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ABSTRACT

Differentially private (DP) tabular data synthesis algorithms generate artificial
data that preserves the statistical properties of private data while safeguarding in-
dividual privacy. However, the emergence of diverse algorithms in recent years
has introduced challenges in practical applications, such as inconsistent data pro-
cessing methods, and the lack of in-depth algorithm comparisons and analysis.
These factors create significant obstacles to selecting appropriate algorithms. In
this paper, we address these challenges by proposing a novel benchmark for eval-
uating tabular data synthesis methods. We present a unified evaluation framework
that integrates data preprocessing, feature selection, and data synthesis modules,
facilitating fair and comprehensive comparisons. Our evaluation reveals that no
single method consistently outperforms the rest across all scenarios. Furthermore,
we conduct an in-depth experimental evaluation of each algorithmic module, of-
fering insights into the strengths and limitations of different strategies. This lays
the foundation for designing more robust and interpretable methods for private
data synthesis. Source codes are available at the link1.

1 INTRODUCTION

Private tabular data synthesis algorithms generate artificial data that preserves the statistical proper-
ties of real data while protecting individual privacy. Differential privacy (DP) is one of the gold stan-
dards for protecting privacy. DP ensures that the inclusion or exclusion of any single data point does
not significantly affect the outcome, thereby protecting each individual data point within a dataset.
A substantial body of research has been proposed to address the tabular data synthesis problem with
DP. These can be broadly classified into two categories: statistical methods and machine learning
methods. Statistical methods (Zhang et al., 2017; Vietri et al., 2022; Zhang et al., 2021; Liu et al.,
2023; Zhang et al., 2017; McKenna et al., 2021; Vietri et al., 2020; Hardt et al., 2012) compress data
information through statistical properties, such as low-dimensional data distributions, to achieve
data generation. On the other hand, machine learning methods leverage deep learning frameworks
designed for data generation, such as generative networks (Liu et al., 2021; Harder et al., 2021; Jor-
don et al., 2018; Xie et al., 2018; Torkzadehmahani et al., 2019) and diffusion models (Kotelnikov
et al., 2023; Pang et al., 2024; Li et al., 2024).

While several studies have been conducted on tabular data synthesis, we still face several chal-
lenges: (1) Lack of unified evaluation settings. Beyond algorithmic strategies, evaluation settings,
such as data preprocessing, play a significant role in determining algorithm performance. How-
ever, these settings are often considered trivial and thus are frequently overlooked in many methods,

1https://github.com/KaiChen9909/tab_bench
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which potentially leads to unfair comparisons between methods. (2) Lack of comprehensive and in-
depth evaluation and analysis. Due to various reasons, such as concurrent development or relatively
recent introduction, comparisons between recently proposed methods and existing works remain
incomplete, particularly between some representative methods like RAP++ (Vietri et al., 2022),
Private-GSD (Liu et al., 2023) and AIM (McKenna et al., 2022). Moreover, current works often
focus on proposing new methods, only providing limited intuition and evaluation of algorithms.
Consequently, certain deeper aspects, such as the utility of individual algorithm modules, remain
underexplored. For example, questions such as how to select features to represent the dataset more
accurately or what limitations different synthesis strategies face given selected features are insuffi-
ciently addressed.

In light of the above challenges, we believe proposing a new benchmark for evaluating tabular data
synthesis is necessary. The contributions of our benchmark work are as follows.

Proposing a Unified Framework for Evaluation. We first propose a generalized framework and
align all methods within this framework to ensure fairness and objectivity in comparisons. The
framework consists of a data preprocessing module, a feature selection module, and a data synthesis
module. Notably, this is the first framework to explicitly consider the impact of preprocessing on
algorithm comparisons. Additionally, dividing the workflow of current algorithms into feature selec-
tion and data generation modules provides a modular perspective that enhances our understanding
and evaluation of these methods.

Providing a Comprehensive Comparison and Analysis. In our experiments, we include current
state-of-the-art methods (McKenna et al., 2022; Zhang et al., 2021; Cai et al., 2021; Vietri et al.,
2022; Liu et al., 2021; Harder et al., 2021) under both statistical and machine learning methods,
along with newly proposed methods (Liu et al., 2023; Kotelnikov et al., 2023) that have not been
thoroughly explored in prior research. Moreover, based on the unified framework, our experiments
include the evaluation of different algorithmic modules, which are more fine-grained and help us
analyze how they function independently.

We observed some important experimental findings, i.e., (1) no single method dominates across
all experimental settings. Generally, statistical methods outperform machine learning methods in
terms of accuracy. However, machine learning methods are significantly more time-efficient. (2)
Preprocessing plays a crucial role in enhancing the efficiency of algorithms without introducing
substantial synthesis errors, supporting our attention on this step. (3) For the selection module,
adaptive selection algorithms with well-designed measurement techniques outperform others. For
the data synthesis module, all current algorithms exhibit notable limitations in different ways.

2 DP TABULAR DATA SYNTHESIS

2.1 PROBLEM FORMULATION

Differential privacy (DP) has become the de facto standard for data privacy. It allows aggregated
statistical information to be extracted while limiting the disclosure of information about individuals.
More formally, the definition of DP is given by

Definition 1 (Differential Privacy) An algorithm A satisfies (ε, δ)-differential privacy ((ε, δ)-DP)
if and only if for any two neighboring datasets D and D′ and any T ⊆ Range(A), we have

Pr [A(D) ∈ T ] ≤ eε Pr [A(D′) ∈ T ] + δ.

We say two datasets are neighboring (D ≃ D′) when they differ on one tuple/sample, i.e., one
dataset can be obtained from the other by removing one tuple.

In this work, we focus our attention on DP mechanisms for tabular data synthesis, which are de-
signed to generate an artificial tabular dataset that mirrors the statistical characteristics of the original
dataset without compromising individual privacy. More formally, assuming that we have a tabular
dataset D composed of n records {x1, · · · , xn}, and each record has d attributes {A1, · · · , Ad}, we
want to generate a dataset Ds similar to D. Here, the synthetic dataset Ds is said to be similar to D
if f(Ds) is close to f(D) for a broad class of functions f .
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Figure 1: The proposed unified framework. The three blocks represent data preprocessing, feature
selection, and data synthesis steps respectively.

2.2 EXISTING WORK

We start by briefly reviewing current state-of-the-art algorithms (a detailed summary of existing
work is provided in Appendix A.1). PrivSyn (Zhang et al., 2021) first select a set of low-dimensional
marginals and then synthesize data by updating an initialized dataset to align with those marginals.
(Cai et al., 2021) introduced PrivMRF, and (McKenna et al., 2022) proposed AIM, both of which
dynamically select low-dimensional marginals and employ PGMs for synthesis. RAP++ (Vietri
et al., 2022) and Private-GSD (Liu et al., 2023) also apply an adaptive marginal selection mechanism,
but their synthesis algorithms are constructed on relaxed projection and genetic algorithms.

Besides statistical methods, machine learning methods also show diverse working principles.
GEM (Liu et al., 2021) combines deep generative networks with adaptive marginal selection mecha-
nisms, while DP-MERF (Harder et al., 2021) employs random Fourier feature loss to train generative
networks. Additionally, TabDDPM (Kotelnikov et al., 2023) leverages diffusion models’ represen-
tational power to fit target data directly. While TabDDPM was not originally designed for DP, it
achieves state-of-the-art performance among non-DP methods and can be adapted for DP synthesis
using DP-SGD (Du & Li, 2024). Consequently, we include TabDDPM in our analysis.

2.3 UNIFIED FRAMEWORK

Current works often focus on end-to-end comparisons, which cannot easily attribute performance
differences to certain parts of the algorithms. Therefore, similar to some previous works (Liu et al.,
2021; McKenna et al., 2021; Hu et al., 2023), we propose our algorithm framework, as shown in
Figure 1. This framework not only serves as a way to understand existing algorithms, but also
allows us to combine modules from different prior works, leading to new mechanisms and enabling
the evaluation of individual algorithmic modules. It consists of three modules:

Preprocessing Module. As observed in our evaluation (see Table 2), many datasets contain at-
tributes with large domain sizes (e.g., exceeding 105). These high-cardinality attributes lead to large
marginals or huge model dimensions, posing significant challenges for data synthesis. However,
these challenges can be alleviated by proper preprocessing steps, compressing the domains of such
attributes and thus facilitating faster synthesis. However, preprocessing is often ignored for simplic-
ity, and several prior works discussed have not specified this aspect explicitly, which may impact the
fairness of comparisons across methods.

Feature Selection Module. While some algorithms, such as TabDDPM, can fit the entire dataset by
their powerful models. It is still infeasible for most methods to estimate the full joint distribution be-
cause the domain of the whole dataset increases exponentially with the number of attributes. A more
common and practical approach is to utilize some representative local data features to approximate
the full joint distribution. For instance, GEM and most statistical methods utilize low-dimensional
marginals, and DP-MERF uses the random Fourier feature. Therefore, the second step in the frame-
work is to select representative features. Many different methods have been proposed for this based
on similar principles. Generally, we divide them into two categories: non-adaptive feature selection,
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Table 1: Overall results of synthetic data under different methods. The results with the best perfor-
mance are highlighted in bold. Ground truth is obtained by comparing real data with test data, which
serves as the reference for evaluation.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML Efficiency ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn 0.38 0.39 0.41 0.42 0.43 0.39 0.47 0.47 0.47 0.40 0.43 0.43 0.25 0.26 0.26
PrivMRF 0.73 0.78 0.78 0.72 0.80 0.81 0.62 0.69 0.71 0.50 0.64 0.64 0.52 0.52 0.52
RAP++ 0.66 0.73 0.77 0.74 0.77 0.80 0.65 0.69 0.67 0.52 0.53 0.54 0.45 0.42 0.43
AIM 0.76 0.78 0.78 0.78 0.80 0.81 0.67 0.71 0.71 0.63 0.64 0.67 0.52 0.52 0.52
Private-GSD 0.76 0.77 0.77 0.72 0.73 0.72 0.47 0.48 0.49 0.48 0.47 0.49 0.25 0.24 0.25
GEM 0.70 0.68 0.66 0.67 0.70 0.69 0.51 0.56 0.53 0.51 0.52 0.52 0.50 0.49 0.51
DP-MERF 0.65 0.67 0.71 0.58 0.70 0.66 0.60 0.57 0.55 0.53 0.56 0.57 0.32 0.18 0.18
TabDDPM 0.41 0.41 0.39 0.48 0.42 0.51 0.47 0.47 0.47 0.36 0.35 0.34 0.24 0.24 0.24

Ground Truth 0.79 0.79 0.79 0.81 0.81 0.81 0.76 0.76 0.76 0.72 0.72 0.72 0.54 0.54 0.54

Query Error ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn 0.003 0.002 0.002 0.006 0.004 0.004 0.007 0.004 0.003 0.009 0.004 0.003 0.006 0.005 0.004
PrivMRF 0.002 0.001 0.001 0.004 0.002 0.002 0.005 0.003 0.003 0.005 0.005 0.003 0.005 0.005 0.004
RAP++ 0.019 0.005 0.003 0.029 0.009 0.003 0.014 0.006 0.005 0.035 0.029 0.028 0.020 0.014 0.011
AIM 0.002 0.001 0.001 0.004 0.002 0.001 0.007 0.002 0.002 0.005 0.003 0.003 0.005 0.005 0.004
Private-GSD 0.004 0.003 0.002 0.026 0.026 0.026 0.044 0.044 0.043 0.044 0.044 0.044 0.038 0.037 0.036
GEM 0.014 0.017 0.016 0.010 0.006 0.006 0.118 0.021 0.022 0.066 0.065 0.065 0.030 0.030 0.029
DP-MERF 0.019 0.018 0.024 0.039 0.037 0.036 0.038 0.035 0.036 0.039 0.035 0.034 0.006 0.006 0.006
TabDDPM 0.066 0.064 0.060 0.088 0.067 0.079 0.074 0.071 0.088 0.106 0.106 0.107 0.067 0.066 0.070

Ground Truth 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Fidelity Error ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn 0.15 0.12 0.12 0.12 0.09 0.09 0.24 0.10 0.21 0.29 0.20 0.15 0.34 0.35 0.36
PrivMRF 0.11 0.07 0.05 0.07 0.04 0.03 0.13 0.07 0.06 0.21 0.16 0.16 0.31 0.24 0.23
RAP++ 0.52 0.24 0.19 0.30 0.13 0.07 0.43 0.36 0.36 0.69 0.65 0.65 0.66 0.58 0.55
AIM 0.09 0.06 0.05 0.05 0.03 0.02 0.11 0.09 0.09 0.19 0.17 0.14 0.35 0.32 0.29
Private-GSD 0.23 0.21 0.20 0.22 0.22 0.22 0.52 0.52 0.52 0.65 0.65 0.65 0.67 0.66 0.66
GEM 0.26 0.28 0.27 0.15 0.08 0.09 0.76 0.21 0.23 0.57 0.57 0.36 0.53 0.52 0.52
DP-MERF 0.52 0.51 0.50 0.34 0.34 0.32 0.47 0.48 0.48 0.60 0.56 0.54 0.91 0.92 0.93
TabDDPM 0.78 0.77 0.71 0.60 0.51 0.57 0.79 0.78 0.82 0.70 0.81 0.88 0.95 0.95 0.94

Ground Truth 0.05 0.05 0.05 0.02 0.02 0.02 0.03 0.03 0.03 0.12 0.12 0.12 0.10 0.10 0.10

which finishes selection in one step like PrivSyn, and adaptive feature selection, which incorporates
iterative refinement for the selection result such as AIM, PrivMRF, RAP++ and GEM.

Data Synthesis Module. The third step in the framework is to synthesize data that aligns well
with the private feature measurements taken in the previous step. Broadly, we categorize existing
synthesis methods into two types based on their synthesis strategies: data-adjusting methods, which
gradually update records in an initialized dataset and finally output this dataset as the synthetic result,
and model-adjusting methods, which fit generative models and synthesize data by these models. It is
also notable that these two categories are not mutually exclusive. We can regard an initialized dataset
as a model where each data record is a model parameter, so adjusting data can also be viewed as
adjusting a model. The distinction here is more for demonstrating algorithm intuition.

3 EXPERIMENTS

We consider eight state-of-the-art methods: PrivSyn (Zhang et al., 2021), PrivMRF (Cai et al., 2021),
AIM (McKenna et al., 2022), RAP++ (Vietri et al., 2022), Private-GSD (Liu et al., 2023), GEM (Liu
et al., 2021), DP-MERF (Harder et al., 2021) and TabDDPM (Kotelnikov et al., 2023). We choose
five datasets used in previous work (Liu et al., 2023; McKenna et al., 2022; Zhang et al., 2021;
Kotelnikov et al., 2023) as our datasets, which are ACSincome (INC), ACSemploy (EMP), Bank
(BK), Higgs-small (HIG) and Loan (LN). By default, we use uniform binning and category merging
as our preprocessing method. Detailed information on datasets, evaluation metrics, and algorithm
implementation is provided in the appendix.

3.1 OVERALL EVALUATION

Table 1 shows the detailed machine learning efficiency, query error, and fidelity error of different
methods, respectively. To make the result more straightforward, we utilize the t-SNE (Van der
Maaten & Hinton, 2008), a dimensionality reduction technique, to visualize the synthesis results of
all methods on the Bank dataset in Figure 5.
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Figure 2: Metrics under different preprocessing settings. These metrics are obtained by comparing
preprocessed raw data with test data. Numerical preprocess and categorical preprocess mean only
conducting preprocessing on numerical and categorical attributes respectively. By default, the results
are under the setting that ε = 1.0 and 10% of the budget is used for preprocessing (if needed).

No method dominates. The first clear conclusion is that no method completely dominates. In Ta-
ble 1, PrivMRF and AIM show an outstanding performance in machine learning efficiency. More-
over, these two methods with PrivSyn also perform well on query error and fidelity error. In Fig-
ure 5, the synthetic results by PrivSyn, PrivMRF, RAP++, AIM, and Private-GSD all demonstrate
relatively similar distributions to the real data.

Statistical methods outperform machine learning methods in utility but are more time-
consuming. Another straightforward finding is that statistical methods generally perform better
than machine learning approaches. The best overall performance in metrics belongs to two statistical
methods, AIM and PrivMRF, while the quantitative evaluations of GEM, DP-MERF, and TabDDPM
are worse than most statistical methods. Moreover, the t-SNE plot results of some machine learning
methods are also unsatisfactory. For instance, in Figure 5, DP-MERF and TabDDPM’s synthetic
data do not match the real data distribution well. The advantage of machine learning methods is
also noteworthy. We present the running times of these algorithms in Table 15. On average, most
machine learning-based methods are time-efficient (partially because they use GPU in model-fitting
steps).

3.2 PREPROCESSING INVESTIGATION

Preprocessing can reduce data complexity with small errors. Directly comparing the algorithms’
performances with and without preprocessing is difficult because running algorithms on raw datasets
is often too time-consuming and computationally complex (some methods even require more than
24 hours to run on raw datasets). Therefore we consider comparing the marginal sizes and utility
metrics of preprocessed and raw datasets. The detailed results are shown in Figure 2.

A straightforward finding is that preprocessing decreases the complexity of data, only with the in-
troduction of a small error. In Figure 2, the average marginal size significantly decreases after
preprocessing (from 108 to 103 in Higgs-small and Loan datasets). Meanwhile, its negative influ-
ences on utility are small enough (change on query error < 0.003, TVD < 0.1). We infer this as
binning can preserve most numerical characteristics, and the low-frequency categorical values only
contribute a small proportion of the overall correlation between attributes in the dataset.

3.3 MODULE COMPARISON

In this subsection, we respectively evaluate different marginal selection modules and synthesis mod-
ules. In other words, we fix either the selection or the synthesis approach and then evaluate how
different algorithms perform under that fixed condition. We divide the datasets into two groups. The
first group, called “small datasets”, ACSincome and ACSemploy, is relatively low-dimensional with
moderately sized attributes’ domains. The second group, called “large datasets”, including Bank,
Higgs-small, and Loan, is higher-dimensional or has larger attribute domains. The results are shown
in Figure 3 and Figure 4.

Adaptive strategy with well-designed criterion makes a good selection. We compare different
selection methods by combining them with the same synthesis module (in our experiment we lever-
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Figure 3: Average scaled metrics for different selection modules on different datasets. We use PGM
as the common synthesizer. The machine learning efficiency, query error, and fidelity error are
scaled using ground truth values provided in Table 1 while running time is scaled using a simple
min-max linear normalization.
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Figure 4: Average scaled metrics for different synthesis modules on different datasets. We use
PrivSyn as the common marginal selector.

age PGM). Among the selection methods, PrivSyn and RAP++ show weaker fitting utility. PrivSyn
fails to use intermediate information during selection, reducing its ability to capture necessary data
features and leading to excessive selections. This also overwhelms PGM on larger datasets due
to high memory demands. Similarly, RAP++ employs the Gumbel mechanism to select multiple
marginals per iteration without fully accounting for intermediate results. Moreover, its selection
criterion focuses solely on marginal query error, ignoring noise error, which is unbalanced and po-
tentially influences the algorithm’s performance.

The utility performances of AIM and PrivMRF, are very similar since both perform an adaptive
marginal refinement after updating the intermediate information. A notable observation is that
PrivMRF has a shorter running time than AIM. We attribute this to the well-designed initial marginal
set in PrivMRF, which decreases the need for further refinement and speeds up the total algorithm.

No synthesis module completely outperforms. We compare five synthesis algorithms: GUM,
PGM, relaxed projection (RP), genetic algorithm (GA), and generative network (GN), employed by
PrivSyn, AIM, RAP++, Private-GSD, and GEM, respectively. To control the running time, we use
the PrivSyn selection algorithm as the common marginal selector. The results are shown in Figure 4.

Among these methods, PGM and the generative network achieve the best overall accuracy and sta-
bility in fitting features on small datasets. We believe it is because PGM benefits from its expressive
structure, which infers marginals without refitting existing ones, thus minimizing compounding er-
rors. However, the PGM’s fitting process is quite slow, due to the densely selected marginals by
PrivSyn, causing it to fail to deal with large datasets. The generative network’s strong representa-
tional capacity also supports accurate feature fitting on small datasets. However, when it turns to
larger and more complex datasets, its superiority in efficiency and utility will be diminished due to
the greater difficulty of training high-dimensional models.

In contrast, some data-adjusting methods, GUM, the genetic algorithm, and relaxed projection,
demonstrate weaker fitting capabilities. GUM refines marginals individually, overlooking global
correlations. However, it shows a superiority in running time. The genetic algorithm’s reliance on
randomness makes it unsuitable for complex, high-dimensional datasets with large attribute domains
under time constraints, leading to poor performance on large datasets. Relaxed projection suffers
similarly; in high-dimensional spaces with extensive attributes’ domains, the encoded data dimen-
sion becomes excessively large, complicating optimization, and resulting in poor performance.
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4 CONCLUSION

Data synthesis under DP remains a critical and active area of research. Despite a growing number
of methods being proposed, the field still lacks a fair and comprehensive evaluation. In this paper,
we conduct comprehensive comparisons of several methods on a unified framework. Our overall
comparisons suggest that no single method is universally superior, while some experiments highlight
the critical role of preprocessing. This paper also highlights the essential principles for designing
feature selection algorithms and identifies the limitations of current synthesis modules, providing
insights for improving DP tabular synthesis.
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A APPENDIX

A.1 EXISTING WORK

A.1.1 EXISTING ALGORITHMS

Broadly, past research on solving DP tabular data synthesis can be divided into two categories: statis-
tical methods and machine learning methods. The exploration of statistical methods started earlier.
Shortly after the development of DP, researchers began investigating the problem of data generation
under the DP framework. A seminal contribution in this area is MWEM (Hardt et al., 2012), which
releases data by minimizing an entropy-regularized loss constructed on marginal queries. A simi-
lar approach is DualQuery (Gaboardi et al., 2015), which synthesizes data by iteratively reducing
marginal query errors. Another notable line of research involves Bayesian network-based methods,
such as PrivBayes (Zhang et al., 2017) and BSG (Bindschaedler et al., 2017), which estimate joint
data distributions using low-dimensional marginals. Other methods proposed during this period em-
ploy different techniques, such as Copula functions for data generation, as the example demonstrated
in (Li et al., 2014).

In 2018, the NIST hosted a challenge about DP data synthesis. Among the competing algorithms,
PrivBayes, MST (McKenna et al., 2021), and PrivSyn (Zhang et al., 2021) exhibited superior per-
formance. Both MST and PrivSyn represent datasets using low-dimensional, highly correlated
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marginals. Their main difference is that MST synthesizes data using probabilistic graphical models
(PGMs) (McKenna et al., 2019), while PrivSyn iteratively updates an initialized dataset during the
synthesis process, which is called GUM in their work.

Recently, DP tabular data synthesis has advanced significantly, with several statistical methods
emerging. (Cai et al., 2021) introduced PrivMRF, and (McKenna et al., 2022) proposed AIM, both
of which dynamically select low-dimensional marginals and employ PGMs for synthesis. Methods
such as FEM (Vietri et al., 2020) and RAP/RAP++ (Aydore et al., 2021; Vietri et al., 2022) treat
synthesis as an optimization problem, utilizing FTPL (Kalai & Vempala, 2005; Suggala & Netra-
palli, 2020; Syrgkanis et al., 2016) and relaxed projection, respectively, to refine initialized datasets
using adaptively selected marginals. More recently, (Liu et al., 2023) proposed Private-GSD, which
can apply genetic algorithms to iteratively adjust datasets based on any selected marginals.

In addition to statistical methods, machine learning models have been widely explored for DP tabular
data synthesis. Early efforts using generative adversarial networks (GANs), such as DP-GAN (Xie
et al., 2018), DP-WGAN (Srivastava & Alzantot, 2019), DP-CGAN (Torkzadehmahani et al., 2019),
and PATE-GAN (Jordon et al., 2018), demonstrated promise but generally delivered limited perfor-
mance. More recent methods, including GEM (Liu et al., 2021) and DP-MERF (Harder et al., 2021),
represent generative network-based advancements. GEM combines generative networks with adap-
tive marginal selection mechanisms, while DP-MERF employs random Fourier feature loss to train
generative networks. Additionally, TabDDPM (Kotelnikov et al., 2023) leverages diffusion mod-
els’ representational power to fit target data directly. While TabDDPM was not originally designed
for DP, it achieves state-of-the-art performance among non-DP methods and can be adapted for DP
synthesis using DP-SGD (Du & Li, 2024). Consequently, we include TabDDPM in our analysis.

Our work focuses on recently proposed methods that are not well compared previously and those
representing the current state-of-the-art. Additionally, there are several methods that we do not
discuss in detail. For example, (Tran & Xiong, 2024) explores using large language models (LLMs)
for data synthesis, showing superior performance compared to many methods. However, LLMs
are trained on extensive public datasets. The extensive unknown public datasets potentially overlap
sensitive datasets (Tramèr et al., 2024), which may lead to unfair comparisons or break the DP
framework, so we exclude it from our work.

A.1.2 EXISTING BENCHMARK WORK

A.2 EXISTING BENCHMARK WORKS

In addition to the proposed algorithms, there are several benchmark studies (Du & Li, 2024; Hu et al.,
2023; Yang et al., 2024; Fan, 2020) that touch the problem of differentially private data synthesis.
(Du & Li, 2024) propose systematic assessment metrics for the overall utility evaluation. Their work
includes some non-DP methods such as TVAE (Xu et al., 2019) and GreaT (Borisov et al., 2022) but
ignores some DP methods like AIM, RAP++ and Private-GSD. (Hu et al., 2023) provide analysis
for a wide range of DP synthesis algorithms, not only about tabular data synthesis but also trajectory
data and graph data. However, because they involve so many algorithms, they do not do a deeper
analysis of these algorithms and lack comprehensive experiments. (Yang et al., 2024) do not delve
deep into current algorithms’ working principles. Instead, they try to provide a survey of current
algorithms and pay attention to their downstream problems, such as distributed data synthesis. (Fan,
2020) specifically focuses on DP generative adversarial networks, which is a subset of DP synthesis
methods. In summary, our work differs from previous benchmarks in two key aspects:

• Unified Framework Proposal. To ensure the fairness and completeness of algorithm evaluation,
we propose a unified algorithm framework (see in Section 2.3). The framework consists of a data
preprocessing module, a feature selection module, and a data synthesis module, which serves as
the foundation of deep analysis and evaluation.

• Comprehensive Experiments. We design systematic experiments to provide deep insights into
current algorithms, which involve both end-to-end and module-wise comparisons. While some
existing benchmarks (Hu et al., 2023; Yang et al., 2024; Fan, 2020) provide valuable analysis but
lack extensive experimental validation, our work combines both detailed analysis and comprehen-
sive experiments.
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Table 2: Summary of investigated datasets.

Name #Records #Attr #Num #Cat Min/Max
Domain

ACSincome (INC) (Ding et al., 2021) 55320 10 2 8 2∼93
ACSemploy (EMP) (Ding et al., 2021) 37881 17 1 16 2∼92
Bank (BK) (Moro et al., 2014) 45211 16 6 10 2∼6024
Higgs-small (HIG) (hig, 2016) 98049 28 28 1 2∼73715
Loan (LN) (loa, 2020) 134658 42 25 17 2∼93995

A.3 EXPERIMENTAL SETTINGS

A.3.1 DATASETS

The selection of datasets is crucial in comparison. To make a comprehensive comparison, we would
expect that (1) the datasets should vary in record size and attributes’ domain sizes to better demon-
strate the capacity of methods in synthesizing datasets of different complexity; (2) the proportion
of numerical attributes and categorical attributes should be different to better evaluate different pre-
processing methods. Therefore, we choose five datasets used in previous work (Liu et al., 2023;
McKenna et al., 2022; Zhang et al., 2021; Kotelnikov et al., 2023) as our datasets, which are AC-
Sincome (INC), ACSemploy (EMP), Bank (BK), Higgs-small (HIG) and Loan (LN). The detailed
information on these datasets is provided in the appendix, shown in Table 2.

A.3.2 EVALUATION METRICS

Various evaluation approaches have been proposed (Zhang et al., 2021; McKenna et al., 2022; Du
& Li, 2024). In a nutshell, current evaluation methods are mainly constructed on two basic ideas.
The first is to examine the extent to which the generated data can replace the original data set for
downstream tasks. The second one is to measure the statistical similarity between the synthetic
dataset and the raw dataset. We mainly consider these two categories of evaluation and utilize three
metrics: machine learning efficiency, query error, and fidelity error.

Machine Learning Efficiency (higher is better). A widely accepted metric for evaluating gener-
ated data is its performance on downstream tasks. A common approach involves training Machine
Learning (ML) models on the generated data and assessing their performance on test data. Typically,
one column in the dataset is selected as the “label”, and a simple ML model is trained to predict the
label using the remaining columns as features.

The previous works typically select one or more ML models as downstream tasks. For example,
PrivSyn (Zhang et al., 2021) employs an SVM model, TabDDPM (Kotelnikov et al., 2023) uses
MLP and CatBoost models, and (Du & Li, 2024) propose eight models for evaluation. However, it’s
important to note that a large number of models do not necessarily lead to a fairer evaluation. Gener-
ally, simpler models have weaker data-fitting capabilities, so their ability to capture data features is
limited. Using these simpler models for evaluation can make it harder to reach fair conclusions. In
our comparison, we therefore selected four machine learning models known for strong performance
across various datasets: MLP, CatBoost, XGBoost, and Random Forest. We use the average F1
score on held-out test data as our metric value.

Another justification is that, for this and the remaining metrics, we use the test dataset instead of the
training dataset for evaluation. While both approaches have been employed in previous works, we
opt to use test data for evaluation due to the belief that it better reflects an algorithm’s generalization
ability.

Query Error (lower is better). Making queries (Chatfield, 2018) is a commonly used data
analysis technique, which can also be conducted to measure relatively high-dimensional similar-
ity due to its high efficiency. Here, we consider using the 3-way marginal query method used
by (Du & Li, 2024; McKenna et al., 2019), which utilizes the statistical ℓ1 error of frequency
query result to reflect the magnitude of the error. Formally, the query error can be expressed as,
Er∈R |qr(Dsyn)− qr(Dtest)| , where qr refers to the query function, which is a combination of
range query (for numerical attributes) and point query (for categorical attributes). E is the mathe-
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matical expectation, and R refers to the set of all 3-way marginals. The better the data generation
performs, the smaller this error will be.

Fidelity Error (lower is better). Marginal Fidelity is precise in evaluating low-dimensional simi-
larity, such as average 2-way marginal discrepancy. For example, the work proposed by (Du & Li,
2024) suggests using Wasserstein distance for 2-way marginals to compare the fidelity differences
between two distributions, but this method can be infeasible in terms of computation time when
dealing with complex data. Alternatively, total variation distance (TVD) can be used for measure-
ment, which has also been utilized in some studies (Tao et al., 2022; Tran & Xiong, 2024). We define
the TVD as 1

2

∑
1≤i≤j≤d

∣∣Msyn
i,j −M test

i,j

∣∣ , where Msyn
i,j and M test

i,j are the real 2-way marginals
determined by the synthetic dataset and test dataset respectively.

We also use other metrics in our experiments, such as running time. These metrics are simple
enough, so we do not discuss them.

A.4 ALGORITHM IMPLEMENTATION AND HYPERPARAMETERS

A.4.1 OVERALL IMPLEMENTATION

In our experiments, we consider PrivSyn, PrivMRF, RAP++, AIM, Private-GSD, GEM, DP-MERF,
and TabDDPM. We do not include RAP in the experiments because RAP++ directly improves
upon it. Moreover, notice that Private-GSD is a synthesis algorithm, we use its one-shot 2-way
marginal version in the overall evaluation, which is also used in their original work, and pay more
attention to its performance in module comparison. Finally, we train TabDDPM under DP-GSD by
opacus (Yousefpour et al., 2021). We repeat all evaluations five times and report the average results.
The DP parameter δ is set to be 10−5 by default. PrivSyn and AIM are executed on CPUs, while the
other methods are executed with GPUs.

We can observe that our datasets vary in attributes’ domain range, so preprocessing is necessary.
We apply uniform discretization and rare category merging for all algorithms as the default aligned
preprocessing methods. Moreover, as shown in Table 2, some attributes only contain a few unique
values, which are simple enough to handle without additional preprocessing. Applying preprocess-
ing to such attributes is unnecessary and may introduce more errors. Therefore, we preprocess
attributes only when their domain size exceeds 100. By default, the number of bins is set to 100, the
fixed merging threshold θ to 0.2%, and the privacy budget proportion allocated to the preprocessing
step to 10%.

A.4.2 PREPROCESSING ALGORITHMS

Uniform Binning. The default preprocessing method for numerical attributes is uniform bin-
ning. (Dick et al., 2023) use uniform binning in their study. It partitions an attribute’s domain
into equal-length intervals, relying only on the attribute’s domain range and a predefined number of
bins. Formally, this method can be expressed as

Uniform Bin(x) =
⌊
x− xℓ

h

⌋
,

where xℓ is the lower bound of the attribute’s domain, and h is the length of the uniform interval
determined by the bin number. Uniform binning is advantageous because it requires no detailed data
information, avoiding the need for additional privacy budget allocation.

Rare Category Merging. Some categorical variables contain a large number of possible values with
low counts. This makes computations on them, such as marginal statistics and further model fitting,
inefficient. To address this, prior work (Zhang et al., 2021; McKenna et al., 2021) has proposed a 3σ
merging strategy, where categories with counts below 3σ (where σ represents the DP noise standard
deviation in the counting process) are combined. This approach helps mitigate the impact of noise
on the counts of individual categories. However, this method has limitations: when we have plenty
of privacy budget, 3σ could be a small value. We cannot reduce the attributes’ domain size if we
still use 3σ as the threshold for combining.

In response to these limitations, we improve the 3σ merging method by applying a dual merging
threshold. For target attributes, categories with counts below a fixed threshold nθ or the privacy
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Algorithm 1: DP Rare Category Merge
Input: dataset D, merge threshold parameter θ, unique value threshold β, DP parameter ρ2
Output: preprocessed dataset D

1 Vc ← categorical variables with domain size ≥ β;
2 ρ′ ← ρ2/|Vc|;
3 for j ∈ Vc do
4 b← 1-way marginal of attribute Aj ;

5 σ ←
√

1
2ρ′ ; ▷ Noise scale

6 b̂ = b+N
(
0, σ2

)
;

7 for i = 1 : |b̂| do
8 θ′ ← max

{
θ ·

∑
b̂, 3σ

}
; ▷ Merging threshold

9 if b̂[i] < θ′ then
10 replace b̂[i] with the rare encoding value;
11 end
12 end
13 end
14 return D

budget-aware threshold 3σ are replaced with a rare encoding value. Here n is the number of records
in the dataset and θ is the threshold parameter. By introducing a fixed threshold, we can avoid the
case when σ is too small to reduce the attribute’s domain complexity. The detailed description of
this algorithm is shown in Algorithm 1. For each attribute that needs preprocessing, we equally
divide the privacy budget and use it to determine those categories whose frequency is lower than the
threshold. These categories will be replaced by the same encoding category. The privacy guarantee
can be formalized in the following lemma.

Lemma 1 For any α > 1, Algorithm 1 satisfies (α, αρ2)-Rényi differential privacy.

The proof of this lemma can be easily obtained by the property of the Gaussian mechanism. Refer-
ring to (Mironov, 2017), we know that adding Gaussian noise with σ =

√
1
2ρ′ satisfying (α, αρ′)-

Rényi differential privacy for any α > 1. Then by combining the fact that ρ′ = ρ2/|Vc| and the
composition property of RDP, we have that the total algorithm satisfies (α, αρ2)-Rényi differential
privacy for any α > 1.

A.4.3 HYPERPARAMETERS FOR FULL ALGORITHMS

We list the algorithms’ hyperparameters in Section 3.1. From here on out, unless otherwise specified,
INC refers to the ACSincome dataset; EMP refers to the ACSemploy dataset; BK refers to the Bank
dataset; HIG refers to the Higgs-small dataset; LN refers to the Loan dataset.

Table 3: PrivSyn Hyperparameters

Hyperparameter INC EMP BK HIG LN
Consistent iteration 501 501 501 501 501
Max update iteration 50 50 50 50 50

Table 4: AIM Hyperparameters

Hyperparameter INC EMP BK HIG LN
Max model size 100 100 100 100 100
Max iteration 1000 1000 1000 1000 1000
Max marginal size 2.5e+ 5 2.5e+ 5 2.5e+ 5 2.5e+ 5 2.5e+ 5

Table 5: Private-GSD Hyperparameters

Hyperparameter INC EMP BK HIG LN
Mutation number 50 50 50 50 50
Crossover number 50 50 50 50 50
Upsample number 1e+ 5 1e+ 5 1e+ 5 1e+ 5 1e+ 5
Genetic iteration 1e+ 6 1e+ 6 1e+ 6 1e+ 6 1e+ 6

Table 6: PrivMRF Hyperparameters

Hyperparameter INC EMP BK HIG LN

Graph parameter θ 6 6 6 6 6
Sample size k 400 400 400 400 400
Estimation iteration 3000 3000 3000 3000 3000
Size penalty 1e− 8 1e− 8 1e− 8 1e− 8 1e− 8
Max marginal dimension 6 6 6 6 6
Max clique size 1e+ 7 1e+ 7 1e+ 7 1e+ 7 1e+ 7
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Table 7: RAP++ Hyperparameters

Hyperparameter INC EMP BK HIG LN
Cat optimization rate 3e− 3 3e− 3 3e− 3 3e− 3 3e− 3
Num optimization rate 6e− 3 6e− 3 6e− 3 6e− 3 6e− 3
Top q 5 5 5 5 5
Cat optimization step 1 1 1 1 1
Num optimization step 3 3 3 3 3
Upsample rate 10 10 20 20 40
Random projection
number 2e+ 6 2e+ 6 2e+ 6 2e+ 6 2e+ 6

Table 8: GEM Hyperparameters

Hyperparameter INC EMP BK HIG LN
Synthesis size 1024 1024 1024 1024 1024
Learning rate 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3
Max iteration 500 500 500 500 500
Max selection round 50 85 80 140 210

Table 9: DP-MERF Hyperparameters

Hyperparameter INC EMP BK HIG LN
Mini batch rate 5e− 2 5e− 2 5e− 2 5e− 2 5e− 2
Epoch number 1e+ 3 1e+ 3 1e+ 3 1e+ 3 1e+ 3
Learning rate 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2
Random feature
dimension 2e+ 3 2e+ 3 2e+ 3 2e+ 3 2e+ 3

Table 10: TabDDPM Hyperparameters

Hyperparameter INC EMP BK HIG LN
Epoch number 50 100 100 100 100
Batch size 512 512 512 1024 1024
Learning rate 2e− 2 1e− 2 5e− 3 5e− 2 5e− 4
Diffusion steps 100 100 100 1000 100
Layer number 2 2 2 2 2
Layer dimension 256 256 256 256 1024

A.4.4 HYPERPARAMETERS FOR DIFFERENT FEATURE SELECTION ALGORITHMS

The PrivMRF and AIM selection algorithms are set to completely the same as the original work in
PrivMRF and AIM, respectively. Therefore, we omit the description of them here and provide the
detailed hyperparameter setting of RAP++ selection and PrivSyn selection.

Table 11: RAP++ Selection Hyperparameters

Hyperparameter INC EMP BK HIG LN
Top q 3 3 3 3 3
Selection step 4 6 6 7 10
Selection budget rate 0.5 0.5 0.5 0.5 0.5
Marginal budget rate 0.5 0.5 0.5 0.5 0.5

Table 12: PrivSyn Selection Hyperparameters

Hyperparameter INC EMP BK HIG LN
Selection budget rate 0.1 0.1 0.1 0.1 0.1
1-way marginal budget rate 0.1 0.1 0.1 0.1 0.1
2-way marginal budget rate 0.8 0.8 0.8 0.8 0.8

A.4.5 HYPERPARAMETERS FOR DIFFERENT SYNTHESIS ALGORITHMS

Most synthesis algorithms we used are set to be the same as their original works, while relaxed
projection and generative network methods need hyperparameter tuning to guarantee performance.

Table 13: Relaxed Projection Hyperparameters

Hyperparameter INC EMP BK HIG LN
Optimization rate 5e− 3 5e− 3 5e− 3 5e− 3 5e− 3
Optimization step 100 170 160 280 420
Random projection
number 2e+ 6 2e+ 6 2e+ 6 2e+ 6 2e+ 6

Table 14: Generative Network Hyperparameters

Hyperparameter INC EMP BK HIG LN
Learning rate 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3
Synthesis size 1024 1024 1024 1024 1024
Training iteration 50 50 100 100 1500

A.5 SUPPLEMENTARY EXPERIMENT RESULTS

A.5.1 T-SNE PLOTS

We draw t-SNE plots of different algorithms on the Bank dataset. By default, we set ε = 1.0.
Generally, synthetic data distribution by PrivSyn, PrivMRF, RAP++, AIM, GEM, and Private-GSD
align better with real data distribution. On the contrary, DP-MERF and TabDDPM’s synthetic data
distribution have some significant gap with real data distribution.

A.5.2 RUNNING TIME

We present the running times of these algorithms in Table 15 (also with some supplementary met-
rics for machine learning efficiency). On average, most machine learning-based methods are time-
efficient (partially because they use GPU in model-fitting steps). Among these algorithms, RAP++,
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Figure 5: T-SNE scatter plots of synthesis results on Bank dataset under ε = 1.0

Table 15: Supplementary overall results of synthetic data under different methods. ML AUC and
ML Accuracy are metrics obtained by downstream ML tasks. Running time is the total average
execution time of the algorithm. Because Loan dataset is a multi-classification problem, thus it does
not have AUC result.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML AUC ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn 0.53 0.50 0.51 0.47 0.47 0.42 0.44 0.52 0.49 0.50 0.50 0.50 - - -
PrivMRF 0.82 0.87 0.87 0.80 0.86 0.89 0.71 0.90 0.92 0.53 0.71 0.70 - - -
RAP++ 0.75 0.82 0.85 0.81 0.84 0.87 0.75 0.85 0.88 0.54 0.56 0.56 - - -
AIM 0.85 0.87 0.87 0.85 0.88 0.88 0.87 0.89 0.91 0.68 0.72 0.74 - - -
Private-GSD 0.85 0.85 0.85 0.78 0.80 0.79 0.68 0.67 0.67 0.52 0.52 0.52 - - -
GEM 0.77 0.73 0.72 0.75 0.77 0.77 0.59 0.68 0.69 0.55 0.57 0.59 - - -
DP-MERF 0.75 0.78 0.79 0.73 0.78 0.74 0.72 0.64 0.65 0.54 0.60 0.60 - - -
TabDDPM 0.54 0.49 0.53 0.56 0.56 0.55 0.48 0.51 0.45 0.51 0.53 0.53 - - -

ML Accuracy ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn 0.59 0.58 0.59 0.52 0.49 0.49 0.88 0.88 0.88 0.53 0.52 0.52 0.54 0.54 0.54
PrivMRF 0.75 0.79 0.79 0.72 0.79 0.81 0.89 0.90 0.90 0.53 0.65 0.64 0.76 0.75 0.76
RAP++ 0.68 0.75 0.78 0.74 0.78 0.80 0.85 0.88 0.89 0.53 0.55 0.55 0.62 0.64 0.65
AIM 0.78 0.79 0.79 0.78 0.80 0.81 0.90 0.90 0.90 0.63 0.65 0.67 0.75 0.75 0.75
Private-GSD 0.77 0.77 0.78 0.71 0.73 0.71 0.87 0.87 0.88 0.51 0.51 0.52 0.54 0.54 0.54
GEM 0.71 0.69 0.66 0.68 0.70 0.69 0.86 0.86 0.87 0.55 0.55 0.56 0.71 0.68 0.72
DP-MERF 0.69 0.70 0.72 0.64 0.71 0.67 0.84 0.79 0.74 0.53 0.58 0.58 0.35 0.37 0.37
TabDDPM 0.57 0.59 0.59 0.55 0.54 0.53 0.88 0.88 0.88 0.50 0.53 0.51 0.55 0.55 0.55

Running Time (min) ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn 0.28 0.16 0.18 0.30 0.25 0.34 0.57 0.53 0.55 5.39 5.95 4.54 13.29 14.04 13.44
PrivMRF 1.26 0.89 1.40 5.59 5.80 4.76 3.06 4.48 3.24 5.06 7.10 6.25 7.12 13.34 12.62
RAP++ 25.86 24.95 25.72 26.28 27.04 28.30 24.40 23.94 23.27 37.79 36.66 35.88 544.25 2348.59 1761.60
AIM 1.96 6.29 126.89 5.37 10.59 443.70 3.60 10.23 23.57 12.62 18.46 184.57 31.03 187.27 645.13
Private-GSD 22.33 24.86 26.17 10.89 11.12 11.11 19.38 20.01 19.99 54.35 57.49 57.93 304.42 306.04 311.63
GEM 0.26 0.10 0.09 0.12 0.12 0.12 0.27 0.25 0.25 6.05 6.09 10.75 9.82 9.47 9.82
DP-MERF 0.40 0.07 0.06 0.30 0.06 0.06 0.09 0.06 0.06 0.09 0.06 0.06 0.39 0.83 0.34
TabDDPM 4.34 4.12 3.73 4.52 4.50 13.31 8.25 4.40 3.87 4.74 6.34 4.78 27.54 31.93 33.34

Table 16: Influences of preprocessing on different datasets. By default, the results are obtained
under the setting that ε = 1.0 and 10% of the budget is used for preprocessing.

Preprocessing Method Marginal Size ML Efficiency Query Error Fidelity Error
Bank Higgs-small Loan Bank Higgs-small Loan Bank Higgs-small Loan Bank Higgs-small Loan

Raw 1.05e+ 5 4.24e+ 8 2.88e+ 8 0.76 0.72 0.54 0.001 0.001 0.001 0.003 0.001 0.001
Numerical preprocessing 6.48e+ 2 5.05e+ 3 1.14e+ 6 0.76 0.71 0.53 0.002 0.002 0.003 0.006 0.002 0.003
Categorical Preprocessing 1.05e+ 5 4.24e+ 8 2.31e+ 8 0.76 0.72 0.54 0.001 0.001 0.001 0.003 0.001 0.001
Full Preprocessing 6.48e+ 2 5.05e+ 3 3.14e+ 3 0.76 0.71 0.53 0.002 0.002 0.003 0.006 0.002 0.003

AIM, and Private-GSD require longer execution times. The lower efficiency of RAP++ and AIM
can be attributed to the multi-rounds of feature fitting required in each adaptive feature selection
iteration. In addition, running AIM on CPUs will also influence its efficiency. Moreover, because
a higher budget allows AIM to select more marginals, we can observe that AIM’s running time in-
creases significantly with the increase of privacy parameter. In addition, Private-GSD requires many
rounds to adjust the initial data, resulting in slower execution speeds.
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Table 17: Results of synthetic data under different feature selection methods. By default, we use
PGM as the synthesis method. In this table, “-” means unable to execute due to time or memory
limitation.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML efficiency ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn selection 0.67 0.65 0.68 0.67 0.80 0.75 − − − − − − − − −
PrivMRF selection 0.73 0.78 0.78 0.81 0.80 0.81 0.62 0.70 0.71 0.50 0.64 0.64 0.52 0.52 0.52
RAP++ selection 0.62 0.74 0.74 0.74 0.78 0.79 0.51 0.51 0.47 0.49 0.49 0.50 0.30 0.26 0.26
AIM selection 0.76 0.78 0.78 0.78 0.80 0.81 0.67 0.71 0.70 0.63 0.65 0.67 0.52 0.52 0.52

Query Error ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn selection 0.003 0.001 0.001 0.003 0.002 0.003 − − − − − − − − −
PrivMRF selection 0.002 0.001 0.001 0.003 0.002 0.002 0.005 0.003 0.003 0.005 0.003 0.003 0.005 0.005 0.004
RAP++ selection 0.006 0.003 0.002 0.008 0.005 0.004 0.012 0.005 0.003 0.047 0.016 0.006 0.015 0.009 0.008
AIM selection 0.002 0.001 0.001 0.003 0.002 0.001 0.007 0.002 0.002 0.005 0.003 0.003 0.005 0.005 0.004

Fidelity Error ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

PrivSyn selection 0.14 0.08 0.07 0.07 0.04 0.04 − − − − − − − − −
PrivMRF selection 0.11 0.07 0.05 0.07 0.04 0.03 0.13 0.06 0.04 0.36 0.19 0.19 0.31 0.24 0.23
RAP++ selection 0.17 0.09 0.08 0.04 0.04 0.04 0.14 0.09 0.08 0.42 0.23 0.17 0.32 0.26 0.25
AIM selection 0.09 0.06 0.05 0.05 0.03 0.02 0.11 0.09 0.06 0.21 0.16 0.16 0.35 0.32 0.29

Table 18: Results of synthetic data under different synthesis methods. By default, we use PrivSyn’s
InDif selection as the selection method. In this table, “-” means unable to execute due to time or
memory limitation.

Dataset ACSincome ACSemploy Bank Higgs-small Loan

ML efficiency ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

GUM 0.39 0.40 0.42 0.45 0.45 0.40 0.47 0.47 0.47 0.40 0.43 0.43 0.25 0.26 0.26
PGM 0.76 0.64 0.67 0.68 0.80 0.75 − − − − − − − − −
Relaxed Projection 0.39 0.59 0.58 0.51 0.69 0.67 0.47 0.47 0.47 0.47 0.44 0.42 0.25 0.25 0.25
Genetic Algorithm 0.67 0.63 0.58 0.62 0.58 0.62 0.61 0.57 0.52 0.59 0.58 0.62 0.35 0.36 0.26
Generative Network 0.74 0.77 0.76 0.72 0.70 0.69 0.66 0.63 0.62 0.63 0.53 0.59 0.46 0.41 0.36

Query Error ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

GUM 0.003 0.002 0.002 0.006 0.004 0.004 0.007 0.004 0.003 0.009 0.004 0.003 0.006 0.005 0.004
PGM 0.003 0.001 0.001 0.003 0.002 0.003 − − − − − − − − −
Relaxed Projection 0.040 0.028 0.023 0.081 0.025 0.022 0.047 0.013 0.014 0.026 0.013 0.012 0.020 0.009 0.008
Genetic Algorithm 0.053 0.047 0.050 0.039 0.040 0.036 0.009 0.005 0.003 0.027 0.018 0.016 0.039 0.037 0.039
Generative Network 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004

Fidelity Error ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5 ε = 0.2 ε = 1 ε = 5

GUM 0.15 0.12 0.12 0.12 0.09 0.09 0.24 0.10 0.21 0.29 0.20 0.20 0.34 0.35 0.36
PGM 0.13 0.08 0.07 0.07 0.04 0.04 − − − − − − − − −
Relaxed Projection 0.61 0.52 0.41 0.51 0.26 0.21 0.41 0.16 0.16 0.31 0.22 0.21 0.41 0.29 0.28
Genetic Algorithm 0.59 0.59 0.56 0.30 0.30 0.30 0.13 0.09 0.08 0.35 0.28 0.27 0.56 0.55 0.55
Generative Network 0.08 0.08 0.08 0.06 0.07 0.06 0.16 0.16 0.15 0.24 0.23 0.23 0.47 0.38 0.27

A.5.3 DETAILED RESULTS OF PREPROCESSING INFLUENCE

The detailed results of different preprocessing methods (used to plot Figure 2) are shown in Table 16.
Similar to other experiments, these metrics are calculated by comparing preprocessed datasets with
test datasets to demonstrate the error caused by preprocessing.

A.5.4 DETAILED RESULTS OF DECONSTRUCTION EXPERIMENT

The detailed results of different preprocessing methods (used to plot Figure 3 and Figure 4) are
shown in Table 17 andTable 18. Here, there are some “-” in the table. This is because PrivSyn tends
to select as many marginals as possible, which will form large cliques. This will cause the size of
the graphical model to be too large, requiring extremely large memory.
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