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Abstract

A good speaker needs not only to be correct but
also to be specific, and so are language mod-
els. In this paper, we propose to measure how
specific the language of pre-trained language
models (PLMs) is. To achieve this, we intro-
duce a novel approach to build a benchmark
for specificity testing by forming masked token
prediction tasks with prompts. For instance,
given “J. K. Rowling was born in [MASK].”,
we want to test whether a more specific answer
will be better filled in by PLMs, e.g., Yate in-
stead of England.

From our evaluations, we show that existing
PLMs have only a slight preference for more
specific answers, indicating that PLMs are
weak in specificity. We identify underlying
factors affecting the specificity and design two
prompt-based methods to improve the speci-
ficity. Results show that the specificity of the
models can be improved by the proposed meth-
ods without additional training. We believe
this work can provide a new insight for lan-
guage modeling and encourage the research
community to further explore this important
but understudied problem.!

1 Introduction

Pre-trained language models (PLMs) such as BERT
(Devlin et al., 2019) and GPT-2/3 (Radford et al.,
2019; Brown et al., 2020) have achieved quite im-
pressive results in various natural language pro-
cessing tasks. Recent works show that the param-
eters of these models contain significant amounts
of knowledge (Petroni et al., 2019; Roberts et al.,
2020; Jiang et al., 2020a,b; Wang et al., 2020), and
knowledge stored in PLMs can be extracted by
predicting the mask token(s) using prompts. For
instance, given prompt “J. K. Rowling was born
in [MASK].”, PLMs can predict the birthplace of
Rowling based on its knowledge.

"We will release the benchmark as open-source after the
review process (attached in the supplementary materials).

Cat is a subclass of animal.
W] -
Dante is a person.

Toronto is located on the earth.

Figure 1: Examples of language modeling that lack
specificity. More specific descriptions could be: feline,
poet, and in Ontario, respectively.

However, there may exist multiple answers for
a query, while not all answers are equally specific.
For the example above, the masked token can be re-
placed by Yate (a town), Gloucestershire (a county),
or England (a country). We prefer the model to
fill in Yate since Gloucestershire and England can
be further predicted using prompts “Yate is located
in [MASK].” and “Gloucestershire is located in
[MASK].” respectively. This means, if the predic-
tion is more specific, we can retrieve more fine-
grained information from language models, and
further acquire more information (in this example,
the town, the county, and the country where Rowl-
ing was born can be extracted). Besides, some-
times, the less specific answer is not useful. For
instance, it is well known that Chicago is located in
the USA, users will not get additional information
if the model only predicts Chicago is located in the
USA instead of Illinois. More examples are shown
in Figure 1. To make an analogy: A good speaker
needs not only to be correct but also to be specific.
The same is true for language models.

Although there are works on measuring how
much knowledge is stored in PLMs or improving
the correctness of the predictions (Petroni et al.,
2019; Roberts et al., 2020; Jiang et al., 2020b),
none attempted to measure or improve the speci-
ficity of predictions made by PLMs. Understanding
how specific the language of PLMs is can help us
better understand the behavior of language mod-
els and facilitate downstream applications such



as question answering, text generation, and in-
formation extraction (Liu et al., 2021a; Khashabi
et al., 2020; Brown et al., 2020; Wang et al., 2020),
e.g., making the generated answers/sentences or ex-
tracted information more specific or fine-grained.

Therefore, we propose to build a benchmark to
measure the specificity of the language of PLMs.
For reducing human effort and easier to further
expand the dataset (e.g., to specific domains), we
introduce a novel way to construct test data au-
tomatically based on transitive relations in Wiki-
data (Vrandeci¢ and Krotzsch, 2014). Specifi-
cally, we extract reasoning paths from Wikidata,
e.g., (J. K. Rowling, birthplace, Yate, location,
Gloucestershire, location, England). Based on
the average distance of each object to the subject
and the property of transitive relations, we form
masked-token-prediction based probing tasks to
measure the specificity, e.g., whether the masked
token in “J. K. Rowling was born in [MASK].” is
better filled by Yate than England by PLMs. The
resulting benchmark dataset contains more than
20, 000 probes covering queries from 5 different
categories. The quality of the benchmark is high,
where the judgment is ~ 97% consistent with hu-
mans.

We provide in-depth analyses on model speci-
ficity and study two factors that affect the speci-
ficity with our benchmark. As shown by our evalu-
ations in Section 4, existing PLMs, e.g., BERT and
GPT-2, similarly have only a slight preference for
more specific answers (in only about 60% of cases
where a more specific answer is preferred). We also
show that, in general, PLMs prefer less specific an-
swers without subjects given, and they only have
a weak ability to differentiate coarse-grained/fine-
grained objects by measuring their similarities to
subjects. The results indicate that specificity was
neglected by existing research on language models.
How to improve it is undoubtedly an interesting
and valuable problem.

Based on our observations and analyses, we pro-
pose two techniques to improve the specificity of
the predictions by modifying the prompts without
additional training: Few-shot Prompting, where
demonstrations with more specific answers are pro-
vided to guide the models to produce more specific
answers; and Cascade Prompting, where which
clauses are added as suffixes to bias the predictions
to be more specific. Results show that Few-shot
Prompting can improve the specificity for unidi-

rectional language models like GPT-2 well, while
Cascade Prompting works well for bidirectional
language models such as BERT.

The main contributions of our work are summa-
rized as follows:

* We report the first attempt to investigate the
specificity of the language of pre-trained lan-
guage models.

* We propose a novel automatic approach to
build a benchmark for specificity testing based
on the property of transitive relations.

* We show existing PLMs perform poorly on
specificity and study two factors that affect
the specificity.

* We propose two methods to improve the speci-
ficity by modifying the prompts without addi-
tional training.

* We provide in-depth analyses and discussions,
suggesting further works to explore and fur-
ther improve the specificity.

2 Background and Related Work

Pre-Trained Language Models: Pre-trained lan-
guage models (PLMs) are language models pre-
trained on large corpora. In this paper, we will
cover two types of pre-trained language models:
unidirectional language models, such as GPT-2
(Radford et al., 2019), where the prediction of the
current token is only based on previous tokens; and
bidirectional language models, such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
where both left and right contexts are utilized to
predict the current token.

Knowledge Retrieval from LMs and Prompt-
ing: Previous works have worked on extracting
factual knowledge from PLMs without incorporat-
ing external knowledge, which is usually achieved
by creating prompts and letting PLLMs predict the
masked token(s) (Petroni et al., 2019; Bouraoui
et al., 2020; Jiang et al., 2020a,b; Wang et al., 2020).
They demonstrated that PLMs contain a significant
amount of knowledge. By creating appropriate
prompts with some additional training, such meth-
ods can even achieve performance comparable to
SOTA for some specific tasks (Shin et al., 2020;
Liu et al., 2021b). Our work is inspired by these
works; but different from these works, where the
focus is to measure or improve the correctness of
the predictions, our work focuses on measuring and
improving the specificity of the predictions.



3 S-TEST: Specificity Testing

In this section, we introduce our specificity testing
(S-TEST) task, describe the creation process of the
dataset, and design the metric to measure the speci-
ficity of predictions made by pre-trained language
models.

3.1 Task Formulation

Specificity is a semantic feature of language to de-
scribe things specifically in a given context. In
this work, we focus on measuring the specificity of
the predictions produced by pre-trained language
models for entity relations. For instance, to extract
the answer (object) for relation (Toronto, location,
X), we convert the query to a masked token predic-
tion task using prompts, e.g., “Toronto is located in
[MASK].” and let PLMs predict the masked token.
The answer here can be a coarse-grained one, e.g.,
Canada, or a fine-grained one, e.g., Ontario. The
model is considered to perform well in terms of
specificity if it tends to fill in Ontario instead of
Canada. More general scenarios are discussed in
Section 7 as future work.

3.2 Test Data Construction

We build a benchmark dataset for measuring the
specificity based on Wikidata (Vrandeci¢ and
Krotzsch, 2014), which is a knowledge base con-
taining a large number of entities and relations.
Specifically, we utilize transitive relations” in Wiki-
data to create the test set automatically. Transitive
relations are binary relations with properties such
that (z,r,y) and (y, r, z) implies (z, r, z), where
entity y can be considered as a more fine-grained
object of x than entity z under relation r.

For instance, relation P13/ is a transitive rela-
tion, whose label is “located in the administrative
territorial entity”. From Wikidata, we can extract
facts (Toronto, P131, Ontario) and (Ontario, P131,
Canada), which furthermore forms a reasoning
path (Toronto, P131, Ontario, P131, Canada). And
Ontario is considered more fine-grained (specific)
than Canada in terms of relation P131 because its
distance to Toronto is shorter than Canada in the
reasoning path. Based on this, for a transitive re-
lation, we collect reasoning paths with length < 5
for each subject and calculate the average distance
of each object to the subject. In this way, we can

https://www.wikidata.org/wiki/
Wikidata:List_of_properties/transitive_
relation

construct pairs with coarse-grained/fine-grained ob-
jects for each subject, e.g., (Toronto, Ontario) and
(Toronto, Canada) for Toronto in terms of relation
P131 (or a triplet denoted as (Toronto, Ontario,
Canada)). The constructed pairs can be used to test
the specificity with prompt: “Toronto is located in
[MASK].”

We also combine different relations to form tasks.
For instance, for relation P19, whose label is “place
of birth”, we combine it with P/3/ and further
form a mask token prediction task, such as “[X]
was born in [MASK].” An example reasoning path
containing coarse-grained/fine-grained objects is
(John G. Bennett, P19, London, P13, England),
corresponding to pairs (John G. Bennett, London)
and (John G. Bennett, England).

Considering the representativeness and compre-
hensiveness, we select 5 relations and randomly
sample up to 5,000 pairs for each relation, with
the difference of average distance of the objects
to the subject being greater than or equal to 1 (to
filter out entity pairs whose specificity is difficult to
differentiate). Similar to (Petroni et al., 2019), we
only choose single-token objects as the prediction
targets, since multi-token generation is still an area
that needs further exploration, and the multi-token
decoding process will introduce many tunable pa-
rameters that obscure the performance (Welleck
et al., 2019; Jiang et al., 2020a). Statistics and
examples of the resulting benchmark dataset are
shown in Table 1.

3.3 Maetric

If a model tends to be more specific, it should have
higher confidence that the more specific answer is
correct. For instance, given “Toronto is located in
[MASK].”, the model should assign a higher proba-
bility for Ontario than Toronto. Therefore, we can
measure the specificity by calculating how much
times the probability of the fine-grained answer
is higher than that of the coarse-grained answer,
which is

1
Pr= 2

(z,y1,y2)E€Tr

1[C(y1’$, T) > C(y2|$, T')],

where 7, is the set of test examples for relation 7.
y1 is the fine-grained object and ys is the coarse-
grained object. c¢(y|z, ) is the probability of the
model with y as the prediction of the masked to-
ken, and z refers to the subject. p, ranges from
0 to 1, and 0.5 means the model does not have
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ID Relation | Number | Prompt

‘ Answer 1 | Answer 2

P19 | birthplace 5,000 | John G. Bennett was born in [MASK]. London | England
P106 | occupation 5,000 | Jenny Burton is a [MASK] by profession. | singer | musician
P131| location 5,000 | Carey River is located in [MASK]. Victoria | Australia
P279 | subclass-of 5,000 | Tracking ship is a subclass of [MASK]. vessel vehicle

P361 part-of 628 | Hard palate is part of [MASK]. mouth head

Table 1: Statistics and examples of the S-TEST benchmark, where we use the same templates in (Petroni et al.,
2019) to create prompts. Answer [ is more specific than Answer 2.

a preference in terms of specificity. The metric
is similar to the one used in (Marvin and Linzen,
2018), which compares the probability of a pair
of words for creating a grammatical sentence, e..g,
The author laughs (grammatical) vs The author
laugh (ungrammatical).

4 Analysis

In this section, we first analyze the results of S-
TEST and then identify and study two underlying
factors that affect the specificity of predictions pro-
duced by pre-trained language models.

4.1 Experimental Setup

We test on the following pre-trained case-sensitive
language models: GPT-2, BERT-Base, BERT-
Large, RoBERTa-Base, and RoBERTa-Large. For
a fair comparison, following (Petroni et al., 2019),
we use the intersection of the vocabularies of all
the models as the unified vocabulary for prediction
(~18k case-sensitive tokens).

To measure the upper bound of the performance
and verify the quality of the dataset, we also esti-
mate human performance on the task. We randomly
sampled 400 examples (80 for each relation) and
asked human annotators to fill in the masked token
with coarse-grained/fine-grained answers given.

4.2 Results of S-TEST

Table 2 reports the results of specificity testing.
We observe that existing pre-trained language mod-
els perform badly in terms of specificity, where the
probability that more specific answers are preferred
by them is just around 60%. This is reasonable
since the training of PLMs does not introduce any
constraint/bias in terms of specificity; therefore,
PLMs do not have much perception that more spe-
cific answers should be preferred. We also observe
that model performance is far from human bound.

The high performance achieved by humans also
demonstrates that the quality of the dataset is high.

Another interesting finding is that for a single re-
lation, the specificity of different models is highly
correlated. For instance, for relation location, the
specificity measured by p, of all models is slightly
lower than 50%, while for relation part-of, the
specificity of all models is around 60%. The aver-
age pairwise Pearson correlation coefficient among
all relations is 0.803. We think this is because pre-
trained language models are all trained on large
corpora; therefore, their knowledge overlaps to a
large extent, as is the preference on the specificity
of predictions.

4.3 Factors Affecting Specificity

Some types of questions may be answered specif-
ically naturally. For instance, when discussing
anyone’s occupation, people may be inclined to
use a more specific description; but for the loca-
tion of a place, people may not be so. In addition,
specific answers may be easier to relate to the en-
tities in the query than the coarse-grained ones
since their connections may be more close, e.g.,
sim(Toronto, Ontario) > sim(Toronto, Canada).
In this case, the models will tend to be more spe-
cific. Based on the above analysis, the specificity of
the predictions mainly depends on question types
(e.g., relations) and entities in the query (e.g., sub-
jects), which is also indicated by the metric for
measuring specificity, i.e., ¢(y|z, ). To investigate
the effect of each component, we split the query,
e.g., is located in [MASK].”, into two
parts: the relations, e.g., is located in, and the sub-
jects, e.g, , corresponding to naturalness
and relatedness respectively.

Naturalness: For some questions, they may be
answered more specifically naturally than others by
PLMs. For instance, for questions about the place
of birth, if in the corpora, the birthplace is usually



birthplace occupation location subclass-of part-of | Average

GPT-2 59.72 57.28 48.25 57.98 60.86 | 56.82
BERT-Base 60.68 70.46 49.09 67.64 67.41 | 63.06
BERT-Large 56.52 71.76 42.36 77.25 66.77 | 62.93
RoBERTa-Base 54.48 61.80 49.99 61.59 59.11 | 57.39
RoBERTa-Large 42.16 71.44 43.28 80.63 59.27 | 59.36
Human Bound 98.75 92.50 100.00 96.25 97.75 | 97.05

Table 2: Results of specificity testing with p,.(%).

birthplace occupation location subclass-of part-of | Average

P Naturalness | 46.42 50.86 10.94 60.06  51.12 | 43.88
Relatedness 68.51 78.50 82.84 40.00 50.16 64.00

BERTB Naturalness | 64.81 75.04 4.99 4796  50.80 | 48.72
“base Relatedness | 74.89 51.96 76.43 71.67 5879 | 66.75
BERT.-Lar Naturalness 66.35 79.22 10.03 48.92 47.60 50.42
A8 | Relatedness | 54.46 49.16 56.22 7296 6550 | 59.66
Naturalness | 44.80 61.12 2327 4206 3690 | 41.63

ROBERTa-Base | p 1 tedness | 68.73 58.50 65.73 39.51 56.87 | 57.87
Naturalness | 31.37 66.24 3.67 13.64 4169 | 3732

RoBERTa-Large | p o1 tedness | 47.82 41.32 34.89 55.17 6422 | 48.68

Table 3: Relatedness and naturalness measured with p,.(%).

described more specifically, e.g., ... was born in
Honolulu, Hawaii, PLMs will also describe the
birthplace more specifically. This is intuitive since
PLMs are trained on large corpora based on tasks
like masked language modeling; therefore, it will
produce more fine-grained predictions conditioned
with contexts that are more likely to associate with
specific answers.

To measure how natural a type of questions will
be answered more specifically by PLMs, we mask
the subject in each prompt, e.g., “[MASK] was
born in [MASK].”, and let PLMs predict the second
masked token. We get the probability of each token
in the vocabulary, i.e., ¢(y|-, ), and use our metric
and dataset to measure the naturalness, e.g., how
natural birthplace will be described more specifi-
cally in general.

Relatedness: Considering the following situation:
the model knows both A and B are correct answers,
and thinks A is more related to the the subject than
B in general. Intuitively, it will prefer answer A.
Therefore, another factor that affects the speci-
ficity of predictions made by PLMs is relatedness,
i.e., to what extent are the fine-grained objects
more related to the corresponding subjects than the

coarse-grained ones considered by PLMs. (More
generally, this is the ability of PLMs to identify
more related entities).

We measure relatedness based on phrase embed-
dings from PLMs. Following (Yu and Ettinger,
2020; Wang et al., 2021), we use the mean-pooled
representations over the final-layer outputs from
PLMs as phrase embeddings, and calculate the co-
sine similarities between the subject and the cor-
responding objects. If the cosine similarity be-
tween the subject and the fine-grained object is
higher than that between the subject and the coarse-
grained object, we think PLMs consider the fine-
grained one is more related to the subject. Ac-
cording to this, we can use our metric and dataset
to measure the relatedness, with confidence, i.e.,
c(ylz, -), based on cosine similarity between 2 and

Y.

Findings. In Table 3, we report the naturalness
and relatedness with p, as the metric. We find that,
1) the highest average naturalness and relatedness
are achieved by BERT-Large and BERT-Base, re-
spectively, corresponding to the highest average
specificity; 2) in many cases, naturalness is lower



than 0.5, which indicates that, without the sub-
jects provided, PLMs are more likely to provide
coarse-grained answers; 3) relatedness is usually
higher than 0.5, which means PLMs have a certain
ability to distinguish fine-grained/coarse-grained
answers based on semantic similarities between
entities. But the ability is weak since the average
scores are just around 60%.

5 Can Language Models Be MORE
Specific?

From the previous sections, we observe that exist-
ing pre-trained language models perform unsatis-
factorily in terms of specificity. We also observe
that PLMs achieve naturalness lower than 0.5, i.e.,
naturally, PLMs tend to fill in coarse-grained an-
swers with respect to certain types of questions,
and relatedness around 0.6, i.e., PLMs only have a
weak ability to distinguish more related entities.
Naturalness depends on both the parameters of
PLMs and prompts while relatedness only depends
on the parameters of PLMs. Since it is expensive
to change the parameters of PLMs (both time and
space), to improve the specificity, we focus on im-
proving the naturalness by modifying the prompts.

Intuitively, to get more specific answers, a practi-
cal approach is to ask more specific questions. For
instance, to know where Toronto is located more
specifically, we may change the prompt “Toronto is
located in [MASK].” to “Toronto is located in the
province of [MASK].” However, to achieve this,
humans are required to have additional knowledge,
e.g., Toronto is a city, and in Canada, the adminis-
trative unit larger than city is province rather than
state. Besides, designing such manually crafted
prompts can also be time-consuming and laborious
if there are a large number of queries. Furthermore,
some questions may be difficult to ask more specif-
ically. For instance, for question “Hard palate is
part of [MASK].”, it is not easy to come up with a
more specific query.

Based on the above considerations, we propose
two novel and simple techniques to improve the
specificity of the predictions. The proposed meth-
ods can apply to different models on various types
of queries while no additional training is required.

5.1 Few-Shot Prompting

We refer to using prompts in Table 1 to extract an-
swers as Vanilla Prompting. Vanilla Prompting
cannot give specific answers since the designed

prompts can not tell the models the preference re-
garding specificity; therefore, the models are not
aware of whether a more specific answer is pre-
ferred.

Based on the above analysis, we need to give the
model some “hints” in terms of specificity, which
can be achieved by providing some demonstrations.
For instance, to predict where Toronto is located,
if we provide some examples with coarse-grained
answers using prompt “Melbourne is located in
Australia, Guangzhou is located in China, Toronto
is located in [MASK].”, the model may know by
analogy that we prefer a coarse-grained answer,
which is Canada (a country). In contrast, if we pro-
vide some fine-grained answers using prompt “Mel-
bourne is located in Victoria, Guangzhou is located
in Guangdong, Toronto is located in [MASK].”,
the model may realize through analogy that we pre-
fer a fine-grained answer here, which is Ontario (a
province).

We refer to the method described above as Few-
shot Prompting, which supposes to bias the predic-
tion to be more specific by providing some exam-
ples with fine-grained answers. The technique here
is similar to the few-shot setting in GPT-3 (Brown
et al., 2020), where several demonstrations of the
task are given to the model as condition to help the
model make the prediction.

5.2 Cascade Prompting

To make the answer more specific, we can also
utilize the relationship between coarse-grained and
fine-grained objects. For instance, in Table 1, track-
ing ship is a subclass of vessel, while vessel is also
a subclass of vehicle. To combine the three enti-
ties, we can write a sentence: Tracking ship is a
subclass of vessel, which is a subclass of vehicle.
By masking the objects, we get prompt: “Tracking
ship is a subclass of [MASK], which is a subclass
of [MASK].” Intuitively, the first masked token
will be more likely to be filled by vessel, while the
second masked token tends to be vehicle. Another
example in Table 1 is to predict the birthplace, we
can create prompt “John G. Bennett was born in
[MASK], which is located in [MASK].” to bias
the prediction of the first masked token to be more
specific.

We refer to the above method as Cascade
Prompting, which aims to improve the specificity
by adding “which clauses” as constraints accord-
ing to the relationship between coarse-grained and



Relation Prompt

birthplace | John G. Bennett was born in [MASK], which is located in [MASK].
occupation | Jenny Burton is a [MASK] by profession, which belongs to [MASK].
location Carey River is located in [MASK], which is located in [MASK].
subclass-of | Tracking ship is a subclass of [MASK], which is a subclass of [MASK].
part-of Hard palate is part of [MASK], which is part of [MASK].

Table 4: Example prompts for Cascade Prompting. The prompts are created automatically based on the prompts for

corresponding transitive relations.

birthplace occupation location subclass-of part-of | Average

GPT-2 (VP) 59.72 57.28 48.25 57.98 60.86 | 56.82
GPT-2 (FP) 81.01 71.66 50.33 64.15 57.67 | 64.96
GPT-2 (CP) 59.72 57.28 48.25 57.98 60.86 | 56.82
BERT-Base (VP) 60.68 70.46 49.09 67.64 67.41 | 63.06
BERT-Base (FP) 67.85 70.54 50.11 69.11 53.83 | 62.29
BERT-Base (CP) 59.68 70.54 55.06 67.42 69.49 | 64.44
BERT-Large (VP) 56.52 71.76 42.36 77.25 66.77 | 62.93
BERT-Large (FP) 66.17 64.70 50.37 65.44 52.24 | 59.78
BERT-Large (CP) 82.25 70.02 53.55 77.67 71.88 | 71.07
RoBERTa-Base (VP) 54.48 61.80 49.99 61.59 59.11 | 57.39
RoBERTa-Base (FP) 64.85 72.38 35.85 63.01 51.11 | 57.44
RoBERTa-Base (CP) 63.09 64.54 54.56 61.81 62.78 | 61.36
RoBERTa-Large (VP) 42.16 71.44 43.28 80.63 59.27 | 59.36
RoBERTa-Large (FP) 70.51 71.94 42.26 73.70 62.94 | 64.27
RoBERTa-Large (CP) 89.00 74.02 66.09 79.87 65.18 | 74.83

Table 5: Results of specificity testing with p,.(%) with different prompts. The best results in each group are bold.
VP: Vanilla Prompting, FP: Few-shot Prompting, CP: Cascade Prompting.

fine-grained answers. The “which clauses” here
can be considered as suffixes and the prediction of
the first masked token is returned as the answer.

Compared to Few-shot Prompting, Cascade
Prompting does not need any demonstrations. How-
ever, Cascade Prompting cannot be applied to uni-
directional language models such as GPT-2/3 (Rad-
ford et al., 2019; Brown et al., 2020) since the
model can only see the tokens before the masked
token and cannot see the suffix. In our experiments
in Section 6, we find that Cascade Prompting works
well for bidirectional language models while Few-
shot Prompting works well for unidirectional lan-
guage models.

6 Experiments

In this section, we conduct experiments with the
prompt-based methods proposed in Section 5.

6.1 Experimental Setup

We follow the setup in Section 4.1. For Few-shot
Prompting, we set K, i.e., the number of demon-
strations, as 10. For Cascade Prompting, we apply
the prompts in Table 4, which are constructed au-
tomatically based on the prompts for the transitive
relations, e.g., “... is located in [MASK].” = “...,
which is located in [MASK].”

6.2 Results

Table 5 summarizes the results of specificity testing
with different prompting methods. From the re-
sults, we observe that Cascade Prompting achieves
the best performance in most cases. In addition,
the performance improvement for BERT-Large and
RoBERTa-Large is quite significant. We think this
is because the large models can understand which
clauses better than the base models.

We also observe that Few-shot Prompting does



| GPT-2 | BERT-Base | BERT-Large | RoBERTa-Base | RoBERTa-Large

Naturalness w/ VP | 43.88 48.72 50.42 41.63 37.32
Specificity w/ VP | 56.82 63.06 62.93 57.39 59.36
Naturalness w/ FP | 52.02 51.05 47.36 49.11 49.96
Specificity w/ FP | 64.96 62.29 59.78 57.44 64.27
Naturalness w/ CP | 43.88 51.44 56.54 45.81 57.69
Specificity w/ CP | 56.82 64.44 71.07 61.36 74.83

Table 6: Average naturalness measured with p,.(%) with different prompts, with corresponding average specificity
as reference. w/ VP means vanilla prompting is used to create prompts. For each model, the best naturalness is

underlined and the best specificity is bold.

not improve the specificity for bidirectional lan-
guage models. However, for GPT-2, which is a
unidirectional language model, Few-shot Prompt-
ing achieves a significant performance improve-
ment, while the results of Cascade Prompting are
the same as those of Vanilla Prompting.

We also measure naturalness of different mod-
els with different prompting methods. From Table
6, we find that, for each model, the best prompt-
ing method is usually associated with the highest
naturalness: Cascade Prompting improves the nat-
uralness for bidirectional language models signifi-
cantly, which corresponds to better performance on
specificity; while for GPT-2, the naturalness using
Few-shot Prompting is the highest, corresponding
to the highest specificity.

7 Discussion

Specificity Testing in More General Scenarios:
In this work, we test the specificity of PLMs on
several relations with manually crafted prompts,
with test data created automatically based on the
property of transitive relations. For future work, we
may test the specificity in more general scenarios.
For instance, for numerical knowledge (Lin et al.,
2020), we can test how specifically PLMs describe
the numbers, e.g., Obama was born in 1961 vs
Obama was born in 1960s, A car has four wheels
vs A car has several wheels. In addition, we may
test on multi-token answers (Jiang et al., 2020a),
and measure the specificity of sentences generated
by PLMs, e.g., This is a very good paper. I really
like it. vs This paper conducts a very novel and
interesting study, which provides a new insight for
future work on language models.

Further Improvement of Specificity: In this pa-
per, we propose Few-shot Prompting and Cascade
Prompting to improve the specificity of PLMs with-

out any additional training. Future work may im-
prove the specificity by including prompt-based
fine-tuning (Shin et al., 2020; Gao et al., 2021). The
weakness of existing pre-trained language models
in terms of specificity also encourages future work
to take into account the specificity, e.g., adding
constraints regarding specificity, in the pre-training
process.

8 Conclusion

In this paper, we build a benchmark to measure the
specificity of predictions produced by pre-trained
language models. To achieve this, we propose a
novel approach to construct test data for specificity
testing automatically. From our evaluations, we
show that exiting pre-trained language models are
weak in making the predictions more specific. We
also identify and study two underlying factors that
affect the specificity and propose two prompt-based
methods, i.e., Few-shot Prompting and Cascade
Prompting, to improve the specificity of the predic-
tions. Extensive experiments and in-depth analy-
ses demonstrate the effectiveness of the proposed
methods. We also suggest some directions for fu-
ture work in Section 7. We believe this work will
encourage the community to explore and further
improve the specificity of PLMs — an important
property that was understudied by existing research.
We also hope this work can give some insight to
improve downstream tasks such as question answer-
ing, information extraction, and text generation —
to make the answers, the extracted information, or
the generated sentences more specific.
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