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Abstract

Understanding and synthesizing realistic 3D hand-object interactions (HOI) is
critical for applications ranging from immersive AR/VR to dexterous robotics.
Existing methods struggle with generalization, performing well on closed-set ob-
jects and predefined tasks but failing to handle unseen objects or open-vocabulary
instructions. We introduce OpenHOI, the first framework for open-world HOI
synthesis, capable of generating long-horizon manipulation sequences for novel
objects guided by free-form language commands. Our approach integrates a
3D Multimodal Large Language Model (MLLM) fine-tuned for joint affordance
grounding and semantic task decomposition, enabling precise localization of in-
teraction regions (e.g., handles, buttons) and breakdown of complex instructions
(e.g., “Find a water bottle and take a sip”) into executable sub-tasks. To synthesize
physically plausible interactions, we propose an affordance-driven diffusion model
paired with a training-free physics refinement stage that minimizes penetration and
optimizes affordance alignment. Evaluations across diverse scenarios demonstrate
OpenHOTI’s superiority over state-of-the-art methods in generalizing to novel object
categories, multi-stage tasks, and complex language instructions. Our project page
at https://openhoi.github.io

1 Introduction

Hand-object interaction (HOI) involves jointly modeling hand articulation and object dynamics
to generate and interpret realistic manipulation sequences [9} {17} [25] [26] [15] |47, |5]]. This reflects
one of the most pervasive human behaviors, deeply embedded in daily activities. Generating and
understanding 3D HOI sequences is critical for advancing machine capabilities in human-centric
applications. In augmented/virtual reality (AR/VR), realistic HOI modeling enables immersive digital
experiences, allowing users to manipulate virtual objects naturally. For robotics, it provides the
foundation for dexterous, feedback-driven manipulation in unstructured environments.

Generating HOI sequences from natural language instructions remains a significant challenge in 3D
interaction research. While traditional methods [[19} 40] rely on handcrafted motion priors, recent
diffusion-based approaches [2, 3| directly map text to action sequences, eliminating the need for
manual motion design. However, due to limited data and modeling capacity, these models only deal
with closed datasets and struggle to generalize to unseen objects and open-vocabulary instructions.

Recent advances in Large Language Models (LLMs) have significantly enhanced joint vision-language
understanding. Building on this progress, concurrent work like HOIGPT [/13]] proposes an LLM-based
architecture for aligning textual instructions with HOI sequences. However, these approaches face
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Figure 1: Motivation: OpenHOI introduces an open-world framework for generating HOI sequences
that demonstrates strong generalization across seen and unseen objects, high-level instructions, and
long-horizon tasks.

fundamental generalization challenges in unseen shapes and complex 3D interaction scenarios due to
the lack of 3D knowledge in LLM. Fig. [T]illustrates the comparison between conventional Closed-Set
HOI and Open-World HOIL.

The growth of 3D datasets has advanced 3D multimodal large language models (MLLMs) with strong
capabilities in understanding and grounding 3D geometric, semantic, and functional relationships.
Critically, fine-grained part-level grounding and affordance grounding [34] [4] can identify actionable
object regions and their interaction possibilities, providing strong priors for synthesizing physically
consistent hand-object interactions (HOI). Building on this insight, we propose OpenHOI, the first
open-world HOI synthesis framework capable of generating long-horizon manipulation sequences
for unseen objects guided by open-vocabulary instructions. Our approach fine-tunes a 3D MLLM
endowed with comprehensive affordance reasoning priors, enabling two core capabilities: 1) Gen-
eralizable Affordance Prediction: Precise localization of interaction regions (e.g., handles, buttons)
for both known and novel objects. 2) Instruction Decomposition: Breaking down open-vocabulary
commands (e.g., “I’m feeling thirsty, could you find a water bottle and take a sip”) into executable
sub-tasks grounded in object affordances. By integrating these priors with a diffusion-based inter-
action generation and physics-aware refinement, OpenHOI achieves unprecedented generalization
across object categories, task horizons, and linguistic complexity.

In summary, our contributions are as follows:

* We introduce OpenHOI, the first open-world hand-object interaction synthesis framework
capable of generating long-horizon manipulation sequences for unseen objects guided by
open-vocabulary instructions. Unlike prior closed-set HOI methods, OpenHOI generalizes
to novel objects and complex, linguistically diverse commands.

* OpenHOI involves fine-tuning a 3D MLLM that jointly learns geometric affordance priors
and semantic task decomposition. Subsequently, affordance-driven HOI Diffusion with
Physical Refinement is developed to generate realistic HOI sequences for each task.

* Our experiments demonstrate state-of-the-art performance, outperforming existing meth-
ods with a large margin. Notably, OpenHOI generalizes robustly to unseen objects and
open-vocabulary instructions, achieving strong compositional generalization across diverse
scenarios.



Table 1: Comparative analysis of our method versus existing HOI synthesis approaches.

Methods \ Open-world 3D MLLM Open-vocabulary Long-horizon Planning Motion In-between
HandDiffuse [23] v
Text2hoi [2]
HOIGPT [13] v v
Ours v v v v v v

2 Related Work

Hand-Object Interaction Synthesis. Synthesizing realistic and diverse hand-object interactions
(HOI) have gained significant attention, with numerous approaches exploring this problem under
various settings. These include the creation of large-scale datasets like GigaHands [7] and OAKINK?2
[53]], methods for affordance learning [21], |56} |32}, 45]. Others have focused on synthesizing two-
hand interactions like InterHandGen [19] and HandDiffuse [23]], or on physics-aware synthesis
and dexterous grasping [44, 46| |57]]. Several key works have specifically tackled text-guided or
semantically rich HOI synthesis. Text2HOI [2] introduced a pioneering approach to generate 3D
Hand-Object Interaction Sequences from text by decomposing the task into contact prediction and
motion generation using a diffusion model, but it can struggle with fine-grained control from low-level
text and tends to produce short HOI interaction sequences. HOIGPT [13]] adopts an LLM-based
sequential model to predict hand-object trajectories from text for long-horizon sequences, yet it
lacks explicit affordance-guided mechanisms and cannot ensure smooth motion in-between multiple
sub-sequences in complex interactions. SemGrasp [20] focuses on semantic-aware grasp generation,
but it discretizes motion space and is limited to static grasps. Grasp as You Say [46] addresses
category-level language-guided grasping, but it requires hand-crafted hand-object contact templates
and lacks dynamics. While these methods have advanced the field, generating fine-grained, diverse,
and long-horizon hand-object interaction sequences with high-level text on unseen objects cohesively
remains a significant challenge.

Multimodal Large Language Model. The advent of Large Language Models (LLMs) has rev-
olutionized natural language understanding, and their influence is gradually expanding into 3D
perception and interaction tasks. Some recent works leverage pure LLM architectures to handle
motion generation from language. For instance, HOIGPT [/13[] and MotionGPT [16] adopt VQ-VAE
tokenization and GPT-style architectures to achieve bidirectional generation between natural language
and HOI systhesis. However, these models operate primarily on discrete motion tokens, and lack
grounding in actual 3D perception or reasoning, they cannot perceive objects or environments in 3D
nor reason about spatial affordances or constraints, thus limiting their ability to generate context-
aware interactions. Conversely, Multimodal Large Language Models (MLLMs) have emerged as
powerful tools that extend the success of LLMs into various domains, aiming to bridge the gap
between language and other modalities such as images, videos, and 3D representations, enabling
tasks like visual question answering like ShapeLLM [34]], 3D object generation like Point-E [29] and
CLIP-Forge [37]], and affordance understanding like LASO [22], DAG[42]]and AffordanceLLM [35]].
These MLLMs demonstrate strong capabilities in static 3D understanding, especially in segmenting or
identifying affordances from language prompts. Other MLLM-based approaches like SeqAfford [52]
and 3D-AffordanceLLM [4] further extend this to sequential or compositional affordance reasoning.
However, these approaches remain limited to perception tasks and do not address the synthesis of
continuous hand-object interactions or motion dynamics. In contrast, while LLM-based methods
focus on generating motion from text without grounding in 3D environments, and MLLM-based
methods enable 3D spatial understanding without supporting interaction generation, none of the exist-
ing approaches bridge both capabilities. Our work addresses this gap by leveraging an MLLM that is
trained to jointly model language, 3D perception, and interaction dynamics. This enables our model
to both understand object affordances from language and synthesize long-horizon, task-consistent
hand-object interactions with unseen objects from open-vocabulary instructions. By unifying reason-
ing and generation, our approach extends 3D MLLMs toward fine-grained, dynamic, and open-world
HOI synthesis.
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Conditional Input

“I'm feeling thirsty, coul find ¢ . . ..
mwzlec;"li,:ﬂ:ﬁdizif m‘;ﬂ«'«nd *  Object Point Cloud (a)Training e .
. . ! »
"y e T f2 “First open the “Then drink the | |
. Classifier-free N
= Clip Pretrained 3D L‘;; : dljllwi bottle cap with ‘ bottle water using | | 4 4 1
Encoder Vision Encoder both hands.” your right hand.” | | }
Noisy\f&(‘ Task-1 Task-2 " Affordance
Sequence X iy
3D Multimodal-LLM ' ¢ )
H . Conditional |pyeee s ¢ )
text token point feature 1 ? “Denoise |Diffusion Transformer
v X, Model Encoder
Original [ Linear ]
U N Sequence /‘/\’\
u s S
Large Language Model LoRA (b)Training-free Refinement i Generated HOI
Task-1 Sequence
Afford ;Z 4
l__________l_ ___________ : kS Alignment qa : Start
= = e
= F— X
: e e I : Task-i 124 B Complete -
——————————————————————— N e . _betwee
| |/ “I'm a bit dehydrated, please open the water bottle I |—> Diffusion 1 M“":ﬂ(!::":’::““ cen } HOI E‘
: | cap with 'both hand§, then drif}k the bottle :4— Afford-| Model . > T Sequence N
| I\ water using your right hand. ance m P 1
s [T .
L M L. Task-2
I Affordance Penctiat Seq ¢
enetration
1, Decoder Alignment ~ End

Figure 2: Pipeline: Our framework comprises two sequential components. First, a 3D multimodal
large language model (3D MLLM) ingests high-level instructions and object point clouds to generate
sequential affordance maps and decompose the high-level task into a sequence of sub-tasks. Second,
the diffusion model takes the affordance map and the decomposed task sequence as conditions to
synthesize realistic hand-object interaction sequences.

3 Method

We propose OpenHOI, a novel framework for generating long-horizon hand-object interaction
sequences guided by high-level open-vocabulary instructions. OpenHOI generalizes to unseen object
categories by leveraging semantic reasoning from a 3D MLLM paired with 3D affordance prior. Our
framework consists of two core components:

3.1 Instruction Decomposition and Affordance Reasoning via 3D MLLM

Given a 3D object point cloud and a high-level,free-form instruction (e.g., "I am thirsty"), the 3D
MLLM semantically grounds the instruction into object-centric affordances by bridging the gap
between abstract intent and actionable object functionality. This process yields two structured
outputs: (1) A spatial affordance map that identifies geometrically plausible interaction regions (e.g.,
highlighting the cap of a water bottle for opening and the body for grasping). (2) A temporally
decomposed sub-task sequence that translates the instruction into executable atomic actions (e.g., 1)
grasp bottle cap with both hands — 2) twist counterclockwise to open — 3) lift bottle to mouth with
right hand").

Network structure of 3D MLLM. Recent advances in 3D multi-modal language modeling have
significantly enhanced open-world understanding of 3D objects. In particular, ShapeLLM [34]] has
been pretrained to capture a wide range of embodied interactions. Consequently, we adopt ShapeLLM
as our backbone. Its point-cloud encoder ReCon++ is pretrained via multi-view distillation from
ReCon [33]], and its language component is initialized from LLaMa [41]]. Prior approaches to 3D
affordance prediction have typically relied on standalone 3D backbones [S1]] or on separate point-to-
language encoders [22], which often lack robust reasoning and open-world generalization capabilities.
By leveraging a unified 3D MLLM rather than exclusively using pure LLMs or conventional visual
architectures, we achieve both enhanced generalization to unseen objects and affordances and the
intrinsic integration of affordance perception into natural language representations, thereby facilitating
subsequent affordance reasoning.



In-context 3D Affordance Reasoning. Although 3D MLLMs effectively align 3D representations
with natural language, they are predominantly tailored for object-centric text generation and thus
lack inherent support for dense 3D prediction tasks such as fine-grained affordance segmentation.
To address this limitation, we augment the MLLM vocabulary with a dedicated segmentation token
<AFF>, following the design of Lisa [[18]], thereby enabling the model to represent and reason about
segmentation outputs within its language-based framework. Formally, given a point-cloud input F;
and instruction text T, expressing user intent over candidate objects, the 3D MLLM jointly encodes
both modalities to produce a sub-task sequence:

Toub_tasks = MLLM (Fpj, Ting ) (1

which contains S occurrences of the segmentation token <AFF>, each marking a predicted affordance

region. We then collect the corresponding last-layer embeddings{hgf-g o _01 and pass each through an

affordance decoder:

Ag)

= Decoderaff(Fobj, hféf)) , 1=0,...,5—-1. 2)
Coarse-to-Fine Affordance Tuning. Our training pipeline comprises two sequential stages. First,
we fine-tune the model on large-scale, coarse-grained, object-centric static affordance datasets [35]
52|, to instill strong affordance priors, thereby enhancing its generalization and open-vocabulary
capabilities. Second, we fine-tune the stage 1 model on a smaller dynamic hand-object interaction
dataset, which can get fine-grained affordance maps by using the voxel-based method, to generate
more precise affordance Maps and task decomposition sequences. We leverage an auto-regressive
cross-entropy loss L, to supervise sub-tasks generation, complemented by Dice loss and Binary
Cross-Entropy loss L, to guide affordance prediction.

L= )\taskLtask (Ysubftasks; szubftasks) + )\affLaff(Aobj> Aobj)» (3)
where the weights Ak, Aqfr are utilized to balance the different loss items.

3.2 Affordance-driven HOI Diffusion with Physical Refinement

To generate long-horizon, natural, and physically plausible hand-object interaction sequences X
based on Interaction Prior C from Sec which include affordance prior, sub-tasks, and object
pointcloud as follows,

C = [Aoj, f"(Tub_tasks), Fob), “
We propose Affordance-driven HOI Diffusion, which decomposes this challenging task into
tractable components. During training, we improve the alignment of the affordance map via classifier-
free guidance [[11} |30, [12]. During inference, we propose a training-free refinement method that
generates natural, physically plausible, and long-horizon HOI sequences.

Training HOI Diffusion with Affordance Prior from MLLM. During training, given a condi-
tioning pair [X, C], we first add noise to X using the forward diffusion process:

p(Xi|Xo) ~ N(VaXo, (1 —a)l), Q)]
where X denotes the original HOI sequence, X, is its noisy version at diffusion timestep ¢, and oy

controls the noise schedule. We then train a transformer-based neural network Xj to directly predict
the HOI sequence X, from the noisy input. The training objective for HOI generation is defined as:

Lhoi_train(Xev C) = Lhoi_diff(Xey C) + Lhoi_dislance(XO) + Lhoi_orienl(Xe)y (6)
where Lhoi,diff(Xey C) = Exymp(X0), Xe~p(X:|X0) t~[1,1] [ X0 — Xo(X¢, 8, C))| |3 is the denoising loss
of the diffusion process for HOI reconstruction. Lpe;_distance(X¢) donates the HOI distance map loss,

which encourages precise surface contact and enhances the physical plausibility of the contact area

by penalizing errors more strongly when the hand is near the object. Lhoi_orient(Xg) represents the
HOI relative orientation loss, which aligns predicted orientations with ground truth to ensure accurate
rotational poses for tasks like grasping and manipulation by modeling hand—object relative rotation,
respectively. To better align the generated HOI sequences with the Interaction Prior C, we adopt the
classifier-free guidance strategy:

Xg(Xtat7C) = XQ(Xtvtvw) +s- (Xg(Xt,t,C) - X@(Xht?@))a (7)



where s is the guidance scale. To enable this strategy, we randomly mask 10% of the conditional
inputs C during training to train the unconditional [8]] model Xy(X,t, () alongside the conditional
one. During sampling, we gradually denoise X; to X, via posterior distribution p(X;_1|Xg, X¢):

Xt_1:Mt+O'tE,ENN(O,I), (8)
where py = YTI=800) y, 4 VTR (1. C),and o, = 10

Training-free HOI Diffusion with Physical Refinement. While the vanilla diffusion sampling
process in Equation [§] models the joint conditional distribution of HOI sequences, it suffers from two
key limitations: 1) Lack of Physical Constraints. The sampling process does not inherently enforce
physical plausibility [28]], such as preventing interpenetration or ensuring stable contact. While prior
work addresses this by training discriminative physical refiners, such methods often deviate from
the underlying joint HOI distribution, introducing artifacts due to distribution shift. 2) Temporal
Incoherence. The generated sequences exhibit discontinuous hand motions, particularly during
transitions between sub-sequences, leading to unrealistic motion dynamics.

To address these limitations, we propose three key refinement objectives during the diffusion sampling
process: 1) affordance refinement for precise contact, 2) physical constraint refinement to prevent
penetration, and 3) temporal coherence refinement for smooth transitions, all achieved without
additional training or distribution-shifting.

a) Affordance Refinement: Since direct affordance-based HOI generation often fails to produce
precise hand-object contact, we propose an affordance-aware loss to guarantee geometric consistency:

laf‘f - II-let . ||d(jlhand; p(l{gim)”2 + ]lright : ||d(jrhand7 p‘:{;‘)im)||27 (9)

where d(-, ) is the Euclidean distance between hand joints (jlhand, jrhand) and closest affordance

. Hljoint  Srjoint
region (Po,™, Py ).

b) Penetration Refinement: To mitigate interpenetration artifacts, we propose a penetration loss:

lpenetralion = ]]-left : ||d(‘>ihanda pézjcrt) H2 + ﬂright : ||d(‘7rhand7 ~;1§jert)||27 (10)

where d(-, ) is the Euclidean distance between hand joints (Vipana, Vinana) and closest affordance

. Dlvert  prvert
region (P, Poys ).

c) Motion In-between Refinement:

For seamless transitions between HOI sub-sequences, we synthesize natural hand motion f/;?df;
bridging the end five poses ijr;__.‘l:T of the preceding sequence and the start five poses V%2 of the
subsequent sequence. The transition loss can be defined as:

liransition = H‘%&i - Vge_él:TH% + H‘Z;g]:lj - V;?térH%v (11)

where ‘Z?E;Ifs, 17[331,;4:71 denote the predicted start and end five frames of the transition motion.

While gradient descent after each denoising step could minimize these losses, it risks introducing
artifacts and distribution shifts [49]]. Recently, a training-free conditional diffusion model named
DSG [50]] offers larger, adaptive step sizes to the loss function to achieve better alignment with the
constraints while preserving the original distribution learned by the diffusion model. Inspired by
DSG, we also introduce the Spherical Gaussian Constraint during the sampling stage to preserve
the original distribution, thus mitigating the distribution-shifting problem. We utilize the analytical
solution to enforce steepest gradient descent to enhance alignment:

D* = —Vdo,Vx,1(X5(Xy, t,c)), (12

where d represents the data dimensions and ! denotes the loss in Eq[9] [I0} [LT| for refinement stage. To
enhance the sample quality, we utilize a mixture of deterministic steepest gradient descent direction
and random sampling direction:

Dmix - Dsample +w - (D* - Dsample)a (13)
Dmix
HDmiXH

where Dgumple = 0¢€; is the random sampling direction, and w represents the guidance rate.

Xt,1 =+ \/EO’t (14)



4 Experiments

Our framework integrates two core stages: 1) fine-tuning a 3D MLLM to predict object affordance
maps and decomposing open-vocabulary instructions into concrete sub-tasks, and 2) synthesizing
HOI sequences with the condition output of stage 1. We evaluate our method using diverse datasets
and metrics, demonstrating its capability to generate long-horizon HOI sequences with high-level
instructions of both seen and unseen objects. Comparative experiments and ablations validate our
design choices. Our experiments were conducted on NVIDIA A100 GPU.

4.1 Dataset

For our experiments, we utilize two prominent hand-object interaction datasets: GRAB [38]], which
provides comprehensive full-body motion data of subjects interacting with 51 everyday objects, and
ARCTIC [6], a large-scale dataset specializing in bi-manual interactions with articulated objects and
dense 3D annotations. We preprocess both two datasets with a unified pipeline, which involves initial
geometric operations on the object point clouds—specifically, upsampling to support detailed affor-
dance map generation via our inference model, followed by downsampling to ensure computational
efficiency during training. Crucially, we enrich the original annotations by employing a multimodal
large language model (MLLM) to convert low-level HOI motion descriptions into open-vocabulary,
intent-centric language instructions. These semantic labels enhance the expressiveness of the data
and allow our model to better generalize to unseen scenarios, supporting open-world HOI synthe-
sis with long-horizon sequences and diverse objects. For both GRAB [38]] and ARCTIC [6], we
follow a standard protocol by partitioning each dataset into 80% for training and 20% for unseen
testing, ensuring reliable evaluation of our model’s generalization capabilities. This setup allows
us to rigorously assess performance on unseen objects, motions, and interaction intents, validating
the robustness of our MLLM-guided generation framework across both single-hand and bi-manual
interaction scenarios.

4.2 Evaluation metric

To comprehensively evaluate the quality, diversity, realism, and physical plausibility of our generated
hand-object interaction (HOI) sequences, we employ a multi-faceted set of quantitative and qualitative
metrics inspired by prior works [2 |13} 24} 27,140l |14]. We roughly divide the evaluation indicators
into three categories

* Motion Accuracy. We evaluate geometric precision using the Mean Per-Joint Position
Error (MPJPE;) computed over hand joints, and assess object placement with the Final
Object Location Error (FOL;), defined as the Euclidean distance between the predicted
object center and the target location at the final frame.

* Generation Realism. We measure realism via the Fréchet Inception Distance (FID;)
between real and synthesized motions in a pre-trained motion feature space, capturing
distributional alignment and perceptual fidelity.

* Diversity & Multi-modality. Diversity quantifies across-prompt variability of generated

outputs, while MModality captures within-prompt variability across multiple samples. Both
are computed from pairwise distances or variance statistics in the motion feature space.

Lower MPJPE, FOL, and FID indicate higher accuracy and fidelity, while higher multi-modality and
closer to GT diversity reflect stronger generative expressiveness.

4.3 Main Results

Comparison with SOTA Methods. We evaluate our method under the widely adopted seen /
unseen split protocol and compare it against state-of-the-art methods (i.e., MDM [39], TM2T [10],
MotionGPT [16]], Text2HOI [2]] on both GRAB [38]] and ARCTIC [6] datasets. As shown in Table 2]
and Table[3] our method consistently outperforms all baselines across both seen and unseen objects.

These results firmly establish our method as state-of-the-art, demonstrating the strong generalization
ability of our MLLM-guided Affordance Reasoning and Affordance-driven HOI diffusion with
Physical Refinement generation, which validates the effectiveness of our Open-World HOI synthesis



framework in generating long-horizon HOI sequences of unseen objects from Open-vocabulary
instructions.

Table 2: Main Results on GRAB.

Method MPIPE] FOL| FID | Diversity — MModality 1
GT - - - 4.66 -
MDM[39] 74.92+2.25 0.62+0.02 62.37+1.56 3.284+0.10 12.774+0.45
5 TM2T[10] 59.274+1.19 0.464+0.06 57.41£2.30 3.60+0.07 21.2840.82
#  MotionGPT[16] 63.94+2.56 0.43+0.01 52.03+1.82 3.61+0.08 20.2640.51
Text2HOI[2] 56.29+2.13 0.44+0.03 33.724+1.27 3.41£0.16 17.71£0.87
Ours 47.64+1.03 0.26+0.02 26.43+0.77 3.69+0.27 24.594+2.01
MDMJ39] 92.974+1.86 0.694+0.03 75.59+1.89 3.07+0.11 11.1540.85
S TM2T[10] 61.07+1.34 0.55+0.02 66.43£1.66 3.37+0.07 14.0340.67
z MotionGPT[16] 66.264+1.99 0.51+0.01 56.49+1.98 2.852+0.07 16.36+0.53
= Text2HOI[2] 60.67+£1.80 0.41+£0.02 36.96+0.77 1.8040.05 10.98+0.44
Ours 51.34+0.85 0.27+£0.01 28.29+0.62 3.61+0.09 19.91+0.63
Table 3: Main Results on ARCTIC.
Method MPJPE| FOL| FID | Diversity — MModality 1
GT - - - 3.39 -
MDM[39] 72.674+0.63 0.60+0.05 33.66+0.19 2.354+0.05 8.204+0.20
5 TM2T[10] 54.394+0.64 0.414+0.04 34.12+£0.49 1.67+0.02 13.6040.17
@ MotionGPT[16] 60.17+0.72 0.41+0.03 31.58+0.46  1.89+0.02 13.2340.09
Text2HOI[2] 52.16+0.41 0.33+0.01 23.354+0.33  2.43+0.02 11.2140.20
Ours 45.15+0.94 0.25+£0.04 19.74+0.16 2.65+0.03 15.25+1.44
MDM[39] 86.75+1.35 0.64+0.01 41.53+1.37 1.58+0.04 7.13+0.63
S TM2T[10] 55.574+1.26 0.534+0.03 37.22+0.75 1.5440.12 11.2340.44
§ MotionGPT[16] 64.41+0.73 0.434+0.04 33.994+2.43 1.5040.09 11.08+0.79
=) Text2HOI[2] 57.83+1.61 0.3940.01 25.224+0.59 1.61+0.06 7.11+0.25
Ours 47.25+0.39 0.28+0.03 20.05+0.80 2.4940.08 12.66+0.71

Qualitative results. We present the generated HOI sequence results. Open-world capability en-
ables the generation of long-horizon HOI sequences under both unseen-object and open-vocabulary
conditions. In this section, long-horizon HOI results are shown in Fig. [3] Experimental findings
demonstrate physical realism and coherence of the generated sequences.

4.4 Ablation Study

We conduct systematic ablations on the GRAB [38]] and ARCTIC [6] dataset to validate the necessity
of our core components through controlled experiments. Each component is carefully analyzed to
demonstrate its contribution to robust hand-object interaction generation, the details can be found in
Table @ and Table

Affordance Awareness (w/o Affordance). We remove the part of obtaining accurate affordance
maps by a well-trained MLLM, which significantly degrades interaction quality on each evaluation
metric. Without this component, the model loses its ability to focus on functionally critical object
regions, leading to unnatural hand placements and increased penetrations. This confirms that explicit
affordance grounding is essential for semantically meaningful interactions.

Classifier-Free Guidance Diffusion (w/o CFG). Classifier-Free Guidance(CFG) plays a critical role
in ensuring that the generated hand-object interaction (HOI) sequences remain aligned with the input
conditions C. Without CFG, the model often fails to adhere to the conditioning signal, leading to
semantic misalignment and affordance mismatch.

Loss-guided Physical Refinement (W/0 [yenetrationsW/0 lagr). Experimental result demonstrates the
critical importance of our loss-guidance strategy for temporal coherence and physical plausibility.
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»

Figure 3: Qualitative result: The visualization results showcase three types of long-horizon
sequences—seen-object, unseen-object, and multi-object. The experiments demonstrate that our
method exhibits strong generalization on both unseen objects and open-vocabulary instructions,
enabling open-world HOI sequence synthesis.

Without this guidance, the diffusion model exhibits two key failure modes: first, it fails to generate
complete long-horizon HOI sequences, particularly in complex bimanual interactions where discrete
actions remain disjointed rather than forming fluid motions; second, it produces physically unrealistic
results with frequent object penetrations (/penciration) and unnatural affordance patterns (), most
noticeable during precision manipulation tasks. Through direct optimization of these constraints via
our loss-guidance framework, we achieve significant improvements in generating physically valid
and temporally coherent hand-object interactions.

Table 4: Ablation Study on GRAB

Method MPJPE| FOL| FID| Diversity—  MModalityt

GT - - - 4.66 -
w/o Affordance 56.04 +=1.22 0.36 £0.03 31.60+0.93 3.47+£0.05 16.89=+1.50
5 w/o CFG 5154 £0.80 0414+0.02 29.52+090 3.394+0.18 20.55+1.80
® wlo lpenetration 93.42+£037 0424+0.01 2843+0.74 331+£021 1859+1.74
wlolayys 49.174+036 043+0.02 29204+0.85 341+021 19.254+1.90
Ours 47.64+1.03  0.26+0.02  26.43+0.77  3.69+0.27 24.59+2.01
= Ww/o Affordance 60.37 £ 1.69 040+ 0.08 36.824+1.04 334+0.05 1572+1.50
§ w/o CFG 55.04 £0.83 041 4+0.06 37.05+138 3244003 1846+1.13
5 W/0 lpenetration  56.68 £1.6 040+ 0.11 3569 +£1.65 3.36+£0.19 18.78£0.38
wlolayys 5456 £047 0374+0.19 36.13+£0.72 3284+0.37 18.29+0.38
Ours 51.34+0.85  0.27+0.01  28.29+0.62 3.61+0.09 19.91+0.63




Table 5: Ablation Study on ARCTIC

Method MPIJPE] FOL| FID| Diversity—  MModalityt

GT - - - 3.39 -
w/o Affordance 53.03 +2.76 0.40+0.03 2621 +0.54 2.03+0.19 13.68 +0.37
g w/o CFG 52.79+£0.95 0.384+0.02 2544+0.29 3.394+0.18 14.054+2.72
®  wlo lpenetration 51.66 £0.88 0.37+0.01 2673 +0.37 245+£028 13.99£0.58
w/olgff 4635+ 1.13 039+0.02 2508+020 231+0.07 13.06+ 1.34
Ours 45.15+0.94  0.25+0.04 19.74+0.35 2.65+0.16 15.25+1.44
= Ww/o Affordance 57.29 £2.33 043+£0.03 30.05+£0.71 197+£036 11.22+0.60
§ w/o CFG 56.25+0.95 0454+0.02 29.44+0.62 2254024 11.45+1.03
5 W/0 lpenetration 95.66 £0.14  0.41+0.03 27.51+1.04 2.13£0.10 10.58£0.39
w/olgfs 49.18 £ 1.13 042+0.02 2736+0.25 2.08+0.13 11.01 +1.02
Ours 47.25+0.39  0.28+0.03  20.05+0.80  2.49+0.08  12.66+0.71

4.5 Failure cases and error analysis

Given a scenario, there is a row of cabinets, and the instruction "Open the cabinet", our model can
open one but cannot target a specific one (e.g., "Open the second cabinet"). This limitation arises
because the model has not been trained on a large-scale 3D QA dataset, resulting in reduced logical
reasoning capabilities. Due to the accumulation of model errors, performance typically degrades after
more than three consecutive actions(more than 450 frames).

5 Conclusion

We present OpenHOI, the first open-world framework for synthesizing long-horizon 3D hand-
object interaction (HOI) sequences guided by open-vocabulary instructions. By fine-tuning a 3D
multimodal large language model (MLLM) to jointly model geometric affordances and decompose
semantic instructions, our method achieves strong generalization to unseen objects and linguistically
complex tasks. The integration of affordance-driven diffusion-based generation and physics-aware
refinement enables physically consistent manipulation sequences, advancing beyond closed-set HOI
synthesis methods. Extensive evaluations demonstrate OpenHOTI’s superiority in handling novel
object categories, multi-stage tasks, and open-ended language commands, bridging critical gaps in
human-centric Al applications. While OpenHOI represents a significant step toward open-world HOI
synthesis, several challenges remain: Although our physics-aware refinement improves interaction
plausibility, fine-grained dynamics (e.g., fluid simulation for pouring tasks) remain challenging.
Hybrid neuro-symbolic physics models may enhance realism. While OpenHOI supports multi-stage
tasks, handling compositional long-horizon sequences like “cook a meal” remains challenging due to
limitations in hierarchical task decomposition. Future work could explore chain-of-thought reasoning
to better model such complex action hierarchies.
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A Implementation Details

3D MLLM. We initialize our model from the ShapeLL.M-7B checkpoint, freezing its 3D encoder
and augmenting the visual backbone with Uni3D for robust dense 3D prediction, while the projection
head is implemented as a shallow MLP, and LoRA is applied to streamline fine-tuning. Training
unfolds in two stages: first, we optimize for seven epochs with AdamW (learning rate 2 - 10~*, zero
weight decay) under a cosine-annealing schedule and a 2% linear warm-up; then, we continue for
three additional epochs with AdamW (learning rate 5 - 10~%, zero weight decay) under the same
cosine schedule but a 1% warm-up.



Diffusion Model. We employ a T = 1000-step noising process with a cosine noise schedule, and
inject positional information at both the frame- and agent-levels using sinusoidal encodings. During
sampling, we apply classifier-free guidance by randomly substituting 10% of conditioning inputs
with unconditional noise while retaining 90% of the original conditions, and use a guidance scale of
2.5 to steer the denoising trajectory.

B Instruction Decomposition and Affordance Reasoning via 3D MLLM

B.1 Affordance Reasoning

3D Object Point Cloud Encoding. We take as input a point cloud of an object, sampled to N
points. The backbone is a ReCon++ [34] network (or a similar architecture) that processes these
points and produces per-point feature representations

Fobj c RNXC',

which capture both local geometric details and the overall global context.

Multi-Token Fusion Mechanism. Rather than generating a single <AFF> segmentation token,
PixelLM[36] defines, at each visual scale ¢, a segmentation codebook comprising N learnable <AFF>
tokens. After encoding the textual prompt, the model sequentially outputs the N tokens, each
associated with a hidden vector hf. A linear projection ¢ then aggregates these vectors into a unified
representation

ht = (b, ..., hY),
which is concatenated with the scale-specific image features and fed into the pixel decoder to produce
the final segmentation mask. Experiments on the MUSE validation set indicate that increasing N

from 1 to 3 improves cloU, demonstrating that the multi-token fusion mechanism captures more
nuanced semantic details and significantly enhances fine-grained segmentation.

B.2 Instruction Decomposition

OpenHOI decomposes a single high-level instruction into an ordered sequence of actionable affor-
dance steps. Each step is marked by a special token and then grounded spatially in the 3D point
cloud.

Instruction Text Encoding. We take a natural-language instruction 7}, as the model input. The
backbone is a LLaMA-style Transformer that produces token-wise hidden states {h;}7__, and aggre-
gates them via a pooling operation into a single embedding

hcls € RD7

which is then used for downstream tasks.

Segmentation Token Injection. Extend the MLLM’s vocabulary by adding a special marker <AFF>,
which explicitly denotes the boundary of each sub-task in the generated sequence.

Conditioned Autoregressive Generation. Given the fused 3D point features F;,; and the instruc-
tion embedding h.js, the Transformer predicts an interleaved stream of action words and <AFF>
tokens, for example:

Pick — <AFF> Twist — <AFF> Lift — <AFF>

Let S be the total number of <AFF> tokens generated.

Boundary Localization & Hidden-State Extraction. Record the positions ¢1, . . . , tg where <AFF>
appears. Foreachi =1,..., .5, extract the corresponding last-layer hidden vector

2z = hy, € RP,

which encodes the full context immediately preceding the end of sub-task .



Sequential Mask Decoding. For each step ¢, use the query E; to perform cross-attention over the
point features F{},; and decode a per-point mask:

M;(p) = U(Decoder(ﬁp, z)) forp=1,...,N,

where F are the fused features and o is the sigmoid activation. Collect the ordered set
{Mi,Ms, ..., Mg} to obtain the final sequence of affordance masks, each aligned with its cor-
responding sub-task.

B.3 Diffusion Process

Our framework employs diffusion models to learn the conditional distribution p(X |C), of hand-object
interaction (HOI) sequences, where the conditioning signal C combines:
* Object affordance prior Aobj

* Sub-task embedding (T asks)
* Object point cloud features F o,

Forward Process. The diffusion process gradually corrupts the input data through the forward
process with a fixed noise schedule a; € [0, T

P(Xt|Xo) ~ N(VarXo, (1 — a)I). 15)

where X is the original HOI sequence, X; represents its noisy version at timestep ¢ and &y =

H§=1 o This forward process progressively transforms the data distribution into a tractable Gaussian
distribution (0, 7).

Loss Function. Like VAEs, the diffusion model can be optimized by maximizing the ELBO:

log py(Xo|C) = 10g/p9(X0:T\C)dX1:T (16)
Po(Xo:7|C)p(X1:7| X0, C)
=lo dX;. 17
g/ p(X1.7|Xo, C) v 17
p@(XO:T|C) :l
= logE _ 18
& p(Xur|X0.©) L?(XLTXmC) (1%)

pg(XO:T|C)
2 Ep(Xl:T‘XO’C) |:10g m

By Simplification, Eq. [19|can be reduced to the following:

po(Xo.1|C) ol i (l—aw)? o 9
p(X1;T|XO7C) 20_t2 (1 _dt)2 ||X9(Xtat7c) _XO||2
(20)

(19)

arg maax Eq(Xl;TIXo,C) log

1—a,_ . . .. C epe
where 0, = 1ffzt L B;. After removing constant terms, we obtain the denoising loss in diffusion

models:

Lnoi_aitt (X0, C) = Exymp(X0), Xsmp(X:| Xo) t~[1,7] || X0 — Xo (X, 8, 03 (21)
We also introduce geometric loss, including distance map 10ss Lnoi_distance and relative orientation loss
Lioi_orient for physical plausibility. To enable classifier-free guidance, we randomly mask 10% of the
condition to train an unconditional model Xy (X4, ¢, (). Since the unconditional model captures the
natural HOI sequence, it is then utilized as a prior to generate seamless transitions between different
HOI sequences.

Sampling Process. During sampling, we employ classifier-free guidance to enhance alignment
with the conditioning input C. This approach demonstrates superior performance compared to using
only the conditional model Xy (X, t, C):

XQS(Xta t7 C) = XQ(Xtvtvw) +s- (Xe(Xta tv C) - X@(Xht? @)), (22)



where s > 1 controls the guidance strength. We generate samples through an iterative denoising
process using the reverse diffusion posterior:

q(X¢| Xi—1, Xo0)q(Xi—1|Xo)

p(Xt—1|X0;Xt) = Q(Xt|X0) (23)
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B.4 Loss-guided Physical Refinement

Loss guidance is a technique that minimizes the off-the-shelf loss function L(Xy,y) during the
sampling time:
min L(Xy, y)
Xo 27
s.t. Xo € M

where y is the conditioning input, M denotes the conditional data manifold that follows the con-
ditional distribution p(X(|C) learned by the diffusion model. In this work, we propose a novel
loss-guided sampling strategy that explicitly enforces physical constraints during the denoising
process to achieve more realistic hand-object interactions.

C Additional Experiments

C.1 Results on Extreme-Case: Completely Unseen Datasets

Result on H20. We further subject our model to extreme-case testing to stress its generalization
under the most challenging conditions. All objects and instructions in the H20 dataset are entirely
novel to models trained on GRAB and ARCTIC, making evaluation on H2O a particularly stringent
test of generalization. Despite this extreme distribution shift, our experiments demonstrate that the
proposed model nonetheless delivers robust and state-of-the-art performance (shown in Table [AT]).

Table Al: Unseen Results on H20. Training on GRAB / ARCTIC and evaluation on H20.

Method MPIPE| FOL| FIDJ Diversity— MModality

GT - - - 343 -
e MDM|[39] 95.1243.21  0.64+0.04 70.54+2.75 2.36+0.11  12.50+0.50
é TM2T[10] 90.454+4.50  0.68+0.03 65.47+3.20 2.51+£0.10  14.4540.60
T MotionGPT[16]  85.384+4.00 0.61+£0.02 60.124+2.80 2.73+0.13  15.9340.70
Text2HOI[2] 80.25+3.80  0.63+0.025 55.2342.50 1.90+0.14  17.004+0.80
Ours 75.78+4.68  0.52+0.49 51.33+3.41 3.07+0.27 18.15+1.48
O MDM|39] 105.32+5.00  0.804+0.04  75.894+3.50  1.90+0.09  11.274+0.35
= TM2T[10] 98.474+4.80  0.82+0.03  72.55+3.30 2.10+£0.10  13.05+0.45
O MotionGPT[16] 93.15+4.50  0.74+0.02  65.37+£3.00 2.304+0.11  12.96+0.55
% Text2HOI[2] 88.02+4.30 0.71£0.025 60.2842.80 1.50+0.12  14.78+0.65
Ours 81.36+5.77  0.63+0.12 55.78+3.62 2.69+0.43 15.44+1.48

C.2 Evaluation for physical realism

We supplemented our experiments by evaluating Physical Realism and IV metrics against the closest
baseline, Text2HOI (HOIGPT’s code is not publicly available) in[A2] and conducted ablation studies
on our Physical Refinement module in



Table A2: Comparison with Text2HOI

Method Physical realism 1 AR
Seen

Text2HOI 0.8740.03 11.74+1.22
Ours 0.93+0.02 9.254+0.73
Unseen

Text2HOI 0.7940.05 14.63+1.07
Ours 0.89+0.01 10.35+0.82

Table A3: Ablation Study on Physical Refinement

Method Physical realism 1 vy
Seen

w/o Physical Refinement 0.89+0.07 10.754+0.80
Ours 0.93+0.02 9.25+0.73
Unseen

w/o Physical Refinement 0.8440.03 12.27£0.48
Ours 0.89+0.01 10.35+£0.82

C.3 3D MLLM Fine-tuning

We fine-tune the MLLM on the Affordance dataset [[52] and the HOI dataset [38], |6]], We first perform
coarse-grained fine-tuning on the Affordance dataset to instill strong affordance priors, and then carry
out fine-grained tuning on the HOI dataset to produce our final model [43]]. The results shown in

Table. [A4]
Table A4: MLLM Coarse-to-Fine Affordance Tuning

Method AUC 1
w/o Fine-tuning 68.77
Coarse-grained tuning 84.65

Coarse-to-Fine Tuning (full model) 87.02

C.4 Sensitivity Analysis

We conducted a sensitivity analysis on the guidance rate, and the results are as follows(shown in
Table[A5]and Table[A6). Our experimental results demonstrate that the proposed model maintains
robust performance even under these challenging conditions.

C.5 Ablation Study on Multi <AFF>

The additional ablation study results are as follows

C.6 Ablation Study on Motion In-between Refinement

Motion In-between Metric. To the best of our knowledge, no previous work has defined an
evaluation metric for motion in-between hand-object interaction. We thus introduce a simple yet
effective measure, the “Smooth Rate,” to quantify the temporal continuity of interpolated motion
segments as follows,

dFID
SmoothRate = BT (28)

where dt is the derivative of time. The results are shown in Table [A8]and Table [A0]



Table AS: Guidance Rate on GRAB

Guidance Rate MPIPE] FOL| FID | Diversity - MModality 1
GT - - - 4.66 -
0.5 58.084+0.87 0.384+0.01 34.40+0.57 3.354+0.06 18.2140.31
g 2.0 51.86+0.62 0.294+0.03 27.45+1.13  3.63+0.02 23.354+0.46
& 2.5 47.64+1.03 0.26+0.02 26.43+0.77 3.69+0.27 24.5942.01
3.0 50.81+1.07 0.324+0.03 26.75+0.30  3.57+0.10 23.86+0.77
5.0 58.92+1.28 0.33+0.02 34.294+0.47  3.40+0.08 23.55+0.51
0.5 61.39+2.45 0.404+0.02 35.44+1.45 3.32+0.11 13.344-0.47
S 2.0 54.954+1.30 0.30+0.06 29.21+2.15 3.55+0.07 18.70+0.79
§ 2.5 51.344+0.85 0.274+0.01 28.294+0.62 3.61+0.09 19.91+0.63
=] 3.0 54.62+1.61 0.33£0.01 28.61+0.81 3.50+0.33 19.16+1.59
5.0 62.98+1.93 0.354+0.04 37.254+0.82 3.34+0.14 18.814+1.41
Table A6: Guidance Rate on ARCTIC
Guidance Rate MPIPE| FOL| FID | Diversity - MModality 1
GT - - - 3.39 -
0.5 52.23+1.06 0.404+0.01 31.05+1.56 1.97+0.19 12.77+0.45
5 2.0 46.044+1.19 0.284+0.03 20.98+2.30 2.62+0.04 14.96+0.61
& 2.5 45.15+0.94 0.25+0.04 19.74+0.16 2.65+0.03 15.254+-1.44
3.0 46.55+1.74 0.274+0.02 21.03+0.67  2.68+0.15 15.03£1.75
5.0 53.254+2.07 0.384+0.02 32.85+2.04 3.40+0.06 12.86+2.07
0.5 51.67+1.14 0.35+0.02 31.54+0.68 2.074+0.05 10.1840.26
g 2.0 47.70+0.88 0.304+0.02 20.81+2.12  2.46+0.07 12.36+0.89
§ 2.5 47.25+0.39 0.284-0.03 20.05+0.80 2.49-+0.08 12.66+-0.71
- 3.0 47.76+0.66 0.294+0.01 21.07£0.41 2.51+0.28 12.50+1.77
5.0 54.194+0.89 0.344+0.02 27.32+0.56 2.214+0.06 10.5340.69

To determine the most suitable window size [[1]] for the motion in-between algorithm, we conducted
the following comparative experimentfA10]

C.7 Visualization on Affordance

In this subsection, we present visualizations of open-world affordances on seen and unseen objects in

Fig.

C.8 Qualitative results Compare with SOTA

This section presents additional visual comparisons between our approach and existing state-of-the-art
(SOTA) methods.

Seen Objects. Qualitative results on seen objects in Fig. [A2]

Unseen Objects. Qualitative results on unseen objects in Fig.

C.9 Statistically Insignificant

For the ablation study, we performed paired two-sample t-tests, repeating each test five times and
reporting the mean p-value. As summarized in Table[ATT] the proposed method is significant at the
95% confidence level for the majority of metrics(P-value <0.05).



T want to listen to Jay Chou

Figure Al: Visualization on Affordance

¢ : I am thirsty, could you help me ?
{® : Of course, please use the bowl to drink some water with both hands.

Timestep —

-5+ ® ~ 0

Figure A2: Qualitative results on seen object




Table A7: Ablation on Affordance Configuration (Single vs. Multi)

Method MPIJPE | FOL | FID | Diversity = MDModality 1

Seen
Single <AFF> 52.05+0.82 0.33+£0.01 29.314+0.76  3.50+0.12 21.054+1.47
Multi <AFF>  47.64+1.03 0.26+0.02 26.43+-0.77  3.69+0.27 24.594-2.01

Unseen
Single <AFF> 56.48+1.06 0.39+0.02 34.154+1.08 3.40+0.22 17.03+1.25
Multi <AFF>  51.34+0.85 0.274-0.01 28.29+0.62 3.61+0.09 19.914-0.63

Table A8: Ablation Study of Motion In-between Results on GRAB

Setting Method SmoothRate |

w/o Motion In-between  38.18 4+ 6.75
Ours 2.98 +0.43

w/o Motion In-between  35.25 +4.91
Ours 3.70 £ 0.61

Seen

Unseen

D Code and Dataset

D.1 Code

We will release our code as soon as possible. GitHub is OpenHOI

D.2 Dataset

H2O0. This dataset contains 571,645 synchronized multi-view RGB-D frames captured with five
Kinect sensors in three indoor scenes. Each frame includes 3D poses for both hands, 6-DoF object
poses, and verb—noun action labels (36 classes). Split into training (344,645), validation (73,380), and
test (153,620) frames, H20 supports egocentric interaction recognition and manipulation benchmarks.

¢ : [ want to read that interesting story again!
: Reading a storybook is a great choice. Please cradle the volume with one hand on each

cover and bring it to a comfortable viewing angle and distance.
Timestep

Figure A3: Qualitative results on unseen object


https://github.com/Zhenhao-Zhang/OpenHOI

Table A9: Ablation Study of Motion In-between Results on ARCTIC

Setting Method SmoothRate |
Seen w/o Motion In-between  41.37 &+ 5.98
Ours 6.77 +£2.17
w/o Motion In-between  44.05 4+ 5.63
Unseen

Ours  6.04 +3.25

Table A10: Window Size Compare on GRAB
Size SmoothRate (Seen) | SmoothRate (Unseen) |

1 4.77+0.68 5.26 £+ 2.47
3 3.59+0.81 4.58 £ 1.05
5 2.98 +0.43 3.70 £ 0.61
10 3.24 £0.65 4.08 £ 0.82
20 3.30 £ 0.57 4.19+0.74

Dataset annotation. For both the GRAB [38]] and ARCTIC [|6] datasets, we preprocess the datasets
and annotate the semantics. After that, the object point clouds are first upsampled to gain accurate
affordance maps using our inference model while ensuring fine geometric details in the meantime. Our
model then processes the upsampled data to infer accurate affordance maps, which are subsequently
downsampled to match the original resolution for efficient computation.

We preprocess both datasets and get their semantic annotations. First, we upsample the object point
clouds to enhance geometric details and generate accurate affordance maps using our inference model.
The upsampled data is then processed to infer affordance maps, which are downsampled back to the
original resolution for computational efficiency.

To enhance the semantic alignment between language and interaction, we employ a large language
model (LLM) to refine the original hand-object interaction (HOI) descriptions. The LLM generates
high-level, natural language annotations that better capture the intent and dynamics of HOL.

E Discussion

E.1 Generalizability ability in HOI: Affordance as a key

Affordance is a powerful and explicit prior for interaction that can guide complex and fine-grained
HOI synthesis. Our model achieves strong generalization by using affordance as a middleware layer.

* Open-World Affordance Grounding: We first employ a coarse-to-fine tuning strategy to
equip the model with strong affordance reasoning capabilities, enabling it to generate
open-world affordance grounding. This enables the synthesis of realistic HOI sequences,
demonstrating strong template-free generalization capabilities.

 Affordance serves as a crucial condition: The open-world affordance grounding serves as a
crucial condition for the affordance-driven HOI Diffusion.We incorporate affordance not
only during training but also in the loss-guidance applied during inference.

» Affordance-based Refinement: we design an improved refinement strategy based on affor-
dance: for the interaction between the hand and the object, we optimize based on affordance
grounding rather than the conventional closest-surface-point approach.

* A Template-free Example: Our 3D MLLM has learned from a wide variety of cups, it
can still generate accurate affordance grounding for a completely unseen mug. Accurate
affordance grounding will guide the synthesis of realistic HOI sequences.



Table A11: Two-test Statistically Insignificant

Metric w/o Affordance w/o CFG  W/0 lpenetration W/0 Lagr

MPIPE (Seen) 3.1x10°° 20x107% 75x107% 2.6 x 1072
MPIPE (Unseen) 4.4 % 107° 12x107* 55x107* 2.6x107¢
FOL (Seen) 1.7x 1073 6.8x107° 1.7x107° 3.1x107°
FOL (Unseen) 2.2 x 1072 20%x1073 49x107%2 3.0x10°!
FID (Seen) 2.4 x107° 1.5x107% 1.0x1072 20x1073
FID (Unseen) 2.2x107° 87x107% 20x107* 25x10~*
Diversity (Seen) 1.5 x 1071 1.0x 107" 44x1072 14x107!
Diversity (Unseen) 1.8 x 1073 3.0x107% 46x1072 4.8x 1072
MModality (Seen) 2.6 x 10~* 25x1072 50x107% 1.1x1072

MModality (Unseen) 1.0 x 1073 47%x1072 22x1072 22x 1072

E.2 How to use 3D MLLM in Emboided AI: Choose Powerful Foundation Model and
Coarse-to-fine tuning

The 3D multimodal large model has been widely applied in HOI and embodied intelligence, and
it is very important to choose a basic model suitable for downstream tasks. In OpenHOI, we
chose ShapeLLLM as our base model, ShapeLLLM is a powerful 3D foundation model that performs
exceptionally well on multiple downstream tasks (e.g., Embodied Visual Grounding, Visual Question
Answering, and Scene Understanding), making it highly suitable for HOI tasks.After research, we
found that ShapeLLLM has the following advantages and disadvantages

Advantages: ShapeLLM is trained on a large amount of 3D embodied interaction data and achieves
state-of-the-art performance across various downstream tasks. It possesses strong priors in 3D
interaction and demonstrates impressive zero-shot 3D representation capabilities.

Disadvantages: Shapel.LM has not been trained on part-level object annotations, which limits its
reasoning capabilities for fine-grained object understanding.

In order to make the selected 3D base model as suitable as possible for our task, we need to use data
to fine tune the model. We adopt a coarse-to-fine tuning strategy: we first pre-train the model on an
object-centric affordance dataset to enable it to acquire strong affordance priors. Then, we fine-tune
the model on HOI datasets to better align the semantics with the target domain. This allows the model
to learn highly effective affordance representations.

E.3 Future of Work: Real-World Applications, about AR/VR and Robotics

OpenHOI can be extended to a wide range of future work in other fields. We have listed several
noteworthy areas and provided preliminary solutions for the challenges in future applications

Robotics Manipularion: OpenHOI can be integrated into real-world robotic manipulation sys-
tems, including industrial robot arms and service robots, to enable more flexible and human-like
interactions[48 |54, 55]).

* Open-World Affordance Grounding as Powerful Guidance for Robots: Leveraging Open-
HOTI’s 3D MLLM, our method performs open-world affordance grounding to facilitate the
identification of feasible grasping, pushing, and tool-use regions on novel objects, thereby
significantly improving success rates for pick-and-place, assembly, and tool-handling tasks.

* Realistic HOI sequences synthesis for Robot Manipulation: The HOI sequences generated
by OpenHOI can be adapted into robotic manipulation sequences. First, we can use an
extraction algorithm to obtain the object’s 6-DoF pose. Then, inverse kinematics are applied
to the wrist parameters to compute the robot arm’s pose. Finally, a retargeting algorithm
transfers the human hand motions onto various robotic hand configurations for manipulation.
This approach ensures smooth, precise, and robust manipulation behaviors in real-world
deployments.

10



Virtual Reality Vision: By synthesizing realistic 3D hand—object interaction sequences, OpenHOI
enables users to manipulate virtual objects naturally, for example, by picking up, twisting, or pouring
items, thereby enhancing immersion in training simulators, gaming, and virtual prototyping.

Challenges: Robotic manipulation tasks typically demand rapid inference. We plan to employ

DPM-Solver to accelerate the diffusion inference process, which is an important direction for our
future work[31]].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As stated in the abstract and introduction, this paper introduce the first Open-
World Hand-Object Interaction (HOI) Synthesis framework that can generate Long-horizon
HOI sequences of Unseen Objects from Open-vocabulary instruction with 3D Multimodal
Large Language Model.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The analysis of limitations is provided in Section 3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our work dose not include theoretical result.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: These details are provided in the Section[4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release the code once the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are provided in Section 4] and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviation in our experiment results (Table [2|and Table [3) shows
the statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
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error rates).
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the experiments?

Answer: [Yes]
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* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research conformed with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper primarily focuses on theoretical research in how to employ the
diffusion model in affordance learning, with no consideration of societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our experiment poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The implementation is cited properly in the Appendix
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not involve LLMs as any important, original, or non-standard compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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