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Abstract

A good speaker needs not only to be correct but001
also to be specific, and so are language mod-002
els. In this paper, we propose to measure how003
specific the language of pre-trained language004
models (PLMs) is. To achieve this, we intro-005
duce a novel approach to build a benchmark006
for specificity testing by forming masked token007
prediction tasks with prompts. For instance,008
given “J. K. Rowling was born in [MASK].”,009
we want to test whether a more specific answer010
will be better filled in by PLMs, e.g., Yate in-011
stead of England.012

From our evaluations, we show that existing013
PLMs have only a slight preference for more014
specific answers, indicating that PLMs are015
weak in specificity. We identify underlying016
factors affecting the specificity and design two017
prompt-based methods to improve the speci-018
ficity. Results show that the specificity of the019
models can be improved by the proposed meth-020
ods without additional training. We believe021
this work can provide a new insight for lan-022
guage modeling and encourage the research023
community to further explore this important024
but understudied problem.1025

1 Introduction026

Pre-trained language models (PLMs) such as BERT027

(Devlin et al., 2019) and GPT-2/3 (Radford et al.,028

2019; Brown et al., 2020) have achieved quite im-029

pressive results in various natural language pro-030

cessing tasks. Recent works show that the param-031

eters of these models contain significant amounts032

of knowledge (Petroni et al., 2019; Roberts et al.,033

2020; Jiang et al., 2020a,b; Wang et al., 2020), and034

knowledge stored in PLMs can be extracted by035

predicting the mask token(s) using prompts. For036

instance, given prompt “J. K. Rowling was born037

in [MASK].”, PLMs can predict the birthplace of038

Rowling based on its knowledge.039

1We will release the benchmark as open-source after the
review process (attached in the supplementary materials).

Toronto is located on the earth.

Dante is a person.

Cat is a subclass of animal.

Figure 1: Examples of language modeling that lack
specificity. More specific descriptions could be: feline,
poet, and in Ontario, respectively.

However, there may exist multiple answers for 040

a query, while not all answers are equally specific. 041

For the example above, the masked token can be re- 042

placed by Yate (a town), Gloucestershire (a county), 043

or England (a country). We prefer the model to 044

fill in Yate since Gloucestershire and England can 045

be further predicted using prompts “Yate is located 046

in [MASK].” and “Gloucestershire is located in 047

[MASK].” respectively. This means, if the predic- 048

tion is more specific, we can retrieve more fine- 049

grained information from language models, and 050

further acquire more information (in this example, 051

the town, the county, and the country where Rowl- 052

ing was born can be extracted). Besides, some- 053

times, the less specific answer is not useful. For 054

instance, it is well known that Chicago is located in 055

the USA, users will not get additional information 056

if the model only predicts Chicago is located in the 057

USA instead of Illinois. More examples are shown 058

in Figure 1. To make an analogy: A good speaker 059

needs not only to be correct but also to be specific. 060

The same is true for language models. 061

Although there are works on measuring how 062

much knowledge is stored in PLMs or improving 063

the correctness of the predictions (Petroni et al., 064

2019; Roberts et al., 2020; Jiang et al., 2020b), 065

none attempted to measure or improve the speci- 066

ficity of predictions made by PLMs. Understanding 067

how specific the language of PLMs is can help us 068

better understand the behavior of language mod- 069

els and facilitate downstream applications such 070
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as question answering, text generation, and in-071

formation extraction (Liu et al., 2021a; Khashabi072

et al., 2020; Brown et al., 2020; Wang et al., 2020),073

e.g., making the generated answers/sentences or ex-074

tracted information more specific or fine-grained.075

Therefore, we propose to build a benchmark to076

measure the specificity of the language of PLMs.077

For reducing human effort and easier to further078

expand the dataset (e.g., to specific domains), we079

introduce a novel way to construct test data au-080

tomatically based on transitive relations in Wiki-081

data (Vrandečić and Krötzsch, 2014). Specifi-082

cally, we extract reasoning paths from Wikidata,083

e.g., (J. K. Rowling, birthplace, Yate, location,084

Gloucestershire, location, England). Based on085

the average distance of each object to the subject086

and the property of transitive relations, we form087

masked-token-prediction based probing tasks to088

measure the specificity, e.g., whether the masked089

token in “J. K. Rowling was born in [MASK].” is090

better filled by Yate than England by PLMs. The091

resulting benchmark dataset contains more than092

20,000 probes covering queries from 5 different093

categories. The quality of the benchmark is high,094

where the judgment is ∼ 97% consistent with hu-095

mans.096

We provide in-depth analyses on model speci-097

ficity and study two factors that affect the speci-098

ficity with our benchmark. As shown by our evalu-099

ations in Section 4, existing PLMs, e.g., BERT and100

GPT-2, similarly have only a slight preference for101

more specific answers (in only about 60% of cases102

where a more specific answer is preferred). We also103

show that, in general, PLMs prefer less specific an-104

swers without subjects given, and they only have105

a weak ability to differentiate coarse-grained/fine-106

grained objects by measuring their similarities to107

subjects. The results indicate that specificity was108

neglected by existing research on language models.109

How to improve it is undoubtedly an interesting110

and valuable problem.111

Based on our observations and analyses, we pro-112

pose two techniques to improve the specificity of113

the predictions by modifying the prompts without114

additional training: Few-shot Prompting, where115

demonstrations with more specific answers are pro-116

vided to guide the models to produce more specific117

answers; and Cascade Prompting, where which118

clauses are added as suffixes to bias the predictions119

to be more specific. Results show that Few-shot120

Prompting can improve the specificity for unidi-121

rectional language models like GPT-2 well, while 122

Cascade Prompting works well for bidirectional 123

language models such as BERT. 124

The main contributions of our work are summa- 125

rized as follows: 126

• We report the first attempt to investigate the 127

specificity of the language of pre-trained lan- 128

guage models. 129

• We propose a novel automatic approach to 130

build a benchmark for specificity testing based 131

on the property of transitive relations. 132

• We show existing PLMs perform poorly on 133

specificity and study two factors that affect 134

the specificity. 135

• We propose two methods to improve the speci- 136

ficity by modifying the prompts without addi- 137

tional training. 138

• We provide in-depth analyses and discussions, 139

suggesting further works to explore and fur- 140

ther improve the specificity. 141

2 Background and Related Work 142

Pre-Trained Language Models: Pre-trained lan- 143

guage models (PLMs) are language models pre- 144

trained on large corpora. In this paper, we will 145

cover two types of pre-trained language models: 146

unidirectional language models, such as GPT-2 147

(Radford et al., 2019), where the prediction of the 148

current token is only based on previous tokens; and 149

bidirectional language models, such as BERT (De- 150

vlin et al., 2019) and RoBERTa (Liu et al., 2019), 151

where both left and right contexts are utilized to 152

predict the current token. 153

Knowledge Retrieval from LMs and Prompt- 154

ing: Previous works have worked on extracting 155

factual knowledge from PLMs without incorporat- 156

ing external knowledge, which is usually achieved 157

by creating prompts and letting PLMs predict the 158

masked token(s) (Petroni et al., 2019; Bouraoui 159

et al., 2020; Jiang et al., 2020a,b; Wang et al., 2020). 160

They demonstrated that PLMs contain a significant 161

amount of knowledge. By creating appropriate 162

prompts with some additional training, such meth- 163

ods can even achieve performance comparable to 164

SOTA for some specific tasks (Shin et al., 2020; 165

Liu et al., 2021b). Our work is inspired by these 166

works; but different from these works, where the 167

focus is to measure or improve the correctness of 168

the predictions, our work focuses on measuring and 169

improving the specificity of the predictions. 170
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3 S-TEST: Specificity Testing171

In this section, we introduce our specificity testing172

(S-TEST) task, describe the creation process of the173

dataset, and design the metric to measure the speci-174

ficity of predictions made by pre-trained language175

models.176

3.1 Task Formulation177

Specificity is a semantic feature of language to de-178

scribe things specifically in a given context. In179

this work, we focus on measuring the specificity of180

the predictions produced by pre-trained language181

models for entity relations. For instance, to extract182

the answer (object) for relation (Toronto, location,183

X), we convert the query to a masked token predic-184

tion task using prompts, e.g., “Toronto is located in185

[MASK].” and let PLMs predict the masked token.186

The answer here can be a coarse-grained one, e.g.,187

Canada, or a fine-grained one, e.g., Ontario. The188

model is considered to perform well in terms of189

specificity if it tends to fill in Ontario instead of190

Canada. More general scenarios are discussed in191

Section 7 as future work.192

3.2 Test Data Construction193

We build a benchmark dataset for measuring the194

specificity based on Wikidata (Vrandečić and195

Krötzsch, 2014), which is a knowledge base con-196

taining a large number of entities and relations.197

Specifically, we utilize transitive relations2 in Wiki-198

data to create the test set automatically. Transitive199

relations are binary relations with properties such200

that (x, r, y) and (y, r, z) implies (x, r, z), where201

entity y can be considered as a more fine-grained202

object of x than entity z under relation r.203

For instance, relation P131 is a transitive rela-204

tion, whose label is “located in the administrative205

territorial entity”. From Wikidata, we can extract206

facts (Toronto, P131, Ontario) and (Ontario, P131,207

Canada), which furthermore forms a reasoning208

path (Toronto, P131, Ontario, P131, Canada). And209

Ontario is considered more fine-grained (specific)210

than Canada in terms of relation P131 because its211

distance to Toronto is shorter than Canada in the212

reasoning path. Based on this, for a transitive re-213

lation, we collect reasoning paths with length ≤ 5214

for each subject and calculate the average distance215

of each object to the subject. In this way, we can216

2https://www.wikidata.org/wiki/
Wikidata:List_of_properties/transitive_
relation

construct pairs with coarse-grained/fine-grained ob- 217

jects for each subject, e.g., (Toronto, Ontario) and 218

(Toronto, Canada) for Toronto in terms of relation 219

P131 (or a triplet denoted as (Toronto, Ontario, 220

Canada)). The constructed pairs can be used to test 221

the specificity with prompt: “Toronto is located in 222

[MASK].” 223

We also combine different relations to form tasks. 224

For instance, for relation P19, whose label is “place 225

of birth”, we combine it with P131 and further 226

form a mask token prediction task, such as “[X] 227

was born in [MASK].” An example reasoning path 228

containing coarse-grained/fine-grained objects is 229

(John G. Bennett, P19, London, P131, England), 230

corresponding to pairs (John G. Bennett, London) 231

and (John G. Bennett, England). 232

Considering the representativeness and compre- 233

hensiveness, we select 5 relations and randomly 234

sample up to 5,000 pairs for each relation, with 235

the difference of average distance of the objects 236

to the subject being greater than or equal to 1 (to 237

filter out entity pairs whose specificity is difficult to 238

differentiate). Similar to (Petroni et al., 2019), we 239

only choose single-token objects as the prediction 240

targets, since multi-token generation is still an area 241

that needs further exploration, and the multi-token 242

decoding process will introduce many tunable pa- 243

rameters that obscure the performance (Welleck 244

et al., 2019; Jiang et al., 2020a). Statistics and 245

examples of the resulting benchmark dataset are 246

shown in Table 1. 247

3.3 Metric 248

If a model tends to be more specific, it should have 249

higher confidence that the more specific answer is 250

correct. For instance, given “Toronto is located in 251

[MASK].”, the model should assign a higher proba- 252

bility for Ontario than Toronto. Therefore, we can 253

measure the specificity by calculating how much 254

times the probability of the fine-grained answer 255

is higher than that of the coarse-grained answer, 256

which is 257

pr =
1

|Tr|
∑

(x,y1,y2)∈Tr

1[c(y1|x, r) > c(y2|x, r)], 258

where Tr is the set of test examples for relation r. 259

y1 is the fine-grained object and y2 is the coarse- 260

grained object. c(y|x, r) is the probability of the 261

model with y as the prediction of the masked to- 262

ken, and x refers to the subject. pr ranges from 263

0 to 1, and 0.5 means the model does not have 264
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ID Relation Number Prompt Answer 1 Answer 2

P19 birthplace 5,000 John G. Bennett was born in [MASK]. London England
P106 occupation 5,000 Jenny Burton is a [MASK] by profession. singer musician
P131 location 5,000 Carey River is located in [MASK]. Victoria Australia
P279 subclass-of 5,000 Tracking ship is a subclass of [MASK]. vessel vehicle
P361 part-of 628 Hard palate is part of [MASK]. mouth head

Table 1: Statistics and examples of the S-TEST benchmark, where we use the same templates in (Petroni et al.,
2019) to create prompts. Answer 1 is more specific than Answer 2.

a preference in terms of specificity. The metric265

is similar to the one used in (Marvin and Linzen,266

2018), which compares the probability of a pair267

of words for creating a grammatical sentence, e..g,268

The author laughs (grammatical) vs The author269

laugh (ungrammatical).270

4 Analysis271

In this section, we first analyze the results of S-272

TEST and then identify and study two underlying273

factors that affect the specificity of predictions pro-274

duced by pre-trained language models.275

4.1 Experimental Setup276

We test on the following pre-trained case-sensitive277

language models: GPT-2, BERT-Base, BERT-278

Large, RoBERTa-Base, and RoBERTa-Large. For279

a fair comparison, following (Petroni et al., 2019),280

we use the intersection of the vocabularies of all281

the models as the unified vocabulary for prediction282

(∼18k case-sensitive tokens).283

To measure the upper bound of the performance284

and verify the quality of the dataset, we also esti-285

mate human performance on the task. We randomly286

sampled 400 examples (80 for each relation) and287

asked human annotators to fill in the masked token288

with coarse-grained/fine-grained answers given.289

4.2 Results of S-TEST290

Table 2 reports the results of specificity testing.291

We observe that existing pre-trained language mod-292

els perform badly in terms of specificity, where the293

probability that more specific answers are preferred294

by them is just around 60%. This is reasonable295

since the training of PLMs does not introduce any296

constraint/bias in terms of specificity; therefore,297

PLMs do not have much perception that more spe-298

cific answers should be preferred. We also observe299

that model performance is far from human bound.300

The high performance achieved by humans also 301

demonstrates that the quality of the dataset is high. 302

Another interesting finding is that for a single re- 303

lation, the specificity of different models is highly 304

correlated. For instance, for relation location, the 305

specificity measured by pr of all models is slightly 306

lower than 50%, while for relation part-of, the 307

specificity of all models is around 60%. The aver- 308

age pairwise Pearson correlation coefficient among 309

all relations is 0.803. We think this is because pre- 310

trained language models are all trained on large 311

corpora; therefore, their knowledge overlaps to a 312

large extent, as is the preference on the specificity 313

of predictions. 314

4.3 Factors Affecting Specificity 315

Some types of questions may be answered specif- 316

ically naturally. For instance, when discussing 317

anyone’s occupation, people may be inclined to 318

use a more specific description; but for the loca- 319

tion of a place, people may not be so. In addition, 320

specific answers may be easier to relate to the en- 321

tities in the query than the coarse-grained ones 322

since their connections may be more close, e.g., 323

sim(Toronto,Ontario) > sim(Toronto,Canada). 324

In this case, the models will tend to be more spe- 325

cific. Based on the above analysis, the specificity of 326

the predictions mainly depends on question types 327

(e.g., relations) and entities in the query (e.g., sub- 328

jects), which is also indicated by the metric for 329

measuring specificity, i.e., c(y|x, r). To investigate 330

the effect of each component, we split the query, 331

e.g., “Toronto is located in [MASK].”, into two 332

parts: the relations, e.g., is located in, and the sub- 333

jects, e.g, Toronto, corresponding to naturalness 334

and relatedness respectively. 335

Naturalness: For some questions, they may be 336

answered more specifically naturally than others by 337

PLMs. For instance, for questions about the place 338

of birth, if in the corpora, the birthplace is usually 339
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birthplace occupation location subclass-of part-of Average

GPT-2 59.72 57.28 48.25 57.98 60.86 56.82
BERT-Base 60.68 70.46 49.09 67.64 67.41 63.06
BERT-Large 56.52 71.76 42.36 77.25 66.77 62.93
RoBERTa-Base 54.48 61.80 49.99 61.59 59.11 57.39
RoBERTa-Large 42.16 71.44 43.28 80.63 59.27 59.36
Human Bound 98.75 92.50 100.00 96.25 97.75 97.05

Table 2: Results of specificity testing with pr(%).

birthplace occupation location subclass-of part-of Average

GPT-2
Naturalness 46.42 50.86 10.94 60.06 51.12 43.88
Relatedness 68.51 78.50 82.84 40.00 50.16 64.00

BERT-Base
Naturalness 64.81 75.04 4.99 47.96 50.80 48.72
Relatedness 74.89 51.96 76.43 71.67 58.79 66.75

BERT-Large
Naturalness 66.35 79.22 10.03 48.92 47.60 50.42
Relatedness 54.46 49.16 56.22 72.96 65.50 59.66

RoBERTa-Base
Naturalness 44.80 61.12 23.27 42.06 36.90 41.63
Relatedness 68.73 58.50 65.73 39.51 56.87 57.87

RoBERTa-Large
Naturalness 31.37 66.24 3.67 43.64 41.69 37.32
Relatedness 47.82 41.32 34.89 55.17 64.22 48.68

Table 3: Relatedness and naturalness measured with pr(%).

described more specifically, e.g., ... was born in340

Honolulu, Hawaii, PLMs will also describe the341

birthplace more specifically. This is intuitive since342

PLMs are trained on large corpora based on tasks343

like masked language modeling; therefore, it will344

produce more fine-grained predictions conditioned345

with contexts that are more likely to associate with346

specific answers.347

To measure how natural a type of questions will348

be answered more specifically by PLMs, we mask349

the subject in each prompt, e.g., “[MASK] was350

born in [MASK].”, and let PLMs predict the second351

masked token. We get the probability of each token352

in the vocabulary, i.e., c(y|·, r), and use our metric353

and dataset to measure the naturalness, e.g., how354

natural birthplace will be described more specifi-355

cally in general.356

Relatedness: Considering the following situation:357

the model knows both A and B are correct answers,358

and thinks A is more related to the the subject than359

B in general. Intuitively, it will prefer answer A.360

Therefore, another factor that affects the speci-361

ficity of predictions made by PLMs is relatedness,362

i.e., to what extent are the fine-grained objects363

more related to the corresponding subjects than the364

coarse-grained ones considered by PLMs. (More 365

generally, this is the ability of PLMs to identify 366

more related entities). 367

We measure relatedness based on phrase embed- 368

dings from PLMs. Following (Yu and Ettinger, 369

2020; Wang et al., 2021), we use the mean-pooled 370

representations over the final-layer outputs from 371

PLMs as phrase embeddings, and calculate the co- 372

sine similarities between the subject and the cor- 373

responding objects. If the cosine similarity be- 374

tween the subject and the fine-grained object is 375

higher than that between the subject and the coarse- 376

grained object, we think PLMs consider the fine- 377

grained one is more related to the subject. Ac- 378

cording to this, we can use our metric and dataset 379

to measure the relatedness, with confidence, i.e., 380

c(y|x, ·), based on cosine similarity between x and 381

y. 382

Findings. In Table 3, we report the naturalness 383

and relatedness with pr as the metric. We find that, 384

1) the highest average naturalness and relatedness 385

are achieved by BERT-Large and BERT-Base, re- 386

spectively, corresponding to the highest average 387

specificity; 2) in many cases, naturalness is lower 388
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than 0.5, which indicates that, without the sub-389

jects provided, PLMs are more likely to provide390

coarse-grained answers; 3) relatedness is usually391

higher than 0.5, which means PLMs have a certain392

ability to distinguish fine-grained/coarse-grained393

answers based on semantic similarities between394

entities. But the ability is weak since the average395

scores are just around 60%.396

5 Can Language Models Be MORE397

Specific?398

From the previous sections, we observe that exist-399

ing pre-trained language models perform unsatis-400

factorily in terms of specificity. We also observe401

that PLMs achieve naturalness lower than 0.5, i.e.,402

naturally, PLMs tend to fill in coarse-grained an-403

swers with respect to certain types of questions,404

and relatedness around 0.6, i.e., PLMs only have a405

weak ability to distinguish more related entities.406

Naturalness depends on both the parameters of407

PLMs and prompts while relatedness only depends408

on the parameters of PLMs. Since it is expensive409

to change the parameters of PLMs (both time and410

space), to improve the specificity, we focus on im-411

proving the naturalness by modifying the prompts.412

Intuitively, to get more specific answers, a practi-413

cal approach is to ask more specific questions. For414

instance, to know where Toronto is located more415

specifically, we may change the prompt “Toronto is416

located in [MASK].” to “Toronto is located in the417

province of [MASK].” However, to achieve this,418

humans are required to have additional knowledge,419

e.g., Toronto is a city, and in Canada, the adminis-420

trative unit larger than city is province rather than421

state. Besides, designing such manually crafted422

prompts can also be time-consuming and laborious423

if there are a large number of queries. Furthermore,424

some questions may be difficult to ask more specif-425

ically. For instance, for question “Hard palate is426

part of [MASK].”, it is not easy to come up with a427

more specific query.428

Based on the above considerations, we propose429

two novel and simple techniques to improve the430

specificity of the predictions. The proposed meth-431

ods can apply to different models on various types432

of queries while no additional training is required.433

5.1 Few-Shot Prompting434

We refer to using prompts in Table 1 to extract an-435

swers as Vanilla Prompting. Vanilla Prompting436

cannot give specific answers since the designed437

prompts can not tell the models the preference re- 438

garding specificity; therefore, the models are not 439

aware of whether a more specific answer is pre- 440

ferred. 441

Based on the above analysis, we need to give the 442

model some “hints” in terms of specificity, which 443

can be achieved by providing some demonstrations. 444

For instance, to predict where Toronto is located, 445

if we provide some examples with coarse-grained 446

answers using prompt “Melbourne is located in 447

Australia, Guangzhou is located in China, Toronto 448

is located in [MASK].”, the model may know by 449

analogy that we prefer a coarse-grained answer, 450

which is Canada (a country). In contrast, if we pro- 451

vide some fine-grained answers using prompt “Mel- 452

bourne is located in Victoria, Guangzhou is located 453

in Guangdong, Toronto is located in [MASK].”, 454

the model may realize through analogy that we pre- 455

fer a fine-grained answer here, which is Ontario (a 456

province). 457

We refer to the method described above as Few- 458

shot Prompting, which supposes to bias the predic- 459

tion to be more specific by providing some exam- 460

ples with fine-grained answers. The technique here 461

is similar to the few-shot setting in GPT-3 (Brown 462

et al., 2020), where several demonstrations of the 463

task are given to the model as condition to help the 464

model make the prediction. 465

5.2 Cascade Prompting 466

To make the answer more specific, we can also 467

utilize the relationship between coarse-grained and 468

fine-grained objects. For instance, in Table 1, track- 469

ing ship is a subclass of vessel, while vessel is also 470

a subclass of vehicle. To combine the three enti- 471

ties, we can write a sentence: Tracking ship is a 472

subclass of vessel, which is a subclass of vehicle. 473

By masking the objects, we get prompt: “Tracking 474

ship is a subclass of [MASK], which is a subclass 475

of [MASK].” Intuitively, the first masked token 476

will be more likely to be filled by vessel, while the 477

second masked token tends to be vehicle. Another 478

example in Table 1 is to predict the birthplace, we 479

can create prompt “John G. Bennett was born in 480

[MASK], which is located in [MASK].” to bias 481

the prediction of the first masked token to be more 482

specific. 483

We refer to the above method as Cascade 484

Prompting, which aims to improve the specificity 485

by adding “which clauses” as constraints accord- 486

ing to the relationship between coarse-grained and 487
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Relation Prompt

birthplace John G. Bennett was born in [MASK], which is located in [MASK].
occupation Jenny Burton is a [MASK] by profession, which belongs to [MASK].
location Carey River is located in [MASK], which is located in [MASK].
subclass-of Tracking ship is a subclass of [MASK], which is a subclass of [MASK].
part-of Hard palate is part of [MASK], which is part of [MASK].

Table 4: Example prompts for Cascade Prompting. The prompts are created automatically based on the prompts for
corresponding transitive relations.

birthplace occupation location subclass-of part-of Average

GPT-2 (VP) 59.72 57.28 48.25 57.98 60.86 56.82
GPT-2 (FP) 81.01 71.66 50.33 64.15 57.67 64.96
GPT-2 (CP) 59.72 57.28 48.25 57.98 60.86 56.82
BERT-Base (VP) 60.68 70.46 49.09 67.64 67.41 63.06
BERT-Base (FP) 67.85 70.54 50.11 69.11 53.83 62.29
BERT-Base (CP) 59.68 70.54 55.06 67.42 69.49 64.44
BERT-Large (VP) 56.52 71.76 42.36 77.25 66.77 62.93
BERT-Large (FP) 66.17 64.70 50.37 65.44 52.24 59.78
BERT-Large (CP) 82.25 70.02 53.55 77.67 71.88 71.07
RoBERTa-Base (VP) 54.48 61.80 49.99 61.59 59.11 57.39
RoBERTa-Base (FP) 64.85 72.38 35.85 63.01 51.11 57.44
RoBERTa-Base (CP) 63.09 64.54 54.56 61.81 62.78 61.36
RoBERTa-Large (VP) 42.16 71.44 43.28 80.63 59.27 59.36
RoBERTa-Large (FP) 70.51 71.94 42.26 73.70 62.94 64.27
RoBERTa-Large (CP) 89.00 74.02 66.09 79.87 65.18 74.83

Table 5: Results of specificity testing with pr(%) with different prompts. The best results in each group are bold.
VP: Vanilla Prompting, FP: Few-shot Prompting, CP: Cascade Prompting.

fine-grained answers. The “which clauses” here488

can be considered as suffixes and the prediction of489

the first masked token is returned as the answer.490

Compared to Few-shot Prompting, Cascade491

Prompting does not need any demonstrations. How-492

ever, Cascade Prompting cannot be applied to uni-493

directional language models such as GPT-2/3 (Rad-494

ford et al., 2019; Brown et al., 2020) since the495

model can only see the tokens before the masked496

token and cannot see the suffix. In our experiments497

in Section 6, we find that Cascade Prompting works498

well for bidirectional language models while Few-499

shot Prompting works well for unidirectional lan-500

guage models.501

6 Experiments502

In this section, we conduct experiments with the503

prompt-based methods proposed in Section 5.504

6.1 Experimental Setup 505

We follow the setup in Section 4.1. For Few-shot 506

Prompting, we set K, i.e., the number of demon- 507

strations, as 10. For Cascade Prompting, we apply 508

the prompts in Table 4, which are constructed au- 509

tomatically based on the prompts for the transitive 510

relations, e.g., “... is located in [MASK].” ⇒ “..., 511

which is located in [MASK].” 512

6.2 Results 513

Table 5 summarizes the results of specificity testing 514

with different prompting methods. From the re- 515

sults, we observe that Cascade Prompting achieves 516

the best performance in most cases. In addition, 517

the performance improvement for BERT-Large and 518

RoBERTa-Large is quite significant. We think this 519

is because the large models can understand which 520

clauses better than the base models. 521

We also observe that Few-shot Prompting does 522
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GPT-2 BERT-Base BERT-Large RoBERTa-Base RoBERTa-Large

Naturalness w/ VP 43.88 48.72 50.42 41.63 37.32
Specificity w/ VP 56.82 63.06 62.93 57.39 59.36
Naturalness w/ FP 52.02 51.05 47.36 49.11 49.96
Specificity w/ FP 64.96 62.29 59.78 57.44 64.27
Naturalness w/ CP 43.88 51.44 56.54 45.81 57.69
Specificity w/ CP 56.82 64.44 71.07 61.36 74.83

Table 6: Average naturalness measured with pr(%) with different prompts, with corresponding average specificity
as reference. w/ VP means vanilla prompting is used to create prompts. For each model, the best naturalness is
underlined and the best specificity is bold.

not improve the specificity for bidirectional lan-523

guage models. However, for GPT-2, which is a524

unidirectional language model, Few-shot Prompt-525

ing achieves a significant performance improve-526

ment, while the results of Cascade Prompting are527

the same as those of Vanilla Prompting.528

We also measure naturalness of different mod-529

els with different prompting methods. From Table530

6, we find that, for each model, the best prompt-531

ing method is usually associated with the highest532

naturalness: Cascade Prompting improves the nat-533

uralness for bidirectional language models signifi-534

cantly, which corresponds to better performance on535

specificity; while for GPT-2, the naturalness using536

Few-shot Prompting is the highest, corresponding537

to the highest specificity.538

7 Discussion539

Specificity Testing in More General Scenarios:540

In this work, we test the specificity of PLMs on541

several relations with manually crafted prompts,542

with test data created automatically based on the543

property of transitive relations. For future work, we544

may test the specificity in more general scenarios.545

For instance, for numerical knowledge (Lin et al.,546

2020), we can test how specifically PLMs describe547

the numbers, e.g., Obama was born in 1961 vs548

Obama was born in 1960s, A car has four wheels549

vs A car has several wheels. In addition, we may550

test on multi-token answers (Jiang et al., 2020a),551

and measure the specificity of sentences generated552

by PLMs, e.g., This is a very good paper. I really553

like it. vs This paper conducts a very novel and554

interesting study, which provides a new insight for555

future work on language models.556

Further Improvement of Specificity: In this pa-557

per, we propose Few-shot Prompting and Cascade558

Prompting to improve the specificity of PLMs with-559

out any additional training. Future work may im- 560

prove the specificity by including prompt-based 561

fine-tuning (Shin et al., 2020; Gao et al., 2021). The 562

weakness of existing pre-trained language models 563

in terms of specificity also encourages future work 564

to take into account the specificity, e.g., adding 565

constraints regarding specificity, in the pre-training 566

process. 567

8 Conclusion 568

In this paper, we build a benchmark to measure the 569

specificity of predictions produced by pre-trained 570

language models. To achieve this, we propose a 571

novel approach to construct test data for specificity 572

testing automatically. From our evaluations, we 573

show that exiting pre-trained language models are 574

weak in making the predictions more specific. We 575

also identify and study two underlying factors that 576

affect the specificity and propose two prompt-based 577

methods, i.e., Few-shot Prompting and Cascade 578

Prompting, to improve the specificity of the predic- 579

tions. Extensive experiments and in-depth analy- 580

ses demonstrate the effectiveness of the proposed 581

methods. We also suggest some directions for fu- 582

ture work in Section 7. We believe this work will 583

encourage the community to explore and further 584

improve the specificity of PLMs – an important 585

property that was understudied by existing research. 586

We also hope this work can give some insight to 587

improve downstream tasks such as question answer- 588

ing, information extraction, and text generation – 589

to make the answers, the extracted information, or 590

the generated sentences more specific. 591
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