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ABSTRACT

Low-light image enhancement poses a significant challenge due to the limited
information captured by image sensors in low-light environments. Despite recent
improvements in deep learning models, the lack of paired training datasets remains
a significant obstacle. Therefore, unsupervised methods have emerged as a promis-
ing solution. In this work, we focus on the strength of curve-adjustment-based
approaches to tackle unsupervised methods. The majority of existing unsupervised
curve-adjustment approaches iteratively estimate higher order curve parameters
to enhance the exposure of images while efficiently preserving the details of the
images. However, the convergence of the enhancement procedure cannot be guar-
anteed, leading to sensitivity to the number of iterations and limited performance.
To address this problem, we consider the iterative curve-adjustment update process
as a dynamic system and formulate it as a Neural Ordinary Differential Equations
(NODE) for the first time, and this allows us to learn a continuous dynamics of
the latent image. The strategy of utilizing NODE to leverage continuous dynamics
in iterative methods enhances unsupervised learning and aids in achieving better
convergence compared to discrete-space approaches. Consequently, we achieve
state-of-the-art performance in unsupervised low-light image enhancement across
various benchmark datasets.

1 INTRODUCTION

Images taken in various low-light environments suffer from insufficient light, leading to the capture
of limited information by the camera’s image sensor. Therefore, many studies have been conducted
to improve the quality of the low-light images and achieve images with optimal exposure levels. In
particular, recent supervision-based deep learning approaches (Wang et al., 2022b; Cai et al., 2023;
Hou et al., 2023) have shown remarkable performance in enhancing low-light images. However,
the process of collecting pairs of low-light scenes and their corresponding ground-truth images for
supervised learning is time consuming and resource intensive. As a result, unsupervised approaches
that rely solely on low-light images have been proposed to address this problem.

Among many unsupervised low-light image enhancement approaches, curve-adjustment-based meth-
ods, conventionally used in photo editing software (e.g., ., Photoshop), have received much attention.

(a)

Input Image ZeroDCE RetinexFormer CLODE (Ours)

(b)

Figure 1: (a) Quantitative Evaluation: The average PSNR values on the LSRW (Hai et al., 2023)
and LOL (Chen Wei, 2018), together with the respective parameter numbers for each model. (b)
Visual Comparisons with ZeroDCE (Guo et al., 2020) (unsupervised), RetinexFormer (Cai et al.,
2023) (supervised) and proposed CLODE (unsupervised).
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After the introduction of first learning-based curve-adjustment work by Yuan and Sun (Yuan & Sun,
2012), iterative curve-adjustment-based methods have been explored in various subsequent studies.
These unsupervised methods achieve enhancement without using the ground-truth images by fitting
the brightness values of pixels in the input image to specific curves. In addition, it is advantageous to
preserve local structural information adaptively by allowing efficient pixel-by-pixel computations. For
example, ZeroDCE (Guo et al., 2020; Li et al., 2021) introduced a fast and lightweight neural network
to predict pixel-wise curve parameter maps within a fixed iteration step. In addition, ReLLIE (Zhang
et al., 2021b) produced more accurate image enhancement results by using reinforcement learning
to predict the curve parameter map at each iteration step, with users able to adjust the number of
iterations.

In general, these curve-adjustment-based methods, which have fewer parameters, offer the advantage
of fast and efficient training and also demonstrate the effectiveness of using higher-order curves for
low-light image adjustment. However, conventional iterative approaches in discrete-space with fixed
update steps do not arrive at the optimal solution and cannot guarantee convergence of the optimization.
Therefore, we alleviate this problem in the discrete-space updating process of existing methods. In
doing so, we bring out the strengths of curve fitting methods by reformulating the iterative update
formula into ordinary differential equations. This allows the iterative approach to be transformed from
discrete-space to continuous-space and to find input-specific higher-order curves until convergence
within a specified tolerance. To be specific, we present the Neural Ordinary Differential Equations
(NODE) model for the low-light enhancement task for the first time. By solving the NODE problem
using conventional ODE solvers, we obtain better approximate solutions to the curve-adjustment
problem. The proposing method therefore produces more accurate results than conventional results
from iterative updates in discrete-space by exploring the continuous exposure dynamics. In this
work, we introduce Continuous exposure learning for Low-light image enhancement using neural
Ordinary Differential Equations (CLODE), which is the first dynamic system for low-light image
enhancement. Our main contributions can be summarized as follows:

• CLODE is the first approach to formulate the higher-order curve estimation problem as a
NODE problem, enabling effective and accurate solutions with standard ODE solvers.

• By transforming the discrete update formula into NODE, which is solvable in continuous-
space, we significantly enhance the unsupervised low-light image enhancement results across
various benchmark datasets as shown in Fig. 1. This effectively bridges the performance
gap between supervised and unsupervised approaches.

• CLODE also offers user controllability without altering the network architecture, enabling
users to manually adjust the desired level of exposure as needed.

2 RELATED WORKS

2.1 UNSUPERVISED LOW-LIGHT IMAGE ENHANCEMENT

Obtaining well-exposed ground-truth images paired with corresponding low-light images is inherently
challenging, which limits the use of supervised learning in low-light image enhancement. To address
this limitation, many unsupervised methods have been developed to tackle the problem. First, there
are some approaches (Liu et al., 2021; Ma et al., 2022; Zhao et al., 2021; Fu et al., 2023) that utilize
the principles of retinex-theory. Among them, PairLIE (Fu et al., 2023) utilizes retinex-theory to
identify the reflectance and illumination, and employs gamma correction with user-defined gamma
values to enhance the illumination. In addition, UDCN (Jiang et al., 2022) and HEP (Zhang et al.,
2021a) use histogram equalization results as a reference for exposure enhancement. Moreover, recent
approaches using GANs have shown remarkable improvements by additionally utilizing unpaired
images of normal exposed (Jiang et al., 2021b; Jin et al., 2022). Lastly, there are curve-adjustment-
based methods (Guo et al., 2020; Li et al., 2021; 2022; Zhang et al., 2021b) that transform images
through tone mapping. These methods have advanced the curve-fitting techniques from traditional
editing tools into deep learning-based approaches, enhancing images by predicting the fitting curves
pixel-by-pixel. By repeating the pixel-wise curve fitting and exposure enhancement for a fixed
number of iterations in discrete-space, these approaches aim to handle locally varying exposure levels
(i.e., ., single image with both underexposed and overexposed areas) in an unsupervised manner. Our
CLODE also follows this unsupervised curve-adjustment-based method and reformulates the curve-
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fitting problem into a neural ordinary differential equation (NODE). By solving the NODE problem
using conventional ODE solvers, we increase the accuracy of curve fitting and thus significantly
improve the performance of low-light image enhancement.

2.2 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

An ordinary differential equation (ODE) is a fundamental concept in mathematics that describes how
a function changes with respect to a single variable. It captures the relationship between a function
and its derivatives, providing a powerful tool for modeling dynamic systems, such as Newton’s
Second Law of Motion. To effectively apply the strength of ordinary differential equations to the
deep learning model, the concept of neural ordinary differential equations (NODE) is introduced
in (Chen et al., 2018). The use of NODE facilitates model definition and evaluation, highlighting its
effectiveness in parameter efficiency, adaptive computation, and modeling continuous data. In order
to effectively capture more complicated functions, the Augmented Neural ODE (ANODE) (Dupont
et al., 2019) has been introduced. Furthermore, for seamless continuous time-series modeling, Latent
ODE (Rubanova et al., 2019) is proposed and recently, ClimODE (Verma et al., 2023) proposed
a continuous-time NODE models for numerical weather prediction. To be specific, in the field
of computer vision, the Vid-ODE approach (Park et al., 2021) has been introduced to generate
continuous-time videos. NODEO (Wu et al., 2022b) has presented a versatile architecture tailored
for deformable image registration, and a temporal deformation model using the capabilities of
NODE has been developed in (Jiang et al., 2021a) to address the challenges associated with future
prediction tasks in the context of 4D reconstruction. With advantages like continuous-space modeling,
adaptive computation, and memory efficiency, NODE (Chen et al., 2018) is utilized in various deep
learning tasks. However, it has not been extensively explored in the field of image restoration. While
NODE-SR (Park & Kim, 2022) has been introduced to address the arbitrary scale super-resolution
problem, our methodology marks the first application in image exposure enhancement. In contrast
to NODE-SR (Park & Kim, 2022), which learns the continuous variation of the scaling factor for
the arbitrary scale super-resolution problem, our CLODE learns the continuous variation of image
exposure through curve-adjustment.

3 PROPOSED METHOD

3.1 PRELIMINARY

In photo editing applications, the curve-adjustment method is often used to adjust the tone of
input images and provides effective exposure control. While this method is useful for pixel-wise
manipulation, it is not well suited for images that contain areas of extreme over- or under-exposure.
Additionally, a notable drawback of this approach is its reliance on manual adjustments (e.g., ., the
number of updates) by the user for each input image. This can be time-consuming and potentially
less accurate in certain scenarios. To address this problem, Yuan and Sun (Yuan & Sun, 2012) have
proposed a solution that aims to mitigate the limitations of manual adjustments. They introduced
an automated approach that involves estimating an image-specific S-shaped nonlinear tone curve
(referred to as an S-curve) tailored to each input image. Specifically, for a given low-light image I0,
where each pixel value is in the range [0, 1], the S-curve formula for the enhanced image I

′

0 can be
represented as follows:

I
′

0 = I0 + ϕs · P∆(I0)− ϕh · P∆(1− I0), (1)

where ϕs and ϕh represent parameters for the amount of shadow and highlight, respectively. The
function P∆ serves as an increasing function for the adjustment that manipulates the intensity of
individual pixels within the input of the function.

While Eq.1 allows for adjusting the brightness of an entire image using a single global curve parameter,
existing iterative curve-adjustments approaches (Guo et al., 2020; Li et al., 2021; Zhang et al., 2021b;
Huang et al., 2023) operate on a pixel-wise basis of the input images. Furthermore, they introduce
the necessity of higher-order curves, which enhances images by fitting higher-order curves for fixed
iteration steps while using a deep learning model to predict curve parameters on a pixel-by-pixel
basis. Specifically the update formula enhances an image In at the n-th step to an image In+1 at the
next step as follows:

In+1 = In +An ⊗ In ⊗ (1− In), (2)

3
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Figure 2: (a) Illustration of continuous update procedure of CLODE. Optimal iterative update can
be achieved through the ODE equation. (b) Illustration of our ODEfunc fθ. ODEfunc contains the
Noise Removal (g), Curve Parameter Estimation (h) module, and Eq. 9 to obtain the derivative value.

where An ∈ RC×H×W represents a pixel-wise varying curve parameter map and C, H , and W
represent the number of channels, height, and width of the image In, and ⊗ operation denotes
element-wise multiplication. Note that, the elements of An corresponding to the curve parameters
at each pixel location are in the range [−1, 1] and determine the quadratic curve for the pixel-wise
exposure adjustment during the enhancement process. Conventional curve-adjustment methods (Guo
et al., 2020; Li et al., 2021; Zhang et al., 2021b; Li et al., 2022) iteratively follow this process for N
times, fitting an appropriate higher-order curve to produce the final well-exposed output image. On
the contrary, our CLODE performs curve adjustment for image enhancement by reformulating Eq. 2
as an ordinary differential equation. This approach facilitates memory-efficient training and yields
more accurate results through adaptive computation using modern ODE solvers.

3.2 CONTINUOUS EXPOSURE LEARNING FOR LOW-LIGHT IMAGE ENHANCEMENT USING
NEURAL ODES

Although conventional curve-adjustment-based iterative methods offer advantages in terms of
lightweight network architecture and local robustness, these approaches cannot guarantee con-
vergence of the update process. ZeroDCE (Guo et al., 2020) empirically determines the iteration
number N and enhances low-light images by iterating the curve-adjustment formula 8 (=N ) times.
While ReLLIE (Zhang et al., 2021b) provides users with optional flexibility, it requires manual
selection of the value of N for each input image to further improve image quality. To tackle this
challenge in optimization, we reformulate the curve-adjustment-based formula outlined in Eq. 2 as a
Neural Ordinary Differential Equations (NODE). Then, we can solve the NODE with conventional
ODE solvers (e.g., ., Euler, RK4, dopri5) which guarantees the convergence of loss within tolerances.
Specifically, we reformulate the original curve-adjustment-based formula by introducing a continuous
state t instead of using the discrete state n as follows:

It+1 = It + fθ(It, t), (3)

where fθ is a neural network with trainable parameters θ that satisfies fθ(It, t) = At ⊗ It ⊗ (1− It).
Then, we can parameterize the derivative of the enhanced image during the update using the network
fθ if the continuous update step is very small, and it is given by,

dIt
dt

= fθ(It, t). (4)

By transforming the original curve fitting problem into a NODE problem with an initial condition I0,
we can estimate not only the derivative value of each state but also recover the enhanced image by
solving the problem, and the initial value problem is given by,

4
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IT = I0 +

∫ T

0

fθ(It, t)dt, (5)

where IT denotes the well-exposed image at the final state T . Finally, the low-light image enhance-
ment process to output IT is accomplished by using the ODE solver as:

IT = ODE_Solver(I0, [0, T ], fθ), (6)

where ODE_Solver denotes a conventional algorithm for solving the ordinary differential equations.
In our experiments, CLODE adopts the well-known dopri5 (Dormand-Prince 5th order Runge-Kutta)
as an adaptive ODE solver, that determines an input-specific number of iterations for each input and
dynamically adjusts the step size. Using the adaptive solver, we can adaptively compute the optimal
state for different exposure levels, thereby enabling a more accurate approximation of the solution.
This is in contrast to conventional methods, which use the same fixed number of iterations for all
input images and cannot guarantee optimality and convergence. To the best of our knowledge, our
approach is the first to define the low-light image enhancement problem as a novel NODE problem
with an initial condition.

3.2.1 ODE FUNCTION (ODEFUNC)

We can solve the NODE problem in Eq. 5 by integrating fθ over the time interval [0, T ] with the given
initial value I0 (e.g., a low-light image). In practice, conventional ODE solvers are used to address
this problem, iteratively enhancing the low-light images using Eq. 3. In Fig. 2(a), we illustrate the
continuous update procedure of our CLODE approach. Notably, the ODE function (ODEfunc) fθ
computes continuous dynamics of the latent image and is a key element in the update procedure. The
detailed configuration of our ODEfunc fθ is shown in Fig. 2(b). To be specific, our ODEfunc includes
Noise Removal (g) and the Curve Parameter Estimation (h) modules with trainable parameters, and
outputs dIt

dt , the continuous dynamics of It. Please refer to Appendix A.1.2 for more details.

Noise Removal In the ODEfunc, we first employ a pre-processing step to eliminate the artifacts
from It and generate the denoised image Ĩt in order to produce more accurate curve adjustment
parameters At. To minimize computational costs within the fθ, we employ a simple and lightweight
three-layer convolutional neural network g as our Noise Removal module, expressed as follows:

Ĩt = g(It). (7)

The refined image Ĩt is then used as the input to the subsequent Curve Parameter Estimation stage.

Curve Parameter Estimation Inspired by (Yuan & Sun, 2012; Wang et al., 2022a), to enhance
both under- and over- exposed areas, we not only use the denoised image Ĩt and its inverted version
(1− Ĩt) as inputs to the Curve Parameter Estimation module. The formulation is given by:

At = h(Ĩt, 1− Ĩt), (8)

where At represents the curve parameter map at t, and h represents the Curve Parameter Estimation
module. For efficacy, this module is also a lightweight convolutional neural network. In particular,
we apply layer normalization (Ba et al., 2016) to all intermediate features. Notably, the use of layer
normalization enables CLODE to handle the diverse exposure ranges of input images. Furthermore,
all convolutional layers within the Curve Parameter Estimation module h take the continuous state
t as a conditional input, allowing for time-varying outputs during the integration interval [0, T ] as
in (Chen et al., 2018).

Continuous Dynamics Lastly, the derivative value of the one-step state at t is computed in our
ODEfunc, and it is expressed as follows:

dIt
dt

= At ⊗ It ⊗ (1− It). (9)

Notably, unlike conventional curve-adjustment-based update formulas that discretize update steps,
our continuous dynamics allows the desired level of accuracy and produces more accurate solutions.

5
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3.3 INFERENCE PROCESS OF CLODE

Inference Process Given a low-light input image I0, CLODE undergoes successive image enhance-
ment through fθ until convergence within the specified tolerance of the ODE solvers, resulting in a
well-exposed image IT . Note that, the output image IT may contain some noise that is amplified
during the image enhancement process. Therefore, we use the noise-free image ĨT as our final
outcome by applying the Noise Removal module g.

User Controllable Design CLODE learns the low-light exposure adjustment mechanism in the
continuous-space, and is trained to output IT by integrating the states from 0 to T in Eq. 5 using a
fixed T . However, as shown in Fig. 3, users can manually adjust the integration interval by changing
the final state value T at the test stage, allowing them to output images with the preferred exposure
level and even produce images darker than the input. In practice, by controlling the final state from
−(T +∆t) to (T +∆t), the exposure level of the output image can be easily controlled to provide a
more user-friendly exposure level.

𝑰𝟎 "𝑰𝑻"𝑰#𝑻 "𝑰$(𝑻$𝚫𝒕)"𝑰#(𝑻$𝚫𝒕)

……

Figure 3: Illustration of User Controllable Design. By manually changing the integration interval
from −(T +∆t) to +(T +∆t), ours can produce results with different exposure levels.

3.4 ZERO-REFERENCE LOSS FUNCTIONS

To address the challenge posed by the lack of ground truth, we use five zero-reference loss functions
for unsupervised training.

Spatial Consistency Loss While the given low-light input image I0 is enhanced during the update
procedure, maintaining spatial consistency in the pixel brightness order is crucial for preserving
image details. Specifically, we measure the difference in spatial consistency between the input image
I0 and our prediction IT by comparing the differences in neighboring pixel values. Similar to (Guo
et al., 2020), we compute the spatial consistency after applying 4-by-4 average pooling to both I0
and IT , and the spatial consistency loss Lspa is expressed as:

Lspa =
1

K

K∑
i=1

∑
j∈Ω(i)

(|m4(IT )i −m4(IT )j | − |m4(I0)i −m4(I0)j |)2. (10)

The 4-by-4 average pooling operation is denoted as m4(·) and Ω(i) includes neighboring pixels in
four directions (left, right, top, bottom) centered at position i. The normalization factor K denotes the
number of pixels in the reduced image after the pooling operation, and K is given by H

4 × W
4 × C.

Exposure Loss To enforce a consistent exposure level across pixels, conventional unsupervised
methods incorporate exposure guidance into the loss function (Guo et al., 2020). Similarly, we
introduce a desired exposure level parameter E and define the exposure loss Lexp as:

Lexp = ||m16(IT )− E||22. (11)

In our experiments, we set the exposure level E to 0.6, which corresponds to the gray level in the
RGB color space. To maintain the overall exposure level in the results, we minimize the difference
between the pixel values of the predicted image IT and the desired exposure level E after performing
a 16-by-16 average pooling operation m16(·) on the output image IT .

Color Constancy Loss In conventional zero-reference methods, two main approaches are used
to enforce spatial color constancy: one based on the retinex-theory, and the other based on the
Gray-World hypothesis in (Buchsbaum, 1980). In this work, the color constancy loss Lcol is based
on the Gray-World hypothesis as in (Guo et al., 2020; Zhang et al., 2021a), and the formulation is
given by,

Lcol = (R−B)2 + (R−G)2 + (G−B)2, (12)
where R, G, and B are the mean pixel values of the red, green, and blue channels in the predicted
image IT , respectively. We minimize the color constancy loss Lcol to correct the potential color
deviations in the enhanced image.

6
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Parameter Regularization Loss To prevent rapid changes of pixel values in nearby regions, we
employ the spatial regularization to enforce smoothness among neighboring curve parameter values
in At, and the formulation is given by,

Lparam = (|∇xA0|+ |∇yA0|)2 + . . .+ (|∇xAT−1|+ |∇yAT−1|)2, (13)
where the linear operations ∇x and ∇y compute the horizontal and vertical gradients from the
parameter map At, respectively. For better understanding, we represent T − 1 as the stage before
the final enhancement. We employ the parameter regularization loss at each update step (e.g., ., red
points in Fig. 2 (a)) and accumulate the loss while solving the NODE problem.

Noise Removal Loss To estimate a spatially smooth At regardless of the noise in the image It, we
use the Noise Removal module (g) to remove the noise. To train the Noise Removal module, we
utilize a self-supervision-based loss Lnoise that follows the Noise2Noise approaches (Lehtinen et al.,
2018; Huang et al., 2021; Mansour & Heckel, 2023). Specifically, we employ the loss introduced in
Zeroshot-N2N Mansour & Heckel (2023). Our Lnoise has two components at state t: the residual
loss Lt

res and the consistency loss Lt
cons. We minimize these losses using two different down-

samplers; D1 and D2. Notably, D1 and D2 represent fixed 2D convolutional kernels:
[
0.5 0
0 0.5

]
and[

0 0.5
0.5 0

]
, respectively. Notably, these kernels are used for downsampling through convolutions

with a stride of two. First, our Lt
res fits the noise within It through a symmetric loss function similar

to the approach in (Chen & He, 2021) and it yields:
Lt
res =

1

2
(||D1(It)− g(D1(It))−D2(It)||22 + ||D2(It)− g(D2(It))−D1(It)||22). (14)

Next, as in (Mansour & Heckel, 2023), Lt
cons ensures spatial consistency by maintaining similarity

in noise distributions, even if the order of denoising and downsampling is altered. Specifically, Lt
cons

also adopts a symmetric loss and is defined as at each update step (e.g., ., red points in Fig. 2 (a)):
Lt
cons =

1

2
(||D1(It)−g(D1(It))−D1(It−g(It))||22+ ||D2(It)−g(D2(It))−D2(It−g(It))||22).

(15)
Therefore, our final noise removal loss Lnoise can be represented accumulating during the update
procedure as:

Lnoise = (L0
res + L0

cons) + . . .+ (LT−1
res + LT−1

cons). (16)
As with Eq. 13, we represent T − 1 as the stage before the final enhancement. A more detailed
description of the noise removal loss is provided in Appendix A.5.

Final Objective Function The final objective function to optimize is given as follows:
Ltotal = wspa · Lspa + wexp · Lexp + wcol · Lcol + wparam · Lparam + wnoise · Lnoise, (17)

where wspa, wexp, wcol, wparam, and wnoise are hyper-parameters used to control the relative
significance of each associated loss during the training process.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Please refer to Appendix A.1 for more implementation details and training scheme. The code will be
available upon acceptance.

4.2 EXPERIMENTAL SETUP

In this work, we use the LOL (Chen Wei, 2018) and SICE (Cai et al., 2018) Part1 datasets for training.
The results of low-light image enhancement are evaluated on the LOL and LSRW (Hai et al., 2023)
benchmark datasets. In addition, the SICE (Cai et al., 2018) Part2 dataset is used as a benchmark
dataset for evaluation under various exposure conditions. SICE Part2 contains 229 image sequences
with different exposure levels, and we use the entire sequences as the evaluation dataset. By default,
each comparison model uses its official network weights. In cases where the official code is available
but weights are not provided, the models are retrained using the official code and settings, except
for ReLLIE (Zhang et al., 2021b). We present the performance of ReLLIE on the LOL dataset as
reported in their original manuscript.
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4.3 QUANTITATIVE COMPARISONS

First, we quantitatively compare the performance of low-light image enhancement on different
datasets. Notably, in the experimental results, CLODE represents our proposed method without
requiring additional user input (by default), while CLODE† represents the result of adjusting the final
state T to the user’s preferred level, as introduced in Sec. 3.3.

In Table 1, we compare the low-light image enhancement performance on the LSRW (Hai et al.,
2023) and LOL (Chen Wei, 2018) benchmark datasets in terms of peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM). The term "GT Mean" refers to the evaluation method used by
KinD (Zhang et al., 2019) and LLFlow (Wang et al., 2022b), which matches the average value of the
output pixels to that of the ground truth pixels. CLODE and CLODE† outperform other unsupervised
learning methods. Notably, CLODE† even surpasses the PSNR of state-of-the-art supervised learning
methods by 0.73 dB, when averaging the results from the LSRW and LOL datasets in the rightmost
columns, without using GT Mean. Moreover, two notable points can be highlighted in Table 1.
First, the effectiveness of using NODE to compute accurate higher order curves is evident, as
demonstrated by its superiority over curve-adjustment-based methods; ZeroDCE (Guo et al., 2020)
and ReLLIE (Zhang et al., 2021b). Second, unlike other models trained on the same training dataset
(LOL), our model shows robust performance on both the LSRW and LOL test datasets, indicating
that our model generalizes better than conventional approaches.

In Table 2, we demonstrate the robustness under various exposure conditions including both under-
and over- exposures, and evaluate the performance on SICE Part2 (Cai et al., 2018). The results
show that CLODE exhibits robust performance compared to other models, even under various
exposure conditions. It outperforms other unsupervised learning methods, and even when compared
to supervised learning methods, CLODE† and CLODE achieve the best and second best results,
respectively. Despite being an unsupervised method, CLODE narrows the performance gap with
state-of-the-art supervised methods. Additionally, it operates robustly under challenging conditions
such as various exposure conditions in SICE Part2, surpassing supervised approaches. These strengths
distinguish CLODE from other unsupervised learning methods.

Input Ground-TruthNight-Enhance [17] LLFlow [1] RetinexFormer [2] CLODE (Ours)SCI [11] ZeroDCE [6] PairLIE [13]

Figure 4: Visual comparisons. From top to bottom: LOL (Chen Wei, 2018), under- and over-exposed
image of the SICE (Cai et al., 2018) Part2. For more visual results, please refer to Fig. 13 in the
Appendix.

4.4 PERCEPTUAL AND VISUAL COMPARISONS

In Table 2, we also provide a perceptual comparison of the results with other methods. The evalua-
tion is conducted on SICE Part2, which includes a combination of underexposed and overexposed
images. To measure the perceptual quality, we adopt Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018), and non-reference metrics; natural image quality evaluator (NIQE) (Mit-
tal et al., 2012b), blind/referenceless image spatial quality evaluator (BRISQUE) (Mittal et al., 2012a),
perception index (PI) (Blau et al., 2018), and Entropy (Chen et al., 2019). In these four aspects, both
CLODE and CLODE† show outstanding performance compared to existing unsupervised methods.
The visual results are compared in Fig. 4. CLODE shows robust and natural image enhancement
results compared to other comparison methods, regardless of the exposure conditions of the input
image.
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Table 1: Quantitative results on LSRW (Hai et al., 2023) and LOL (Chen Wei, 2018) datasets.
For a fair comparison, we re-trained some models on LOL and marked them with *. Among
the unsupervised approaches, the best score is displayed in red, the second best in blue, and the
third best in black. For more comparison results in terms of non-reference metrics, please refer to
Appendix A.5.4.

Training Method #Params (M) Train dataset
LSRW LOL Average

Normal GT Mean Normal GT Mean Normal GT Mean
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Supervised

RetinexNet (Chen Wei, 2018) 0.4446 LOL 15.49 0.355 16.55 0.371 16.77 0.419 17.65 0.648 16.13 0.387 17.10 0.510
URetinexNet (Wu et al., 2022a) 0.3069 LOL, SICE 17.63 0.516 18.10 0.523 19.84 0.826 21.33 0.835 18.74 0.671 19.71 0.679
DRBN (Yang et al., 2021) 0.5556 LOL 16.15 0.542 17.68 0.548 16.29 0.617 19.55 0.746 16.22 0.580 18.62 0.647
KinD (Zhang et al., 2019) 8.0160 LOL 16.47 0.493 19.86 0.504 17.65 0.775 20.87 0.802 17.06 0.634 20.36 0.653
LLFlow (Wang et al., 2022b) 38.859 LOL 17.52 0.509 18.68 0.518 21.15 0.854 24.99 0.871 19.34 0.681 21.84 0.694
RetinexFormer (Cai et al., 2023) 1.6057 LOL 17.76 0.517 19.15 0.529 25.15 0.845 27.18 0.850 21.45 0.681 23.17 0.690

Unsupervised

SCI-easy (Ma et al., 2022) 0.0003 MIT-5K 11.79 0.317 16.97 0.426 9.58 0.369 18.55 0.501 10.69 0.343 17.76 0.464
SCI-medium (Ma et al., 2022) 0.0003 LOL, LSRW 15.24 0.424 17.84 0.439 14.78 0.521 19.11 0.504 15.01 0.473 18.47 0.472
SCI-difficult (Ma et al., 2022) 0.0003 DARKFace 15.16 0.408 18.04 0.424 13.81 0.526 19.64 0.510 14.48 0.467 18.84 0.467
SCI* (Ma et al., 2022) 0.0003 LOL 14.82 0.413 17.65 0.437 13.84 0.507 19.02 0.499 14.33 0.460 18.34 0.468
RUAS (Liu et al., 2021) 0.0034 LOL 14.27 0.470 17.10 0.509 16.41 0.500 18.65 0.520 15.34 0.485 17.88 0.514
ZeroDCE* (Guo et al., 2020) 0.0794 LOL 14.50 0.403 18.87 0.467 16.49 0.522 20.99 0.596 15.50 0.463 19.93 0.532
ReLLIE (Zhang et al., 2021b) - LOL - - - - 18.37 0.641 - - - - - -
PairLIE (Fu et al., 2023) 0.3417 LOL, SICE 16.97 0.498 18.82 0.523 19.51 0.736 23.10 0.752 18.24 0.617 20.96 0.637
Night-Enhancement (Jin et al., 2022) 67.011 LOL 14.24 0.472 19.19 0.554 21.52 0.763 24.25 0.781 17.88 0.618 21.72 0.668
CLODE 0.2167 LOL 17.28 0.533 20.60 0.557 19.61 0.718 23.16 0.752 18.44 0.625 21.88 0.655
CLODE † 0.2167 LOL 20.77 0.562 20.94 0.568 23.58 0.754 24.47 0.759 22.18 0.658 22.71 0.664

Table 2: Quantitative results on SICE (Cai et al., 2018) Part2. For a fair comparison, we re-trained
some models on SICE Part 1 and marked them with *. Within the unsupervised approaches, the best
score is displayed in red, the second in blue and the third in black.

Training Method Train dataset Normal GT Mean
PSNR↑ SSIM↑ LPIPS↓ NIQE↓ BRISQUE↓ PI↓ Entropy↑ PSNR↑ SSIM↑

Supervised

URetinexNet (Wu et al., 2022a) LOL, SICE 12.15 0.708 0.393 4.250 15.633 3.372 6.926 17.81 0.686
LLFlow* (Wang et al., 2022b) SICE 14.34 0.608 0.279 3.643 17.011 3.481 6.566 19.59 0.658
ECLNet (Huang et al., 2022b) SICE 13.99 0.562 0.290 4.279 24.570 3.520 6.919 16.66 0.690
FECNet (Huang et al., 2022a) SICE 14.25 0.600 0.291 3.786 17.454 3.025 7.035 16.47 0.639
RetinexFormer* (Cai et al., 2023) SICE 19.12 0.570 0.369 4.452 24.768 4.573 7.025 20.97 0.578
RetinexFormer (Cai et al., 2023) MIT-5K 13.23 0.564 0.263 3.848 17.350 2.863 6.881 16.35 0.609

Unsupervised

SCI-easy (Ma et al., 2022) MIT-5K 9.87 0.486 0.372 4.276 21.850 3.226 6.113 16.44 0.622
SCI-medium (Ma et al., 2022) LOL, LSRW 9.77 0.510 0.454 5.727 33.200 4.392 5.212 15.83 0.574
SCI-difficult (Ma et al., 2022) DarkFace 11.13 0.577 0.324 4.636 23.620 3.107 6.386 16.85 0.647
SCI* (Ma et al., 2022) SICE 10.67 0.478 0.331 4.289 23.449 3.570 6.213 17.99 0.675
RUAS* (Liu et al., 2021) SICE 9.12 0.408 0.539 8.097 52.923 6.004 5.101 15.52 0.531
ZeroDCE (Guo et al., 2020) SICE 12.67 0.635 0.244 3.886 21.630 2.821 6.516 18.85 0.686
PairLIE (Fu et al., 2023) LOL, SICE 13.39 0.619 0.305 5.268 36.536 3.548 6.376 19.22 0.663
Night-Enhancement* (Jin et al., 2022) SICE 13.18 0.581 0.360 4.728 33.883 4.133 6.661 19.43 0.660
CLODE SICE 15.01 0.687 0.239 4.050 18.663 3.005 7.006 19.64 0.706
CLODE† SICE 16.18 0.707 0.200 4.026 18.210 2.970 7.045 21.55 0.813

4.5 COMPARISON ON COLOR CASTS

CLODE enhances the image in an unsupervised manner based on the color statistics of the input
image, which can lead to color casts. Nevertheless, CLODE exhibits less color casts compared to
previous unsupervised methods.

In Table 3, we measure the degree of color casts between the output image and the ground-truth
image using the color-matching histogram loss (Afifi et al., 2021a), which is designed to control
the color of the input image by matching color histogram with the target image. Additionally, we
present the results of color correction performance in the LAB color space using ∆E2000 and ∆Eab,
well-established color metrics. For all metrics used in the evaluation, lower values indicate a closer
match to the colors of the ground-truth image. As shown in Table 3, CLODE using the NODE
scenario demonstrates superior performance in terms of naturalness, image quality metrics, and
color-matching histogram loss compared to existing methods. Moreover, the results of ∆E2000 and
∆Eab confirm that CLODE† achieves the best performance, and CLODE ranks second, implying
that our method leads to less color cast problem and offers superior enhancement effects.

Table 3: Quantitative comparisons on LOL (Chen Wei, 2018)/SICE (Cai et al., 2018) dataset.
Method NIQE↓ BRISQUE↓ color-matching histogram loss↓ ∆E2000↓ (Sharma et al., 2005) ∆Eab↓ (Sharma & Bala, 2017)

SCI-easy (Ma et al., 2022) 7.15/4.28 12.42/21.85 0.4860/0.4788 31.49/27.00 39.21/35.13
SCI-medium (Ma et al., 2022) 7.86/5.73 25.87/33.20 0.4530/0.4911 19.40/27.28 27.28/35.96
SCI-difficult (Ma et al., 2022) 8.06/4.64 26.82/23.62 0.3854/0.4872 21.06/24.02 26.09/31.05
RUAS (Liu et al., 2021) 6.30/8.10 11.98/52.92 0.4471/0.5100 16.80/29.18 29.18/38.83
Zero-DCE (Guo et al., 2020) 7.78/3.89 27.30/21.63 0.4485/0.4647 21.93/21.26 26.60/27.10
CLODE 4.52/4.05 8.22/18.66 0.4381/0.4606 12.73/17.04 15.71/22.39
CLODE† 4.25/4.03 8.81/18.21 0.3848/0.4462 9.21/14.46 11.86/19.32

4.6 ABLATION STUDY

Effectiveness of NODE To validate the impact of NODE, we compare curve adjustment in discrete
(w/o NODE) and continuous (w/ NODE) spaces using CLODE’s architecture, as shown in Table 4.
In the discrete setting, similar to (Guo et al., 2020), curve parameters are estimated in parallel for
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Table 4: Comparative experiments according to using
NODE on LSRW (Hai et al., 2023)/LOL (Chen Wei,
2018).The "Discrete" refers to performing curve ad-
justment in discrete steps, similar to the conventional
methods (Guo et al., 2020; Zhang et al., 2021b), and
"Continuous" refers to the reformulation of NODE.

Method Case Step (N ) PSNR↑ SSIM↑ BRISQUE↓

Discrete

(a1) 1 11.19/9.236 0.297/0.362 41.137/41.169
(b1) 5 16.12/17.47 0.419/0.716 31.421/33.042
(c1) 10 13.94/16.18 0.395/0.520 32.267/32.243
(d1) 20 12.95/14.94 0.373/0.506 33.537/34.941
(e1) 30 12.87/14.97 0.375/0.509 33.537/35.342

Continuous (f1) ≤ 30 (adaptive) 17.28/19.61 0.533/0.718 18.426/8.220

Discrete (w/o NODE)

Input output

Continuous (w/ NODE)

Input output

Figure 5: Trajectories of improvement for (e1)
and (f1) in Table 4. PCA dimension reduction
is used to visualize the trajectories.

Table 5: Impact of the modules in fθ. Noise
Removal and the layer normalization (LN)
significantly improve performance.

Case Noise Removal g LN in h PSNR↑ SSIM↑
(a2) 14.72 0.538
(b2) ✓ 15.19 0.489
(c2) ✓ 18.67 0.577
(d2) ✓ ✓ 19.61 0.718

Table 6: Execution time and performance.

Training Method PSNR/SSIM #Params (M) Time (S)

Supervised
RetinexNet (Chen Wei, 2018) 15.49/0.355 0.4446 0.337
LLFlow (Wang et al., 2022b) 17.52/0.509 38.859 0.144
RetinexFormer (Cai et al., 2023) 17.76/0.517 1.6057 0.072

Unsupervised

SCI-medium (Ma et al., 2022) 15.24/0.424 0.0003 0.001
RUAS (Liu et al., 2021) 14.27/0.470 0.0034 0.006
ZeroDCE (Guo et al., 2020) 15.81/0.449 0.0794 0.004
PairLIE (Fu et al., 2023) 16.97/0.498 0.3417 0.008
CLODE 17.28/0.533 0.2167 0.056
CLODE-S 16.97/0.457 0.0004 0.005

fixed steps [1, 5, 10, 20, 30] ((a1)–(e1)), while in the continuous setting, parameters are sequentially
estimated for adaptive steps, up to 30 ((f1)). Table 4 shows that the sequential continuous updates
produce more accurate parameters, demonstrating superior performance over the conventional discrete
approach. Additionally, Fig. 5 visualizes latent image trajectories during updates using PCA, revealing
that continuous adjustments ((f1)) converge more accurately than discrete updates ((e1)), highlighting
NODE’s contribution to image enhancement. For visualization result on each case and further detailed
explanation on NODE, please refer to Sec. A.1.1 and Fig. 6 of the Appendix.

Effect of the Modules In Table 5, we conduct ablation experiments on the modules used in
ODEfunc fθ. We verify the effects of the Noise Removal module g and the layer normalization
(LN) in the Curve Parameter Estimation module h. Each module shows performance improvements
compared to the baseline (a2). In particular, our final model (d2) achieves the largest performance
gain in terms of PSNR/SSIM. Furthermore, case (c2), which includes layer normalization, has about
a 4dB gain in PSNR compared to (a2), which does not include layer normalization. This shows
that during the image enhancement process in NODE, it is essential to use layer normalization to
normalize each state. The visual results can be seen in Fig. 9 of the Appendix.

5 LIMITATIONS

Table 6 presents the PSNR/SSIM performance, parameter count, and execution time measured on
LSRW (Hai et al., 2023) using an NVIDIA RTX 4090. CLODE demonstrates a size advantage over
supervised methods. While its iterative ODE solving takes longer than lightweight unsupervised
models, it achieves comparable speed and performance to supervised approaches. Additionally, a
smaller variant, CLODE-S (Appendix A.1.2), shows promising enhancement with inference times
similar to unsupervised models.

6 CONCLUSIONS

In this work, we address the unsupervised low-light image enhancement problem by reframing
discrete iterative curve-adjustment methods into a continuous space using Neural Ordinary Differ-
ential Equations (NODE). Our proposed CLODE method effectively overcomes the limitations of
existing approaches, demonstrating superior convergence and adaptability in diverse low-light and
multi-exposure scenarios. Additionally, CLODE introduces user-controllability, leveraging NODE’s
inherent flexibility to deliver customizable brightness adjustments. By incorporating a novel curve-
adjustment framework and offering enhanced interpretability, our method bridges the gap between
unsupervised and supervised approaches, representing a meaningful contribution to the field.
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A APPENDIX

A.1 IMPLEMENT DETAILS

The training set of images is resized to 128x128, we employ the Pytorch framework on NVIDIA
A6000 GPU with a batch size of 8. The ADAM optimizer is used with default parameters and a fixed
learning rate of 1e−5 to optimize the parameters of our network. The weights for the loss function
wcol, wparam, wspa, wexp and wnoise are set to 20, 200, 1, 10 and 1 respectively, to balance the scale
of losses. Furthermore, we adopt torchdiffeq (Chen, 2018) for Neural ODEs implementation. The
training process is conducted for 100 epochs.

A.1.1 IMPLEMENTATION DETAILS OF NODE

i𝑓 𝐸! ≤ Γ!,
𝑡ℎ𝑖𝑠 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.
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𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑖𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡ℎ𝑒 𝐸".
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𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒
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1)" 𝑠𝑡𝑎𝑡𝑒 5"* 𝑠𝑡𝑎𝑡𝑒 10"* 𝑠𝑡𝑎𝑡𝑒 20"* 𝑠𝑡𝑎𝑡𝑒 30"* 𝑠𝑡𝑎𝑡𝑒

(a1)

(b1)

(c1)

(d1)

(e1)

dopri5

Euler

Figure 6: Further analysis of CLODE and previous discrete methods as described in Table 4 of main
manuscript.

As mentioned in NODE (Chen et al., 2018), ODE reformulation provides benefits such as continuous
space estimation, memory efficiency, and accurate problem-solving with ODE solvers. In Fig. 6, we
describe additional analysis of CLODE. The top of Fig. 6 shows discrete trajectories of models (a1) to
(e1) from Table 4, while the bottom shows CLODE trajectories with Euler and dopri5 (corresponding
to Table 4. (f1)) solvers. (Top) Discrete methods (a1) to (e1) enhance images but don’t achieve optimal
exposure. (Bottom) CLODE (dopri5) provides more realistic image enhancement in continuous
space.

Additionally, the early stop mechanism of the adaptive solver is explained at the bottom of Fig. 6.
CLODE (dopri5) uses an early stop mechanism. It tracks error at each state, terminating when the
error is within allowable error rate. For dopri5, k-order solutions (k=5) are used to calculate error
(Γt) as follows:

Γt = atol + rtol × norm(|OK
t −OK−1

t |), (18)

where the k-order solution at time t is denoted as OK and the (k − 1)-order solution is denoted as
OK−1

t . atol is absolute tolerance, and rtol is relative tolerate, and the norm being used is a mixed
L-infinity/RMS norm.

If |OK
t −OK−1

t | > Γt the step size is re-adjusted, or it’s within Γt, the solution is deemed optimal,
and the process terminates. ODE solvers are designed to find optimal solutions through iterative
steps. The top part of Fig. 6 shows that discrete methods can’t guarantee optimal solutions, which
led us to develop the NODE method for continuous ODE problems. Thus, improvements are due
more to NODE reformulation than to iteration count. Table 4 shows that NODE outperforms simple
discrete repetition. For example, using the Euler method in 30 steps achieves better performance than
method (The visual result in Fig. 6 (e1) is inferior to CLODE with Euler applied.). We chose dopri5
(Dormand-Prince Runge-Kutta of Order 5) as CLODE’s default solver for its stability and reliability
across platforms like MATLAB. The maximum allowed step for the adaptive solver is set to 30. In
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Eq. 18, the relative and absolute tolerances for the error rate calculation are set uniformly to 1e−5.
We set both atol and rtol to 1e-5.

A.1.2 DETAILS OF THE CLODE ARCHITECTURE

This section presents the architectural details of the CLODE network architecture, with a particular
focus on the ODEfunc module. The Noise Removal module g employs a simple and lightweight
three-layer convolutional network. In Curve Parameter Estimation module h, a shallow network
with two branches is utilized, wherein filters of varying sizes are employed at each branch to capture
image features across different filter scales. We also provide architectural details of CLODE-S as
mentioned in Sec. 5 of the main manuscript. This version omits the Noise Removal module for speed
and uses a 2-layer network with 1x1 convolutions.

𝐼! = 𝐼" +	%
"

!
𝑓# 𝐼$ , 𝑡 𝑑𝑡 𝐼!𝐼"
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Eq. 5

Figure 7: Illustration of architecture details of (a) modules of ODEfunc in CLODE and (b) ODEfunc
of CLODE-S.

A.2 IMPACT OF EACH LOSS FUNCTIONS

(d3) w/o ℒ𝒔𝒑𝒂Input (b3) w/o ℒ𝒄𝒐𝒍(a3) w/o ℒ𝒆𝒙𝒑 (c3) w/o ℒ𝒑𝒂𝒓𝒂𝒎 (e3) ℒ𝒆𝒙𝒑 + ℒ𝒄𝒐𝒍 + ℒ𝒑𝒂𝒓𝒂𝒎 + ℒ𝒔𝒑𝒂 

Input (e3) w/o ℒ𝒏𝒐𝒊𝒔𝒆 (f3) CLODE

Figure 8: Visual results for the ablation study of each loss function. CLODE combines five non-
reference loss functions in training for producing optimal enhancement results.

CLODE combines five non-reference loss functions to train NODE, producing optimal improvements.
We present ablation experiments for each loss function, and the results are presented in Table 7 and
Fig. 8. The results of each image ablation experiment demonstrate that appropriate improvement
results can only be obtained when using CLODE with all loss functions. The characteristics of the
loss function as observed in each ablation are as follows: ((a3) w/o Lexp): Brightness improvement
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Table 7: Ablation study on each non-reference losses. The experiment is evaluated on LOL (Chen Wei,
2018).

Case Lspa Lexp Lcol Lparam Lnoise PSNR SSIM

(a3) ✓ ✓ ✓ 8.84 0.323
(b3) ✓ ✓ ✓ 14.72 0.566
(c3) ✓ ✓ ✓ 14.76 0.535
(d3) ✓ ✓ ✓ 18.76 0.580
(e3) ✓ ✓ ✓ ✓ 18.92 0.582
(f3) ✓ ✓ ✓ ✓ ✓ 19.61 0.718

is not achieved in low-exposure enhancement. ((b3) w/o Lcol): Severe color distortion occurs in
over-exposure enhancement, damaging structural details. ((c3) w/o Lparam): Structural distortion
occurs, creating artifacts. ((d3) w/o Lspa): While showing better results than other experiments, it
occurs loss of structural details compared to (e3). ((e3) w/o LNoise): Compared to the proposed
version (f3), it produces improved results with noise present.

A.3 VISUALIZATION OF CURVE PARAMETER MAP A

We provide visual comparison results for the module ablation experiments in Sec. 4.6 of the main
manuscript. In the visual results without noise removal module (c2), we can observe the noise in
A. The enhanced result of (c2) using A with noise shows overall color discrepancy compared to
the ground-truth, in contrast to the enhanced result of (d2) where the noise removal module are
applied. The enhanced result of (d2) shows robust color similarity with the ground-truth image. We
can confirm that removing noise for A is important for curve-adjustment-based method.

Input Ground-Truth(d2) 𝒜(c2) 𝒜 (c2) enhanced (d2) enhanced

Figure 9: A visual comparison of the results for (c2) and (d2) from Table 5 in the main manuscript.
The enhanced result (d2) using A with noise removal module demonstrates improvement more similar
to the ground-truth.

A.4 CLODE STEP STATISTICS ACROSS EXPOSURE CONDITIONS.

In CLODE, the maximum allowable step for the ODE solver is empirically set to 30, considering
speed. The ODE solver terminates early if it finds the optimal solution within the maximum steps.
Furthermore, in order to provide the statistical analysis, the average number of steps for the ODE
solver was calculated across the SICE, BSD100, DIV2K, and LOL datasets. The SICE dataset
comprises five to seven images per sample, with exposure levels ranging from under-exposed to
over-exposed. Additionally, BSD100 and DIV2K were used to provide additional statistics for
normal-exposed conditions. The results based on the exposure conditions are in Table 8.

Table 8: Step Statistics across exposure conditions
Condition SICE BSD100, DIV2K LOL

Under-exposed 13.716 - 21.120
Normal-exposed 20.754 28.210 26.400
Over-exposed 18.906 - -

The number of calculation steps increases in the order of under-exposed, over-exposed, and normal-
exposed images. This is because improving a normal-exposed image is considered a stiff problem.
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For normal-exposed images, where minimal improvement is required, the dynamics are more stiff
than for other images. Specifically, for dynamically stiff ODE problems, the step size taken by the
solver is forced down to a small level even in a region where the solution curve is smooth, and these
decreased step sizes may require more evaluation steps.

For clearer comprehension, we present additional graph results in Fig. 10 (Left). In the inference time,
CLODE aims to find the optimal solution by minimizing the loss functions, so In Fig. 10, the y-axis
represents the non-reference loss value, while the x-axis represents time, with each point indicating a
step. The dopri5 solver, which we primarily use, is a non-stiff solver. Although a stiff solver (e.g.,
ode15s) could potentially reduce the number of inference steps for normally exposed images, it proves
inefficient for improving under- or over-exposed images, which are closer to non-stiff problems.
Future research may explore dynamically adaptive ODE solver algorithms that adjust based on input
image conditions by this observation.

Input Zero-DCE CLODE

Figure 10: (Left) The trajectory of loss changes over time. (Right) Comparison of enhancement
results for normal-exposed inputs.

A.5 BACKGROUND OF NOISE REMOVAL LOSS

In Sec.3.4 we provide information about the zero-reference loss functions that we used. Unlike the
others, the Noise Removal Loss (Lnoise) requires more explanation due to its unfamiliarity in the
field of low-light enhancement, so we provide additional explanation for it.

A.5.1 NOISE2NOISE BACKGROUND

In supervised denoising studies, neural networks are aimed at denoising the noisy image y to the
clean image x. Since the noisy y is an addition of the clean image x and the noise e, the network is
trained to map the noise e which is called Noise2Clean (N2C) method. If the network parameter is
ϕN2C , the object function of the supervised denoising method with the network gϕ can be written as:

ϕN2C = argmin
ϕ

E
[
||gϕ(y)− x||22

]
. (19)

Denoising networks can also be trained to output the noisy image y2 from the noisy input image y1
that comes from the same clean image x. This noise-to-noise manner can be achieved by assuming
that the noise has a mean of zero as introduced in Noise2Noise (N2N) Lehtinen et al. (2018). This is
the objective function for the N2N network parameter ϕN2N :

ϕN2N = argmin
ϕ

E
[
||gϕ(y2)− y1||22

]
. (20)

The N2N manner shows close performance compare to N2C manner with sufficient training data since
the objective functions of N2C and N2N are aimed on the same network parameter. If ya = x + ea,
yb = x + eb, and the mean value of ea and eb are zero, the proof is as follows:
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ϕN2C =argmin
ϕ

E
[
||gϕ(y2)− x||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2) + ||x||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)

]
ϕN2N =argmin

ϕ
E
[
||gϕ(y2)− y1||22

]
=argmin

ϕ
E
[
||gϕ(y2)− (x + e1)||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)− 2e⊺2gϕ(y2) + ||x + e1||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)− 2e⊺2gϕ(y2)

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)

]
.

(21)

By Eq. 21 we can confirm that the object of ϕN2C and ϕN2N is the identical one.

A.5.2 ZEROSHOT NOISE2NOISE METHOD

In spite of N2N approaches, it is hard to obtain two different noisy images from the same clean
scene. To address this hurdle, the Neighbor2Neighbor (Huang et al., 2021) method is proposed. This
allows a pair of noisy images to be augmented from a single noisy image coming from the same
clean image. In Zeroshot-N2N (Mansour & Heckel, 2023), which is adopted in our proposed method,
Neighbor2Neighbor is achieved by using two different 2D convolutional kernels (D1 and D2) on
noisy images. If the noisy image is y, a pair of down-sampled images y1, y2 can be represented as:

y1 = D1(y), y2 = D2(y). (22)

For a noisy image y with a size of H × W × C, the size of y1 and y2 is H
2 × W

2 × C. With
downsampled images y1 and y2, the loss optimizes gϕ to fit the noise as:

argmin
ϕ

||gϕ(y1)− y2||22. (23)

Zeroshot-N2N (Mansour & Heckel, 2023) emphasizes that residual learning, a symmetry loss, and an
additional coherence-enhancing term are critical for good performance. Zeroshot-N2N proposes two
different loss functions, the residual loss Lres and the consistency loss Lcons. First, the residual loss
optimizes the network gϕ to fit the noise instead of image. The loss then becomes as:

argmin
ϕ

||y1 − gϕ(y1)− y2||22. (24)

To fit the noise in y1 and y2 both, a symmetric loss Chen & He (2021) is applied as:

Lres(ϕ) =
1

2

(
||y1 − gϕ(y1)− y2||22 + ||y2 − gϕ(y2)− y1||22

)
. (25)

Second, the method constrain consistency by making denoised output of the downsampled image and
downsampled result of the denoised image like:

argmin
ϕ

||y1 − gϕ(y1)−D1(y1 − gϕ(y1))||22. (26)

Same as Eq. 25, with the adoption of a symmetric manner, the consistency loss is represented as:

Lcons(ϕ) =
1

2

(
||y1 − gϕ(y1)−D1(y1 − gϕ(y1))||22 + ||y2 − gϕ(y2)−D2(y2 − gϕ(y2))||22

)
. (27)
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The noise removal loss function Lnoise in Zeroshot-N2N becomes the sum of Eq. 25 and Eq. 27,
expressed as:

Lnoise = Lres + Lcons. (28)

A.5.3 MORE STUDIES ON THE EFFECTIVENESS OF DENOISER

Since NODEs rely on simulation-based training, as the denoiser (Noise Removal module) becomes
more complex, it requires more time for training. To mitigate this, we utilize a lightweight 3-layer
network (0.085MB) as the denoiser in CLODE. Although the Noise Removal module has fewer
parameters, it performs a critical task. It learns to denoise the image at each step (Eq. 16), integrating
with the image enhancement process and assisting in predicting fine-grained curve parameter maps at
every step.

We train the denoiser concurrently with the image enhancement process to maximize the module’s
effectiveness. To demonstrate this, we compared three different scenarios: Pre-denoising, CLODE,
and Post-denoising. For clarity, ‘Pre-denoising’ refers to training the denoiser only on the input
image, while ‘Post-denoising’ involves training the denoiser solely on the enhanced image. CLODE
outperforms the other approaches, suggesting that it is the optimal scenario among the three (Table 9).

Table 9: Results of denoising ablations.
Method PSNR↑ SSIM↑

Pre - denoising 19.38 0.661
CLODE 19.61 0.718
Post - denoising 19.16 0.659

The reason for these results is that low-light images have low pixel values, which provide insufficient
information for effective denoising. After enhancement, the original noise becomes entangled with
the image content. Therefore, we believe that continuous denoising is crucial for effective low-light
correction, as noise tends to be amplified with successive exposure enhancements.

Using existing methods We observe performance improvements by utilizing existing denoisers to
obtain ĨT . For our experiments, we employed DnCNN (Zhang et al., 2017) and Restormer (Zamir
et al., 2022) as denoisers. Quantitatively, as shown in Table 10, Restormer provided a 0.66 gain in
SSIM, while DnCNN achieved a 0.1dB gain in PSNR. We also obtained visually superior results, as
illustrated in Fig. 11.

Table 10: Quantitative Results of existing denoising methods.
Method #params (M) PSNR SSIM LPIPS

CLODE 0.2167 19.61 0.718 0.263
CLODE + DnCNN 0.8629 19.71 0.774 0.199
CLODE + Restormer 26.306 19.69 0.784 0.228

Input CLODE + DnCNN CLODE + RestormerCLODE

Figure 11: Visual results with conventional denoising methods.

A.5.4 MORE QUANTITATIVE RESULTS

We present the comparison results for non-reference metrics, which we did not include in Table 1.
Table 11 demonstrates that CLODE outperforms other unsupervised methods in terms of perceptual
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quality. Notably, it demonstrates competitive results in terms of BRISQUE and PI, even when
compared to state-of-the-art supervised methods. Additionally, in Table 12, we provide LPIPS
(Learned Perceptual Image Patch Similarity) (Zhang et al., 2018) performance results. CLODE
exhibits superior average LPIPS performance compared to other methods. Moreover, performances
on non reference metric for unpaired low-light datasets (DICM (Lee et al., 2013), MEF (Ma et al.,
2015), LIME (Guo et al., 2016), NPE (Wang et al., 2013), and VV (Vonikakis et al., 2018)) are
provided in Table 13.

Table 11: Comparison results on LSRW (Hai et al., 2023) and LOL (Chen Wei, 2018) in terms of
NIQE (Mittal et al., 2012b), BRISQUE (Mittal et al., 2012a), PI (Blau et al., 2018) and Entropy (Chen
et al., 2019). Within the unsupervised approaches, the best score is displayed in Red. CLODE
performs better than all other methods, including supervised methods, in terms of PI (Perceptual
Index).

Training Method LSRW LOL
NIQE↓ BRISQUE↓ PI↓ Entropy↑ NIQE↓ BRISQUE↓ PI↓ Entropy↑

Supervised

Afifi et al. (Afifi et al., 2021b) 6.655 46.645 6.470 7.065 4.966 33.546 5.741 7.173
RetinexNet (Chen Wei, 2018) - - - - 8.871 51.813 4.955 6.835
URetinexNet (Wu et al., 2022a) 4.154 23.614 3.495 6.762 4.250 15.633 3.372 6.926
LLFlow (Wang et al., 2022b) 3.756 26.671 3.176 7.369 5.709 35.022 4.530 7.141
RetinexFormer (Cai et al., 2023) 3.549 15.951 3.208 7.131 3.478 17.101 3.102 7.074

Unsupervised

SCI-easy (Ma et al., 2022) 3.847 25.859 3.259 6.388 7.153 12.424 5.437 5.825
SCI-medium (Ma et al., 2022) 3.917 22.416 3.159 6.494 7.861 25.870 4.583 6.842
SCI-difficult (Ma et al., 2022) 4.368 20.692 3.851 5.975 8.060 26.823 4.664 6.675
RUAS (Liu et al., 2021) 5.426 38.854 4.939 6.442 6.303 11.977 4.571 7.194
ZeroDCE (Guo et al., 2020) 3.776 23.867 3.156 6.526 7.777 27.301 4.459 6.608
Night-Enhancement (Jin et al., 2022) 7.208 51.356 6.801 6.544 4.491 27.122 4.436 7.139
PairLIE (Fu et al., 2023) 3.684 29.816 3.426 6.923 4.083 20.592 3.052 6.823
CLODE 3.827 18.426 3.115 7.025 4.516 8.220 2.914 7.053

Table 12: Quantitative results in terms of LPIPS (Zhang et al., 2018). The best average result displays
in Red.

Dataset URetinexNet RetinexFormer SCI RUAS ZeroDCE NightEnhancement PairLIE CLODE
LSRW 0.308 0.315 0.398 0.469 0.317 0.583 0.342 0.331
LOL 0.121 0.131 0.358 0.270 0.335 0.241 0.248 0.263
SICE 0.264 0.263 0.486 0.608 0.239 0.360 0.305 0.235
MSEC 0.393 0.362 0.396 0.668 0.329 0.462 0.431 0.223

Average 0.272 0.268 0.410 0.504 0.305 0.412 0.332 0.263

Table 13: Comparison results on DICM, MEF, LIME, NPE, and VV in terms of NIQE (Mittal et al.,
2012b), BRISQUE (Mittal et al., 2012a), NIMA (Talebi & Milanfar, 2018) and Entropy (Chen et al.,
2019). Within the unsupervised approaches, the best score is displayed in Red. CLODE generally
performs better than all other methods except BRISQUE in DICM, NIMA in LIME, and Entropy in
VV.

Method DICM MEF LIME NPE VV
NIQE↓ BRISQUE↓ NIMA↑ Entropy↑ NIQE↓ BRISQUE↓ NIMA↑ Entropy↑ NIQE↓ BRISQUE↓ NIMA↑ Entropy↑ NIQE↓ BRISQUE↓ NIMA↑ Entropy↑ NIQE↓ BRISQUE↓ NIMA↑ Entropy↑

SCI-easy 3.902 19.83 4.557 6.709 3.655 13.42 5.150 6.716 4.118 16.39 4.737 6.748 4.022 14.23 4.622 7.221 2.903 18.93 3.990 6.943
SCI-medium 4.129 20.97 4.430 6.059 3.619 14.63 5.016 6.934 4.211 20.27 4.566 7.170 4.321 27.42 4.367 6.547 2.818 21.02 3.900 6.601
SCI-difficult 4.031 20.26 4.415 6.794 3.664 13.81 4.959 7.098 4.097 16.82 4.446 7.162 4.166 16.49 4.141 7.317 2.903 18.64 3.990 7.212
RUAS 7.153 47.01 4.178 4.413 5.408 34.59 4.732 6.248 5.420 29.58 4.391 6.896 7.063 49.83 4.171 4.559 5.230 51.07 4.015 5.191
ZeroDCE 3.741 22.79 4.563 6.899 3.310 16.22 5.190 7.002 3.786 17.73 4.597 6.967 3.946 15.53 4.698 7.427 2.585 20.98 3.849 7.285
ZeroIG 3.980 26.81 4.559 6.376 3.764 16.47 4.988 6.965 4.441 19.99 4.529 7.155 4.662 28.37 4.351 7.060 2.779 23.07 4.124 6.945
PairLIE 4.297 29.37 4.360 6.925 4.203 29.81 4.702 7.183 4.547 25.26 4.389 7.082 4.238 25.90 4.509 7.286 3.295 33.82 4.100 7.324
CLODE 3.628 20.30 4.778 7.116 3.286 12.78 5.287 7.383 3.650 16.26 4.510 7.333 3.888 13.72 4.738 7.488 2.770 18.51 4.133 7.296

A.5.5 COMPARISON WITH OTHER ITERATIVE METHODS

Fig. 12 shows the changes in performance over steps of each curve-adjustment-based method. Each
comparison method is retrained for 10 steps in the official code provided by the author. To fix the
number of steps in CLODE to 10, we replace CLODE’s ODE solver with the Euler method, and
referred to it as CLODE-Euler. The results show that even within the same number of steps, CLODE-
Euler performs better than other curve adjustment-based methods. Furthermore, the proposed version,
CLODE, demonstrates higher performance compared to other methods in most iterative steps. In
case of ReLLIE (Zhang et al., 2021b), it exhibits a decline in performance after 7 steps, emphasizing
the need for careful selection of the number of iterative steps itself to achieve optimal result, this
makes the method impractical to use.
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Figure 12: Changes in PSNR (Peak Signal-to-Noise Ratio) over steps of CLODE, CLODE-Euler,
ReLLIE (Zhang et al., 2021b), ZeroDCE++ (Li et al., 2021), and ZeroDCE (Guo et al., 2020). As
CLODE employs a continuous adaptive step according to the input image, we represent the steps by
scaling them from 0 to 1. CLODE demonstrates superior performance compared to other methods at
almost every step.

A.6 MORE VISUAL RESULTS

We show additional results for CLODE enhancement that we did not show in the main manuscript
due to lack of space. We present additional visual comparison results for PairLIE (Fu et al., 2023)
and Night-Enhancement (Jin et al., 2022), which demonstrated the best quantitative performance
among the unsupervised methods in Table 1 of the main manuscript, except for our proposed method
(CLODE), in Fig. 13. CLODE shows the most robust enhancement results across various image
exposure conditions.

Fig. 14, Fig. 15, Fig. 16 and Fig. 17 show the results for CLODE and CLODE† on LOL (Chen Wei,
2018) and SICE (Cai et al., 2018) validation dataset. Additionally, Fig. 18 shows the visual results
with different exposures for photos extracted from MSEC (Afifi et al., 2021b) and the internet (Filckr:
CC BY-NC 2.0).

Input (b) CLODE(a)

Figure 13: Comparative visualization results with (a) PairLIE (Fu et al., 2023) and (b) night-
enhancement (Jin et al., 2022) on LOL (Chen Wei, 2018) and SICE (Cai et al., 2018). Images are
taken from LSRW (Hai et al., 2023) and SICE (Cai et al., 2018) Part2.

A.7 TRAINING DYNAMICS: LOSS AND METRIC CURVES
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Ground-TruthCLODEInput CLODE†

Figure 14: Visualization results on LOL (Chen Wei, 2018). While CLODE demonstrates superior
enhancement results, user control with CLODE† produces images that more closely resemble the
ground-truth image.

We provide the loss curves and metrics (PSNR↑, SSIM↑) curves for training dynamics in Fig. 19, 20
and 21. NODE-based training is highly sensitive, and using an excessively high learning rate can lead
to failure during the initial training phase. Empirically, we set the learning rate to 1 × 10−5, both
the loss curve and performance metrics remain stable throughout the training process. In Fig. 19,
although the reductions in Lcol and Lexp are minimal, they serve as constraints and successfully
converge during training. Details regarding the ablation study on the loss functions can be found in
Appendix Sec. A.2, with the results presented in Fig. 8 and Table 7.
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Ground-TruthCLODEInput CLODE†

Figure 15: Visualization results on LOL (Chen Wei, 2018) and SICE (Cai et al., 2018). While
CLODE demonstrates superior enhancement results, user control with CLODE† produces images
that more closely resemble the ground-truth image.
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Ground-TruthInput CLODE CLODE†

Figure 16: Visualization results on SICE (Cai et al., 2018). While CLODE demonstrates superior
enhancement results, user control with CLODE† produces images that more closely resemble the
ground-truth image.
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Ground-TruthInput CLODE CLODE†

Figure 17: Visualization results on SICE (Cai et al., 2018). While CLODE demonstrates superior
enhancement results, user control with CLODE† produces images that more closely resemble the
ground-truth image.
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CLODEInput CLODEInput

By julochka (Flickr: CC BY-NC 2.0)

Figure 18: Visualization results on MSEC (Afifi et al., 2021b) and extracted from internet (Flickr
by julochka). Even with diverse inputs of various exposures, CLODE show robust result in an
unsupervised manner.
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Figure 19: Loss curves of training dynamics of CLODE.
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Figure 20: Performance curves of CLODE in terms of PSNR, evaluated on LOL (Chen Wei, 2018)
dataset.
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Figure 21: Performance curves of CLODE in terms of SSIM, evaluated on LOL Chen Wei (2018)
dataset.
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