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Abstract

Recurrent Neural Networks (RNNs) have achieved remarkable performance on
a range of tasks. A key step to further empowering RNN-based approaches is
improving their explainability and interpretability. In this work we present MEME:
a model extraction approach capable of approximating RNNs with interpretable
models represented by human-understandable concepts and their interactions. We
demonstrate how MEME can be applied to two multivariate, continuous data case
studies: Room Occupation Prediction, and In-Hospital Mortality Prediction. Using
these case-studies, we show how our extracted models can be used to interpret
RNNs both locally and globally, by approximating RNN decision-making via
interpretable concept interactions.

1 Introduction

Deep Learning (DL) has achieved groundbreaking results in a wide range of fields [9], and is currently
an active research area of Artificial Intelligence (AI). Recurrent Neural Networks (RNNs) are DL
models tailored for processing time-series data, and have been successfully applied in domains relying
on temporal data processing, including healthcare [8], Natural Language Processing (NLP) [7], video
processing [10], and many others [30].

A central challenge faced by most DL approaches is their lack of interpretability: the black-box
nature of most DL models makes it very difficult to directly understand their behaviour. This often
leads to a lack of trust in such models. As a result, it is challenging to apply and regulate these
models in safety-critical applications, such as healthcare. This lack of interpretability also makes it
challenging to extract knowledge from such models, which prohibits users from better understanding
their corresponding tasks/domains. As a result, there has recently been a dramatic increase in research
on Explainable AI (XAI), focusing on improving explainability/interpretability of DL systems [11].

In particular, one type of XAI approach is model extraction (also referred to as model translation) [12].
Model extraction techniques use rules [37], decision trees [38], or other more readily explainable
models [39] to approximate complex models, in order to study their behaviour. Intuitively, statistical
properties of a complex model should be reflected in an extracted model, provided approximation
quality (referred to as fidelity) is high enough.

In this work, we present MEME: an approach to RNN (M)odel (E)xplanation via (M)odel
(E)xtraction.1 Using MEME, we approximate RNN models with models represented via human-
understandable concepts and their interactions. A diagrammatic summary of our approach is given in

1Meme refers to a system’s behaviour/knowledge passed from one individual to another by imi-
tation, akin to how an extracted model extracts knowledge from an original one via approximation.
https://en.wikipedia.org/wiki/Meme
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Figure 1 and Figure 2, and will be discussed in more detail in Section 3. All relevant code is publicly
available, and can be found in our open-source repository.2

To summarize, we make the following contributions in this work:

• Present a novel model extraction approach (MEME), capable of approximating RNN
models with interpretable models represented by human-understandable concepts and their
interactions. To the best of our knowledge, this is the first time concept extraction approaches
have been used with RNNs and time-series tasks.

• Quantitatively evaluate MEME using two multivariate, continuous data tasks (including a
healthcare scenario), showing that MEME generates high-fidelity extracted models. To the
best of our knowledge, this is the first time RNN model extraction approaches have been
applied to multivariate, continuous data tasks.

• Qualitatively evaluate MEME using the two case studies, showing how extracted mod-
els produced by MEME can be inspected in order to achieve both global explainability
(i.e., explaining overall model behaviour), and local explainability (explaining individual
predictions) of RNN models.

2 Related Work

Concept Extraction Most existing works on post-hoc DL explanation methods (those focusing on
explaining trained DL models) provide explanations by estimating the importance of input features,
and typically focus on local explanations [13]. However, these methods have been shown to have
methodological and theoretical limitations [15, 14]. More recent approaches focus on concept-based
explanations, presenting explanations in terms of human-understandable concepts, which are typically
derived from the hidden layers of a DL model [16]. Crucially, existing concept extraction approaches
focus predominantly on image recognition tasks, as opposed to time-series tasks, which is the focus
of this work. Further details regarding concept-based explanations can be found in Appendix A.

RNN Model Extraction Several recent works have presented approaches to RNN model extraction,
focusing predominantly on language-based modelling NLP tasks. For instance, work in [21, 20, 22,
40] presents approaches for approximating RNNs via Finite State Automata (FSA), Probabilistic
Deterministic Finite Automata (PDFA), Discrete-Time Markov Chains (DTMC), or Hidden Markov
Models (HMMs). Similarly to our work, these works generate extracted models by quantising
the RNN hidden space, and approximating the RNN transition dynamics in this space. However,
these works focus on tasks consisting of categorical, univariate data, whereas we consider tasks
with multivariate continuous data. Furthermore, we associate the quantised states with human-
understandable concepts, as will be discussed in Section 3.

RNN Explainability Another direction for RNN explainability focuses on using specialised model
architectures [23, 24], or specialised model training procedures [25]. Predominantly, these approaches
rely on attention mechanisms [23, 24], which require modification of the model architecture and/or
model training procedure. In contrast, our approach is agnostic to the RNN architecture, and
requires no modifications/retraining. Furthermore, it has recently been argued that “attention is
not explanation”, emphasising that in practice, it is often unclear what relationship exists between
attention weights and model outputs [26].

3 Methodology

3.1 Setup

Without loss of generality, we consider pre-trained RNN models containing a recurrent layer l with
m neurones, processing sequences of inputs xt,xt+1, ..., with multivariate, continuous input samples
xt ∈ Rn. By definition, recurrent layers retain a hidden state. Thus, an input inference and its layer l
activations at a given timestep can be written as a function fhidden : Rn × Rm → Rm, such that the
function fhidden takes the next input data-point xt ∈ Rn, the previous hidden state ht−1 ∈ Rm, and
outputs the next hidden state ht ∈ Rm. In this work, we focus on binary classification tasks, in which

2https://github.com/dmitrykazhdan/MEME-RNN-XAI
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Figure 1: Given an RNN model, we: (1) approximate its hidden space by a set of concepts. (2)
approximate its hidden space dynamics by a set of transition functions, one per concept. (3) approx-
imate its output behaviour by a concept-class mapping, specifying an output class label for every
concept. For every step in (1)-(3), the parts of the RNN being approximated are highlighted in red.
In (a)-(c) we cluster the RNN’s training data points in their hidden representation (assumed to be
two-dimensional, in this example), and use the clustering to produce a set of concepts (in this case:
sick, healthy and uncertain, written as unc.). In (d)-(f) we approximate the hidden function of the
RNN by a function FC , which predicts transitions between the concepts. We represent this function
by a set of functions, one per concept (in this case: Fs, Fu, Fh). In (g)-(i) we approximate the output
behaviour of the RNN by a function S, which predicts the output class from a concept. This function
is represented by a concept-class mapping, specifying an output label for every concept (in this case:
healthy→ 0, sick→ 1, and unc→ 1). Collectively, steps (1)-(3) are used to produce our extracted
model, consisting of concepts, their interactions, and their corresponding class labels.

the model outputs predicted labels y ∈ {0, 1}. Furthermore, we assume that we can access/generate
predicted labels at all timesteps, even if the task itself is defined as a whole-sequence prediction task.

3.2 Concept Extraction

The first step of our approach approximates the hidden space of a given RNN with a set of concepts
C, as shown in Figure 1 (a)-(c).

Similarly to existing concept extraction approaches (such as [16]), we extract concepts by obtaining
summaries of clusters in the hidden space. We use fhidden to compute the hidden representation of
the RNN’s training data points, and cluster it using Kmeans clustering to generate the set of concepts
C, such that every cluster is associated with a concept in C.

Unlike existing work on concept extraction, which focuses predominantly on image-based tasks,
we focus on multivariate, continuous, temporal data tasks. Consequently, we argue that explaining
the extracted clusters via prototypical examples is not suitable in our context, and that higher-level
explanations should be provided instead. In this work, we rely on the class label space when
generating concepts, by introducing a majority-voting cluster naming strategy we refer to as the
majority labelling approach, which will be described in the remainder of this section.

Given a cluster k consisting of p data-points in their hidden representation (h1, ...,hp), and the
corresponding class labels of these data-points (y1, ..., yp), we define the majority label (MaL) and
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the majority label ratio (MaLR) for that cluster as the most frequently-occurring class label, and it’s
corresponding ratio of occurrence, respectively, as shown in Equation 1 and Equation 2. In Equation
1, L refers to the class label space (thus, in this paper L = {0, 1}).

MaLk = argmax
l∈L

p∑
i=1

[yi = l] (1)

MaLRk =
1

p

p∑
i=1

[yi =MaLk] (2)

Given MaLk and MaLRk for a cluster k, we define its associated concept ck as shown in Equation
3, where ClassName(MaLk) refers to the class name associated with the class label.

ck = ClassName(MaLk) if MaLRk > θ , unc. otherwise (3)

Hence, the concept information associated with a cluster is the name of the most-frequently occurring
class in that cluster, or uncertain (written as unc. for short), if the MaLR is less than a predefined
threshold θ.

3.3 Transition Function Extraction

The second step of our approach approximates the RNN’s transitions between the extracted concepts,
as shown in Figure 1 (d)-(f). We achieve this by approximating the RNN’s hidden function fhidden
with the function FC : Rn×C → C representing the RNN’s transition dynamics between concepts. In
practice, FC needs to be interpretable (in order to facilitate consequent interpretation of the extracted
model), whilst faithfully approximating the original function fhidden (to ensure high fidelity). To meet
these criteria, we define FC as a set of interpretable functions, one per concept: FC = {Fc | c ∈ C}.
Each function Fc : Rn → C captures the transition dynamics for a concept c. That is, given an input
xt−1, Fc(xt−1) predicts the concept the RNN will be in at time t, assuming the RNN was in concept
c at time t− 1. Crucially, the overall complexity of fhidden is now decomposed into several simpler
functions, which can be represented by less complex, more interpretable functions, such as Decision
Trees (DTs).

We treat the functions in FC as classifiers, mapping an input x ∈ Rn to a concept c ∈ C. Con-
sequently, for training, these functions are setup as multi-label classification problems, where the
functions are equipped with labelled data consisting of input points x, and corresponding concept
labels C. We obtain the transition function training data directly from the original RNN training data.
Further details regarding MEME transition functions can be found in Appendix B.1 and Appendix
B.2.

3.4 MEME Extracted Models

The third model extraction step consists of producing a mapping from concepts to output classes,
which we refer to as S : C → L, as shown in Figure 1 (g)-(i). We define the output class corresponding
to a concept as the majority label of its corresponding cluster MaL.

Finally, we define models extracted by MEME as a tuple (C,FC , S, c0). We assume that the RNN
has a fixed initial hidden state h0, which is located in a cluster corresponding to c0 (i.e., the starting
concept). Similarly to an FSA, a MEME model processes an input sequence by performing a series of
state transitions, such that at timestep t, the model computes the next state from the current state and
the next input sample, and outputs a class label based on this next state. However, unlike FSA-based
approaches, MEME models represent states by interpretable concepts C, and represent transition
functions by classifiers in FC , capable of processing multivariate, continuous input. The sequence
classification process of MEME models is summarised in Figure 2. The sequence classification
algorithm used by MEME models is given in Appendix B.3.

4



Figure 2: MEME model input processing example. The concept ct−1 which the model is in at time
t − 1 is highlighted with a double border. (a) At time t, the model receives the next input xt. (b)
After receiving the input, the model uses Fct−1

(in this case: Fu) to compute the next concept ct (in
this case: healthy), from the current concept ct−1 (in this case: unc) and the new input xt. (c) The
model outputs the label corresponding to the next concept ct (in this case: 0), as the output class label
of the input xt.

4 Experiments

We evaluated our approach using two case-studies: Room Occupation Prediction (ROP), and In-
Hospital Mortality Prediction (IHMP). When extracting concepts, we used the RNN recurrent layers
closest to the output as the layers computing fhidden, for both case-studies. We experimented with
using Decision Trees (DTs), and Multi-Layer Perceptrons (MLPs) as transition function types. Further
details regarding extracted model specifications can be found in Appendix C. Relevant details and
code used to run the experiments can be found in our repository.3

Room Occupation Prediction The ROP task focuses on predicting room occupancy using mea-
surements of environmental variables. For this task, we make use of the Occupancy Detection Data
Set available from the UCI Machine Learning repository.4 This is a binary classification problem
in which observations of sensor readings (such as Temperature, Humidity, or Light) are used to
determine whether a room is occupied or unoccupied [4]. Further details can be found in Appendix
D.

In-Hospital Mortality Prediction For our second case-study, we used the in-hospital mortality
prediction task defined in [3]. This work presents a public repository5 with 4 clinical benchmark tasks
(including IHMP), all derived from the Medical Information Mart for Intensive Care (MIMIC-III)
dataset [2]. The IHMP task focuses on predicting patient in-hospital mortality based on the first 48
hours of a patient’s ICU stay, using a set of clinical variables monitored over time. We used the data
extraction pipeline described in [3] for producing the IHMP task dataset from the MIMIC-III data,
and evaluated MEME on a subset of the data the RNN was more confident in (we intend to explore
the low-confidence data case in the future). Further details can be found in Appendix E.

5 Results

This section presents the results obtained by evaluating our approach using the two case studies de-
scribed above. Section 5.1 shows the extracted concepts, and the effect of varying concept granularity.
Section 5.2 performs global inspection of the transition functions. Section 5.3 demonstrates how the
extracted models perform sequence prediction, offering local explanations. Section 5.4 measures the
fidelity of the extracted models, and their performance on the original tasks. Further experimental
results can be found in Appendix F.

3https://github.com/dmitrykazhdan/MEME-RNN-XAI
4https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
5https://github.com/YerevaNN/mimic3-benchmarks/
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Figure 3: The concepts extracted from the RNNs at different clustering levels. Larger cluster numbers
exhibited even more repeating concepts than those presented here, and are thus not shown.

5.1 Concept Granularity

We inspect the extracted concepts, and observe how the number of Kmeans clusters affects their
granularity. Figure 3 shows the extracted concepts obtained at varying numbers of clusters.

A coarse clustering of one cluster yields the uncertain concept for both the ROP and the IHMP tasks,
since a single cluster consists of a mixture of points from both positive and negative classes. At
two clusters, the concepts correspond to the positive and negative class labels. This is expected,
since linear separability of the hidden space of a DL model w.r.t. its output classes increases with
depth [34], and is high in layers close to the output. At 3 clusters, the IHMP task produces an extra
uncertain concept, indicating that the RNN hidden space contains a sub-region corresponding to
states in which the RNN is uncertain. At higher concept granularity (4 clusters for IHMP, and 3
clusters for ROP), the clustering step begins to return concepts represented by the same concept labels.
Given the rich amount of information contained in the RNN hidden space, these more fine-grained
clusterings likely hold information on intra-class concepts (e.g., in case of the IHMP task, sick1 and
sick2 may correspond to different types of sickness progression).

Overall, for a small cluster number, our majority labelling approach offers a straightforward way of
interpreting the clusters via their relation to the output classes. For the rest of the experiments in this
section, we fix the number of clusters to those producing the most granular concepts with distinct
names: 2 clusters in the case of ROP, and 3 in the case of IHMP.

5.2 Transition Function Interpretation

In this section, we inspect the transition functions of the extracted models, showing how they can be
used to better understand global behaviour and concept interplay of the extracted models. For the
sake of space, we focus on a representative subset of the extracted model transition functions, instead
of presenting all of them.

Since DT transition functions are interpretable, we can inspect them directly. Figure 4(a) shows the
DT transition function for the occupied concept of the ROP task. Using this plot, it is possible to
directly interpret the reasons for the transition function predicting a transition to the occupied concept,
or to the empty concept. In this example, Light is the most important feature, with low light indicating
that the room is empty. This is likely due to the fact that the first action a room occupant undertakes
is to switch on the lights (further details regarding the sensors, room, etc. can be found in [4]). The
remaining features exhibit similar intuitive justifications.

In cases where transition functions cannot be interpreted directly (e.g., MLPs), inspection can be
done by relying on existing XAI approaches. The field of XAI offers a wide variety of approaches
targeted at global explanations of MLPs, including (but not limited to): Partial Dependence Plots
(PDPs) [11], model distillation [5], SP-LIME [28], GENN [6], and many others [11]. The results
of one such approach are shown in Figure 4(b), in which we plot the top 5 most important features
of the MLP transition function for the uncertain concept, using the permutation feature importance
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(a) (b)

Figure 4: Transition function interpretation examples. (a) DT transition function for the occupied
concept of the ROP task. (b) Top 5 most important features and their normalised importance scores
for the uncertain concept MLP transition function of the IHMP task.

Figure 5: Extracted model sequence processing for three timesteps (t = 0, 1, 2), with uncertain as
the initial concept. For each timestep t, the concept the model is in at time t is highlighted with a
double border. We show the input data (x1, x2, x3), the corresponding concept transition sequence
(uncertain→ uncertain→ sick→ sick), and the explanations for each transition function prediction.
In this example, the class labels outputted by the model are not shown.

scoring approach [29]. Consequently, we are able to better understand the transition behaviour of the
MLP function of that concept, and the features it mostly relies on.

5.3 Local Interpretability

In addition to global interpretability, we can obtain local interpretability of an RNN’s individual
instance prediction by observing sequence processing of the extracted model. Due to how our
extracted models are defined, any label produced by such a model at any timestep can be directly
traced back to its concepts and their transitions. In case of interpretable transition functions, such
as DTs, transition function predictions can be explained directly. In case of black-box transition
functions, such as MLPs, we can employ existing methods for producing local explanations of
black-box classifier predictions [11]. For instance, Figure 5 shows how the MLP-based extracted
model of the IHMP task processes a sequence of 3 timesteps, outputting local explanations of the
MLP transition function predictions for each timestep. Here, we use the LIME approach [28] (tabular
explainer with discretised continuous values).
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Table 1: Accuracy Comparison

ROP IHMP
Original Model 96.1 +/- 0.1% 85.5 +/- 1.1%

Extracted Models DT 95.8 +/- 0.3% 79.7 +/- 1.6%
MLP 96.0 +/- 0.3% 82.3 +/- 0.9%

Table 2: Approximation Quality Comparison

ROP IHMP

Fidelity DT 95.9 +/- 0.3% 87.5 +/- 1.0%
MLP 97.1 +/- 0.3% 91.7 +/- 0.8%

Precision DT 0.92 +/- 0.02 0.96 +/- 0.01
MLP 0.93 +/- 0.01 0.92 +/- 0.01

Recall DT 0.98 +/- 0.03 0.81 +/- 0.02
MLP 0.99 +/- 0.01 0.93 +/- 0.01

F1 DT 0.95 +/- 0.01 0.88 +/- 0.01
MLP 0.96 +/- 0.01 0.92 +/- 0.01

5.4 Model Performance

The utility of our extracted models was also evaluated quantitatively by measuring their performance
on the original classification tasks, and their closeness of approximation of the original models. The
predictive accuracy of the original RNNs and the extracted models is shown in Table 1. For the
simpler ROP task, both extracted model types achieved performance close to that of the original
model. For the relatively more complex IHMP prediction task, extracted models exhibited a slight
reduction in performance. However, this reduction was smaller for the MLP-based model, which is
likely a consequence of MLPs being more powerful models than DTs [33].

Table 2 shows the fidelity, precision, recall, and F1 scores of the extracted models, computed by
treating the original RNN predictions as the ground truth. Overall, both extracted model types
achieved high approximation scores on both tasks. Similarly to the results in Table 1, the MLP-based
extracted models achieved a higher overall approximation (fidelity and F1 scores), than the DT-based
extracted models, with the difference being more pronounced in the case of the more challenging
IHMP task.

These results demonstrate that our approach generates models which are faithful approximations
of the original RNNs. Furthermore, they show that for more complex tasks, using more powerful
transition functions leads to better performance.

6 Conclusions

We presented MEME, a model extraction approach capable of approximating RNNs with interpretable
models represented by human-understandable concepts and their interactions. We evaluated our
approach using two multivariate, continuous data case studies (including a realistic healthcare
scenario). Using these case-studies, we demonstrated that extracted models produced by MEME
faithfully approximate their original RNN models, and can be used to extract useful knowledge from
them.

MEME is a highly modular approach which can be extended in a variety of ways. In this work, we
relied on Kmeans clustering and the majority labelling approach when performing concept extraction.
In the future, we intend to explore other approaches to concept extraction, such as those based on
probabilistic clustering (e.g. mixture modelling [41]), or those based on concept directionality (e.g.
[42]). Furthermore, we intend to explore other transition function types, such as Random Forests,
or Dynamic Time-Warping models [19]. Investigating the effects these approaches have on fidelity,
concept granularity, concept representation, etc. is an interesting avenue for further exploration.

Furthermore, we relied on the RNN’s training data when performing model extraction. Exploring
active learning-based approaches capable of querying the RNN and extracting maximally-informative
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data-points dynamically (e.g., using approaches based on [35]) will likely increase extracted model
performance even further, and is thus another interesting direction for future work.

Overall, given the rapidly increasing interest in time-series DL systems (in the field of healthcare,
in particular), we believe our approach can play an important role in enriching such systems with
explainability and knowledge extraction capabilities.
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A Concept-based Explanations Further Details

Concept-based explanations are explanations consisting of high-level, human-understandable “con-
cepts”. In practice, giving a precise definition for what constitutes a concept from a psychological
and/or philosophical standpoint is highly non-trivial [16]. Instead, in line with recent work, we refer
to a concept as a global explanation of the internal workings of a model, presented in higher-level,
human-understandable units, rather than individual features, pixels, or characters. Concept-based
explanations are intended to serve as more understandable, usable explanations of DL models, and
have been used in a range of different ways, including: inspecting what the model has learned [16],
providing class-specific explanations [17], and discovering causal relations of concepts in data [18].
Most recent work on concept extraction (extracting learned concepts from DL models) focuses on
image-recognition tasks, representing concepts by images (e.g., concepts associated with the class
“dog” may be images of paws, ears, or tails) [17].

Deep Neural Networks (DNNs) have been shown to perform hierarchical feature extraction, with
layers closer to the output utilising higher-level data representations, compared to layers closer to the
input [31, 32]. Consequently, recent work on concept extraction relies on euclidean distance in the
activation space of final layers (referred to as the hidden space) of DNN models as an effective concept
similarity metric [16]. The intuition is that data-points exhibiting similar high-level features will be
clustered together in the hidden space of the corresponding DNN layers, implying that the hidden
space is expected to demonstrate conceptual grouping. Thus, one approach to concept extraction
is to cluster data points in the activation space of higher-level model layers, and extracting cluster
summaries in the form of prototypical samples, to serve as concept representations [16].

Intuitively, we expect the number of clusters to affect the granularity of the corresponding extracted
concepts. Thus, a low cluster number will likely correspond to extraction of coarse concepts, and a
high cluster number will likely increase concept granularity. An example is given in Figure 6.

B MEME Model Extraction Further Details

B.1 Transition Training Data Extraction

For every time-series sequence Xs = (x1, ...,xT ) in the RNN training data, we obtain the cor-
responding RNN hidden states Hs = (h1, ...,hT ), and use Hs to obtain the corresponding
concept sequence Cs = (c1, ..., cT ). We then use Cs to produce the sample transition dataset
Trs = ([c0,x1, c1], ..., [cT−1,xT , cT ]), such that every item in Trs consists of the concept at time
t− 1, the input point at time t, and the next concept at time t, for t ranging from 1 to T . We aggregate
these transition samples Trs over all training sequences, to produce the overall transition dataset Tr.
Using Tr, the training datasets Dc for every transition function Fc are defined as:

Dc = {(xt, ct) | [ct−1,xt, ct] ∈ Tr ∧ ct−1 = c} (4)

In practice, the nature and sizes of the transition datasetsDc are unpredictable. Hence, their important
properties (e.g., class imbalance, size, or representativity) are difficult to anticipate/control. For now,
we account for one of the mentioned issues (class imbalance) by balancing out every dataset Dc (via
downsampling), ensuring that they contain an equal number of class samples.

B.2 Transition Function Context Window

The clustering quantisation step described in Section 3.2 discards information about the intra-
cluster dynamics of an RNN (i.e., hidden space dynamics within clusters), and retains only inter-
cluster dynamics information, as summarised in Figure 7. In practice, this is a potential source
of approximation error, which can adversely affect extracted model fidelity. We address this issue
by introducing a context window hyper-parameter w to our transition functions, allowing them to
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(a) Low Granularity

(b) High Granularity

Figure 6: Anticipated effect of cluster number on concept granularity. The subfigures on the left
demonstrate two different Kmeans clusterings of the same hidden representation. The subfigures on
the right demonstrate the corresponding extracted concepts. (a) A small cluster number yields coarse
concepts (sick and healthy). (b) A higher cluster number increases concept granularity. In this case,
extracted concepts now represent specific sicknesses/conditions (common cold, respiratory condition
and heart condition).

(a) Hidden Space (b) Quantised Space

Figure 7: (a) When processing an input sequence (xt+1,xt+2,xt+3), the RNN outputs a corresponding
sequence of points (ht+1,ht+2,ht+3) in the hidden space (assumed to be two-dimensional in this
example). These points move within a cluster (intra-cluster dynamics), before moving into another
cluster (inter-cluster dynamics). (b) Due to quantisation, the intra-cluster movement of datapoints is
not observable, implying that the extracted model only observes the final sample (xt+3) causing the
model to transition to the other cluster. Note: in (b), we omit the transition functions and concept-class
map here for clarity, showing only the concept sequence.

retain a context window containing w previous input points. In this case, the transition functions are
defined as Fc : Rn∗(w+1) → C, where Fc takes the current input xt, together with w previous inputs
xt−1, ...,xt−w concatenated together, when predicting the next concept ct.

B.3 Sequence Processing

In Algorithm 1, w is the transition function context window size (assumed to be less than the sequence
length T ), sequence is an input sequence to be classified, and Fc denotes the transition function of
a concept c. In case of full-sequence classification (classifying not every timestep, but the entire
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Algorithm 1 classifySequence(sequence)
1: c = c0
2: labels = []
3: for t ∈ [w, ..., T ] do
4: label = S(c) . Get next output label
5: labels.append(label)
6: input = sequence[(t− w) : t]
7: c = Fc(input) . Get next concept
8: end for
9: return labels

sequence), we simply retrieve the last label from labels. We have also implemented a more efficient,
batched implementation of Algorithm 1 (not shown here for the sake of space), which can be found
in our repository.

C Experimental Setup Further Details

C.1 Concept Extraction

When selecting a value of the threshold θ used for computing concept names, we found that setting
θ = 0.8 works well in practice. Thus, all results reported in Section 5 were computed with θ fixed to
this value. We intend to explore more principled practices for choosing θ as future work.

C.2 Transition Functions

For DTs, we relied on the DTClassifier implementation provided in scikit-learn [27]. Restricting
the maximum depth of the DTs exhibited a beneficial regularising effect, reduced overfitting and
improving predictive performance, whilst also making inspection easier. Setting a maximum depth of
2 worked best for the ROP task, and a depth of 3 for the IHMP task.

For MLPs, we used a 3-layer MLP, consisting of a softmax output layer, and two hidden ReLu
dense layers of sizes 200 and 50. We used the Keras API available in Tensorflow6 for setting up the
models, and trained with the standard categorical crossentropy loss. Further details can be found in
the repository.

D ROP Task Further Details

D.1 Features & Preprocessing

The original dataset consists of 5 features: Temperature (Temp.), Humidity (Hum.), Light, Humidity
Ratio, and Co2. We found that the Humidity Ratio feature was practically equivalent to the Humidity
feature (up to a scale factor), and therefore discarded it. Hence, our ROP dataset consisted of 4
features.

The original dataset consists of three sequences of sensor readings taken at regular 60s intervals (i.e.,
the train/test/val datasets each consist of a single long sequence). In order to produce multi-sample
datasets, we split each of these 3 sequences into subsequences of 60 timesteps each.

D.2 RNN Model

The RNN model trained for this task consisted of 2 hidden LSTM layers of sizes 100 and 50,
with dropout layers in-between, and a sigmoid output layer. The model was trained with a binary
crossentropy loss.

6https://www.tensorflow.org/guide/keras/overview
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Table 3: IHMP Feature Names, Acronyms, and Types

Name Acronym Type
Capillary refill rate CRR Categorical

Glascow coma scale eye opening G_Eye Categorical
Glascow coma scale motor response G_Motor Categorical

Glascow coma scale total G_Total Categorical
Glascow coma scale verbal response G_Verbal Categorical

Diastolic blood pressure DBP Continuous
Fraction inspired oxygen FI_o2 Continuous

Glucose Glucose Continuous
Heart Rate HR Continuous

Height Height Continuous
Mean blood pressure MBP Continuous

Oxygen saturation o2S Continuous
Respiratory rate RR Continuous

Systolic blood pressure SBP Continuous
Temperature Temp. Continuous

Weight Weight Continuous
pH pH Continuous

D.3 Classes

The problem is formulated as a binary classification problem, with class 0 corresponding to an empty
room (referred to as empty in the rest of this work), and class 1 to an occupied room (referred to
as occupied in the rest of this work, and abbreviated as occ.). The RNN was trained to compute a
predicted label at every timestep.

E IHMP Task Further Details

E.1 Features & Preprocessing

For our RNN model, we relied on the data representation used in [3]. The input features consist of 17
clinical variables collected during the first 48 hours of a patient’s stay. Table 3 lists the input features,
together with their corresponding acronyms, and whether they are continuous or not (referred to as
type). In addition to the 17 clinical variable features, the feature set also included 17 binary features
(one per clinical feature), specifying whether the values of the clinical variables were observed, or
inferred (these binary features are referred to as the non-clinical features). We used this original
feature representation without modification when training the RNN model.

For the extracted models, we relied on a slightly modified input representation: the categorical
features were represented in their categorical format (as opposed to the one-hot encoded format used
for the RNN), and the non-clinical features were omitted. This configuration gave slightly better
extracted model performance, and also made the extracted models easier to interpret.

Before training the RNN, we balanced the dataset via down-sampling, ensuring an equal number of
positive and negative class samples. Furthermore, we focused on extracting models encapsulating
the RNN’s typical behaviour, instead of edge-case behaviour, by only using data the RNN was more
confident in. This was achieved by using the RNN’s sigmoid output as a proxy for confidence, and
selecting “high-confidence” points from the balanced dataset, for which this output was either in
[0, 0.2], or in [0.8, 1.0] (i.e., “closer to 0”, or “closer to 1”). Extracted model training and evaluation
was consequently performed using this “high-confidence” data.

E.2 Model

The RNN model trained for this task consisted of 3 hidden LSTM layers of sizes 256, 100 and 100,
with dropout layers in-between, and a sigmoid output layer. The model was trained with a binary
crossentropy loss.
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Figure 8: DT transition function for the healthy concept of the IHMP task. The original RNN model
never exhibited a direct transition from the healthy concept to the sick concept. Thus, this DT only
has two output classes (uncertain and healthy).

E.3 Classes

As discussed previously in Section 4, the task is formulated as a binary classification problem, with
class 1 corresponding to a patient dying in the first 48 hours of ICU stay (referred to as sick), and
class 0 to a patient not dying (referred to as healthy). The RNN was trained for sequence prediction,
computing a predicted label only at the end of an entire sequence.

F Further Results

F.1 Transition Function Interpretation

Similarly to the ROP task, Figure 8 shows a DT transition function of the IHMP task. As in the ROP
example, these plots can be used to inspect the reasons for the extracted model concept transitions,
which could be used to better understand the nature of sickness progression and the key reasons for
the model to “change it’s mind” over time.

F.2 Transition Function Comparison

Figure 9 shows the top 5 most important feature scores of the transition function for the uncertain
concept, for both the DT and MLP extracted models. The top 4 features of the DT model are all in
the top 5 for the corresponding MLP model, indicating that both models were capable of identifying
and using the discriminative power of the same features.

Interestingly, the MLP model has the FI_O2 feature as the second most important one, which might
be due to the MLP capability of relying on more complex, non-linear features, unusable by a DT

15



(a) (b)

Figure 9: Top 5 most important features and their normalised importance scores for the uncertain
concept of the DT(a), and MLP(b) extracted models for the IHMP task.

Figure 10: Effect of window size w on the F1 score.

[33]. More generally, Figure 9 demonstrates that it is possible to compare and contrast the results of
different transition function types in order to better understand the underlying features and model
behaviour.

F.3 Context Window Size

For the experiments described in Section 5, Appendix F.1, and Appendix F.2, we set a context window
size of w = 0 (i.e., the transition functions retain no context). In this section, we quantitatively
evaluated the effect of using the transition function context window described in Appendix B.2.
Figure 10 shows the effect of the context window size w on the F1 approximation score of the
extracted models.

For the ROP task, both the DT and MLP models exhibited a ∼1-2% decrease in performance with
increasing window size. The likely reason for this is that the input features at the current timestep are
sufficient for good performance in case of simpler tasks, such as ROP. In such cases, a context window
introduces extra unnecessary input features to the transition functions, harming their performance,
and the overall performance of the extracted model.

For the IHMP task, increasing the window size did not affect the DT-based model score significantly,
but resulted in a ∼2% increase in performance for the MLP-based model. The likely reason for
this is that, unlike the MLP transition functions, the DT transition functions were not able to extract
information signals contained in the context information [33].

Overall, our results indicate that for complex tasks (such as IHMP) and for powerful transition
functions (such as MLPs), a context window may improve extracted model approximation quality.
However, this might not be the case for relatively simpler tasks (such as ROP) or simpler transition
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functions (such as DTs). In future work, we intend to explore context window size variation in more
detail.
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