
Molecule Design by Latent Prompt Transformer

Deqian Kong
UCLA

Yuhao Huang
Xi’an Jiaotong Univerisity

Jianwen Xie
BioMap

Ying Nian Wu
UCLA

Abstract

This paper proposes a latent prompt Transformer model for solving challenging
optimization problems such as molecule design, where the goal is to find molecules
with optimal values of a target chemical or biological property that can be computed
by an existing software. Our proposed model consists of three components. (1)
A latent vector whose prior distribution is modeled by a Unet transformation of a
Gaussian white noise vector. (2) A molecule generation model that generates the
string-based representation of molecule conditional on the latent vector in (1). We
adopt the causal Transformer model that takes the latent vector in (1) as prompt.
(3) A property prediction model that predicts the value of the target property of
a molecule based on a non-linear regression on the latent vector in (1). We call
the proposed model the latent prompt Transformer model. After initial training
of the model on existing molecules and their property values, we then gradually
shift the model distribution towards the region that supports desired values of the
target property for the purpose of molecule design. Our experiments show that
our proposed model achieves state of the art performances on several benchmark
molecule design tasks.

1 Introduction

In drug discovery, identifying or designing molecules with specific pharmacological or chemical
attributes, such as enhanced drug-likeness or high binding affinity to target proteins, is of paramount
importance. However, navigating the vast space of potential drug-like molecules presents a daunting
challenge.

To address this challenge, several contemporary research avenues have emerged. One prominent
approach involves the application of latent space generative models. This approach strives to translate
the discrete molecule graph into a more manageable continuous latent vector. Once translated,
molecular properties can be optimized within the continuous latent space utilizing various strate-
gies [Gómez-Bombarelli et al., 2018, Kusner et al., 2017, Jin et al., 2018, Eckmann et al., 2022, Kong
et al., 2023]. Another avenue of research is more direct, employing reinforcement learning algorithms
to fine-tune molecular attributes directly within the molecule graph space [You et al., 2018, De Cao
and Kipf, 2018, Zhou et al., 2019, Shi et al., 2020, Luo et al., 2021]. Diverse alternative method-
ologies have also gained traction, such as genetic algorithms [Nigam et al., 2020], particle-swarm
strategies [Winter et al., 2019] and scaffolding tree [Fu et al., 2021].

In this paper, we propose a novel latent prompt Transformer model for molecule design. As in most
existing work on molecule design, we assume that the value of a property of interest of a given
molecule can be obtained by querying an existing software such as RDKit [Landrum et al.] and
AutoDock-GPU [Santos-Martins et al., 2021]. Thus in this paper, we solely focus on optimizing the
value of the target property. In our paper, we work with string-based representation of molecules, such
as the commonly used SMILES [Weininger, 1988] and the more recently proposed SELFIES [Krenn
et al., 2020] and its variant [Cheng et al., 2023].

NeurIPS 2023 AI for Science Workshop.

Our proposed model belongs to the latent space generative modeling approach mentioned above.
Our model consists of three components. (1) A latent vector whose prior distribution is modeled
by a Unet transformation of a Gaussian white noise vector. (2) A molecule generation model that
generates the string-based representation of molecule given the latent vector in (1). We adopt the
causal Transformer model that takes the latent vector in (1) as prompt. (3) A property prediction
model that predicts the value of the target property of a molecule based on a non-linear regression on
the latent vector in (1). We call the proposed model the latent prompt Transformer model.

After initial training of the model on existing molecules and their property values, we then gradually
shift the model distribution towards the region that supports desired values of the target property for
the purpose of molecule design. Our experiments show that our proposed model achieves state of the
art performances on several benchmark molecule design tasks.

The contributions of our paper are as follows. (1) We propose a novel latent prompt Transformer
model for modeling the joint distribution of the molecules and their values of target property. (2)
We develop the approximate maximum likelihood learning algorithm to fit the model to the training
molecules and their properties. We also employ a gradual distribution shifting algorithm that shifts
our model distribution towards the region that supports desired values of target property. (3) We
conduct experiments on single-objective and multi-objective molecule design and our experiments
achieve new state of the arts on various benchmark tasks.

2 Method

2.1 Latent Prompt Transformer

Figure 1: Latent Prompt Transformer. x is the string-based representation of molecule. y is the value
of a target property. z is the latent vector. z0 ∼ N (0, Id). (1) The prior distribution of z is modeled
by a Unet transformation of z0, i.e., z = Uα(z0). Given z, x and y are independent. (2) pβ(x|z) is
the generation model, parametrized by a causal Transformer with z serving as the prompt. (3) pγ(y|z)
is the property prediction model, which is a non-linear regression on z parametrized by a multi-layer
perceptron (MLP).

Our model is illustrated by Fig. 1. Suppose x = (x(1), ..., x(t), ..., x(T)) is a molecule string in
SELFIES [Krenn et al., 2020], y ∈ R is the value of the target property of interest, and z ∈ Rd is the
latent vector. We define the following model as the latent prompt Transformer (LPT):

z ∼ pα(z), [x|z] ∼ pβ(x|z), [y|z] ∼ pγ(y|z), (1)

where pα(z) is a prior model with parameters α. z serves as the latent prompt of the molecule
generation model pβ(x|z) parameterized by a causal Transformer with parameter β. pγ(y|z) is a
property prediction model with parameter γ.

For the prior model, pα(z) is formulated as a learnable neural transport from an uninformative prior,

z = Uα(z0), (2)

where z0 is assumed to be isotropic Gaussian z0 ∼ N (0, Id), and Uα(·) is parametrized by an
expressive neural network such as a Unet with parameter α.

2

The molecule generation model pβ(x|z) is a conditional autoregressive model,

pβ(x|z) =
T∏

t=1

pβ(x
(t)|x(0), ..., x(t−1), z) (3)

which is parameterized by a causal Transformer with parameter β. Note that the latent vector z
controls every step of the autoregressive generation and it functions as a soft prompt that controls the
generation of molecules.

Given a molecule x, let y denote the value of the target property, such as drug likeliness or protein
binding affinity. One can determine the estimated value of this property using open-source software
such as RDKit [Landrum et al.] and AutoDock-GPU [Santos-Martins et al., 2021].

Given z, we posit that x and y are conditionally independent. Under this assumption, LPT defines the
joint distribution

pθ(x, y, z) = pα(z)pβ(x|z)pγ(y|z), (4)

where θ = (α, β, γ). We use the marginal distribution pθ(x, y) =
∫
pθ(x, y, z)dz to approximate the

data distribution pdata(x, y).

For the property prediction model, we assume

pγ(y|z) =
1√
2πσ2

exp

(
− 1

2σ2
(y − sγ(z))

2

)
, (5)

where sγ(z) is a small multi-layer perceptron (MLP), predicting y based on the latent prompt z. The
variance σ2 is treated as a hyper-parameter. Given this formulation, the latent prompt z is aware of
the property value while generating the molecule.

For tasks involving multi-objective design with target properties y = {yj}Mj=1, the regression model
can be extended to pγ(y|z) =

∏M
j=1 pγj (yi|z), where each pγj (yi|z) is parametrized as in (5).

Without much loss of generality, we shall focus on the single-objective setting in the following
sections.

2.2 Learning

Suppose we observe training examples {(xi, yi), i = 1, ..., n}. The log-likelihood function is
L(θ) =

∑n
i=1 log pθ(xi, yi).

Since z = Uα(z0), we can also write the model as

pθ(x, y) =

∫
pβ(x|z = Uα(z0))pγ(y|z = Uα(z0))p0(z0)dz0, (6)

where p0(z0) ∼ N (0, Id). The learning gradient can be calculated according to

∇θ log pθ(x, y) = Epθ(z0|x,y) [∇θ(log pβ(x|Uα(z0)) + log pγ(y|Uα(z0)))] . (7)

Given an example (x, y), the learning gradient for the prior model is

δα(x, y) = Epθ(z0|x,y)[∇α(log pβ(x|Uα(z0)) + log pγ(y|Uα(z0)))]. (8)

The learning gradient for the molecule generation Transformer is

δβ(x, y) = Epθ(z0|x,y)[∇β log pβ(x|Uα(z0))]. (9)

The learning gradient for the property regression model is

δγ(x, y) = Epθ(z0|x,y)[∇γ log pγ(y|Uα(z0))]. (10)

Estimating expectations in Eqs. (8) to (10) requires MCMC sampling of the posterior distribution
pθ(z0|x, y). We recruit Langevin dynamics [Neal, 2011, Han et al., 2017]. For a target distribution
π(z), the dynamics iterates

zτ+1 = zτ + s∇z log π(z
τ) +

√
2sϵτ , (11)

3

where τ indexes the time step of the Langevin dynamics, s is step size, and ϵτ ∼ N (0, Id) is the
Gaussian white noise. π(z) here is the posterior pθ(z0|x, y), and the gradient can be efficiently
computed by back-propagation.

We initialize zτ=0
0 ∼ N (0, Id), and employ N steps of Langevin dynamics (e.g. N = 15) for approx-

imate sampling from the posterior distribution, rendering our learning algorithm as an approximate
maximum likelihood estimation. See [Pang et al., 2020, Nijkamp et al., 2020, Xie et al., 2023] for a
theoretical understanding of the learning algorithm based on the finite-step MCMC.

In practical applications with multiple molecular generation tasks, with each characterized by a
different target property y, each model pθ(x, y) may necessitate separate training. For the sake of
efficiency, we adopt a two-stage training approach. In the first stage, we train the model on molecules
alone while ignoring the properties by maximizing log pθ(x) = log

∫
pθ(x, z)dz. In the second stage,

we fine-tune the model for the specific target property under consideration using Eqs. (8) to (10). To
be specific, for the first pre-training stage, the learning gradient is

∇θ log pθ(x) = Epθ(z0|x) [∇β log pθ(x|Uα(z0))] , (12)

so that for a training example (x, y), the learning gradients for α and β are

δα(x) = Epθ(z0|x)[∇α log pβ(x|Uα(z0))], (13)

δβ(x) = Epθ(z0|x)[∇β log pβ(x|Uα(z0))]. (14)

The learning algorithms for pre-training LPT and fine-tuning LPT are summarized in Algorithms 1
and 2 respectively. This two-stage approach is also adaptable for semi-supervised scenarios where
property values might be scarce.

Algorithm 1: Pre-training LPT solely on molecules
input :Learning iterations T , learning rates for the prior, generation models {η0, η1}, initial

parameters θ0 = (α0, β0), observed examples {xi}ni=1, batch size m, number of
posterior sampling steps N0, and posterior sampling step size s0.

output : θT = (αT , βT , γT).
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {xi}mi=1.
2. Posterior sampling: For each xi, sample z0 ∼ pθt(z0|xi) using Eq. (11), where the target

distribution π is pθt(z0|xi), and s = s0, N = N0.
3. Update prior model: αt+1 = αt + η0

1
m

∑m
i=1[δα(xi)] as in Eq. (13).

4. Update generation model: βt+1 = βt + η1
1
m

∑m
i=1[δβ(xi)] as in Eq. (14).

2.3 Initial Training and Conditioned Generation

We can first pre-train the model on a dataset of existing molecules, such as ZINC [Irwin et al., 2012]
using Algorithm 1 . Given a target property, we can then fine-tune the model using Algorithm 2,
where for each molecule x in the training dataset, we can obtain the corresponding y by querying
an existing software that estimates the value of the target property, such as RDKit [Landrum et al.]
and AutoDock-GPU [Santos-Martins et al., 2021]. In this paper, we treat the values produced by the
software as the ground-truth values.

Given a trained model, we can generate a molecule x conditional on a given value y of the target
property by sampling from pθ(x|y). The sampling can be accomplished by the following two steps.
Step 1: sample z ∼ pθ(z|y), and Step 2: sample x ∼ pβ(x|z). To accomplish Step 1, we can
first sample z0 ∼ pθ(z0|y) ∝ p0(z0)pγ(y | z = Uα(z0)) by Langevin dynamics, and then let
z = Uα(z0).

2.4 Gradual Distribution Shifting

Given an initially trained model, for the purpose of molecule design, it is tempting to set y at a
desired value y∗, and then generate x ∼ pθ(x|y∗). The problem is that y∗ may be out of the range of

4

Algorithm 2: Fine-tuning or learning LPT on both molecules and their properties
input :Learning iterations T , learning rates for the prior, generation, and regression models

{η0, η1, η2}, initial parameters θ0 = (α0, β0, γ0), observed samples {(xi, yi)}ni=1, batch
size m, number of posterior sampling steps N1, and posterior sampling step size s1.

output : θT = (αT , βT , γT).
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {(xi, yi)}mi=1.
2. Posterior sampling: For each (xi, yi), sample z0 ∼ pθt(z0|xi, yi) using Eq. (11), where

the target distribution π is pθt(z0|xi, yi), and s = s1, N = N1.
3. Update prior model: αt+1 = αt + η0

1
m

∑m
i=1[δα(xi, yi)] as in Eq. (8).

4. Update generation model: βt+1 = βt + η1
1
m

∑m
i=1[δβ(xi, yi)] as in Eq. (9).

5. Update regression model: γt+1 = γt + η2
1
m

∑m
i=1[δγ(xi, yi)] as in Eq. (10).

Algorithm 3: Sampling with Gradual Distribution Shifting (SGDS).
input :Shift iterations T , initial pre-trained parameters θ0 = (α0, β0, γ0), initial

samples D0 = {(x0
i , y

0
i , z

0
i)}ni=1 from the data distribution boundary, shift magnitude

∆y , a score function S(x) and m generated samples in each iteration.
output : {(xT

i , y
T
i)}ni=1.

for t = 1 : T do
1. Dataset Creation:
Generate {zt+1

i , xt+1
i }mi=1 such that zt+1

i ∼ pθt(z0|y = yt +∆y) and xt+1
i ∼ pβt

(x|zt+1).
Annotate {yt+1

i = S(xt+1
i)}mi=1.

Create Gt+1 = {xt+1
i , yt+1

i , zt+1
i }mi=1 ∪ Dt = {xt+1

i , yt+1
i , zt+1

i }n+m
i=1 .

2. Model Shift:
Rank Gt+1 based on target property yt+1 yielding Gt+1 = {xt+1

(i) , yt+1
(i) , zt+1

(i) }n+m
i=1 where

yt+1
(1) ≥ yt+1

(2) ≥ · · · ≥ yt+1
(m+n).

Create Dt+1 = {xt+1
(i) , yt+1

(i) , zt+1
(i) }ni=1.

Update θt+1 = argmax
θ

E(x,y)∼Dt+1 [log pθ(x, y)] using Algorithm 2.

the learned distribution pθ(x, y, z) or more specifically its marginal distribution pθ(y). As a result,
sampling from pθ(x|y∗) amounts to out-of-distribution (OOD) extrapolation, which can be unreliable.

The sampling with gradual distribution shifting (SGDS) algorithm [Kong et al., 2023] was proposed
to address the above problem. In this algorithm, we can maintain a top-n shifting dataset Dt =
{xt

i, y
t
i , z

t
i}ni=1, where t denotes the iteration in the SGDS algorithm. To initialize at t = 0, we obtain

D0 by selecting the top-n molecules from the initial training dataset such as ZINC [Irwin et al., 2012]
by ranking them based on their values of target property. That is, D0 is selected at the boundary
of the initial training set. In each iteration of SGDS, we incrementally increase the values of the
properties in the top-n shifting dataset, and then generate new molecules conditional on the increased
values. Because the incrementally increased values are expected to be close to the current model
distribution, the conditional generation is expected to be reliable. Nonetheless, we still query the
software to obtain the ground-truth values of the target property for the newly generated molecules.
We then update the top-n shifting dataset by ranking the molecules in the current shifting dataset as
well as the newly generated molecules based on the ground-truth values of the property. For this new
top-n shifting dataset, we then re-learn our model, in order for the model to catch up with the shifting
data, so that further incremental shifting and generation can still be reliable. More specifically, each
iteration of SGDS consists of the following steps:

(1) Generate m new molecules {xt+1
i }mi=1 ∼ pθt(x|y = ỹt). Here, ỹt = yt + ∆y, where ∆y is a

small increment, and yt is the ground-truth property value of a molecule randomly sampled from the
current shifting dataset Dt. To accomplish generation, we first sample zt+1 ∼ pθt(z|ỹt) and then use
the generation model to get xt+1 ∼ pβt

(x|zt+1). To sample zt+1, we need to run finite-step Langevin
dynamics to sample from pθt(z0|ỹt). This Langevin dynamics is initialized from the corresponding

5

z0 we keep in the previous shifting iteration, from which we run a very small number of Langevin
steps (typically 2 steps).

(2) Annotate the generated molecules using the software (e.g., AutoDock-GPU or RDKit), which is a
black-box score or reward function S(x), i.e. {yt+1

i = S(xt+1
i)}mi=1. Different from [Kong et al.,

2023], we do not assume m = n. The updated dataset, Gt+1, combines the newly generated samples
with the previous dataset: Gt+1 = {xt+1

i , yt+1
i , zt+1

i }mi=1 ∪ Dt, amounting to n+m samples. For
simplicity in notation, we write Gt+1 = {xt+1

i , yt+1
i , zt+1

i }n+m
i=1 .

(3) Rank n + m samples based on target property value yt+1. This yields Gt+1 =
{xt+1

(i) , yt+1
(i) , zt+1

(i) }n+m
i=1 where yt+1

(1) ≥ yt+1
(2) ≥ · · · ≥ yt+1

(m+n). From this, the top-n samples are kept
to create a new shifting dataset: Dt+1 = {xt+1

(i) , yt+1
(i) , zt+1

(i) }ni=1. Additional heuristic constraints
can be applied during this selection. For instance, instead of ranking by yt+1

i , we might rank by
yt+1
i 1S′(xi)>s where S′(xi) is another score function, s is the desired threshold and 1 is the indicator

function.

(4) Update the model parameter θt+1 by learning from the new shifting dataset Dt+1 using Algo-
rithm 2.

The integration of steps (1) and (2) constitutes the primary phase of the SGDS algorithm: dataset
creation. Subsequently, the combination of steps (3) and (4) forms the second phase: model shift.

While [Kong et al., 2023] proposes shifting a latent space energy-based model, our aim here is to
apply SGDS for shifting our LPT.

3 Experiments

We demonstrate our proposed molecule design approach for both single and multi-objective settings.

3.1 Experiment Setup

Dataset. For molecule property optimization tasks, we use ZINC [Irwin et al., 2012] with 250k
molecules. RDKit is used to calculate penalized logP, drug-likeliness (QED) and synthetic accessibil-
ity score (SA), and we use docking scores from AutoDock-GPU to approximate the binding affinity
to two protein targets, human estrogen receptor (ESR1) and human peroxisomal acetyl-CoA acyl
transferase 1 (ACAA1).

Model Architectures. As shown in Fig. 1, the prior model is underpinned by Unet1D, assuming 4
latent vectors for z with each sized at 256. The molecule generation model leverages a 3-layer causal
Transformer complemented by a cross-attention layer. It has an embedding size of 256 and uses a
maximum SELFIES sequence length of 73. The property regression model utilizes a 3-layer MLP,
accepting inputs sized at 1024 (256× 4). The total number of parameters for our LPT is 4.33M.

Training Details. We adopt a two-step training approach for LPT. Initially, we pre-train on
molecules alone for 30 epochs using Algorithm 1, with a learning rate ranging between 7.5× 10−4

and 7.5× 10−5 via cosine scheduling. Subsequently, we finetune for 10 epochs on both molecules
and their properties using Algorithm 2, adjusting the learning rate between 3× 10−4 and 7.5× 10−5.
For SGDS process, the total shifting iterations is 25 and the number of new generated samples is
set at 2500 for each iteration, with total 62.5k queries of the software. We use the AdamW opti-
mizer [Loshchilov and Hutter, 2019] with 0.1 weight decay for all the above learning processes.
Pre-training LPT, fine-tuning LPT and shifting LPT take around 20, 10 and 12 hours respectively on
a single NVIDIA A6000.

3.2 Binding Affinity Maximization

ESR1 and ACAA1 are human proteins. Our goal is to design ligands with optimal binding affinities to
these proteins. While ESR1 has many known binders, SGDS disregards binder-specific data. Binding
affinity is measured by the estimated dissociation constants, KD, which can be approximated by
AutoDock-GPU’s docking scores. A lower KD indicates stronger binding. Our model excels in the

6

9 10 11 12 13 14

0
5
10
15
20
25

Ite
ra

tio
n

Figure 2: Distribution shift of ACAA1 binding affinity across optimization iterations. For each shift
iteration, we plot the densities of property values estimated from AutoDock-GPU.

single objective ESR1 and ACAA1 binding affinity maximization tasks, as highlighted in Table 1.
Compared to other state-of-the-arts, it consistently samples high-affinity molecules in the shifting
trajectories. Specifically, our latent prompt Transformer outperforms LEBM-SGDS [Kong et al.,
2023], showcasing its robust modeling capabilities. Additionally, unlike LEBM, our LPT can readily
scale its complexity of prior model and generative Transformer, making it more adaptable to larger
datasets and training scenarios.

For multi-objective optimization tasks, we consider maximizing binding affinity, QED and minimizing
SA. Meanwhile, we also recruit heuristics to set a threshold to select more probable molecule. In
Algorithm 3, we exclude molecules with QED smaller than 0.4 and SA larger than 5.5. Results in
Table 2 show that LPT is able to get comparable QED and SA to LEBM while getting much higher
binding affinities, which demonstrates its superior modeling capability. Generated molecules can be
found in Appendix.

Table 1: Single-objective binding affinity optimization. Report top-3 lowest KD (in nanomoles/liter)
found by each model. Baseline results obtained from [Eckmann et al., 2022, Kong et al., 2023].

Method ESR1 KD (↓) ACAA1 KD (↓)
1st 2rd 3rd 1st 2rd 3rd

GCPN 6.4 6.6 8.5 75 83 84
MolDQN 373 588 1062 240 337 608
MARS 25 47 51 370 520 590
GraphDF 17 64 69 163 203 236
LIMO 0.72 0.89 1.4 37 37 41
LEBM-SGDS 0.03 0.03 0.04 0.11 0.11 0.12

LPT-SGDS 0.004 0.005 0.014 0.037 0.046 0.084

Table 2: Muli-objective optimization for both ESR1 and ACAA1. Report Top-2 average scores of KD

(in nmol/L), QED and SA. Baseline results obtained from [Eckmann et al., 2022, Kong et al., 2023].

Ligand ESR1 ACAA1
KD ↓ QED ↑ SA ↓ KD ↓ QED ↑ SA ↓

Tamoxifen 87 0.45 2.0 − − −
Raloxifene 7.9× 106 0.32 2.4 − − −
GCPN 1st 810 0.43 4.2 8500 0.69 4.2
GCPN 2nd 27000 0.80 3.7 8500 0.54 4.3
LIMO 1st 4.6 0.43 4.8 28 0.57 5.5
LIMO 2nd 2.8 0.64 4.9 31 0.44 4.9
LEBM-SGDS 1st 0.36 0.44 3.99 4.55 0.56 4.07
LEBM-SGDS 2nd 1.28 0.44 3.86 5.67 0.60 4.58

LPT-SGDS 1st 0.05 0.46 3.24 0.06 0.57 4.54
LPT-SGDS 2nd 0.05 0.60 5.02 0.08 0.48 4.01

7

4 Related Work

Our model is based on [Kong et al., 2023]. The difference are as follows. (1) While [Kong et al.,
2023] used the LSTM model for molecule generation, we adopt a more expressive causal Transformer
model for generation, with the latent vector serving as latent prompt. (2) While [Kong et al., 2023]
used a latent space energy-based model for the prior of the latent vector, we assume that the latent
z is generated by a Unet transformation of a Gaussian white noise vector. This enables us to avoid
the Langevin dynamics for prior sampling in learning, thus simplifies the learning algorithm. (3) We
obtain much stronger experimental results, surpassing [Kong et al., 2023] and achieving new state of
the art performances.

Compared to existing latent space generative models [Gómez-Bombarelli et al., 2018, Kusner et al.,
2017, Jin et al., 2018, Eckmann et al., 2022], we assume a learnable prior model so that our model
can adeptly catch up with the shifting dataset in the optimization process.

Compared to population-based methods such as genetic algorithms [Nigam et al., 2020] and particle-
swarm algorithms [Winter et al., 2019], our method does not only maintain a shifting dataset (which
can be considered a small population), but also a shifting model to fit the dataset, so that we can
generate new molecules from the model. The model itself is virtually an infinite population because
it can generate infinitely many new samples.

5 Conclusion

This paper proposes a latent prompt Transformer model for molecule design. We assume the solution
can be represented by a sequence of tokens. We employ a latent prompt that generates the sequence
via a causal Transformer model and predicts the value of the target property via a regression model.
We develop the approximate maximum likelihood learning algorithm and we employ the gradual
distribution shifting algorithm for optimization with learning in the loop. Our proposed method
achieves new state of the art on several benchmark tasks on molecule design.

Our model and method can be applied to on-line black-box optimization problem in general, and the
Transformer model can be replaced by other conditional generation models if the solution is not in
the form of a sequence of tokens. In our future work, we shall explore applying our method to other
challenging optimization problems in science and engineering.

Acknowledgement

Y. N. Wu was partially supported by NSF DMS-2015577 and a gift fund from Amazon.

References
Austin H Cheng, Andy Cai, Santiago Miret, Gustavo Malkomes, Mariano Phielipp, and Alán Aspuru-

Guzik. Group selfies: a robust fragment-based molecular string representation. Digital Discovery,
2023.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Peter Eckmann, Kunyang Sun, Bo Zhao, Mudong Feng, Michael K Gilson, and Rose Yu. Limo:
Latent inceptionism for targeted molecule generation. In International Conference on Machine
Learning (ICML), 2022.

Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W Coley, and Jimeng Sun. Differentiable
scaffolding tree for molecular optimization. arXiv preprint arXiv:2109.10469, 2021.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS Central Science, 4(2):268–276, 2018.

8

Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for generator
network. In AAAI Conference on Artificial Intelligence (AAAI), pages 1976–1984, 2017.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7):
1757–1768, 2012.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International Conference on Machine Learning (ICML), pages
2323–2332, 2018.

Deqian Kong, Bo Pang, Tian Han, and Ying Nian Wu. Molecule design by latent space energy-based
modeling and gradual distribution shifting. In Conference on Uncertainty in Artificial Intelligence
(UAI), volume 216, pages 1109–1120, 2023.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1(4):045024, 2020.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
In International Conference on Machine Learning (ICML), pages 1945–1954, 2017.

Greg Landrum et al. Rdkit: Open-source cheminformatics. URL https://www.rdkit.org.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning (ICML), pages 7192–7203, 2021.

Radford M Neal. MCMC using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2,
2011.

AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alán Aspuru-Guzik. Augmenting genetic
algorithms with deep neural networks for exploring the chemical space. In International Conference
on Learning Representations (ICLR), 2020.

Erik Nijkamp, Bo Pang, Tian Han, Linqi Zhou, Song-Chun Zhu, and Ying Nian Wu. Learning
multi-layer latent variable model via variational optimization of short run mcmc for approximate
inference. In European Conference on Computer Vision (ECCV), pages 361–378, 2020.

Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space
energy-based prior model. In Advances in Neural Information Processing Systems (NeurIPS),
2020.

Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas F Tillack, Michel F Sanner, Andreas Koch,
and Stefano Forli. Accelerating autodock4 with gpus and gradient-based local search. Journal of
Chemical Theory and Computation, 17(2):1060–1073, 2021.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382,
2020.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):31–36,
1988.

Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné Clevert.
Efficient multi-objective molecular optimization in a continuous latent space. Chemical Science,
10(34):8016–8024, 2019.

Jianwen Xie, Yaxuan Zhu, Yifei Xu, Dingcheng Li, and Ping Li. A tale of two latent flows: Learning
latent space normalizing flow with short-run langevin flow for approximate inference. In The Tenth
International Conference on Learning Representations (ICLR), 2023.

9

https://www.rdkit.org

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems (NeurIPS), pages 6410–6421, 2018.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules
via deep reinforcement learning. Scientific Reports, 9(1):1–10, 2019.

Appendix

We display molecules generated by LPT as they evolve throughout the shifting trajectories.

Figure 3: Molecules produced during the multi-objective optimization for ESR1. The legends denote
KD ↓, SA↓ and QED↑.

Figure 4: Molecules produced during the multi-objective optimization for ACAA1. The legends
denote KD ↓, SA↓ and QED↑.

10

	Introduction
	Method
	Latent Prompt Transformer
	Learning
	Initial Training and Conditioned Generation
	Gradual Distribution Shifting

	Experiments
	Experiment Setup
	Binding Affinity Maximization

	Related Work
	Conclusion

