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Abstract

Training a unified multilingual model promotes001
knowledge transfer but inevitably introduces002
negative interference. Language-specific mod-003
eling methods show promise in reducing inter-004
ference. However, they often rely on heuris-005
tics to distribute capacity and struggle to fos-006
ter cross-lingual transfer via isolated modules.007
In this paper, we explore intrinsic task modu-008
larity within multilingual networks and lever-009
age these observations to circumvent interfer-010
ence under multilingual translation. We show011
that neurons in the feed-forward layers tend012
to be activated in a language-specific manner.013
Meanwhile, these specialized neurons exhibit014
structural overlaps that reflect language prox-015
imity, which progress across layers. Based016
on these findings, we propose Neuron Special-017
ization, an approach that identifies specialized018
neurons to modularize feed-forward layers and019
then continuously updates them through sparse020
networks. Extensive experiments show that021
our approach achieves consistent performance022
gains over strong baselines with additional anal-023
yses demonstrating reduced interference and024
increased knowledge transfer.1025

1 Introduction026

Jointly training multilingual data in a unified027

model with a shared architecture for different lan-028

guages has been a trend (Conneau et al., 2020;029

Le Scao et al., 2022) encouraging knowledge trans-030

fer across languages, especially for low-resource031

languages (Johnson et al., 2017; Pires et al., 2019).032

However, such a training paradigm also leads to033

negative interference due to conflicting optimiza-034

tion demands (Wang et al., 2020). This interference035

often causes performance degradation for high-036

resource languages (Li and Gong, 2021; Pfeiffer037

et al., 2022) and can be further exacerbated by lim-038

ited model capacity (Shaham et al., 2023).039

1We release anonymous code at https://anonymous.
4open.science/r/NS-3D93

Modular-based methods, such as Language- 040

specific modeling (Zhang et al., 2020b) and 041

adapters (Bapna and Firat, 2019), aim to mitigate 042

interference by balancing full parameter sharing 043

with isolated or partially shared modules (Pfeiffer 044

et al., 2023). However, they heavily depend on 045

heuristics for allocating task-specific capacity and 046

face challenges in enabling knowledge transfer be- 047

tween modules (Zhang et al., 2020a). Specifically, 048

such methods rely on prior knowledge for man- 049

aging parameter sharing such as language-family 050

adapters (Chronopoulou et al., 2023) or directly 051

isolate parameters per language, which impedes 052

transfer (Pires et al., 2023). 053

Research in vision and cognitive science has 054

shown that unified multi-task models may sponta- 055

neously develop task-specific functional specializa- 056

tions for distinct tasks (Yang et al., 2019; Dobs 057

et al., 2022), a phenomenon also observed in 058

mixture of experts Transformer systems (Zhang 059

et al., 2023). These findings suggest that through 060

multi-task training, networks naturally evolve to- 061

wards specialized modularity to effectively man- 062

age diverse tasks, with the ablation of these spe- 063

cialized modules adversely affecting task perfor- 064

mance (Pfeiffer et al., 2023). Despite these insights, 065

exploiting the inherent structural signals for multi- 066

task optimization remains largely unexplored. 067

In this work, we explore the intrinsic task- 068

specific modularity within multi-task networks in 069

Multilingual Machine Translation (MMT), treating 070

each language pair as a separate task. We focus 071

on analyzing the intermediate activations in the 072

Feed-Forward Networks (FFN) where most model 073

parameters reside. Our analysis shows that neurons 074

activate in a language-specific way, yet they present 075

structural overlaps that indicate language proxim- 076

ity. Moreover, this pattern evolves across layers in 077

the model, consistent with the transition of multi- 078

lingual representations from language-specific to 079

language-agnostic (Kudugunta et al., 2019). 080
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Building on these observations, we introduce081

Neuron Specialization, a novel method that lever-082

ages intrinsic task modularity to reduce interfer-083

ence and enhance knowledge transfer. In general,084

our approach selectively updates the FFN parame-085

ters during back-propagation for different tasks to086

enhance task specificity. Specifically, we first iden-087

tify task-specific neurons from pre-trained multi-088

lingual translation models, using standard forward-089

pass validation processes without decoding. We090

then specifically modularize FFN layers using these091

specialized neurons and continuously update FFNs092

via sparse networks.093

Extensive experiments on small- (IWSLT) and094

large-scale EC30 (Tan and Monz, 2023) multilin-095

gual translation datasets show that our method con-096

sistently achieves performance gains over strong097

baselines. Moreover, we conduct in-depth analyses098

to demonstrate that our method effectively miti-099

gates interference and enhances knowledge transfer100

in high and low-resource languages, respectively.101

Our main contributions are summarized as follows:102

• We identify inherent multilingual modular-103

ity by showing that neurons activate in a104

language-specific manner and their overlap-105

ping patterns reflect language proximity.106

• Building on these findings, we enhance107

task specificity through sparse sub-networks,108

achieving consistent improvements in transla-109

tion quality over strong baselines.110

• We employ analyses to show that our method111

effectively reduces interference in high-112

resource languages and boosts knowledge113

transfer in low-resource languages.114

2 Related Work115

Multilingual Interference. Multilingual training116

enables knowledge transfer but also causes interfer-117

ence, largely due to optimization conflicts among118

various languages or tasks (Wang and Zhang, 2022).119

Methods addressing conflicts between tasks hold120

promise to reduce interference (Wang et al., 2020),121

yet they show limited effectiveness in practical ap-122

plications (Xin et al., 2022). Scaling up model size123

reduces interference directly but may lead to overly124

large models (Chang et al., 2023), with risks of125

overfitting (Aharoni et al., 2019).126

Language-Specific Modeling. Modular-based127

approaches enhance the unified model by128

adding language-dependent modules such as 129

adapters (Bapna and Firat, 2019) or language- 130

aware layers (Zhang et al., 2020b). Although 131

the unified model serves as a common founda- 132

tion, these approaches struggle to facilitate knowl- 133

edge transfer among isolated modules due to a lack 134

of clear inductive biases and thus heavy reliance 135

on heuristics. For instance, Chronopoulou et al. 136

(2023) rely on priori knowledge to control parame- 137

ter sharing in language family adapters, Bapna and 138

Firat (2019); Pires et al. (2023) isolate modules per 139

language, hindering knowledge sharing. 140

Additionally, these modular-based methods sub- 141

stantially increase the number of parameters, 142

thereby leading to increased memory demands and 143

slower inference times (Liao et al., 2023a,b). De- 144

spite adapters normally being lightweight, they can 145

easily accumulate to a significant parameter growth 146

when dealing with many languages. In contrast, our 147

method leverages the model’s intrinsic modularity 148

signals to promote task separation, without adding 149

extra parameters. 150

Sub-networks in Multi-task Models. The lot- 151

tery ticket hypothesis (Frankle and Carbin, 2018) 152

states that within dense neural networks, sparse 153

subnetworks can be found with iterative pruning to 154

achieve the original network’s performance. Fol- 155

lowing this premise, recent studies attempt to iso- 156

late sub-networks of a pre-trained unified model 157

that captures task-specific features (Lin et al., 2021; 158

He et al., 2023; Choenni et al., 2023a). Nonethe- 159

less, unlike our method that identifies intrinsic 160

modularity within the model, these approaches de- 161

pend on fine-tuning to extract the task-specific sub- 162

networks. This process may not reflect the origi- 163

nal model modularity and also can be particularly 164

resource-consuming for multiple tasks. 165

Specifically, these methods extract the task- 166

specific sub-networks by fine-tuning the original 167

unified multi-task model on specific tasks, fol- 168

lowed by employing pruning to retain only the most 169

changed parameters. We argue that this process 170

faces several issues: 1) The sub-network might be 171

an artifact of fine-tuning, suggesting the original 172

model may not inherently possess such modular- 173

ity. 2) This is further supported by the observation 174

that different random seeds during fine-tuning lead 175

to varied sub-networks and performance instabil- 176

ity (Choenni et al., 2023a). 3) The process is highly 177

inefficient for models covering multiple tasks, as it 178

necessitates separate fine-tuning for each task. 179
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3 Neuron Structural Analysis180

Recent work aims to identify a subset of param-181

eters within pre-trained multi-task networks that182

are sensitive to distinct tasks. This exploration is183

done by either 1) ablating model components to184

assess impacts on performance, such as Dobs et al.185

(2022) ablate task-specific filters in vision models186

by setting their output to zero; or 2) fine-tuning the187

unified model on task-specific data to extract sub-188

networks (Lin et al., 2021; He et al., 2023; Choenni189

et al., 2023b). These approaches, however, raise a190

fundamental question, namely whether the modu-191

larity is inherent to the original model, or simply192

an artifact introduced by network modifications.193

In this paper, we perform a thorough identifica-194

tion of task-specific modularity through the lens195

of neuron behaviors, without altering the original196

parameters or architectures. We focus on the neu-197

rons — the intermediate activations inside the Feed-198

Forward Networks (FFN) — to investigate if they199

indicate task-specific modularity features. As FFN200

neurons are active (>0) or inactive (=0) due to the201

ReLU activation function, this binary activation202

state offers a clear view of their contributions to the203

network’s output. Intuitively, neurons that remain204

inactive for one task but show significant activation205

for another may be indicative of specialization for206

the latter. Analyzing such modularity structures can207

improve our understanding of fundamental prop-208

erties in multi-task models and yield insights to209

advance multi-task learning.210

3.1 Identifying Specialized Neurons211

We choose multilingual translation as a testbed,212

treating each translation direction as a distinct task213

throughout the paper. We start with a pre-trained214

multilingual model with dff as its dimension of the215

FFN layer. We hypothesize the existence of neuron216

subsets specialized for each task and describe the217

identification process of an FFN layer as follows.218

Activation Recording. Given a validation219

dataset Dt for the t-th task, we measure activation220

frequencies in an FFN layer during validation.221

For each sample xi ∈ Dt, we record the state of222

each neuron after ReLU , reflecting whether the223

neuron is active or inactive to the sample. We224

use a binary vector ati ∈ Rdff to store this neuron225

state information. Note that this vector aggregates226

neuron activations for all tokens in the sample227

by taking the neuron union of them. By further228

merging all of the binary vectors for all samples229

in Dt, an accumulated vector at =
∑

xi∈Dt
ati can 230

be derived, which denotes the frequency of each 231

neuron being activated during a forward pass given 232

a task-specific dataset Dt. 233

Neuron Selection. We identify specialized neu- 234

rons for each task t based on their activation fre- 235

quency at. A subset of neurons St
k is progressively 236

selected based on the highest at values until reach- 237

ing a predefined threshold k, where 238

∑
i∈St

k

at(i) >= k

dff∑
i=1

at(i) (1) 239

Here, the value at(i) is the frequency of the ac- 240

tivation at dimension i, and
∑dff

i=1 a
t
(i) is the total 241

activation of all neurons for an FFN layer. k is a 242

threshold factor, varying from 0% to 100%, indi- 243

cating the extent of neuron activation deemed nec- 244

essary for specialization. A lower k value results 245

in higher sparsity in specialized neurons; k = 0 246

means no neuron will be involved, while k = 100 247

fully engages all neurons, the same as utilizing the 248

full capacity of the original model. This dynamic 249

approach emphasizes the collective significance of 250

neuron activations up to a factor of k. In the end, 251

we repeat these processes to obtain the specialized 252

neurons of all FFN layers for each task. 253

3.2 Analysis on EC30 254

In this section, we describe how we identify spe- 255

cialized neurons on EC30 (Tan and Monz, 2023), 256

where we train an MMT model covering all direc- 257

tions. EC30 is a multilingual translation benchmark 258

that is carefully designed to consider diverse lin- 259

guistic properties and real-world data distributions. 260

It collects high to low-resource languages, resulting 261

in 30 diverse languages from 5 language families, 262

allowing us to connect our observations with lin- 263

guistic properties easily. See Sections 5 for details 264

on data and models. 265

3.2.1 Neuron Overlaps Reflect Language 266

Proximity 267

We identified specialized neurons following Sec- 268

tion 3.1, while setting the cumulative activation 269

threshold k at 95%. This implies that the set of 270

specialized neurons covers approximately 95% of 271

the total activations. Intuitively, two similar tasks 272

should have a high overlap between their special- 273

ized neuron sets. Therefore, we examined the over- 274

laps among specialized neurons across different 275
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Figure 1: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the first decoder
FFN layer across all out-of-English translation directions to measure the degree of overlap. Darker cells indicate
stronger overlaps, with the color threshold set from 40 to 80 to improve visibility.

tasks by calculating the Intersection over Union276

(IoU) scores: For task ti and tj , with specialized277

neurons denoted as sets Si and Sj , their overlap is278

quantified by IoU(Si, Sj) = |Si∩Sj |
|Si∪Sj | .279

Figure 1 shows the IoU scores for specialized280

neurons across different tasks in the first decoder281

layer. Figures for the other layers can be found in282

Appendix A.6. We first note a structural separation283

of neuron overlaps, indicating a preference for lan-284

guage specificity. Notably, neuron overlap across285

language families is relatively low, a trend more286

pronounced in encoder layers (Figure 6). Secondly,287

this structural distinction generally correlates with288

language proximity as indicated by the clustering289

pattern in Figure 1. This implies that target lan-290

guages from the same family are more likely to291

activate similar neurons in the decoder, even when292

they use different writing systems, e.g., Arabic (ar)293

and Hebrew (he). Overlaps also show linguistic294

traits beyond family ties, exemplified by notable295

overlaps between Maltese (mt) and languages in296

the Romance family due to vocabulary borrowing.297

3.2.2 The Progression of Neuron Overlaps298

To analyze how specialized neuron overlaps across299

tasks evolve within the model, we visualize the IoU300

score distribution across layers in Figure 2. For301

each layer, we compute the pair-wise IoU scores302

between all possible tasks and then show them in a303

distribution. Overall, we observe that from shallow304

to deeper layers, structural distinctions intensify in305

the decoder (decreasing IoU scores) and weaken in306

the encoder (increasing IoU scores).307

Figure 2: Progression of distribution of IoU scores for
specialized neurons across layers on the EC30 dataset.
The scores are measured for different source and target
languages in the Encoder and Decoder, respectively.

On the one hand, all neuron overlaps increase 308

as we move up the encoder, regardless of whether 309

these tasks are similar or not. This observation may 310

suggest that the neurons in the encoder become 311

more language-agnostic, as they attempt to map 312

different scripts into semantic concepts. As for 313

the Decoder, the model presents intensified modu- 314

larity in terms of overlaps of specialized neurons. 315

This can be seen by all overlaps becoming much 316

smaller, indicating that the neurons behave more 317

separately. Additionally, we found the progression 318

of neuron overlaps is similar to the evolution of 319

multilingual representation: embedding gets closer 320

in the encoder and becomes more dissimilar in 321

the decoder (Kudugunta et al., 2019). Our obser- 322

vations, highlighting the inherent features of the 323

multilingual translation model, occur without mod- 324

ifying the network’s outputs or parameters. 325
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4 Neuron Specialization Training326

Our neuron structural analysis showed the presence327

of specialized neurons within the Feed-Forward328

Network (FFN) layers of a multilingual network.329

We hypothesize that continuously training the330

model, while leveraging these specialized neurons’331

intrinsic modular features, can further enhance task-332

specific performance. Building on this hypothesis,333

we propose Neuron Specialization, an approach334

that leverages specialized neurons to modularize335

the FFN layers in a task-specific manner.336

4.1 Vanilla Feed-Forward Network337

We first revisit the Feed-Forward Network (FFN)338

in Transformer (Vaswani et al., 2017). The FFN,339

crucial to our analysis, consists of two linear lay-340

ers (fc1 and fc2) with a ReLU activation function.341

Specifically, the FFN block first processes the hid-342

den state H ∈ Rn×d (n denotes number of tokens343

in a batch) through fc1 layer W1 ∈ Rd×dff . Then344

the output is passed to ReLU and the fc2 layer W2,345

as formalized in Eq 2, with bias terms omitted.346

FFN(H) = ReLU(HW1)W2. (2)347

4.2 Specializing Task-Specific FFN348

Next, we investigate continuous training upon a349

subset of specialized parameters within FFN for350

each task. Given a pre-trained vanilla multilingual351

Transformer model with tags to identify the lan-352

guage pairs, e.g., Johnson et al. (2017), we can353

derive specialized neuron set St
k for each layer of a354

task task2 t and threshold k following the method355

outlined in Section 3.1. Then, we derive a boolean356

mask vector mt
k ∈ {0, 1}dff from St

k, where the i-357

th element in mt
k is set to 1 only when i ∈ St

k, and358

apply it to control parameter updates. Specifically,359

we broadcast mt
k and perform Hadamard Product360

with W1 in each FFN layer as follows:361

FFN(H) = ReLU (H(mt
k ⊙W1))W2. (3)362

mt
k plays the role of controlling parameter up-363

date, where the boolean value of i-th element in364

mt
k denotes if the i-th row of parameters in W1 can365

be updated or not for each layer3 during continues366

training. Broadly speaking, our approach selec-367

tively updates the first FFN (fc1) weights during368

2We treat each translation direction as a distinct task.
3Note that mt

k is layer-specified, we drop layer indexes
hereon for simplicity of notation.

back-propagation, tailoring the model more closely 369

towards specific translation tasks and reinforcing 370

neuron separation. Note that while fc1 is selec- 371

tively updated for specific tasks, other parameters 372

are universally updated to maintain stability, and 373

the same masking is applied to inference to ensure 374

consistency. We provide the pseudocode of our 375

method in Appendix A.3. 376

5 Experimental Setup 377

In this section, we evaluate the capability of our 378

proposed method on small (IWSLT) and large-scale 379

(EC30) multilingual machine translation tasks. 380

More details of the datasets are in Appendix A.1. 381

5.1 Datasets 382

IWSLT. Following Lin et al. (2021), we con- 383

structed an English-centric dataset with eight lan- 384

guages using IWSLT-14, ranging from 89k to 169k 385

in corpus size. We learned a 30k SentencePiece un- 386

igram (Kudo and Richardson, 2018) shared vocab- 387

ulary and applied temperature oversampling with 388

τ = 2 to balance low-resource languages. For a 389

more comprehensive evaluation, we replaced the 390

standard test set with Flores-200 (Costa-jussà et al., 391

2022), merging devtest and test, which offers mul- 392

tiple parallel sentences per source text. 393

EC30. We further validate our methods using the 394

large-scale EC30 dataset (Tan and Monz, 2023), 395

which features 61 million parallel training sen- 396

tences across 30 English-centric language pairs, 397

representing five language families and various 398

writing systems. We classify these language 399

pairs into low-resource (=100k), medium-resource 400

(=1M), and high-resource (=5M) categories. Fol- 401

lowing Wu and Monz (2023), we build a 128k 402

size shared SentencePiece BPE vocabulary. Align- 403

ing with the original EC30 setups, we use Ntrex- 404

128 (Federmann et al., 2022) as the validation set. 405

Also, we use Flores-200 (merging devtest and test) 406

as test sets for cross-domain evaluation. 407

5.2 Systems 408

We compare our method with strong open-source 409

baselines that share similar motivations in reducing 410

interference for multilingual translation tasks. 411

Baselines: 412

• mT-small. For IWSLT, we train an mT- 413

small model on Many-to-Many directions as 414
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Language
∆θ

Fa Pl Ar He Nl De It Es
Avg

Size 89k 128k 139k 144k 153k 160k 167k 169k

One-to-Many (O2M / En-X)
mT-small - 14.5 9.9 12.0 13.1 17.0 20.6 17.3 18.3 15.4

AdapterLP +67% +0.1 -0.1 +0.4 +1.4 +0.2 +0.6 +0.1 +0.4 +0.4
LaSS 0% -2.6 0 +0.6 +0.7 -0.2 +0.7 -0.2 -0.4 -0.2
Ours 0% +0.7 +0.1 +0.9 +0.6 +0.1 +0.1 +0.2 -0.3 +0.3

Many-to-One (M2O / X-En)
mT-small - 19.1 19.4 25.7 30.9 30.6 28.1 29.0 34.0 24.7

AdapterLP +67% +0.9 +0.6 +0.9 +1.0 +0.8 +1.0 +0.9 +0.3 +0.8
LaSS 0% +1.2 +0.6 +0.9 +1.4 +1.1 +1.6 +1.6 +0.8 +1.2
Ours 0% +1.6 +1.2 +1.7 +2.0 +1.9 +2.1 +1.8 +1.4 +1.7

Table 1: Average BLEU improvements over the baseline (mT-small) model on the IWSLT dataset. ∆θ denotes the
relative parameter increase over the baseline, encompassing all translation directions. The best results are in bold.

per (Lin et al., 2021): a 6-layer Transformer415

with 4 attention heads, d = 512, dff = 1,024.416

• mT-big. For EC30, we train a mT-big on417

Many-to-Many directions following Wu and418

Monz (2023). It has 6 layers, with 16 attention419

heads, d = 1,024, and dff = 4,096.420

Adapters. We employ two adapter methods: 1)421

Language Pair Adapter (AdapterLP) and 2) Lan-422

guage Family Adapter (AdapterFam). We omit423

AdapterFam for IWSLT due to its limited languages.424

AdapterLP inserts adapter modules based on lan-425

guage pairs, demonstrating strong effects in re-426

ducing interference while presenting no parame-427

ter sharing (Bapna and Firat, 2019). In contrast,428

AdapterFam (Chronopoulou et al., 2023) facilitates429

parameter sharing across similar languages by train-430

ing modules for each language family. Their bottle-431

neck dimensions are 128 and 512 respectively. See432

Appendix A.2 for more training details.433

LaSS. Lin et al. (2021) proposed LaSS to lo-434

cate language-specific sub-networks following the435

lottery ticket hypothesis, i.e., finetuning all transla-436

tion directions from a pre-trained model and then437

pruning based on magnitude. They then continu-438

ally train the pre-trained model by only updating439

the sub-networks for each direction. We adopt440

the strongest LaSS configuration by applying sub-441

networks for both attention and FFNs.442

5.3 Implementation and Evaluation443

We train our baseline models following the same444

hyper-parameter settings in Lin et al. (2021)445

and Wu and Monz (2023). Specifically, we use446

the Adam optimizer (β1 = 0.9, β2 = 0.98, ϵ = 447

10−9) with 5e-4 learning rate and 4k warmup steps 448

in all experiments. We use 4 NVIDIA A6000 (48G) 449

GPUs to conduct most experiments and implement 450

them based on Fairseq (Ott et al., 2019) with FP16. 451

We list detailed training and model specifications 452

for all systems in Appendix A.2. 453

We adopt the tokenized BLEU (Papineni et al., 454

2002) for the IWSLT dataset and detokenized case- 455

sensitive SacreBLEU4 (Post, 2018) for the EC30 456

dataset in our main result evaluation section. In 457

addition, we provide ChrF++ (Popović, 2017) and 458

COMET (Rei et al., 2020) in Appendix A.4. 459

6 Results and Analyses 460

6.1 Small-Scale Results on IWSLT 461

We show results on IWSLT in Table 1. For Many- 462

to-One (M2O) directions, our method achieves an 463

average +1.7 BLEU gain over the baseline, achiev- 464

ing the best performance among all approaches for 465

all languages. The AdapterLP, with a 67% increase 466

in parameters over the baseline model, shows 467

weaker improvements (+0.8) than our method. As 468

for One-to-Many (O2M) directions, we observed 469

weaker performance improvements for all methods. 470

While the gains are modest (averaging +0.3 BLEU), 471

our method demonstrates consistent improvements 472

across various languages in general. 473

Scaling up does not always reduce interference. 474

Shaham et al. (2023); Chang et al. (2023) have 475

found scaling up the model capacity reduces in- 476

terference, even under low-resource settings. We 477

4nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

mT-big - 28.1 31.6 29.9 29.7 31.6 30.6 18.9 26.0 22.4 25.5 29.7 27.7
AdapterFam +70% +0.7 +0.3 +0.5 +0.7 +0.3 +0.5 +1.1 +0.5 +0.8 +0.8 +0.4 +0.6
AdapterLP +87% +1.6 +0.6 +1.1 +1.6 +0.4 +1.0 +0.4 +0.4 +0.4 +1.2 +0.5 +0.8

LaSS 0% +2.3 +0.8 +1.5 +1.7 +0.2 +1.0 -0.1 -1.8 -1.0 +1.3 -0.3 +0.5
Random 0% +0.9 -0.5 +0.2 +0.5 -0.7 -0.2 -0.3 -1.5 -0.9 +0.5 -0.9 -0.2

Ours-Enc 0% +1.2 +1.1 +1.1 +1.0 +1.0 +1.0 +0.7 +0.8 +0.8 +1.0 +1.0 +1.0
Ours-Dec 0% +1.2 +1.1 +1.1 +0.9 +1.1 +1.0 +0.7 +1.1 +0.9 +0.9 +1.1 +1.0

Ours 0% +1.8 +1.4 +1.6 +1.4 +1.1 +1.3 +1.4 +0.9 +1.2 +1.5 +1.1 +1.3

Table 2: Average SacreBLEU improvements on the EC30 dataset over the baseline (mT-big), categorized by High,
Medium, and Low-resource translation directions. ’Random’ denotes continually updating the model with randomly
selected task-specific neurons. ’Ours-Enc’ and ’Ours-Dec’ indicate Neuron Specialization applied solely to the
Encoder and Decoder, respectively, while ’Ours’ signifies the method applied to both components.

Figure 3: BLEU gains of shallower models over mT-
small on IWSLT show improved X-En performance at
the expense of En-X. Applying Neuron Specialization
reduces EN-X degradation and amplifies X-En gains.

then investigate the trade-off between performance478

and model capacity by employing mT-shallow, a479

shallower version of mT-small with three fewer lay-480

ers (with ∆θ = −39% for parameters, see Table 6481

for details). Surprisingly, in Figure 3, we show482

that reducing parameters improved Many-to-One483

(X-En) performance but weakened One-to-Many484

(En-X) results. This result indicates that scaling up485

the model capacity does not always reduce interfer-486

ence, but may show overfitting to have performance487

degradation. Furthermore, we show that imple-488

menting Neuron Specialization with mT-shallow489

enhances Many-to-One (X-En) performance in all490

directions while lessening the decline in One-to-491

Many (En-X) translation quality in general.492

6.2 Large-Scale Results on EC-30493

Similar to what we observed in the small-scale set-494

ting, we find notable improvements when we scale495

up on the EC30 dataset. As shown in Table 2,496

we show consistent improvements across high-,497

medium-, and low-resource languages, with an av- 498

erage gain of +1.3 SacreBLEU over the baseline. 499

LaSS, while effective in high-resource O2M pairs, 500

presents limitations with negative impacts (-1.0 501

score) on low-resource languages, highlighting dif- 502

ficulties in sub-network extraction for low-resource 503

languages. In contrast, our method achieves sta- 504

ble and consistent gains across all resource levels. 505

The AdapterLP , despite increasing parameters by 506

87% compared to the baseline, falls short of our 507

method in boosting performance. Additionally, we 508

show that applying Neuron Specialization in either 509

the encoder or decoder delivers similar gains, with 510

both combined offering stronger performance. 511

Model △θ △Tsubnet △ Memory

AdapterLP +87% n/a 1.42 GB
LaSS 0% +33 hours 9.84 GB
Ours 0% +5 minutes 3e-3 GB

Table 4: Efficiency comparison on EC30 dataset regard-
ing extra trainable parameters (△θ: relative increase
over the baseline), extra processing time for subnet ex-
traction (△Tsubnet), and extra memory (△ Memory).

Efficiency Comparisons. We compare the effi- 512

ciency on three aspects (Table 4). For trainable 513

parameter increase, introducing lightweight lan- 514

guage pair adapters accumulates a significant +87% 515

parameter growth over the baseline. Next, com- 516

pared to LaSS, which is fine-tuned to identify sub- 517

networks and demands substantial time (33 hours 518

with 4 Nvidia A6000 GPUs), our approach effi- 519

ciently locates specialized neurons in just 5 min- 520

utes. Considering memory costs, essential for han- 521

dling numerous languages in deployment environ- 522

ments, our method proves more economical, pri- 523
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Lang De Es Cs Hi Ar Lb Ro Sr Gu Am High Low
Size 5m 5m 5m 5m 5m 100k 100k 100k 100k 100k Avg Avg

One-to-Many
Bilingual 36.3 24.6 28.7 43.9 23.7 5.5 16.2 17.8 12.8 4.1 31.8 11.3
mT-big -4.7 -1.5 -3.6 -4.4 -4.7 +9.0 +8.9 +6.2 +13.9 +3.1 -3.7 +8.2
Ours -2.0 -0.2 -1.7 -2.4 -3.0 +10.8 +10.0 +8.2 +16.4 +3.7 -1.9 +9.8

Many-to-One
Bilingual 39.1 24.5 32.6 35.5 30.8 8.7 19.5 21.3 7.0 8.7 32.7 13.0
mT-big -1.5 +0.9 +0.2 -1.8 -2.3 +13.7 +11.9 +10.3 +18.2 +12.5 -1.1 +13.3
Ours -0.3 +1.7 +1.8 -0.2 -0.3 +15.3 +12.4 +11.3 +19.6 +14.1 +0.3 +14.5

Table 3: SacreBLEU score comparisons for Multilingual baseline and Neuron Specialization models against
Bilingual ones on the EC30 dataset, limited to 5 high- and low-resource languages due to computational constraints.
Red signifies negative interference, Blue denotes positive synergy, with darker shades indicating better effects.

marily requiring storage of 1-bit masks for the FFN524

neurons instead of extensive parameters.525

Random Mask. We also incorporate the experi-526

ments using random masks with Neuron Specializa-527

tion Training, to validate whether our Specialized528

Neuron Identification process can capture useful529

task-specific modularity. We randomly sample 70%530

neurons to be task-specific and then conduct the531

same Neuron Specialization Training step. Our532

results indicate that the random masks strategy sac-533

rifices performance on low-resource tasks (average534

-0.9 score) to enhance the performance of high-535

resource O2M directions (+0.9 score). This indi-536

cates the effectiveness of our identification method537

in locating intrinsic task-specific neurons.538

The role of threshold factor. We explore the im-539

pact of our sole hyper-parameter k (neuron selec-540

tion threshold factor) on performance. The results541

indicate that performance generally improves with542

an increase in k, up to a point of 95% (around 25%543

sparsity), beyond which the performance starts to544

drop. See Appendix A.5 for more detailed results.545

6.3 The Impact of Reducing Interference546

In this section, we evaluate to what extent our547

Neuron Specialization method mitigates interfer-548

ence and enhances cross-lingual transfer. Similar549

to Wang et al. (2020), we train bilingual models550

that do not contain interference or transfers, and551

then compare results between bilingual models,552

the conventional multilingual baseline model (mT-553

big), and our neuron specialization (ours). We train554

Transformer-big and Transformer-based models for555

high- and low-resource tasks, see Appendix A.2.556

In Table 3, we show that the conventional mul-557

tilingual model (mT-big) facilitates clear positive558

transfer for low-resource languages versus bilin- 559

gual setups, leading to +8.2 (O2M) and +13.3 560

(M2O) score gains but incurs negative interference 561

for high-resource languages (-3.7 and -1.1 scores). 562

Our method reduces interference for high- 563

resource settings, leading to +1.8 and +1.4 Sacre- 564

BLEU gains over mT-big in O2M and M2O di- 565

rections. Moreover, our Neuron Specialization en- 566

hances low-resource language performance with av- 567

erage gains of +1.6 (O2M) and +1.2 (M2O) Sacre- 568

BLEU over the mT-big, demonstrating its ability 569

to foster cross-lingual transfer. Despite improve- 570

ments, our approach still trails behind bilingual 571

models for most high-resource O2M directions, in- 572

dicating that while interference is largely reduced, 573

room for improvement still exists. 574

7 Conclusions 575

In this paper, we have identified and leveraged in- 576

trinsic task-specific modularity within multilingual 577

networks to mitigate interference. We showed that 578

FFN neurons activate in a language-specific way, 579

and they present structural overlaps that reflect lan- 580

guage proximity, which progress across layers. We 581

then introduced Neuron Specialization to leverage 582

these natural modularity signals to structure the 583

network, enhancing task specificity and improving 584

knowledge transfer. Our experimental results, span- 585

ning various resource levels, show that our method 586

consistently outperforms strong baseline systems, 587

with additional analyses demonstrating reduced in- 588

terference and increased knowledge transfer. Our 589

work deepens the understanding of multilingual 590

models by revealing their intrinsic modularity, of- 591

fering insights into how multi-task models can be 592

optimized without extensive modifications. 593
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Limitations594

This study primarily focuses on Multilingual Ma-595

chine Translation, a key method in multi-task learn-596

ing, using it as our primary testbed. However,597

the exploration of multilingual capabilities can be598

extended beyond translation to include a broader599

range of Multilingual Natural Language Processing600

tasks. These areas remain unexplored in our current601

research and are considered promising directions602

for future work.603

Additionally, our analysis is limited to the feed-604

forward network (FFN) components within the605

Transformer architecture, which, although they con-606

stitute a significant portion of the model’s parame-607

ters, represent only one facet of its complex struc-608

ture. Future investigations could yield valuable609

insights by assessing the modularity of other Trans-610

former components, such as the attention mecha-611

nisms or layer normalization modules, to provide a612

more comprehensive understanding of the system’s613

overall functionality.614

Lastly, we conducted our identification methods615

of specialized neurons primarily on Feed-Forward616

Networks that use ReLU as the activation function.617

This is because neurons after the ReLU naturally618

present two states: active (>0) and inactive (=0),619

which offers a clear view of their contributions to620

the network outputs, thus being inherently inter-621

pretable. Recent work on Large Language Models622

has also explored the binary activation states of623

FFN neurons, particularly focused on when neu-624

rons are activated, and their roles in aggregating625

information (Voita et al., 2023). We leave the ex-626

ploration of FFN neurons using other activation627

functions such as the GELU (Hendrycks and Gim-628

pel, 2016), to future work.629

Broader Impact630

Recognizing the inherent risks of mistranslation631

in machine translation data, we have made efforts632

to prioritize the incorporation of high-quality data,633

such as two open-sourced Multilingual Machine634

Translation datasets: IWSLT and EC30. Addition-635

ally, issues of fairness emerge, meaning that the ca-636

pacity to generate content may not be equitably dis-637

tributed across different languages or demographic638

groups. This can lead to the perpetuation and am-639

plification of existing societal prejudices, such as640

biases related to gender, embedded in the data.641
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A Appendix 870

A.1 Dataset details 871

IWSLT We collect and pre-processes the IWSLT- 872

14 dataset following Lin et al. (2021). We refer 873

readers to Lin et al. (2021) for more details. 874

EC30 We utilize the EC30, a subset of the EC40 875

dataset (Tan and Monz, 2023) (with 10 extremely 876

low-resource languages removed in our experi- 877

ments) as our main dataset for most experiments 878

and analyses. We list the Languages with their 879

ISO and scripts in Table 5, along with their num- 880

ber of sentences. In general, EC30 is an English- 881

centric Multilingual Machine Translation dataset 882

containing 61 million sentences covering 30 lan- 883

guages (excluding English). It collected data from 884

5 representative language families with multiple 885

writing scripts. In addition, EC30 is well bal- 886

anced at each resource level, for example, for all 887

high-resource languages, the number of training 888

sentences is 5 million. Note that the EC30 is al- 889

ready pre-processed and tokenized (with Moses 890

tokenizer), thus we directly use it for our study. 891

A.2 Model and Training Details 892

We list the configurations and hyper-parameter set- 893

tings of all systems for the main training setting 894

(EC30) in Table 6. As for global training settings, 895

we adopt the pre-norm and share the decoder input 896

output embedding for all systems. We use cross 897

entropy with label smoothing to avoid overfitting 898

(smoothing factor=0.1) and set early stopping to 899

20 for all systems. Similar to Fan et al. (2021), 900

we prepend language tags to the source and target 901

sentences to indicate the translation directions for 902

all multilingual translation systems. 903

Bilingual models. For bilingual models of low- 904

resource languages, we adopt the suggested hyper- 905

parameter settings from Araabi and Monz (2020), 906

such as dff = 512, number of attention head as 2, 907

and dropout as 0.3. Furthermore, We train separate 908

dictionaries for low-resource bilingual models to 909

avoid potential overfitting instead of using the large 910

128k shared multilingual dictionary. 911
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Germanic Romance Slavic Indo-Aryan Afro-Asiatic

ISO Language Script ISO Language Script ISO Language Script ISO Language Script ISO Language Script

High

(5m)

de German Latin fr French Latin ru Russian Cyrillic hi Hindi Devanagari ar Arabic Arabic

nl Dutch Latin es Spanish Latin cs Czech Latin bn Bengali Bengali he Hebrew Hebrew

Med

(1m)

sv Swedish Latin it Italian Latin pl Polish Latin kn Kannada Devanagari mt Maltese Latin

da Danish Latin pt Portuguese Latin bg Bulgarian Cyrillic mr Marathi Devanagari ha Hausa∗ Latin

Low

(100k)

af Afrikaans Latin ro Romanian Latin uk Ukrainian Cyrillic sd Sindhi Arabic ti Tigrinya Ethiopic

lb Luxembourgish Latin oc Occitan Latin sr Serbian Latin gu Gujarati Devanagari am Amharic Ethiopic

Table 5: Details of EC30 Training Dataset. Numbers in the table represent the number of sentences, for example,
5m denotes exactly 5,000,000 number of sentences. The only exception is Hausa, where its size is 334k (334,000).

Models Dataset
Num. Num. Num.

dim dff
max update

dropout
trainable params Layer Attn Head tokens freq

mT-shallow IWSLT 47M 3 8 512 1,024 2,560 4 0.1
mT-small IWSLT 76M 6 8 512 1,024 2,560 4 0.1

bilingual-low EC30 52M 6 2 512 1,024 2,560 1 0.3
bilingual-high EC30 439M 6 16 1,024 4096 2,560 10 0.1

mT-big EC30 439M 6 16 1,024 4,096 7,680 21 0.1
LaSS EC30 439M 6 16 1,024 4,096 7,680 21 0.1

Neuron Specialization EC30 439M 6 16 1,024 4,096 7,680 21 0.1

Table 6: Configuration and hyper-parameter settings for all models in this paper. Num. Layer and Attn Head denote
the number of layers and attention heads, respectively. dim represents the dimension of the Transformer model, dff
means the dimension of the feed-forward layer. bilingual-low and -high represent the bilingual models for low and
high-resource languages.

For bilingual models of high-resource languages,912

we adopt the 128k shared multilingual dictionary913

and train models with the Transformer-big archi-914

tecture as the multilingual baseline (mT-big). The915

detailed configurations can be found in Table 6.916

Language Pair Adapters. We implement Lan-917

guage Pair Adapters (Bapna and Firat, 2019) by918

ourselves based on Fairseq. The Language Pair919

Adapter is learned depending on each pair, e.g.,920

we learn two modules for en-de, namely en on the921

Encoder side and the de on the Decoder side. Note922

that, except for the unified pre-trained model, lan-923

guage pair adapters do not share any parameters924

with each other, preventing potential knowledge925

transfers. We set its bottleneck dimension as 128926

for all experiments of IWSLT and EC30.927

• IWSLT. For the IWSLT dataset that contains 8928

languages with 16 language pairs/translation929

directions, the size mT-small base model is930

76M. Language Pair Adapters insert 3.2M ad-931

ditional trainable parameters for one language932

pair, thus resulting in 51.2M added parameters933

for all language pairs, leading to 67% relative934

parameter increase over the baseline model. 935

• EC30. For the EC30 dataset that contains 30 936

languages with 60 language pairs/translation 937

directions, the size mT-big base model is 938

439M. Language Pair Adapters insert 6.4M 939

extra trainable parameters for one language 940

pair, thus resulting in 384M added parameters 941

for all language pairs, leading to 87% relative 942

parameter increase over the baseline model. 943

Language Family Adapters. The Language 944

Family Adapter (Chronopoulou et al., 2023) is 945

learned depending on each language family, e.g., 946

for all 6 Germanic languages in the EC30, we 947

learn two modules for en-Germanic, namely the 948

en adapter on the Encoder side and the Germanic 949

adapter on the Decoder side. We set its bottleneck 950

dimension as 512 for all experiments for the EC30. 951

• EC30. For the EC30 dataset that contains 30 952

languages with 60 language pairs/translation 953

directions, the size mT-big base model is 954

439M. Language Family Adapters insert 955

25.3M additional trainable parameters for one 956

family (on EN-X directions), thus resulting 957
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in 303.6M added parameters for all families958

on both EN-X and X-En directions, leading959

to 69% relative parameter increase over the960

baseline model.961

LaSS. When reproducing LaSS (Lin et al., 2021),962

we adopt the code from their official Github page5963

with the same hyper-parameter setting as they sug-964

gested in their paper. For the IWSLT dataset, we965

finetune the mT-small for each translation direction966

with dropout=0.3, we then identify the language-967

specific parameters for attention and feed-forward968

modules (the setting with the strongest improve-969

ments in their paper) with a pruning rate of 70%.970

We continue to train the sparse networks while971

keeping the same setting as the pre-training phase972

as they suggested. Note that we observed different973

results as they reported in the paper, even though974

we used the same code, hyper-parameter settings,975

and corresponding Python environment and pack-976

age version. We also found that He et al. (2023) re-977

produced LaSS results in their paper, which shows978

similar improvements (around +0.6 BLUE gains)979

over the baseline of our reproductions. As for an980

improved method over LaSS proposed by He et al.981

(2023), we do not reproduce their method since no982

open-source code has been released.983

A.3 Pseudocode of Neuron Specialization984

We provide the pseudocode of our proposed985

method, Neuron Specialization. We present the986

process of Specialized Neuron Identification in Al-987

gorithm. 1 and Neuron Specialization Training in988

Algorithm. 2.989

A.4 Result Details using ChrF++ and990

COMET991

For our main experiments in the EC30, we fur-992

ther provide the ChrF++ (Popović, 2017) and993

COMET (Rei et al., 2020) scores as extra results, as994

shown in Table 7 and Table 8, respectively. Similar995

to what we observed in Section 6.2, our Neuron996

Specialization presents consistent performance im-997

provements over the baseline model while outper-998

forming other methods such as LaSS and Adapters.999

A.5 Sparsity versus Performance1000

For the Neuron Specialization, we dynamically se-1001

lect specialized neurons via a cumulative activa-1002

tion threshold k in Equation 1, which is the only1003

hyper-parameter of our method. Here, we discuss1004

5https://github.com/NLP-Playground/LaSS

Figure 4: Improvements of Neuron Specialization
method over the mT-large baseline on EC30. The x-axis
indicates the factor k and the dynamic sparsity of the
fc1 layer, with displayed values ranging from minimum
to maximum sparsity achieved. The y-axis indicates the
SacreBLEU improvements over the mT-large model.

the impact of k on the final performance and its 1005

relationship to the sparsity. As mentioned in Sec- 1006

tion 3.1, a smaller factor k results in more sparse 1007

specialized neuron selection, which makes the fc1 1008

weight more sparse as well in the Neuron Special- 1009

ization Training process. In Figure 4, we show that 1010

increase k leads to higher improvements in general, 1011

and the optimal performance is about when k=95%. 1012

Such observation follows the intuition since when k 1013

is too low, model capacity will be largely reduced. 1014

Figure 5: Sparsity progression of Neuron Specialization
when k = 95 on the EC30. We observe that the sparsity
becomes smaller in the Encoder and then goes up in the
Decoder. Note that this figure is based on the natural
signals extracted from the untouched pre-trained model,
and will be leveraged later in the process of Neuron
Specialization Training. This intrinsic pattern naturally
follows our intuition that specialized neurons progress
from language specific to agnostic the in Encoder, and
vice versa in the Decoder.

Furthermore, in Figure 5, we show that the spar- 1015
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sity of the network presents an intuitive structure:1016

the sparsity decreases in the Encoder and increases1017

in the Decoder. This implies the natural signal1018

within the pre-trained multilingual model that neu-1019

rons progress from language-specific to language-1020

agnostic in the Encoder, and vice versa in the De-1021

coder. Such observation is natural because it is re-1022

flected by the untouched network, similar to what1023

we observed in the Progression of Neuron overlaps1024

in Section 3.2.2.1025

A.6 Visualization Details1026

We provide the additional Pairwise Intersection1027

over Union (IoU) scores for specialized neurons in1028

the first Encoder layer (Figure 6), last Encoder layer1029

(Figure 7), and last Decoder layer (Figure 8). The1030

figures show that the Neurons gradually changed1031

from language-specific to language-agnostic in the1032

Encoder, and vice versa in the Decoder.1033

14



Algorithm 1 Specialized Neuron Identification

1: Input: A pre-trained multi-task model θ with dimensions d and dff ; a validation dataset D with T
tasks, where D = {D1, ..., DT }; and an accumulation threshold factor k ∈ [0%, 100%] as the only
hyper-parameter.

2: Output: A set of selected specialized neurons St
k for each task t.

3: for task t in T do
4: Step 1: Activation Recording
5: Initialize activation vector At = 0 ∈ Rdff

6: for sample xi in Dt do
7: Record activation state ati ∈ Rdff

8: At = At + ati ▷ Accumulate activation states
9: end for

10: at = At
|Dt| ▷ Compute average activation state for task t

11: Step 2: Neuron Selection
12: Initialize selected neurons set St

k = ∅
13: while selection condition not met do ▷ Refer to Eq. 1 for condition
14: Select neurons based on at and add them to St

k

15: end while
16: end for

Algorithm 2 Neuron Specialization Training

1: Input: A pre-trained multi-task model θ with dimensions d and dff . Corpora data C with T tasks that
contain both training and validation data. A set of selected specialized neurons St

k for each task t.
2: Output: A new specialized network θnew. Note that only the fc1 weight matrix will be trained

task-specifically, the other parameters are shared across tasks. In addition, θnew does not contain
more trainable parameters than θ due to the sparse network feature.

3: Derive boolean mask mt ∈ {0, 1}dff from St
k for each layer

4: while θnew not converge do
5: for task t in T do
6: W T

1 = mt ·W θ
1 ▷ We perform this for all layers, refer to EQ. 3

7: Train θnew using Ct ▷ All parameters will be updated, yet fc1 layers are task specific
8: end for
9: end while
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Figure 6: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the first encoder
FFN layer across all X-En language pairs to measure the degree of overlap between language pairs. Darker cells
indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.

Figure 7: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the last encoder
FFN layer across all One-to-Many language pairs to measure the degree of overlap between language pairs. Darker
cells indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.

Figure 8: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the last decoder
FFN layer across all X-En language pairs to measure the degree of overlap between language pairs. Darker cells
indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.
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Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

mT-big - 52.4 57.6 55.0 53.9 56.6 55.3 42.5 50.0 46.3 49.6 54.7 52.2
AdapterLP +87% +1.3 +0.2 +0.8 +1.1 +0.1 +0.6 +0.3 +0.3 +0.3 +0.9 +0.2 +0.5
AdapterFam +70% +0.6 +0.2 +0.4 +0.7 +0.3 +0.5 +1.1 +0.4 +0.8 +0.8 +0.3 +0.5

LaSS 0% +1.7 +0.8 +1.2 +1.3 +0.3 +0.8 -0.3 -1.5 -0.9 +0.9 -0.2 +0.5
Random 0% +0.7 -0.4 +0.2 +0.4 -0.5 -0.1 -0.5 -1.2 -0.9 +0.2 -0.7 -0.3

Ours-Enc 0% +1.0 +0.9 +1.0 +0.7 +0.9 +0.8 +0.6 +0.9 +0.8 +0.8 +0.9 +0.8
Ours-Dec 0% +0.9 +0.9 +0.9 +0.6 +1.0 +0.8 +0.5 +1.2 +0.9 +0.7 +1.0 +0.9

Ours 0% +1.3 +1.1 +1.2 +1.1 +0.9 +1.0 +1.2 +0.8 +1.0 +1.2 +0.9 +1.1

Table 7: Average ChrF++ improvements on the EC30 dataset over the baseline (mT-big), categorized by High,
Medium, and Low-resource translation directions. ’Ours-Enc’ and ’Ours-Dec’ indicate neuron specialization applied
solely to the Encoder and Decoder, respectively, while ’Ours’ signifies the method applied to both components. The
best results are highlighted in bold.

Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

mT-big - 83.4 83.9 83.65 81.1 80.1 80.6 73.8 73.4 73.6 79.1 79.1 79.1
AdapterLP +87% +0.9 +0.2 +0.5 +0.6 +0.2 +0.4 0 +0.1 0 +0.5 +0.2 +0.4
AdapterFam +70% +0.4 +0.1 +0.3 +0.4 +0.2 +0.3 +0.7 +0.3 +0.5 +0.5 +0.2 +0.4

LaSS 0% +1.5 +0.8 +1.2 +0.9 +0.6 +0.8 -0.2 -1.0 -0.6 +0.7 +0.1 +0.4
Random 0% +0.2 -0.1 +0.1 -0.1 -0.2 -0.2 -0.8 -0.9 -0.9 -0.2 -0.4 -0.3

Ours-Enc 0% +1.0 +0.8 +0.9 +0.5 +0.9 +0.7 +0.3 +0.9 +0.6 +0.6 +0.8 +0.7
Ours-Dec 0% +0.9 +0.8 +0.9 +0.5 +1.0 +0.8 +0.3 +0.9 +0.6 +0.6 +1.0 +0.8

Ours 0% +1.4 +1.0 +1.2 +0.9 +0.7 +0.8 +0.8 +0.7 +0.8 +1.0 +0.8 +0.9

Table 8: Average COMET improvements on the EC30 dataset over the baseline (mT-big), categorized by High,
Medium, and Low-resource translation directions. ’Ours-Enc’ and ’Ours-Dec’ indicate neuron specialization applied
solely to the Encoder and Decoder, respectively, while ’Ours’ signifies the method applied to both components. The
best results are highlighted in bold.
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