
K , for any consistent learning

strategy π, it holds

lim inf
T→∞

E [Reg (T, π)]

log (T )
≥ 2

K∑
k=1

cσ2

µ2
k

Remark. Theorem 4 states that there is a dependence of the instance-dependent regret lower bound
on µ−2

k . It implies that the smaller µk is, the harder it is to learn the optimal action. Again, it has
no dependence on the arm capacity mk. This does not contradict with Wang et al. (2022a), whose
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instance-dependence lower bound’s dependence on the arm capacity mk is O((σ2m2
k log T )/µ

2
k).

In fact, the above dependence holds under the assumption µ2
k/(σ

2m2
k) ≥ 2. This condition implies

that (σ2m2
k)/µ

2
k ≤ 1/2, yielding (σ2m2

k log T )/µ
2
k ≤ 1/2 log T . In other words, their instance-

dependent regret lower bound has no dependence on µk and mk, and therefore is quite loose. The
key idea in the proof is to find a lower bound of the expected number of bad actions during the whole
T time slots. .

5.2 EFFICIENT EXPLORATION ALGORITHM

Efficient exploration algorithm. Algorithm 2 outlines PC-CapUL, which is the abbreviation of
Prioritized Coordination of Capacities’ UCB and LCB. Its key idea is summarized into four folds.
(1) Preventing excessive UEs(Line 11). At each time slot, we ensure that the historical number
of UE is not larger than the number of IE, i.e., τ̂k,t ≥ ι̂k,t. The UE is play-consuming compared
with IE, especially at the early time slots when the capacity confidence interval is not leanred well.
During the training process, both ι̂k,t and τ̂k,t are required to reach their corresponding limits for
the algorithm to learn the capacity mk, and these limits is of similar scale as we will show in the
proof of the Lemma 5. But if there are not enough plays for all the arms to be played with UE, then
some of them are forced to be played with IE, despite the fact that there are already enough IEs on
these arms. These compulsory IEs are important source of regret in our problem setting. So it is
not wise for us to play an arm with excessive UEs, and the number of IEs is a natural good limit of
the number of UEs according to Lemma 5. (2) Balancing UE and IE(Line 13). At each time slot
t, we tend to let as many arms as possible to be played with UEs. The same insight from Lemma
5 reveals that both τ̂k,t and ι̂k,t are required to reach their corresponding limits. And it is always
easier to do IEs because IEs require fewer plays than UEs. So we should try to focus on meeting the
requirement of UEs and make sure that there is at least one UE on certain arms. And this guarantees
the ultimate convergence of our algorithm. (3) Favorable arms win UE first(Line 14-20). At each
time slot t, we should let the arms with larger empirical unit utility to have higher priority when
deciding the arms to be played with UE if there is not adequate plays for UE on all arms. This
design is derived from the insight we discussed in Theorem 4, and this insight is further verified in
Lemma 5. The insight is that it is harder to learn the capacity mk if the unit utility µk is smaller. So
we tend to focus on the arms with larger empirical unit utility and play UEs more often on them, in
the hope that τ̂k,t and ι̂k,t reach their limits within fewer time slots and then there would be no more
regret generated on those arms. Another reason is that the larger unit utility of one arm is, the more
regret will be generated by IEs on that arm. By rapidly completing learning the capacity of arms
with large empirical unit utility, there are less IEs on these arms and consequently less number of
potential large amount of regret derived from excessive IEs on these arms. (4) Stop learning when
converges (Line 12, and Line 24-27). At each time slot t, once an arm’s capacity upper bound and
lower bound meet with each other, there should be no more exploration on that arm. The probability
that the estimated capacity is correct can be guaranteed by Lemma 2. And furthermore, we can do
explorations more freely on other arms, since there will be no more UE on the arms that we learn
well. And this contributes to sooner convergence of all arms’ confidence intervals.

Regret upper bounds. The following theorems state the regret upper bounds of Algorithm 2.

Theorem 5. The instance-dependent regret upper bound for Algorithm 2 is:

E [REG(T )] ≤
K∑

k=1

((
K∑
i=1

2304σ2m2
i

µ2
i

log (T )

)
(µk − c)mk +

1152m2
k

µ2
k

σ2 log (T ) cN

)

+

K∑
k=1

(2Kmax (µkmk, Nc))

Remark. This upper bound matches the finding we get in the Theorem 4 that an arm’s unit utility is
an important characteristic modeling the difficulty to learn the arm’s capacity. That is, the larger the
unit utility is, the more explorations should be done on that arm. The regret upper bound of Wang
et al. (2022a) shares the similar terms in our upper bound when bounding the capacities of optimal
arms in their setting. This is because we both use UEs and IEs and confidence interval to estimate the
arms’ capacities. However, in our setting, it is impossible to distinguish the capacities via variance
because the perturbations of the returned utility of all arms follow the same distribution. While in
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Algorithm 2 PC-CapUL

1: Notation: ml
t := (ml

k,t : k ∈ [K]),mu
t := (mu

k,t : k ∈ [K]),Ut := (Uk,t : k ∈ [K]).

τ̂t := (τ̂k,t : k ∈ [K]), ι̂t := (ι̂k,t : k ∈ [K]), µ̂t := (µ̂k,t : k ∈ [K]), υ̂t := (υ̂k,t : k ∈ [K]).
Cndt := (Cndtk : k ∈ [K]) is a binary vector indicating continue exploration (1) or not (0).
w := (wk, k ∈ [K]) is a binary vector with entry 1 indicating do IE and 0 indicating do UE.
⊙ denotes the Hadamard product, ek denotes a unit vector with k-th entry being 1.

2: Initialization: ml
0 ← 1,mu

0 ← (N −K + 1)1, τ̂0 ← 0, ι̂0 ← 0,Cndt← 1.
3: for 1 ≤ t ≤ K do
4: The t-th arm do UE and all others do IE: w ← 1− et
5: Set the arm assignment as: at ← (1−w)⊙mu

t−1 +w ⊙ml
t−1.

6: Observe Ut.
7: Update: ml

t←ml
t−1,m

u
t←mu

t−1, τ̂t←τ̂t−1+w, ι̂t←ι̂t−1+1−w, µ̂t with (6), υ̂t with (7)
8: end for
9: while K + 1 ≤ t ≤ T do

10: if Cndt ̸= 0 then
11: Record the arms whose IE rounds no more than UE rounds: wk←I{τ̂k,t−1 ≤ ι̂k,t−1},∀k.
12: Record the converged arms: wk ← I{Cndtk = 0},∀k.
13: Calculate the capacity needs: Mneeds ← (1−w) ·mu

t−1 +w ·ml
t−1.

14: ℓ← sort arms based on mean estimation µ̂k,t−1 in descending order with Cndtk ̸= 0
15: for k = 1, . . . ,K do
16: if Mneeds > N then
17: The ranked k-th arm (with index ℓk) do IE, and update it to the vector w ← w + eℓk
18: Update capacity needs: Mneeds ← (1−w) ·mu

t−1 +w ·ml
t−1.

19: end if
20: end for
21: Set the arm assignment as: at ← (1−w)⊙mu

t−1 +w ⊙ml
t−1.

22: Observe Ut.
23: τ̂t ← τ̂t−1 +w, ι̂t ← ι̂t−1 +1−w, µ̂t with (6), υ̂t with (7), ml

t with (10), mu
t with (11)

Cndtk ← I{ml
k,t <mu

k,t},∀k
24: else
25: Observe Ut.
26: Set the arm assignment as: at ←ml

t−1,m
l
t ←ml

t−1,m
u
t ←mu

t−1.
27: end if
28: end while

their setting, the variance of the returned UE utilities on the arm k and arm i is different even if
mkµk = miµi as long as mk ̸= mi. With more complicated setting and less usable information
in returned utilities, we design the algorithm 2 which shares similar regret upper bounds as those in
Wang et al. (2022a), and this implies that their upper bound is loose.
Theorem 6. Upper bound The instance-independent regret upper bound for Algorithm 2 is:

E [REG(T )] ≤ σ
√

(9216M3 + 128KM + 1152M2N)M (T log (T ))

+

K∑
k=1

2Kmax (µkmk, Nc) +

K∑
k=1

Kµkmk

Remark. This upper bound is derived from refining the bound of number of IEs and UEs one
arm demanded before it converges. The design of the arms’ priority for UEs, which is ranked by
empirical unit utility, improves our estimation on the number of IEs a lot. As it is displayed in the
figures of the experiments, K and mk are positive related to the expectation of the regret. There are
not significant changes as N varies. And this is not a conflict because we set the movement cost c a
small value as 0.1. Wang et al. (2022a) only proved an instance-dependent regret upper bound.

6 EXPERIMENTS

6.1 EXPERIMENT SETTING

This section states the experiment setting, including the number of plays, arms, comparison baselines
and parameter settings, etc. The capacity of each arm setting: mk = 10+[ℓ×Rand(0, 1)],where ℓ =

9
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5, 10, 15, 20. Number of arms: K = 10, 20, 30, 40. Number of plays: N = M,M + 0.1M,M +
0.2M,M + 0.4M . Movement cost: c = 0.2, 0.1, 0.01, We consider the default parameters unless
we mention to vary them explicitly ℓ = 10,K = 20, N = M + 0.1M, c = 0.1. We conduct
simulations to validate the performance of our algorithm and compare it to other algorithms adapted
from MAB. We consider three baselines: MP-SE-SA, Orch proposed in Wang et al. (2022a), and a
variant of our proposed algorihtm PC-CapUL-old, which replaces the our arm capacity estimator
with that of Wang et al. (2022a). Other details are shown in the Appendix A.1

6.2 IMPACT OF NUMBER OF ARMS

In figure 1a,1b,1c,1d, we set K as 10, 20, 30, 40 respectively. It is rather obvious that as there is
more arms, it takes more exploration for all algorithm to find the true capacities of each arm, as
it is indicated in both the lower and upper bound theorems. And for all K values, our algorithms
outperform the other two baselines and the one with better estimators converges much quicker than
others. In our simulation of 2000 time slots, the regret of Orch in 1a converges to around 4 × 105

after 700 time slots, which is much slower than ours. There are mainly two reasons for the difference
in convergence speed. First, there are much less tries of UEs at the same time slot in Orch for its
parsimonious and maladaptive strategy. The UEs are only allowed in even rounds in Orch. In
PC-CapUL-old, the arm k is played with UE or IE according to how well the µk and mk are
learned. Second, our confidence intervals are more precise, and converge with fewer explorations.
Additional experiments are conducted to verify this, with results shown in Appendix A.5
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Figure 1: Impact of number of Arms.

7 CONCLUSION

This paper revisits multi-play multi-armed bandit with shareable arm capacities problem. Our re-
sult closes the sample complexity gap left by previous works. We also prove new regret lower
bounds significantly enhancing previous results. We design an algorithm named PC-CapUL, in
which we use prioritized coordination of arm capacities upper/lower confidence bound (UCB/LCB)
to efficiently balance the exploration vs. exploitation trade-off. We prove both instance-dependent
and instance-independent upper bounds for PC-CapUL, which match the lower bounds up to
some acceptable model-dependent factors. Numerical experiments validate the data efficiency of
PC-CapUL.
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A ADDITIONAL EXPERIMENTS RESULTS

A.1 ADDITIONAL EXPLANATION ON THE EXPERIMENT SETTINGS

µk is sampled from an even distribution on the interval [1, 11]. The utility perturbation ϵ is set to
be of the same Gaussian distribution N

(
0, σ2

)
for all arms with all settings, and σ = 0.5. We

changed the returned utility function in both Orch and MP-MA-SE algorithm to match our problem
setting and compare their performances with ours. We conduct simulations on both versions of our
algorithm and the only difference is the estimator of the capacity confidence interval. For every
setting we conduct simulations for 20 times and the regrets are averaged.

A.2 IMPACT OF TOTAL CAPACITY

In figure 2a,2b,2c,2d, we set the interval that mk is evenly sampled from
[10, 15] , [10, 20] , [10, 25] , [10, 30] respectively. We find that as the capacities of arms in-
crease, the regret is larger at the same time slot. There are mainly two reasons:(1) the IEs with only
1 play generates larger regret as the actual capacities increase, and these kind of IE is inevitable
in all four algorithms when the capacity confidence intervals are not learned well.(2) It takes more
explorations to learn an arm’s capacity as the capacity is bigger according to the regret upper
bound we get. This result is not contradictory with the finding in the regret lower bound which
is unrelated with the capacity, because neither Orch and our algorithm are asserted to be optimal.
No matter in what setting , our algorithms outperform the Orch and MP-SE-SA significantly, and
the improvement of new estimator is also significant, which leads to much quicker convergence
of capacity confidence intervals. In our simulation of 2000 time slots, the regret of Orch in 2a
converges to around 1.4× 106 after 1750 time slots, which is much slower than ours.
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Figure 2: Impact of capacities of Arms.
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A.3 IMPACT OF NUMBER OF PLAYS

In figure 3a,3b,3c,3d, we fix M as
∑K

k=1mk and set the ratio N/M as 1, 1.1, 1.2, 1.4 respectively.
We find that asN varies, our algorithms outperform the Orch and the MP-SE-SA in all four settings.
The main reason is that the more number of plays, the more UEs we can do at the same time in our
algorithms, and consequently the less time slots demanded for the capacity confidence interval to
converge. But the increase of plays casts little influence on the performance of Orch, because the
UEs in Orch are limited by their conservative strategy, which is designed for the cases whenN < M .
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(c) N = 1.2M
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Figure 3: Impact of number of plays

A.4 IMPACT OF MOVEMENT COST

In figure 4a,4b,4c, we set the movement cost c = 0.2, 0.1, 0.01 respectively. We find that as c de-
creases, the regrets of all four algorithms decrease. It is reasonable that with smaller c, the costs
of UE become smaller in all four algorithms, and consequently the regret will decrease if other pa-
rameters remain unchanged. But this change of movement cost casts little influence on comparison
among the regrets of the four algorithms. The main reason is that the movement cost is a signifi-
cant parameter in the estimation of the regret lower bound but not in the estimation of the the upper
bound. The movement cost should be more important and even influence the order of magnitude of
the regret if the algorithm has regret upper bound close to the lower bound.

A.5 COMPARE OF THE OLD AND NEW ESTIMATORS

In figure 5, we set K = 1, M = m1 = 15, N = 30 , and do UE and IE in an alternating way to
explore the capacity. We set the estimators of LCB and UCB of the capacity as (10) and (11) first,
and record their values as new-LCB and new-UCB, as shown in the figure 5. And next, we set the
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Figure 4: Impact of number of plays

estimators as those used in Wang et al. (2022a), and record their values as old-LCB and old-UCB.
In both estimator settings, we conduct simulations for 20 times and the recorded LCB and UCB are
averaged. It is quite obvious in the figure 5 that the new estimator converges much more rapidly
than the old one, despite the fact that both estimators converge to the correct capacity after adequate
explorations.
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Figure 5: Impact of number of plays
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B TECHNICAL PROOFS

B.1 SAMPLE COMPLEXITY PROOF

Proof of Theorem 1: Consider there is an arm with capacity mk and unit utility value µ. Assume
that there are only two possible values for mk: {m,m + 1} where m is a positive integer, and the
perturbation on the arm follows N

(
0, σ2

)
. Let T be the exploration times we do on this arm.

For any strategy π that can calculate the capacity after several times of explorations, we consider the
probability that the capacity is mistakenly judged,i.e. we consider the probabilities:

P1 [m̂ = m+ 1]

P2 [m̂ = m]

where m̂ is the estimator given by the strategy π, and P1,P2 are the probability measures defined
on the whole T exploration times when the real capacities are m and m+ 1 respectively.

Since there are only two possible values of mk, we have {m̂ = m+ 1} = {m̂ = m}C , meaning
that these two events are complementary to each other. This meets the condition of Theorem 14.2 in
Lattimore & Szepesvári (2020) and we have:

P1 [m̂ = m+ 1] +P2 [m̂ = m]

≥1

2
exp (−KL (P1,P2))

As for the KL-divergence, we use the result we get in (17). Let N (T ) be the number of actions
assigned by π satisfying that at ≥ m+ 1, and then we have:

KL (P1,P2) = E1 [N (T )]
µ2

2σ2
≤ T µ2

2σ2

If π works well for probability at least δ, then we have:

P1 [m̂ = m+ 1] +P2 [m̂ = m] ≤ 2δ

And consequently we get:

2δ

≥P1 [m̂ = m+ 1] +P2 [m̂ = m]

≥1

2
exp (−KL (P1,P2))

≥1

2
exp

(
−T µ2

2σ2

)
By rearranging the terms we get:

T ≥ 2σ2

µ2
log

(
1

4δ

)

Proof of Theorem 2: We first assume that the capacity falls into the confidence set, to ensure that
the counters τ̂k,t and ι̂k,t are correct. This lead to the confidence set for the reward mean:

P[∀t, µk − σϕ (τ̂k,t, δ) /ψ̂k,t ≤ µ̂k,t ≤ µk + σϕ (τ̂k,t, δ) /ψ̂k,t] ≥ 1− δ
P[∀t,mkµk − σϕ (ι̂k,t, δ) ≤ υ̂k,t ≤ mkµk + σϕ (ι̂k,t, δ)] ≥ 1− δ

If the reward means satisfy

µk − σϕ (τ̂k,t, δ) /ψ̂k,t ≤ µ̂k,t ≤ µk + σϕ (τ̂k,t, δ) /ψ̂k,t

mkµk − σϕ (ι̂k,t, δ) ≤ υ̂k,t ≤ mkµk + σϕ (ι̂k,t, δ)
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It leads to that
mk ∈ [ml

k,t,m
u
k,t].

The chicken-egg problem with reward means and capacities is resolved by the fact that

mk ∈ [1, N ].

Thus, we use 1, N to initialize ml
k,t,m

u
k,t respectively

ml
k,0 = 1,mu

k,0 = N

This initialization makes the υ̂k,1 and µ̂k,1 fall into the above inequalities with the reward gathered
by the initialized correct lower and upper bound of capacity. And the valid υ̂k,1 and µ̂k,1 leads to
the subsequent valid updates of ml

k,1 and mu
k,1, which enable us to collect new valid observations in

the next round. Doing this recursively, we resolve the chicken-egg problem. We next focus on the
case that all the reward mean and capacity inequalities hold and ignore the small probability of 2δ
that at least one of them fails.

We first derive a lower bound on ml
k,t as

ml
k,t = max

{⌈
υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ (τ̂k,t, δ) /ψ̂k,t

⌉
, 1

}

≥ υ̂k,t − σϕ (ι̂k,t, δ)
µ̂k,t + σϕ (τ̂k,t, δ) /ψ̂k,t

≥ mkµk − 2σϕ (ι̂k,t, δ)

µk + 2σϕ (τ̂k,t, δ) /ψ̂k,t

= mk − 2
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk + 2σϕ (τ̂k,t, δ) /ψ̂k,t

≥ mk − 2
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk

We next derive an upper bound on mu
k,t as:

mu
k,t = min

{⌊
υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ (τ̂k,t, δ) /ψ̂k,t

⌋
, N

}

≤ υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ (τ̂k,t, δ) /ψ̂k,t

≤ mkµk + 2σϕ (ι̂k,t, δ)

µk − 2σϕ (τ̂k,t, δ) /ψ̂k,t

≤ mk + 2
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk − 2σϕ (τ̂k,t, δ) /ψ̂k,t

The above inequality holds when µk − 2σϕ (τ̂k,t, δ) /ψ̂k,t > 0. A sufficient condition is:

ϕ (τ̂k,t, δ) < 0.25µk/σ. (12)

We will discuss how to guarantee (12) later. Suppose that (12) holds, then it follows that

mu
k,t −ml

k,t

= 2
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk − 2σϕ (τ̂k,t, δ) /ψ̂k,t

+ 2
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk

≤ 4
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk
+ 2

mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk

= 6
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk

17
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To reveal the true arm capacity, a sufficient condition is:

6
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk
< 1 (13)

Under our alternating of UE and IE algorithm, we have that when t is an even number, τ̂k,t = ι̂k,t.
This implies that

ϕ (τ̂k,t, δ) = ϕ (ι̂k,t, δ) .

Then, (13) is equivalent to

ϕ (ι̂k,t, δ) <
1

6

µk

σ

ψ̂k,t

mk + ψ̂k,t

. (14)

We next prove that ψ̂k,t has nice lower bound under certain conditions. Given an arbitrary constant
γ ∈ (0, 1), a sufficient condition to guarantee ml

k,t > γmk is:

2
mkσϕ (τ̂k,t, δ) /ψ̂k,t + σϕ (ι̂k,t, δ)

µk
< (1− γ)mk

When t is an even number, this is equivalent to

ϕ (ι̂k,t, δ) <
1− γ
6

µk

σ

ψ̂k,tmk

mk + ψ̂k,t

⇐ ϕ (ι̂k,t, δ) <
1− γ
6

µk

σ

mk

mk + 1
.

A refined sufficient condition is:

ϕ (ι̂k,t, δ) <
1− γ
12

µk

σ
. (15)

Let tγ denote the minimum t satisfying (15):

tγ := argmin
t>0

ϕ (t, δ) <
1− γ
12

µk

σ
.

Consider a positive number β > 0, it holds that

t > 2(β + 1)tγ ⇒ ψ̂k,t ≥
tγ + γmkβtγ
(β + 1)tγ

=
1 + γβmk

β + 1
≥ γβ

β + 1
mk.

If the true capacity is identified before 2(β+1)tγ rounds, then we have that the sample complexity is
2(β + 1)tγ . If not, then applying (14) the lower bound of ψ̂k,t implies a refined sufficient condition
to identify the true capacity

ϕ (ι̂k,t, δ) <
1

6

µk

σ

γβ
β+1mk

mk + γβ
β+1mk

⇔ ϕ (ι̂k,t, δ) <
1

6

µk

σ

γβ

β + 1 + γβ
. (16)

Thus the sample complexity is

argmin
t>0

ϕ (ι̂k,t, δ) <
µk

σ
ξ

where ξ is a constant defined as

ξ := min
β>0,γ∈(0,1)

max

{
1

6

γβ

β + 1 + γβ
,
(β + 1)(1− γ)

6
, 0.25

}
Noticing that in the first two rounds of explorations, we assign 1 andN plays to the arm respectively,
so a constant 2 should be added on the upper bound. This proof is then complete.
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B.2 REGRET LOWER BOUND PROOF

Proof of Theorem 3: To avoid unnecessary mathematical subtleties and simplify the proof, we
focus on the case that M/K is an integer and K/4 is also an integer. We first contract two instances
of the problem as follows:

• Instance E1: each arm whose index is an odd number has
(
M
K − 1

)
units of capacity and

each of the remaining arms has
(
M
K + 1

)
units of capacity. The per unit reward mean is

fixed to µ, i.e., µ1 = . . . = µK = µ, and variance is fixed to σ, i.e., σ1 = . . . = σK = σ.
Formally,

Instance E1:
arm 1

M/K − 1
µ, σ

arm 2
M/K + 1
µ, σ

· · ·
arm K − 1
M/K − 1
µ, σ

arm K
M/K + 1
µ, σ

• Instance E2: each arm whose index is an even number has
(
M
K − 1

)
units of capacity and

each of the remaining arms has
(
M
K + 1

)
units of capacity. The per unit reward mean is

fixed to µ, i.e., µ1 = . . . = µK = µ, and variance is fixed to σ, i.e., σ1 = . . . = σK = σ.
Formally,

Instance E2:
arm 1

M/K + 1
µ, σ

arm 2
M/K − 1
µ, σ

· · ·
arm K − 1
M/K + 1
µ, σ

arm K
M/K − 1
µ, σ

For an arbitrary learning algorithm or strategy π, let RT (π,E1) and RT (π,E2) denote π’s regrets
in instance E1 and E2 respective. Let T1 denote the number of time slots that at least K

4 arms with
odd index are assigned exactly

(
M
K − 1

)
plays. Let A denote the event that T1 ≥ 1

2T :

A =

{
T1 ≥

1

2
T

}
.

We can use event A to bound the expectation of the regret in E1 as follows:

E [RT (π,E1)]

=E [RT (π,E1)1 {A}] +E
[
RT (π,E1)1

{
AC
}]

≥0 + TK

8
min (µ− c, c)PE1

(
AC
)
.

And similarly we have

E [RT (π,E2)] ≥
TK

8
· 2 (µ− c)PE2 (A) .

Note that the Theorem 14.2 in Lattimore & Szepesvári (2020) indicates:

PE1

(
AC
)
+PE2

(A) ≥ 1

2
exp (−KL (PE1

,PE2
)) .

Then, the sum of the regrets of π in two instances can be lower bounded as:

E [RT (π,E1)] +E [RT (π,E2)]

≥TK
8

min (µ− c, c)
(
PE1

(
AC
)
+PE2

(A)
)

≥TK
16

min (µ− c, c) exp (−KL (PE1 ,PE2)) .

Note that the probability measure PE1
is defined on the entire learning process of T time slots,i.e.

PE1
[a1,x1, ...,aT ,xT ] =

T∏
t=1

πt (at|a1,x1, ...,aT−1,xT−1)PE1,at
(xt) ,

where at is the action chosen at the time slot t and vector xt is the resulting reward on the K arms
after playing at. πt is the probability measure of the action at after the observation of the past t− 1
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sets of actions and rewards, and PE1,at
is the probability measure of the reward vector xt for fixed

action at in instance E1. As for the calculation of the KL-divergence, we can separate it into T
actions.

KL (PE1
,PE2

)

=EE1

[
log

(
dPE1

dPE2

)]
=EE1

[
T∑

t=1

log
PE1,at (xt)

PE2,at
(xt)

]

=

T∑
t=1

EE1

[
log

PE1,at
(xt)

PE2,at (xt)

]

=

T∑
t=1

EE1

[
EE1

[
log

PE1,at (xt)

PE2,at
(xt)

∣∣∣∣at

]]

=

T∑
t=1

EE1
[KL (PE1,at

, PE2,at
)]

where in the last equality we use that under PE1 (·|at) the distribution of xt is PE1,at .

Because the measure PE1,at
is a product ofK independent probability measures, we can decompose

the KL divergence as follows:

KL (PE1,at
, PE2,at

) =

K∑
k=1

KL
(
PE1,ak,t

, PE2,ak,t

)
where PE1,ak,t

and PE2,ak,t
follow normal distribution:

PE1,ak,t
∼ N

(
min

(
ak,t,m

(1)
k

)
µ− ak,t · c , σ2

)

PE2,ak,t
∼ N

(
min

(
ak,t,m

(2)
k

)
µ− ak,t · c , σ2

)
,

and m(1)
k and m(2)

k denote the capacities of arm k in the E1 and E2 respectively. There is a formula
about the KL-divergence of two Gaussian distributions:
Lemma 3. For each i ∈ {1, 2}, let µi ∈ R, σ2

i > 0 and Pi = N
(
µi, σ

2
i

)
. Then we have:

KL (P1, P2) =
1

2

(
log

(
σ2
2

σ2
1

)
+
σ2
1

σ2
2

− 1

)
+

(µ1 − µ2)
2

2σ2
2

Applying lemma 3, we have:

KL
(
PE1,a1,t

, PE2,a1,t

)
=

(
min

(
a1,t,m

(1)
k

)
µ−min

(
a1,t,m

(2)
k

)
µ
)2

2σ2

We want to find the action a1,t maximizing KL
(
PE1,a1,t

, PE2,a1,t

)
at time slot t on the first arm. It

is easy to find that a1,t should be no less thanm(2)
1 = M

K +1 so thatKL
(
PE1,a1,t

, PE2,a1,t

)
reaches

its maximal. The same is true for other arms k with odd k. And similarly we should let the action
a2,t ≥ m(1)

2 = M
K + 1 in order to let KL

(
PE1,a2,t

, PE2,a2,t

)
reaches its maximal. The same is true

for other arms k with even k. So we get that:

KL
(
PE1,a1,t , PE2,a1,t

)
≤ 2µ2

σ2

KL
(
PE1,a2,t

, PE2,a2,t

)
≤ 2µ2

σ2
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It should be noted that it is possible a1,t, a2,t, ..., aK,t can not be taken at the same time in the real
world. But there is no conflict since we are only interested in the upper bound of the KL-divergence.

Note that E [X] ≤ max [X], then we get:

KL (PE1
,PE2

)

=

T∑
t=1

EE1
[KL (PE1,at

, PE2,at
)]

≤T ·max
a∈A

[KL (PE1,a, PE2,a)]

=T ·max
a∈A

[
K∑

k=1

KL (PE1,ak
, PE2,ak

)

]

≤T ·
K∑

k=1

max
ak∈[N ]

[KL (PE1,ak
, PE2,ak

)]

≤T ·
K∑

k=1

2µ2

σ2

=TK
2µ2

σ2

Furthermore, by letting c = 1
2µ, we have that:

E [RT (π,E1)] +E [RT (π,E2)]

≥TK
16

min (µ− c, c) exp (−KL (PE1
,PE2

))

=
TK

32
µ exp (−KL (PE1

,PE2
))

≥TK
32

µ exp

(
−2TKµ2

σ2

)
We let µ = σ/

√
2TK and then we get

max ( E [RT (π,E1)] , E [RT (π,E2)] ) ≥ σ

32e
√
2

√
TK

This proof is then complete.

Proof of Theorem 4: Here we only consider the set of algorithms that is consistent over the class of
MP-MAB E we described in section 2, and we further require that the perturbation of the returned
utility follows the Gaussian distribution N

(
0, σ2

)
for simplicity, where σ2 ≤ 1/2 .

A policy π is defined as consistent over a class of bandits E ′ if for all E ∈ E ′ and p > 0 that :

lim
T→∞

REG (T )

T p
= 0

First we choose a consistent policy π. LetE1 ∈ E be an instance, and there aremk units of capacities
with unit utility µk on the arm k. Next we will consider the number of time slots TBk (T ) when the
arm k is assigned with more than mk plays by π in T time slots, i.e.

TBk (T ) :=

T∑
t=1

1 {ak,t ≥ mk + 1}

For fixed k ∈ [K], let E2 ∈ E be another instance, and for j ̸= k, there are mj units of capacities
with unit utility µj on the arm j. On the arm k in E2, there are mk + 1 units of capacities with unit
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utility µj . Let A be the event that TBk ≤ T
2 :

A :=

{
TBk ≤

T

2

}
Let RT (π,E1),RT (π,E2) denote the policy π’s regret in instance E1 and E2. Then by similar
analysis in previous subsection, we have:

E [RT (π,E1)]

=E [RT (π,E1)1 {A}] +E
[
RT (π,E1)1

{
AC
}]

≥0 + T

2
cPE1

(
AC
)

Then similarly we have :

E [RT (π,E2)] ≥
T

2
(µk − c)PE2

(A)

Then the sum of the regrets of π in two instances can be lower bounded as:

E [RT (π,E1)] +E [RT (π,E2)]

≥T
2
min (µk − c, c)

(
P
(
AC
)
+P (A)

)
≥T

4
min (µk − c, c) exp (−KL (PE1

,PE2
))

As for the KL-divergence, we can decompose it by time slots and arms as it is shown in the previous
subsection:

KL (PE1 ,PE2)

=

T∑
t=1

EE1
[KL (PE1,at

, PE2,at
)]

=

T∑
t=1

EE1

[
K∑
i=1

KL
(
PE1,ai,t

, PE2,ai,t

)]
And note thatE1 andE2 are the same only except the arm k. Thus the above equality can be reduced
to:

T∑
t=1

EE1

[
K∑
i=1

KL
(
PE1,ai,t

, PE2,ai,t

)]

=

T∑
t=1

EE1

[
KL

(
PE1,ak,t

, PE2,ak,t

)]
=

T∑
t=1

EE1

[
KL

(
PE1,ak,t

, PE2,ak,t

)
1 {ak,t ≥ mk + 1}

]
+

T∑
t=1

EE1

[
KL

(
PE1,ak,t

, PE2,ak,t

)
1 {ak,t ≤ mk}

]
=

T∑
t=1

EE1

[
KL

(
PE1,ak,t

, PE2,ak,t

)
1 {ak,t ≥ mk + 1}

]
+ 0

According to lemma 3, when ak,t ≥ mk + 1:

KL
(
PE1,ak,t

, PE2,ak,t

)
=

µ2
k

2σ2
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Thus we have :

T∑
t=1

EE1

[
KL

(
PE1,ak,t

, PE2,ak,t

)
1 {ak,t ≥ mk + 1}

]
=

T∑
t=1

EE1 [1 {ak,t ≥ mk + 1}] µ
2
k

2σ2

=EE1

[
T∑

t=1

1 {ak,t ≥ mk + 1}

]
µ2
k

2σ2

=EE1
[TBk (T )]

µ2
k

2σ2

Consequently we calculate the KL-divergence as :

KL (PE1
,PE2

) = EE1
[TBk (T )]

µ2
k

2σ2
(17)

Then we have:

E [RT (π,E1)] +E [RT (π,E2)] ≥
T

4
min (µk − c, c) exp

(
−EE1 [TBk (T )]

µ2
k

2σ2

)

Rearranging and taking the limit inferior on T leads to:

lim inf
T→∞

EE1
[TBk (T )]

log (T )
≥2σ2

µ2
k

lim inf
T→∞

log
(

T min(µk−c,c)
4(E[RT (π,E1)]+E[RT (π,E2)])

)
log (T )

=
2σ2

µ2
k

(
1− lim sup

T→∞

log (E [RT (π,E1)] +E [RT (π,E2)])

log (T )

)

Since the policy π is consistent, then for any p > 0 there is a constant Cp that for sufficiently large
T : E [RT (π,E1)] +E [RT (π,E2)] ≤ CpT

p, which implies that:

lim sup
T→∞

log (E [RT (π,E1)] +E [RT (π,E2)])

log (T )

≤ lim sup
T→∞

p log (T ) + log (Cp)

log (T )

=p

Since p can be arbitrarily small, we have

lim sup
T→∞

log (E [RT (π,E1)] +E [RT (π,E2)])

log (T )
= 0

And consequently,

lim inf
T→∞

EE1
[TBk (T )]

log (T )
≥ 2σ2

µ2
k
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It should be noted that

E [RT (π,E1)]

=EE1

[
T∑

t=1

(f (a∗)− f (at))

]

=EE1

[
T∑

t=1

K∑
k=1

[(mkµk − cmk)− (min {ak,t,mk} · µk − c · ak,t)]

]

=EE1

[
K∑

k=1

T∑
t=1

[(mkµk − cmk)− (min {ak,t,mk} · µk − c · ak,t)]

]

≥EE1

[
K∑

k=1

T∑
t=1

[(mkµk − cmk)− (min {ak,t,mk} · µk − c · ak,t)]1 {ak,t ≥ mk + 1}

]

≥EE1

[
K∑

k=1

T∑
t=1

c · 1 {ak,t ≥ mk + 1}

]

=c ·
K∑

k=1

EE1
[TBk (T )]

Taking the limit inferior on T leads to:

lim inf
T→∞

E [RT (π,E1)]

log (T )

≥c ·
K∑

k=1

lim inf
T→∞

EE1
[TBk (T )]

log (T )

≥c ·
K∑

k=1

2σ2

µ2
k

And the proof is complete.

B.3 REGRET UPPER BOUND PROOF

Before proving Theorem 5, we need to prove two Lemmas first.

Proof of Lemma 1

Consider the confidence interval for µk. Because

µ̂k,t − µk

=

∑t
s=1 (Uk,s (ak,s) + c · ak,s)1

{
ak,s ≤ ml

k,s−1

}
∑t

s=1 ak,s1
{
ak,s ≤ ml

k,s−1

} − µk

=

∑t
s=1 (min {ak,s,mk} · µk − c · ak,s + ϵk,s + c · ak,s)1

{
ak,s ≤ ml

k,s−1

}
∑t

s=1 ak,s1
{
ak,s ≤ ml

k,s−1

} − µk

When the event Ak defined in Lemma 2 happens, then for time slot s satisfying ak,s ≤ ml
k,s−1, we

have that the action ak,s ≤ mk.

And thus we get
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µ̂k,t − µk

=

∑t
s=1 (min {ak,s,mk} · µk − c · ak,s + ϵk,s + c · ak,s)1

{
ak,s ≤ ml

k,s−1

}
∑t

s=1 ak,s1
{
ak,s ≤ ml

k,s−1

} − µk

=

∑t
s=1 (ak,s · µk + ϵk,s)1

{
ak,s ≤ ml

k,s−1

}
∑t

s=1 ak,s1
{
ak,s ≤ ml

k,s−1

} − µk

=

∑t
s=1 ϵk,s1

{
ak,s ≤ ml

k,s−1

}
∑t

s=1 ak,s1
{
ak,s ≤ ml

k,s−1

}
=

τ̂k,t∑t
s=1 ak,s1

{
ak,s ≤ ml

k,s−1

} · ∑t
s=1 ϵk,s1

{
ak,s ≤ ml

k,s−1

}
τ̂k,t

=
τ̂k,t∑t

s=1 ak,s1
{
ak,s ≤ ml

k,s−1

} · ϵ̂IEk,τ̂k,t

By rearranging the the equality above, we get the following statement if Ak happens:∑t
s=1 ak,s1

{
ak,s ≤ ml

k,s−1

}
τ̂k,t

(µ̂k,t − µk) ∈ [−σϕ (τ̂k,t, δ) , σϕ (τ̂k,t, δ)]

Note that ψ̂k,t is defined as:

ψ̂k,t =

∑t
s=1 ak,s1

{
ak,s ≤ ml

k,s−1

}
τ̂k,t

We get that

(µ̂k,t − µk) ∈
[
−σϕ (τ̂k,t, δ) /ψ̂k,t, σϕ (τ̂k,t, δ) /ψ̂k,t

]
and consequently we get the confidence interval for µk as:

µk ∈
[
µ̂k,T∗ − σϕ (τ̂k,T∗ , δ) /ψ̂k,t, µ̂k,T∗ + σϕ (τ̂k,T∗ , δ) /ψ̂k,t

]
Next we consider the confidence interval of mkµk when Ak happens:

υ̂k,T∗ −mkµk

=

∑T∗

s=1 (min {ak,s,mk} · µk − c · ak,s + ϵk,s + c · ak,s)1
{
ak,s ≥ mu

k,s−1

}
ι̂k,T∗

−mkµk

=

∑T∗

s=1 (mkµk + ϵk,s)1
{
ak,s ≥ mu

k,s−1

}
ι̂k,T∗

−mkµk

=

∑T∗

s=1 ϵk,s1
{
ak,s ≥ mu

k,s−1

}
ι̂k,T∗

=ϵ̂UE
k,ι̂k,T∗
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And similarly we get the confidence interval of mkµk:

mkµk ∈ [υ̂k,T∗ − σϕ (ι̂k,T∗ , δ) , υ̂k,T∗ + σϕ (ι̂k,T∗ , δ)]

Thus we know that for fixed k, for all t, these confidence intervals are correct with probability
P {Ak}, and in the proof of Lemma 2, we will show that P {Ak} ≥ 1− δ.

Proof of Lemma 2

We first display the concentration inequality we use:

Lemma 4. (Bourel et al. (2020),Lemma 5) Let Yi, ..., Yt be a sequence of t i.d.d real-valued random
variables with mean µ, such that Yt − µ is σ-sub-Gaussian. Let µt =

1
t

∑t
s=1 Ys be the empirical

mean estimate. Then, for all σ ∈ (0, 1), it holds

P

∃t ∈ N, |µt − µ| ≥ σ

√
(1 +

1

t
)
2 log

(√
t+ 1/δ

)
t

 ≤ δ
The key challenge is to handle the chicken-egg problem that the confidence interval of the arm
capacity relies on the estimation of the utility mean and the estimation of the utility mean relies on
the estimation of the arm capacity to distinguish UEs and IEs. Misleading UEs as IEs would make
the reward mean estimation incorrect.

To understand the chicken-egg problem, let us consider a simple problem sharing the essence of our
problem:

Xi = qiµ+ ϵi,

where ϵi’s are independent σ-sub-Gaussian random variable. Let q′i denote our guess of qi, which
may or may not equal to qi. We use q′i to estimate µ. The estimator aligned with us is:

µ̂t =

∑t
iXi∑t
i q

′
i

.

Then it follows that

µ̂t − µ =

∑t
i qiµ+ ϵi∑t

i q
′
i

− µ

=

∑t
i qiµ+ ϵi − µ

∑t
i q

′
i∑t

i q
′
i

=

∑t
i qiµ− µ

∑t
i q

′
i∑t

i q
′
i

+

∑t
i ϵi∑t
i q

′
i

=

∑t
i qiµ− µ

∑t
i q

′
i∑t

i q
′
i

+
t∑t
i q

′
i

∑t
i ϵi
t

.

Then it follows that

|µ̂t − µ− Errt| =

∣∣∣∣∣ t∑t
i q

′
i

∑t
i ϵi
t

∣∣∣∣∣ = t∑t
i q

′
i

∣∣∣∣∣
∑t

i ϵi
t

∣∣∣∣∣ ,
where

Errt :=
∑t

i qiµ− µ
∑t

i q
′
i∑t

i q
′
i

denotes the mis-classification error. Then letting Yi ← ϵi ,t ← τ̂k,t and δ ← δ/2 in Lemma 4, and
applying Lemma 4, we have that

P

[
∀t,

∣∣∣∣∣
∑τ̂k,t

i ϵi
τ̂k,t

∣∣∣∣∣ ≤ σϕ(τ̂k,t, δ)
]
≥ 1− δ/2.
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This implies the following confidence interval:

P[∀t, |µ̂t − µ− Errt| ≤ σϕ(τ̂k,t, δ)] ≥ 1− δ/2.

This implies that under mis-classification of qi a uniform confidence interval still holds, but one
needs to adjust the bound of the interval with the mis-specification error Errt.

With the above argument in mind, we know that if there are mistakes in the confidence bounds of
capacity, the following uniform confidence interval should hold by adjusting the bound with mis-
classification error.

P[∀t, µk − σϕ (τ̂k,t, δ) /ψ̂k,t − Errt ≤ µ̂k,t ≤ µk + σϕ (τ̂k,t, δ) /ψ̂k,t + Errt] ≥ 1− δ/2,

Let us now go back to the chicken problem. With the analysis above, let us consider the good event
falls into to the 1− δ/2 probability region, such that

µk − σϕ (τ̂k,t, δ) /ψ̂k,t − Errt ≤ µ̂k,t ≤ µk + σϕ (τ̂k,t, δ) /ψ̂k,t + Errt

holds for all t. We next solve the chiken-egg problem by showing that Errt = 0. Note that mk ∈
[1, N −K + 1] is known as a prior. In the initialization rounds, the UE is conducted by N −K + 1
and IE is conducted by 1, namely.

ml
k,0 = 1,mu

k,0 = N −K + 1.

This initialization generates no initialization error. Thus, with the reward obtained from the ini-
tialization to update the confidence, we would have Errt = 0. This zero error, would lead to the
updated estimation of the confidence interval of the arm capacity being correct, as it is implied from
the confidence of the utility mean estimation. Thus with the updated confidence interval, we would
do correct UE and IE. Doing this recursively, we would have Errt = 0.

And with similar analysis we know that there is also no mis-classifications of UEs if the sampled
perturbations ϵk,t on the UE utilities satisfy the condition we desctibed in Lemma 2 that for
∀ι̂k,t ∈ N+., |ϵ̂UE

k,ι̂k,t
| ≤ σϕ (ι̂k,t, δ). And we know that according to Lemma 4, this condition

holds with probability more than 1 − δ/2 as well. Thus by Union-Bound inequality we know that
P {Ak} ≥ 1− δ. Then the Lemma 2 and Lemma 1 are proved

Proof of Theorem 5.

Before proving the upper bound of the regret, we first find the maximal number of UEs and IEs for
an arm’s capacity interval to converge in another form.

Lemma 5. For any arm k, time slot t, and 0 < δ ≤ min
(
2exp

(
−1152m2

kσ
2/µ2

k

)
, 2
√
T + 1

)
, if

the number of IEs τ̂k,t and UEs ι̂k,t are both no less than 1152m2
kσ

2 log(2/δ)

µ2
k

, then

P

(
ml

k,t = mu
k,t|τ̂k,t, ι̂k,t ≥

1152m2
kσ

2 log (2/δ)

µ2
k

)
≥ 1− δ

Since (13) is a sufficient condition for the confidence interval to converge when ϕ (τ̂k,t, δ) <

0.25µk/δ, and notice that ψ̂k,t ≥ 1, then we have that:

6
mkσϕ (τ̂k,t, δ) + σϕ (ι̂k,t, δ)

µk
< 1

is also a sufficient condition. And a simple case to meet this condition is that:

ϕ (τ̂k,t, δ) ≤
µk

12σmk
, ϕ (ι̂k,t, δ) ≤

µk

12σ

And this case also meets the requirement that ϕ (τ̂k,t, δ) < 0.25µk/δ because mk ≥ 1. Solving the
inequalities above, we get that:

τ̂k,t ≥
1152σ2m2

k log (2/δ)

µ2
k

, ι̂k,t ≥
1152σ2 log (2/δ)

µ2
k
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is a sufficient condition for the capacity confidence interval to converge with the assumptions that√
τ̂k,t + 1 ≤ 2/δ and

√
ι̂k,t + 1 ≤ 2/δ. This assumption is right naturally since we will set

δ = 2/T eventually.

It should be noted that ϕ (t, δ) is monotonically decreasing for t > 0, and thus excessive explorations
will not make a converged capacity confidence interval contain more than two integers at future time
slots.

When most of the arms’ capacities are learnt, the rest of the arms can freely be played with UEs
or IEs because there are probably enough plays. Since in PC-CapUL 2 it is only required that
ι̂k,t ≤ τ̂k,t, there may be excessive UEs because the the requirement of number of UEs is mk times
smaller than the number of IEs for arm k.

So after 1152σ2m2
k log(2/δ)

µ2
k

UEs and IEs, we have ml
k,t = mu

k,t. And the lemma 5 is proved.

When the event A happens, the capacity confidence intervals on all arms at all time slots t > K are
correct. Here we define an IE or UE at at time slot t as an ”effective” one when

τ̂k,t ≤
1152m2

kσ
2 log (2/δ)

µ2
k

or ι̂k,t ≤
1152m2

kσ
2 log (2/δ)

µ2
k

,

and as a ”wasted” IE or UE when

τ̂k,t >
1152m2

kσ
2 log (2/δ)

µ2
k

or ι̂k,t >
1152m2

kσ
2 log (2/δ)

µ2
k

,

And there is no wasted UEs in our algorithm: since ι̂k,t ≤ τ̂k,t, if there is a wasted UE, there should
also be a wasted IE, and then the requirement of lemma 5 is met, which means there should be no
increase in ι̂k,t and leads to a contradiction. Let

G (δ) :=

K∑
k=1

1152m2
kσ

2 log (2/δ)

µ2
k

be the number of most time slots we need to meet the requirement of ι̂k,t for all k according to
lemma 5. Assume that there is no effective IEs in these G (δ) time slots, and thus we need at most
another G (δ) time slots to do effective IEs. So after 2G (δ) time slots, we have both

ι̂k,t, τ̂k,t ≥
1152m2

kσ
2 log (2/δ)

µ2
k

,

which meets the requirement of lemma 5. And there will be no more UE or IE attempt after 2G (δ)
time slots because all the confidence intervals converge to integer values.

For an arm k, there is at most 2G (δ) time slots for IE and at most 1152m2
kσ

2 log(2/δ)

µ2
k

time slots for
UE.

We now know the maximal numbers of both IE and UE for the capacity confidence interval to
converge to an integer for each arm. Next we will see how the numbers of IE and UE affect the
regret REG (T ).
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We can recalculate REG (T ) arm by arm:
REG (T )

=

T∑
t=1

(f (a∗)− f (at))

=

T∑
t=1

((
K∑

k=1

(mkµk − cmk)

)
−

(
K∑

k=1

(min{ak,t,mk} · µk − c · ak,t)

))

=

T∑
t=1

(
K∑

k=1

(mkµk − cmk −min {ak,t,mk} · µk + c · ak,t)

)

=

K∑
k=1

(
T∑

t=1

(mkµk − cmk −min {ak,t,mk} · µk + c · ak,t)

)

=

K∑
k=1

REGk (T )

where REGk (T ) :=
∑T

t=1 (mkµk − cmk −min {ak,t,mk} · µk + c · ak,t)
And then the expectation of REGk (T ) can be divided by the event A:

E [REGk (T )]

=E [REGk (T )1{A }] +E [REGk (T )1{AC }]
≤E [REGk (T )1{A }] +P

(
AC
)
max (E [REGk (T )])

The second term can be bounded by T multiply the maximum of the per-time-slot regret on the arm
k, which can be generated by either IE with only one play or UE with all N plays. So let Regmaxk
be the maximal per-time-slot regret we get on arm k, so we have Regmaxk ≤ max (mkµk, Nc) is
a constant value. And thus the second term can be bounded by (Kδ)T ·Regmaxk.

As for the first term, we know that as A happens, the algorithm works well and the capacity confi-
dence interval converges to the true capacity mk after 2G (δ) time slots, and there will be no regret
for the following time slots. Thus we can bound the first term if the numbers of UE and IE on arm k
is bounded. For the UE on arm k, the regret is at most (N −mk) c when all the plays are assigned to
arm k, and for the IE, the regret is at most (mk − 1) (µk − c) when there is only one play assigned
to arm k. Then we can relate the first term with the expectation of numbers of IE and UE as:

E [REGk (T )1{A }]
≤E [τ̂k,T ] (mk − 1) (µk − c) +E [ι̂k,T ] (N −mk) c

≤E [τ̂k,T ]mk (µk − c) +E [ι̂k,T ]Nc

Then consequently we can bound the expectation of the regret with the following lemma:
Lemma 6. In our problem setting, the expectation of regret is related with the expectation of num-
bers of IE and UE on each arm as:

E [REG (T )]

=

K∑
k=1

E [REGk (T )]

≤
K∑

k=1

(
E [REGk (T )1{A }] +P

(
AC
)
max (E [REGk (T )])

)
≤

K∑
k=1

(
E [τ̂k,T ]mk (µk − c) +E [ι̂k,T ]Nc+P

(
AC
)
max (E [REGk (T )])

)
≤

K∑
k=1

(E [τ̂k,T ]mk (µk − c) +E [ι̂k,T ]Nc+KTδRegmaxk)
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We first consider a rough bound derived from the above inequality, where we set the expectation
of both τ̂k,T and ι̂k,T to the maximum as 2G (δ) and 1152m2

kσ
2 log(2/δ)

µ2
k

. A refined bound is also

proposed as Theorem 7. By letting δ = 2
T , M be the number of plays and c be the movement cost,

the sum of the regret is bound by:

E [REG(T )] ≤
K∑

k=1

((
K∑
i=1

2304σ2m2
i

µ2
i

log (T )

)
(µk − c)mk +

1152m2
k

µ2
k

σ2 log (T ) cN

)

+

K∑
k=1

(
2

T
KT ·Regmaxk

)

≤

(
K∑

k=1

µkmk

)(
K∑
i=1

2304m2
i

µ2
i

)
σ2 log (T ) +

K∑
k=1

(
1152m2

k

µ2
k

σ2 log (T ) cN

)

+

K∑
k=1

2K ·Regmaxk

Then the Theorem 5 is proved.

Proof of Theorem 6.

As it is shown in the regret expectation upper bound above, for the arm k, if the average reward
µk is significantly small, then the regret can be outrageously large. The main reason is that the
E [τ̂k,T ] of the arms with large average reward should be much smaller than 2G (δ) according to
PC-CapUL 2, since the capacity confidence intervals on these arms should converge more rapidly
than others, and then there should be no more UEs or IEs on these arms in subsequent time slots. In
PC-CapUL 2 the empirical unit reward µ̂k,t serves as an estimator predicting how much regret we
will get at one single time slot, and we decide the action at according to the rank of {µ̂k,t}k∈[K].
However, the choice of the estimator is not unique, and one can use µ̂k,tm

u
k,t or other estimators as

well. In this algorithm and the proof of its regret upper bound, it is shown that µ̂k,t is a qualified
estimator. Following the idea we mention above, we will refine the bound of E [τ̂k,T ] with the
following lemma:
Lemma 7. Fixed arm k, and for another arm i with µi < µk. consider the number of time slots in
the training process of PC-CapUL 2 when the arm i is played with UE but the arm k is played with
IE and the IE on arm k is not compulsory because of the lack of IEs. We let Ack,i be the number of
such time slots, and then we have :

Ack,i ≤
32σ2 log (T )

(µk − µi)
2 + 1

We first prove the Lemma 7.

Let T ∗ be the last time slot that the arm i is played with UE but the arm k is played with IE and the
IE on arm k is not compulsory because of the lack of IEs. Then we know that from the K + 1 time
slot to the T ∗ − 1 time slot, there is at least Ack,i − 2 time slots at which the arm i is played with
UE and arm k is played with IE. Since we know that the arm i is played with UE at time slot T ∗,
and in PC-CapUL 2 the arm i cannot be played with more UEs than IEs, then there must be at least
Ack,i − 2 time slots at which the arm i is played with IEs. Summing up these Ack,i − 2 time slots
with the at least 1 time slots in initialization phase when the arm i is forced to be played by IEs. We
know that before T ∗, the arm i is played with at least Ack,i − 1 IEs. And the same is true for arm k.

Then at time slot T ∗, since the arm k is not forced to be played with IE, then we must have that the
arm i is chosen to be played with UE for its higher empirical unit utility µ̂i,T∗ . Consequently we
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have µ̂i,T∗ ≥ µ̂k,T∗ , which is only possible when the lower bound of µ̂k,T∗ is not larger than the
upper bound of µ̂i,T∗ . Then we have:

µk − σϕ
(
Ack,i − 1,

2

T

)/
ψ̂k,t ≤ µi + σϕ

(
Ack,i − 1,

2

T

)/
ψ̂k,t

Notice the fact that ψ̂k,t ≥ 1. By solving the above inequality we get the lemma:

Ack,i ≤
32σ2 log (T )

(µk − µi)
2 + 1

The lemma is then proved.

For the arm k, we now divide the IE into 3 groups:(1) the IEs caused by the UEs of other arms with
unit utility no less than 1

2µk.(2) the IEs caused by the UE of other arms with unit utility less than
1
2µk.(3) the compulsory IEs caused by the UEs on the arm k itself as it is required ι̂k,t ≤ τ̂k,t in
PC-CapUL 2.

As for the first group of IE, we have the number of these IE is less than
K∑

i=1,i̸=k,µi≥ 1
2µk

2304σ2m2
i

µ2
i

log (T )

according to the analysis in Theorem 5. And similarly the number of the third group can be bounded
by 2 · 1152σ

2m2
i

µ2
i

log (T ). We can bound the number of the first and the third group of IE as:

K∑
i=1,i̸=k,µi≥ 1

2µk

2304σ2m2
i

µ2
i

log (T ) +
2304σ2m2

i

µ2
i

log (T )

≤
K∑

i=1,µi≥ 1
2µk

2304σ2m2
i

µ2
i

log (T )

≤
K∑

i=1,µi≥ 1
2µk

9216σ2m2
i

µ2
k

log (T )

≤ 9216M2σ2

µ2
k

log (T )

As for the second group of IE, we can employ the lemma 7 to bound them:
K∑

i=1,µi≤ 1
2µk

32σ2 log (T )

(µi − µk)
2 + 1

≤K +

K∑
i=1,µi≤ 1

2µk

128σ2 log (T )

µ2
k

≤K +
128Kσ2

µ2
k

log (T )

Then we reach the lemma that gives the upper bound of E [τ̂k,T ]:
Lemma 8. In our algorithm, the expected number of IE on arm k is limited with an upper bound as:

E [τ̂k,T ] ≤
9216M2σ2

µ2
k

log (T ) +
128Kσ2

µ2
k

log (T ) +K
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By replacing the E [τ̂k,T ] in lemma 6 with upper bound of E [τ̂k,T ] in lemma 8, and replacing the

E [ι̂k,T ] with the maximal value 1152m2
k

µ2
k

σ2 log (T ), we get that:

E [REG(T )]

≤
K∑

k=1

((
9216M2 + 128K

µ2
k

σ2 log (T ) +K

)
(µk − c)mk +

1152m2
k

µ2
k

σ2 log (T ) cN

)

+

K∑
k=1

(
2

T
KT ·Regmaxk

)
(18)

≤
K∑

k=1

(
9216M2 + 128K

µk
σ2 log (T )mk +

1152m2
k

µk
σ2 log (T )N

)

+

K∑
k=1

(2K ·Regmaxk) +
K∑

k=1

(Kmkµk)

In the second inequality we use µk > c for all k.

For arbitrary ∆:
E [REG(T )]

≤
K∑

µk≥∆

(
9216M2 + 128K

µk
σ2 log (T )mk +

1152m2
k

µk
σ2 log (T )N +Kµkmk + 2K ·Regmaxk

)

+

K∑
µk≤∆

(T (µk − c)mk)

≤
K∑

µk≥∆

(
9216M2 + 128K

∆
σ2 log (T )mk +

1152m2
k

∆
σ2 log (T )N

)
+

K∑
µk≤∆

T∆mk

+

K∑
k=1

(2K ·Regmaxk) +
K∑

k=1

(Kmkµk)

≤9216M3 + 128KM + 1152M2N

∆
σ2 log (T ) + TM∆+O (1)

=O
(
M2σ

√
T log (T )

)
The last step is letting ∆ =

√
9216M3+128KM+1152M2N

TM σ2 log (T ).

In the proof of Theorem 6, we actually find a better instance-dependent regret upper bound as fol-
lows:
Theorem 7. The instance-independent regret upper bound for Algorithm 2 is:

E [REG(T )] ≤
K∑

k=1

((
9216M2 + 128K

µ2
k

σ2 log (T ) +K

)
(µk − c)mk +

1152m2
k

µ2
k

σ2 log (T ) cN

)

+

K∑
k=1

2K ·max (µkmk, Nc)

Proof of Theorem 7. This theorem is a direct result of the equation (18)
Remark. It should be noted that the regret upper bound in Theorem 5 can be very large if
maxi µi/mini µi is large, and the same problem exists in Wang et al. (2022a)’s regret upper bound.
The dependence of the regret upper bound on this ratio is unreasonable, and thus a better form of
regret upper bound is given explicitly here.
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