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ABSTRACT

While Deep Learning has demonstrated impressive results in applications on vari-
ous data types, it continues to lag behind tree-based methods when applied to tab-
ular data, often referred to as the last “unconquered castle” for neural networks.
We hypothesize that a significant advantage of tree-based methods lies in their in-
trinsic capability to model and exploit non-linear interactions induced by features
with categorical characteristics. In contrast, neural-based methods exhibit biases
toward uniform numerical processing of features and smooth solutions, making it
challenging for them to effectively leverage such patterns. We address this per-
formance gap by using statistical-based feature processing techniques to identify
features that are strongly correlated with the target once discretized. We further
mitigate the bias of deep models for overly-smooth solutions, a bias that does not
align with the inherent properties of the data, using Learned Fourier Features. We
show that our proposed feature preprocessing significantly boosts the performance
of deep learning models and enables them to achieve a performance that closely
matches or surpasses XGBOOST on a comprehensive tabular data benchmark.

1 INTRODUCTION

Deep learning has demonstrated significant success in domains like natural language processing
and image analysis. However, on tabular data, deep learning (DL) methods have not yet made
a breakthrough, with methods based on decision tree (DT), such as eXtreme Gradient Boosting
(XGBOOST) (Chen & Guestrin, 2016), still being superior. Tabular datasets present some interesting
peculiarities relevant for the design of a learning system: it usually involves a small sample size, data
often lies in a “natural base” (Ng, 2004) and the function from features to target variables can be
highly non-smooth (Grinsztajn et al., 2022).

Furthermore tabular data collection often involves manual annotation of data types in numerical
and categorical features. However, even if numerical in nature, some features might still be im-
plicitly categorical. In such cases proper modelling assumptions are required in order to capture
the possibly intricate and highly discontinuous interactions of the features with the target variable
when using neural networks. For example, the eye movements dataset (Salojärvi et al., 2005)
measures the correlation between eye movements and relevant content in the context of information
retrieval. Subjects were presented with multiple assignments, where each assignment contains a
query and a list containing one correct sentence and several irrelevant or relevant sentences to the
query. Even though these features are numerical in nature, the assignment number, line number
and word number are features with categorical characteristics and properly encoding them leads to
significant performance increases for methods.

An emerging line of work attempts to address the performance gap between DL and tree-based
methods on tabular data, with an increasing number of deep methods claiming to surpass tree-based
methods on some datasets. Recently, the focus has been shifting towards understanding the causes
of the performance gap and to analysing the dataset intricacies that favors some models over the
others.

In this vein, Grinsztajn et al. (2022) identifies robustness to uninformative features, preservation of
the original data orientation and the ability to accommodate irregular functions as some of the main
advantages of tree-based methods in tabular data learning. Additionally, the authors conclude that
categorical variables are a minor weakness of neural networks.
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Figure 1: Method overview. We select either (A) ICF or (B) LFF for data preprocessing in each run.
In ICF, we add zero-padding for features with a lower number of bins to allow concatenation.

In contrast, we highlight the heterogeneity inherent in tabular data and the brittleness of neural
networks to numerical features with categorical characteristics. We coin these implicitly categorical
features and demonstrate their substantial influence on the performance gap.

Inspired by the finding of Grinsztajn et al. (2022) regarding the over-smoothed solutions of DL we
adapt Learned Fourier Features (LFF) for overcoming the smoothness bias (Tancik et al., 2020; Li
& Pathak, 2021; Yang et al., 2022) of deep neural networks, leading to an important increase in
performance when learning from tabular data applications.

Our main contributions can be summarized as follows:

1. Highlight the prevalence of numerical features with implicit categorical characteristics and
their potentially significant impact on the design choices of deep learning (DL) models for
tabular data.

2. Introduce several methods for identifying implicitly categorical features and demonstrate
that a proper encoding is necessary for closing the performance gap towards decision tree
(DT) models and, in some cases, leads to large performance “spikes” not reached by any
other model in our comparison.

3. Our proposed Categorical Feature Detection (CFD), together with Learned Fourier Fea-
tures (LFF) significantly improve the performance of deep learning methods on 681 tabular
datasets when considering the result of a large hyper-parameter random search.

2 RELATED WORK

As revealed in the detailed survey of Borisov et al. (2022), a main line of work on tabular DL data
focuses on data representations and encoding Yoon et al. (2020); Hancock & Khoshgoftaar (2020);
Bahri et al. (2021); Sun et al. (2019), tuning deep neural networks through high regularization Kadra
et al. (2021); Shavitt & Segal (2018) and specialized architectures: hybrid Ke et al. (2019); Luo et al.
(2021); Ivanov & Prokhorenkova (2021); Luo et al. (2021); Popov et al. (2019) and transformers
Somepalli et al. (2021); Arik & Pfister (2021); Huang et al. (2020). A comparison between gradient
boosting methods and DL for tabular data detailed in Shwartz-Ziv & Armon (2022) shows that, de-
spite of the superiority of gradient boosting methods, their ensemble with DL methods outperforms
them. Other hybrid methods and their performance are further highlighted in Sarkar (2022).

Our work is closely related with Gorishniy et al. (2022), which focuses on the impact of proper em-
bedding schemes on the performance of deep learning models on DT-favored datasets. This recent

1The benchmark by Grinsztajn et al. (2022) has a total of 69 tasks. We leave out from our reporting tasks in
which no model achieves a score higher than 0.1, which leaves us with 68. Details in Section 5
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work focuses on embeddings based on piecewise linear encoding and periodic activation functions
to improve both multi-layer Perceptron (MLP) and transformer-based architectures’ performance
on tabular data, stacking the embedding types in different combinations. Another recent work,
Hollmann et al. (2022), introduces a new transformer architecture trained to approximate Bayesian
inference on synthetic datasets drawn from a prior. A different approach, based on modern Hopfield
networks, is introduced in Schäfl et al. (2022). Joseph & Raj (2022) proposes a similar approach
with Popov et al. (2019) with elements inspired from the Gated recurrent unit. Furthermore, the
performance of DL methods is shown to be substantially improved by pre-training on upstream data
to increase performance on the target dataset in Levin et al. (2022).

Another emerging direction focuses on studying the the gap between tree-based models and DL and
the particularities of behaviour of these approaches when generalizing on tabular data. Specifically,
Grinsztajn et al. (2022) conducts an extensive empirical analysis of the gap between these two clsases
of models on a benchmark of 45 tabular datasets, observing robustness to uninformative features,
non-invariance to orientation changes and bias towards non-smooth decision boundaries as desired
properties for a model’s success on tabular data. Furthermore, McElfresh et al. (2023) conducts a
large scale tabular data analysis on 176 datasets and studying the trends between the best performing
model class and a large set of metafeatures, such as dataset irregularity, ratio of the dataset size to
number of features and target class frequencies. The experiments reveal that the performance gap is
negligible for a surprisingly large number of datasets.

3 PROPOSED METHODS

We aim to identify implicitly categorical features using simple statistical methods that quantify
the correlation between a given feature and the target for a categorical encoding of the feature.
Intuitively, implicitly categorical features will exhibit statistical significant correlations with the
target when the feature is categorized such that its notion of numerical distance is removed. All
the implicitly categorical features identification tests are applied on the training data. We address
the bias of deep methods towards overly-smooth solutions by using Learned Fourier Features. We
present an overview of our method in Figure 1, describe the implementation details in 3.2 and 3.3
and present an algorithmic description of our feature preprocessing in Appendix A.3. We use our
preprocessing method on top of two backbone models with different particularities in regard to
rotational variance: MLP and 1D convolutional Residual Network (RESNET), detailed in 3.4.

3.1 CATEGORICAL ENCODING

We one-hot encode the categorical features and transpose them along channels. Consider a sample
XD, where D is the number of features or columns of the sample. Each scalar element Xi can
be transformed either into a categorical or numerical feature. Categorical encoding is performed
by concatenating the (possibly binarised) one-hot-encoding with the original value of the feature:
ΦM

i = OHE(Xi), where M corresponds to the largest number of categories across features of X .
Numerical encoding is then simply the zero-padded vector of size M , with the original feature value
at the first position ΦM

i = [Xi,0
M−1]. Therefore, we use an input of size D with M channels for

the RESNET model as it supports multi-channel data, while the input for MLP is flattened.

Selecting the features of X for which we apply the categorical encoding is done by identifying
the indices of the implicitly categorical features first. We name the procedure through which we
identify the relevant features and then apply the categorical encoding CFD and the resulting model,
ResNet+C or MLP+C. Next, we propose and describe several simple statistical methods for the
identification of implicitly categorical features.

3.2 IMPLICITLY CATEGORICAL FEATURE IDENTIFICATION

We postulate the presence of numerical features that exhibit statistically significant correlations with
the feature space and/or the target value in a categorical manner, which we term implicitly cate-
gorical features. We propose a method of identifying implicitly categorical features using basic
statistical methods. The identified features are subsequently binned and encoded as described in
section 3.1. We make the assumption that implicitly categorical features have a low cardinality and
consequently, we only perform statistical tests on columns with less than 5000 unique values (details
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in Appendix A.2). Additionally, given the sensitivity of some of the statistical tests to low cardi-
nality features, we use a hyperparameter that decides whether or not features with a low cardinality
should be automatically considered as implicitly categorical.

We choose to identify implicitly categorical features with several statistical tests. Chi-squared usu-
ally tests the hypothesis that two categorical variables are independent. By categorising a numerical
feature through binning, we test whether or not the feature and the target in the classification tasks
are correlated. If the test obtains a low p-value (which measures the evidence against a null hy-
pothesis that the two categorical features are correlated), we encode the feature as categorical. By
properly adjusting the threshold, we can filter out features that don’t exhibit significant correlations
with the target when discretized. Additionally, we use the ANOVA test for regression or the Mutual
Info, which is a metric that also accounts for one feature’s correlation with the other features in the
dataset and not only the target.

3.2.1 CLASSIFICATION TASKS

For the classification datasets, we use the χ2 (chi-square) hypothesis test Pearson (1900) and con-
sider the features with a p-value below a threshold as categorical, as shown in Equation 1. Addition-
ally, we consider features with a low cardinality as categorical.

ICF(X) = {i | p value(χ2(Xi, Y )) < χ2
thresh} (1)

3.2.2 REGRESSION TASKS

For regression datasets, we select categorical-behaved features using the one-way Analysis of Vari-
ance (ANOVA) Girden (1992) test and Mutual Info Thomas & Cover (1991) test.

For the ANOVA test, we select the features with a p value below a threshold for the statistical test of
groups of Y , where the group are selected as the values of Y for each possible value for the feature
i, as depicted in Equation 2, where Yvik refers to values of Y for the data samples where the value
of Xi is vik.

ICF(X) = {i | p value(F ({Yvi1, Yvi2, ..., Yvim})) < Fthresh} (2)

In the Mutual Info test, we select features whose ratio between the average mutual info score in the
categorical case and the average mutual info score in the numerical case is higher than a threshold,
where the mutual info score is computed between the feature, the other features and the target value,
as shown in Equation 3, where X̄i refers to the set obtained from features X with the removal of the
feature at index i and Xi

c is the categorical encoding of feature i.

ICF(X) = {i | MI(Xi
c, {X̄i, Y })/MI(Xi, {X̄i, Y }) > MIthresh} (3)

3.3 FOURIER EMBEDDINGS

The other component of our preproessing method is adapting LFF developed in other fields of DL
(Tancik et al., 2020; Li & Pathak, 2021; Yang et al., 2022) for overcoming the bias of deep neural net-
works towards overly-smooth solutions. We believe our approach to bear some simillarity with the
Periodic Activation Functions proposed recently in tabular deep learning by Gorishniy et al. (2022).
Differently from them, we extract two types of Fourier Embeddings: Conv1x1LFF and LinearLFF.
As opposed to Periodic Activation Functions, where features are embedded separately, LinearLFF
allows mixing features through a linear projection, while Conv1x1LFF extracts embeddings using
parameter sharing. In Conv1x1LFF the parameters are shared by using a trainable 1D convolution
over the input sequence along the number of features dimension, while in LinearLFF we pass the
input sequence through a learned linear layer. The result is an output Z of shape D ×M , with M
the size of the Fourier embedding. The embeddings of size M are obtained using Equation 4, where
⊕ is the concatenation operator.

LFF(Z) = cos(π ·Z)⊕ sin(π ·Z) (4)
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The parameters are randomly initialized with a Gaussian distribution centred in zero, varying
the number of learned frequencies through the M parameter. We refer to the resulting models
ResNet+F and MLP+F. Importantly, in our experiments, whether the model is using CFD or LFF
is a hyperparameter in the random search space. In the figures and results that follow, we name the
models that resulted from this model selection procedure ResNet+F|C and MLP+F|C.

3.4 BACKBONE MODELS

Our two backbone models are a simple MLP and 1D Convolutional RESNET, referred to as RESNET
throughout the paper. The motivation for the choice of these particular classes of models stems from
the observations of Grinsztajn et al. (2022) and Ng (2004) before them, establishing that tabular data
tends to lie in a natural base and that models which are invariant to rotation, such as the MLP, suffer
from a higher sample complexity in the presence of noise. Therefore, we study the effect of our
feature preprocessing methods on a model that is rotationally invariant, MLP, and one that is not
rotationally invariant through the use of 1D convolutions, RESNET.

We base our RESNET implementation on Hong et al. (2020). For an input of shape of shape (N ,
F , D), wher N is the number of items in the batch, F is the number of features and D is the
depth of the data, the model uses 1D convolutions of shape (K, D) along the F dimension. For
the raw input, D is equal with 1. As described in 3.2 and 3.3, our preprocessing results in a data
depth D that is either the highest number of bins in the implicitly categorical features setup and the
embedding size M in the LFF setup. We use a fraction ϕ of the feature size F as the kernel size K,
with ϕ ∈ [0, 1]. The architecture consists of stacking residual blocks, each with two convolutional
layers, batch normalisation, dropout and ReLU nonlinearities as well as shortcut connections from
the block input to the output. The results of the final block are averaged across the last dimension
and connected to a linear layer.

4 EXPERIMENTAL SETUP

Our experimental setup closely mirrors the setup introduced in Grinsztajn et al. (2022), including
dataset processing, the multi-fold split based on dataset size, as well as train, validation and test
subset sampling using the same random seeds. The benchmark consists of binary classification
and regression tasks, with numerical and categorical features. The datasets are preprocessed with
several schemes, such that one dataset can be part of multiple tasks, for example with numerical only
or a mixture of numerical and categorical features. The datasets are subject to specific processing
decisions, such as truncation to 10k or 50k samples, missing data removal, binarisation of the target
value for the datasets in the classification tasks, removal of high-cardinality categorical features and
low-cardinality numerical features. The datasets are split in classification and regression tasks, with
subtasks containing numerical-only and heterogeneous data features. To follow the original notation,
we refer to the subtasks as numerical and categorical, where the latter contains datasets with hybrid
data types. Additionally, the benchmark doubles the nubmer of tasks by using ”medium” and ”large”
subsets. In this work, we combine the medium and large sized datasets in a task, due to the number
of large datasets being much smaller. The datasets in the categorical tasks, which contain a mixture
of categorical and numerical features, are annotated with the indices of the categorical features,
which we specifically use in combination with the base models, when we don’t use our proposed
preprocessing methods.

We conduct a comparative analysis on the following methods: XGBOOST, which is the reported
best performing method for the benchmark, the base models MLP and RESNET, as well as their
combination with implicitly categorical features binning and LFF embeddings, MLP+F|C and
ResNet+F|C. We set a maximum number of 400 epochs, with checkpointing from early stopping
with a patience of 40 epochs. For each model, we run 150 random seeds over the hyperparameter
space. In the case of ResNet+F|C and MLP+F|C, we randomly choose between ResNet+F and
ResNet+C, or between MLP+F and MLP+C respectively at each run, such that each component
is used in approximately half of the runs. A complete description of the parameter spaces that we
considered is presented in Appendix A.2. In order to follow the setup of Grinsztajn et al. (2022) as
closely as possible, we keep the hyperparameter deciding whether or not the target variable should
undergo Gaussian transformation in the regression tasks. The benchmark contains predefined splits
for k-fold cross-validation, where k is selected based on dataset size. A separate subset of the vali-
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dation split is used for early stopping, with the rest of it for hyperparameter selection. We compare
the test performance as accuracy or r2 score of the best hyperparameter setting run on the validation
split, using accuracy for classification and Mean Absolute Error (MAE) for regression as criterion.

5 RESULTS

We exclude datasets where no model achieves a performance higher than 0.1, which is exactly one
dataset in the regression task (yprop 4 1). We note that for this dataset, the performance is close to
zero for all models and we decided to remove it in order to avoid introducing misleading statistics
in the average of normalised scores. We report the average normalised performance by budget using
15 random search simulations across the 150 runs. Our experiments combine the results of 51000
runs of several models, with random hyperparameter search.

We organise our experimental results as follows: we first highlight the impact of our proposed im-
plicitly categorical features detection and LFF embeddings by showing significant improvements
for both backbone models MLP and RESNET and comparing their performances with XGBOOST
and showing that the ResNet+F|C is a competitive model in 5.1; we then analyse the performance
profiles of our compared methods in 5.2, providing a complementary picture to the aggregated per-
formance by budget analysis; furthermore, we take a closer look of the performance gaps between
the top seeds of each model in 5.3 and 5.4, highlighting that our proposed preprocessing method
uncovers proper data encodings across the search budget that significantly improve over the base
models, which we observe in the form of ”spiking” performance. The performance landscape of the
models equipped with the proposed preprocessing, in comparison with the base models empirically
prove the presence of implicitly categorical features and the sensitivity of deep learning methods
to such features, as well as the benefit modelling functions with more flexible decision boundaries
through LFF embeddings.

5.1 PERFORMANCE BY BUDGET

We report the averaged normalised performance by budget across 15 random permutations of the
set of random search runs in Figure 2. We normalise each score using the maximum achieved by
any of the model as upper limit and the performance of a random baseline as a lower limit. For the
classification tasks, due to the binary nature of the target, we set the lower bound to 0.5, while for
regression we use the performance of a classifier that always predicts the mean of the target values,
that corresponds to an r2 score of 0. We compare the normalised test performance of the model with
the highest validation performance, where we use select by minimum validation MAE for regression
and maximum validation accuracy for classification.

We first observe the significant impact of the proposed feature processing method, showcasing a
consistent improvement across all tasks of ResNet+F|C over RESNET and MLP+F|C over MLP.
Additionally, we observe that RESNET and MLP plateaus rather fast and significantly lag behind
XGBOOST across all tasks.

Furthermore, we observe that MLP+F|C and ResNet+F|C substantially outperforms XGBOOST
on both the classification tasks. On the regression tasks, ResNet+F|C slightly outperforms
XGBOOST on the numerical datasets but not on the categorical datasets, while MLP+F|C still lags
behind. For the regression categorical task, even though our proposed feature processing improves
over the performance of the RESNET baseline, it still slightly lags behind XGBOOST on average.

As observed before, we also note that XGBOOST rapidly achieves high performances during the
random search, as a less sensitive method to hyperparameter tuning which further highlights its out
of the box capabilities on tabular data.

5.2 PERFORMANCE PROFILES

Budget plots illustrate how likely it is to find a good model given some computational budget for each
algorithm, however they can hide the relative strengths of compared methods through aggregation.
Furthermore they are susceptible to inflated results when some models achieve very large scores
compared to the second best.
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Figure 2: Performance by budget across 15 random simulations of hyperparameter optimization
with 150 random seeds for each baseline.

To provide a complementary picture we use performance profiles (Dolan & Moré, 2002; Agarwal
et al., 2021). The aim is to determine how frequently a certain method is within some distance of
the best performing algorithm. Following Agarwal et al. (2021), for each normalized score τ we
compute the fraction of datasets on which the performance is larger than τ .

To avoid the maximisation bias that occurs when using only the best performing run found by the
random search, we assume the top performing runs have been drawn independently. Alternatively
we would be required to run the random search multiple times which is infeasible. We select the
best performing eight runs, which for most datasets and models corresponds to the 95th percentile.

Looking at Fig. 3 it appears that XGBOOST retains much of its advantages in regression and clas-
sification tasks with categorical features across much of the performance spectrum but lines tend to
overlap near τ = 0.97 suggesting the top models behave similarly. These findings seem in contra-
diction with Fig. 2, where ResNet+F|C dominates the search. In the next section we look deeper
into these results and clariy the apparent contradiction.

5.3 PROPER FEATURE ENCODING IS CRITICAL

We take a closer look at the performance landscape of the top 8 runs for each models, which corre-
sponds approximately to the 95th percentile for each task. We take a selection of datasets with the
highest normalised gap between the top runs of ResNet+F|C and the top runs of XGBOOST and
plot the normalised scores in Fig. 5.

Looking at the first column of the ResNet+F|C heatmap we notice several datasets
(eye movements, year, rl, nyc-taxi-green-dec-2016) for which the top performing
model has a significantly larger performance than any of the other 95th percentile runs of that model
and also larger than any of the XGBOOST runs. In contrast, we notice that XGBOOST has a much
higher consistency across its top performing runs.
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Figure 3: Performance plot on the top eight runs (approx. the 95th percentile for most tasks).

We call this observation “spiking” and attribute it to one of the statistical tests we use for implicitly
categorical features detection during the hyper-parameter random search finding a good encoding of
the features that can then be leveraged by the neural network. Furthermore, the large performance
gaps created when our method occasionally latches on the implicit categorical features also explains
the performance gaps we see in the budget plots which are dominated by the best performing training
run.(Fig. 2).
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Figure 4: Heatmap of the top eight runs (corresponding to the 95th percentile for most tasks)
ResNet+F|C and XGBOOST. We observe runs where ResNet+F|C achieves a performance
”spike”, while XGBOOST has a more consistent performance landscape

5.4 ABLATION: WHERE DOES THE PERFORMANCE BOOST OCCUR

We further analyse the top performing runs of ResNet+F|C by decoupling the ResNet+F and
ResNet+C runs, in comparison with the base model RESNET. We present a performance heatmap
of the top 8 runs of these models for a selection of datasets with the highest gap between the best
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and the runner-up model between RESNET, ResNet+F and ResNet+C. First, we notice that the
base model RESNET (RN) achieves a much more consistent performance across its top runs and it
consistently lags behind ResNet+F|C. Additionally, while we observe that the ”spiking” behavior
is more frequent for ResNet+C, which could correspond to a proper identification of implicitly
categorical features in the random search, we notice the complementarity of the two components. As
previously stated, ResNet+F and ResNet+C account for approximately half of the runs compared
to RESNET, as we use them in mutually exclusive fashion.

We do not observe a particular correlation between each component and a task type. For ex-
ample, ResNet+F outperforms ResNet+C on some datasets from both the regression (year
dataset) and classification (covertype dataset) tasks, and, conversely, datasets from both regres-
sion (nyc-taxi-green-dec-2016) and classification (eye movements, rl, electricity) tasks
where ResNet+C outperforms ResNet+F. These results highlight the presence of implicitly cat-
egorical features in multiple datasets, as well as datasets where the bias towards overly-smooth so-
lutions of deep learning models hinders their performance, through the different performance land-
scapes of the two components and their alternating role in closing the gap to tree-based methods.
Additionally, a main takeaway is that, given a search budget, simple implicitly categorical features
methods succeed in uncovering the proper categorical embeddings of data that allow deep-based
methods to achieve significantly higher performance margins over the base model.

eye_movements_c_c_m
eye_movements_c_n_m

rl_c_c_m
year_r_n_m

electricity_c_c_m
electricity_c_n_m

nyc-taxi-green-dec-2016_r_n_m
nyc-taxi-green-dec-2016_r_c_m

year_r_n_l
nyc-taxi-green-dec-2016_r_n_l
OnlineNewsPopularity_r_c_m

compass_c_c_m
covertype_c_n_m
covertype_c_n_l

KDDCup09_upselling_c_c_m
nyc-taxi-green-dec-2016_r_c_l

RN-F|C RN-C RN-F RN

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Heatmap of the top eight runs (corresponding to the 95th percentile for most tasks) for the
base model RESNET (RN) and ResNet+F|C (RN-F | C). We additionally show the separated runs
of ResNet+F|C into ResNet+F (RN-F) and ResNet+C (RN-C)

6 DISCUSSION AND CONCLUSIONS

In this work we report on the prevalence of implicitly categorical features in tabular data and high-
light the significant performance penalty on DL methods when not addressed correspondingly when
compared to tree-based methods. For addressing this newfound peculiarity of tabular data we intro-
duce ICF which uses basic statistical methods to identify implicitly categorical features and encode
them accordingly.

Complementarily, we leverage on previously introduced observations that emphasize the bias to-
wards overly-smooth solutions as an undesirable property of models working with tabular data.
Specifically we adapt LFF for tabular data applications, allowing the model to represent non-smooth
decision boundaries, which are more encompassing with regard to the nature of tabular data. We
employ the two proposed feature processing methods in combination with two deep learning back-
bone models, MLP and RESNET and show their significant performance boost over the base models
and their competitiveness with DT in an extensive experimental setup,

The extensive analysis reveals examples of datasets where one of these two preprocessing methods
demonstrates a significant performance advantage over the other. However, we have only scratched
the surface of this phenomenon, and further analysis would be interesting as further work, such as
a more detailed investigantion on the datasets particularities where these components thrive. Addi-
tionally, we hope that the present work will inspire more advanced methods of identifying implicitly
categorical features or models designed to be robust to this phenomenon.
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Table 1: Impact of categorical encoding for XGBOOST

Model Regression num Regression cat Classif num Classif cat

XGBOOST 0.7558 0.7770 0.8298 0.7872
XGBOOST with ICF 0.7502 0.7751 0.8271 0.7838

A APPENDIX

A.1 IMPACT OF ICF FOR XGBOOST

We investigate the effect of ICF feature binning for XGBOOST and we don’t observe any improve-
ment but a small decrease in performance. We report the unnormalized test performance average of
the best performing hyperparameter settings across datasets and 150 random seeds in Table 1. We
hypothesize that XGBOOST and DT-based methods in general inherently uncovers discontinuities
introduced by implicitly categorical features and an explicit encoding of such features is unneces-
sary.

A.2 HYPERPARAMETER RANGES

We present the hyperparameter spaces for the models in Tables 2, 3, 4, as well as the parameter
space for the implicitly categorical features detection algorithms in Table 6 and the paramter space
for the optimizers in Table 5.

Table 2: XGBOOST parameter space

Parameter Range

eta logUniform [1e-05, 0.7]
gamma logUniform [1e-08, 7]
max depth uniformInt [3, 11]
subsample uniformInt [0.5, 1]
lambda logUniform [1, 4]
alpha logUniform [1e-08, 1e2]
min child weight logUniformInt [1,100]
colsample bytree uniform [0.5,1]
colsample bylevel uniform [0.5,1]

A.3 PSEUDOCODE

We present the pseudocode for the proposed feature preprocessing in Algorithm 1.
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Table 3: MLP parameter space

Parameter Range

depth uniformInt [2, 8]
width choice [128, 256, 512, 1024]
activation choice [ReLU, LeakyReLU]
batch normalization choice [True, False]
dropout choice [0.0, 0.5, 0.6, 0.7, 0.8, 0.9]

Table 4: RESNET parameter space

Parameter Range

num block uniformInt [1,3]
num linear uniformInt [1,3]
use norm choice [True, False]
norm type choice [batch, layer]
use do choice [True, False]
do prob choice [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
downsample gap choice [0, 1, 2]
increasefilter gap choice [0, 1, 2]
pooling function choice [MaxPooling, AvgPooling]
kernel size uniform [0, 1]
activation fn choice [ReLU, LeakyReLU]
lff dim: choice [32, 64, 128, 256]
emb type: choice [Conv1x1LFF, LinearLFF]

Table 5: Optimizer parameter space

Parameter Range

opt name AdamW
learning rate uniform [0.001, 0.1]
eps uniform [1e-08, 1e-04]
weight decay uniform [0.0001, 0.6]
scheduler CosineAnnealingWarmRestart
T 0 choice [10, 20, 30, 50, 75, 100]
T mult choice [1, 2]

Table 6: ICF identification tests
Parameter Range

chi thresh uniform [1e-50, 1e-03]
ANOVA thresh uniform [1e-30, 1e-03]
mi thresh uniform [0.75, 1.50]
min cardinality choice [0, 10, 100]
max cardinality choice [300, 500, 1000, 1500, 5000]
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Algorithm 1: Feature preprocessing
Data: Train data: input feaures X , targets y
Result: Output result
Function ICF test(X, y, test fn, p thresh):

cat idxs = []
N = X .shape[1]
for i← 1 to N do

// Compute the p value for feature i
p value = test fn (X[:,i], X[:,:i-1] + X[i+1:,:], y)
if p value < p thresh then

add i to cat idxs;
return cat idxs

Function Preprocess(X, y):
select test fn← [chi, ANOVA, MI] ; // Select a test function
select p thresh← [p min, p max] ; // Select a p value threshold
cat idxs← ICF test(X, y, test fn, p thresh);
num idxs← {i for i not in cat idxs }
Φcat ← OneHotEncoding(X[:, cat idxs])
Φnum ← LFF(X[:,num idxs])
return concatenate(Φcat,Φnum)
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