LORA: THE PAST, PRESENT, AND FUTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Full fine-tuning of large pre-trained models is constrained by computational and
memory overhead, motivating parameter-efficient fine-tuning approaches, such as
low-rank adaptation (LoRA) and its variants. Yet, questions remain about their
convergence behavior, comparative generalization, and practical limits compared
to full fine-tuning. We present a historical framing (the past: full fine-tuning and
original LoRA; the present: different variants of LoRA) and introduce simpler,
cheaper, parameter-efficient extensions: Cheap LoRA (cLA)—training a single
low-rank factor with the other fixed (deterministically or, in its randomized variant,
stochastically)—and the chained circulant variant, c>LA. While analyzing these
LoRA variants, we realized that nonconvex convergence analysis is only feasible
for the variants where one low-rank factor is kept frozen; for LoRA, Lipschitz
smoothness of the loss function does not hold. However, we derived information-
theoretic generalization error bounds for all variants, which, to our knowledge, is
one of the first endeavors in this area. We conduct an extensive empirical study
that spans 7 LoRA-based methods and full fine-tuning across 9 pre-trained models
on diverse tasks and datasets, and dissect their performance using a multitude of
analytical tools, including the loss landscape of the resulting fine-tuned models,
their spectral properties, and generalizability. Despite the theoretical results, our
experimental study shows that fine-tuning performance, in practice, may or may
not be better, depending on the actual trained model, the datasets used, and multiple
other factors. In summary, the performance of LoRA-based PEFT methods suggests
that using their cheaper variants would be advantageous for effective cost reduction
and improved generalizability of pre-trained models.

1 INTRODUCTION

Full fine-tuning (FFT) (60) modifies a pre-trained neural network’s parameters on new datasets that
might be relatively expensive to curate, and adapts the network to new downstream tasks. Due to the
growth of model sizes and datasets, full fine-tuning is often computationally infeasible or prohibitively
costly. Additionally, the growth of these complex models and the hardware’s compute capacity are
incoherent (12;159). Large multimodal models (LMMs) such as OpenAI’s GPT series (5), Meta’s
LLaMA (2), Google’s Gemini (52), image-text model CLIP (43), video-text model DeepMind’s
Flamingo (3)), etc., are pre-trained on massive high-quality data corpora and fine-tuned to adapt to
different tasks or domains. The smallest variant of the recent large language model, Llama-3 (2),
has 8B parameters; it requires 32GB GPU memory to load and 64GB GPU memory to train with
state-of-the-art training protocols. Compared to this, the half-precision of the H100 GPU accelerator
released in 2022 is barely 2.4 x more than its 2020-released A100 predecessor, while their memory
capacity remains the same (1} 45)).

An alternative to FFT, parameter-efficient fine-tuning (PEFT) (245 160), saves space and time, circum-
vents overfitting, and is widely used. In that direction, low-rank adaptation (LoRA) (24)) achieves
albeit similar performance to fully fine-tuned models, but with an extreme reduction in trainable
parameters. However, questions remain regarding the generalizability of LoRA-adapted models
compared to their fully fine-tuned counterparts (49). To mitigate LoRA’s flaws, researchers have
proposed different variants, such as the chain of LoRA (CoLA) (57), asymmetric LoRA (65)), ran-
domized asymmetric chain of LoRA (38)), LoORA+ (19), adaptive LoRA (62), and a few others. At
the same time, efforts were made to analyze and compare these PEFT methods with full fine-tuning
(60 149; 38)). However, none of these benchmarks is conclusive; see Figure E} ‘We have a limited
theoretical understanding of how these methods work, and ignore many real deployment artifacts.

Full Fine-Tuning LoRA Fine-Tuning RAC Fine-Tuning
Top 1 accuracy: 98.06 Top 1 accuracy: 98.71 Top 1 accuracy: 98.73
G(W)=9.98x 102 G(W) =1.92x 107" G(W)=2.3x10"

1.5e+01

I.

— 10
8
— 6
-4

lE
30e-02

Figure 1: 3D loss landscapes of ViT-Base pretrained on ImageNet-1K (7)) and fine-tuned on CIFAR-10
by different fine-tuning strategies, including FFT. FFT has the narrowest volume local minima among the other
PEFT methods, and the fine-tuned model renders the worst test accuracy. However, it has the least generalization
error, G(W), among all the methods; see Deﬁnitionnd Table In (d), when we superimpose the loss
landscapes, FFT shows the spikiest landscape; RAC (38) has the smoothest landscape with the highest G(W).
According to (29), this is counterintuitive; a model with a spiky landscape and small-volume local minima does
not generalize well.

In the era of resource-constrained IoTs and edge deployments 23), pushing parameter efficiency
to the point that storage, memory bandwidth, and hardware interface constraints are satisfied during
adaptation, and that inference latency benefits from optimized sparse or structured libraries (46} [14)
have become a practical imperative. Can sparse training be the new trend? GPT-4.5, the new OpenAl
LLM, has an order of magnitude larger parameters compared to GPT4’s 1.3T, but only obtained
a marginal performance improvement, and could be indicative of the idea that effective parameter
reduction might be beneficial for these models (13). At this end, we propose four simpler, cheaper
and parameter-efficient extensions of LoRA: Cheap LoRA (cLA), which trains only one low-rank
factor and sets the other low-rank factor deterministically, its randomized variant, random-cLA, its
chain circulant variant, ¢c3LA, and its randomized chain variant, random-c3LA. But how does the
theoretical behavior of these methods practically compare on different fine-tuning tasks? In practice,
are there significant differences and trade-offs in terms of convergence behavior and performance of
our reduced-parameter LoRA variants? And if there are, how do these differences vary across PEFT
methods, hyperparameter configurations, and DNN models? To answer these questions, we make the
following contributions:

Theoretical insights through generalization and nonconvex convergence (§3). To gain more
insights into the PEFT methods discussed in this paper, we use an information-theoretic approach
to measure their generalization error bounds. See summary of results in Table [T} We also adapt
the optimization framework of (38)), and present the convergence analysis of the PEFT methods for
smooth, nonconvex loss functions, under our layerwise setup, where each layer’s adapters are updated
using gradient descent (GD) and show O(T~!) convergence rate for these methods.

Evaluation and benchmarking (§4). We empirically evaluate 9 LoRA-based fine-tuning methods
(LoRA (24), CoLA (37), Asymmetric LoRA (63), RAC LoRA (38)), LoRA Plus (19), cLA, r-cLA,
LA, and r-c®LA) and full fine-tuning, encompassing 9 different pretrained models: (i) GPT2-
small (44)), (ii) DeBERTa v3 Base (20)), (iii) DeBERTa v2 XXL (21)), (iv) RoBERTa Base (33)), (v)
ROBERTa Large (33)), (vi) Deepseek-Coder-1.3B-base (16)), (vii) TinyLlama-1.1B (61)), and (viii)
vision Transformers, (ViTs), tiny and base (11)), on 4 different fine-tuning tasks, natural language
processing on PAWS (64), TREC-50 (31)), and various GLUE benchmarks (56)), image recognition
on OfficeHome (53) and CIFAR-10 (27), coding generation on DJANGO (40), and logical reasoning
tasks on OpenBookQA (39), FOLIO (17), LogiQA (33), and CLUTRR (50) datasets.

2 DNN FINE-TUNING: THE PAST, PRESENT, AND FUTURE

Historically, full fine-tuning updates all parameters of deep networks, an approach that becomes
increasingly impractical as model size and deployment multiplicity grow. This leads to the advent
of LoRA and its variants. Based on their evolutionary timeline, we divide this section into three
temporal phases. The past contains full-fine tuning, and we introduce LoRA, while different LoRA
variants dominate the present. Finally, extreme compute efficiency characterizes the future where we
propose our new variants.

2.1 THE PAST: FULL FINE-TUNING (FFT) AND LORA

Pre-training. Without loss of generality, consider a L-layer, fully-connected, neural network whose

layers are, {W*}E | where W% € R™*™i are trainable weights. Let z € R™ be the input and
= (W1, ...,WL). The network fy(-) : R%n — Reut is of the form:

fw(x) = (WL .. a3(W3a2 (W2 (W(x))...)), (1)

where o;(-) : R™ — R™ is a nonlinear activation function for the i*® layer. Given a pre-training

set, (i, Yi) € Npre C R™! x Réut_ and the loss function, pye(+) : Réut x Rdout — R, we train
the network by solving:

|Npre‘
. def 1 Z

WO ~ argmillyy »Cpre(w) = |N | ‘gpre(fW(wi)vyi) 9 (2)
pre Z:1

obtaining the trained weights Wy = [WO A WOL] Sophisticated DNNs, such as CNNs, RNNs,
Transformers, etc., can be adapted with some modification to (IJ.

Full fine-tuning (FFT) (9; 225 1605 [24). Given the pre-trained weights, Wy, FFT updates each
DNN layer with corresponding AW?* to adapt the model to a downstream task defined by the
domain-specific training data, (x},y;) € N. Denote AW as the update, and define Wy + AW :=
Wi+ AW ... WL + AWZL]. Given a loss function, £(-) : RéeutXdour — R FFT updates the
model weights by solving:

|V

AW ~ argminy [£(Wo + AW) & |N|Z€ Fworaw(@h).)| 3)

and obtains the fine-tuned model, fW0 +Aw- adapted to the downstream task. The computational

overhead for FFT can be prohibitively expensive. E.g., LLMs for task-specific fine-tuning. In contrast,
parameter-efficient fine-tuning (PEFT) trains orders of magnitude fewer parameters while often
attaining performance comparable to FFT (22; 160).

LoRA (24) is a popular PEFT method that replaces the layer-wise updates AW with a low-rank
representation B®A*, such that B* € R"*" A" € R™*™i, r < min(m;, n;) for all i € [L]. Denote
Wo + 2BA = [W§ + 2B'A' ... \W{§ + 2BEAL], where a > 0 is a scaling factor. LoRA
initializes each B* =0, A® ~ /\/(07 0.022), and solves:

IN|

(ﬁ,A)%argmin&A L'(Wo—|— BA |N|Z€ fworena(®)), vi) | 4)

to obtain B?, A’ for each layer that results in the fine-tuned model. LoRA may not need to be
applied to all layers; some layers can remain frozen (24). LoRA substantially reduces trainable
parameters, saves training time, and the update BA can be merged into the base weights to avoid
additional inference latency. For adapting the same pre-trained model to multiple downstream K

tasks, each update, {B A ;1< ., is stored separately. Then each task can be switched to by taking the
current model fw LeBA, for j € [K], subtracting the current update B AJ, and adding the update

corresponding to the new task. LoRA is computationally and storage-efficient, but renders worse
generalization compared to FFT (49)); LoRA may also fail (25).

Jj=1

2.2 THE PRESENT: EVOLUTION OF LORA

Many variants of LoRA exist to enhance efficiency while addressing weaknesses. They excel in
certain tasks but are less optimal in others. Including full fine-tuning, empirical evidence suggests that
no single fine-tuning method is the best fit for all cases, and that different variations are successful in
varying circumstances (60). Thus, there exists compelling reasoning as to why new variants of LoORA
continue to emerge. For limited space, we move the discussion in

2.3 THE FUTURE: CAN WE PUSH FOR MORE COMPUTE EFFICIENCY ?

With rapidly increasing model dimensionality amplifying memory and adaptation costs, we char-
acterize this phase as one of the next evolutionary steps for LoORA: maximizing efficiency while
maintaining parity with the current variants of LoRA. Training B generally performs better (63)),
together with insights from structured chaining methods (57; [38)), leads us to two simple, easy-to-

analyze and implement variants, where we postulate that the update of the pre-trained parameter can
be restricted to r columns of B.

(i) Cheap LoRA (cLA) is a simplified instance of Asymmetric LoORA (65, where only the low-rank
factor B is optimized, while A is kept fixed to the Identity matrix of rank 7 concatenated with ze-
ros. We consider two instantiations of the fixed factor, deterministic (cLA) and random (random-cLA).
Empirical results show that the deterministic choice suffices (the randomized variant does not yield
better performance), even though the random version is more convenient for convergence analysis.
In cLA, the fixed matrix, A°, fqr each layer ¢, is set to an 7 X r identity matrix, concatenated with
0, «m;—r, and is of the form A* := [Ir|0,nx(mi_r)] € R™™i_ For each layer, with W* € R™i*™i
and B* € R™*", wehave AW’ = B [1[0, (1, —r)] = [B*|00, x (m;—n,)] - Denote B as the layer-
wise update with B, A chosen above, and W + 2B := [Wg + 2B [0, (;m,—r)| , -+ W +
& BE [I]0,% (my, —r)]]- Then cLA solves:

. 1 |V

. @ C
B ~ argming. | £(Wy + ;B) = v Zg(fwo+%BC (@), 95) | - ®)
i=1

(ii) Circulant Chain of Cheap LoRA (cLA). As noted in CoLA (57) and RAC-LoRA (38),
chaining LoRA modules leverages repeated initializations to avoid poor minima. We extend this
principle to cLA with a structured chaining, c®LA. This method shifts the identity I, in each matrix

[1:10, 5 (m;—r)] by 7 columns to the left. That is, starting with [I,|0, (s, —r)], the next chain
s CS
is [Orxr | 1. | Orx(mi_gT)], and so on. Let B¢ denote c>LA’s update and denote wkB) =

ACJ’ j C3 .
Wy + Z?:l *B J, and W(OB") — W, then c3LA of chain length k solves:
R 437 . o 3 R 3, .
Forje [k, B’ ~argmings, {E (wgﬂ LBT) L e]>] : (6)
r

to obtain the fine-tuned model fw< ».53, for a chain of length k. Given sufficient epochs and chain
length, this ensures we can update all elements in each W, layer-wise. We formalize this in the
following proposition.

Proposition 1. Let k € N be such that d;,, = kr. Let E be the total number of epochs used in 3L A
fine-tuning. Then by creating a new chain in every L%J epochs, ¢ LA updates each element in W.

The intuition behind ¢3LA goes beyond merely chaining cheap LoRA modules; its structured shifts
expand the representational capacity of the learned B matrices. We provide pseudocode of our
proposed variants in

3 THEORETICAL INSIGHTS

In this Section, we follow two different angles: (i) we use an information-theoretic approach to
measure the generalization error bounds; (ii) we adapt the optimization framework of (38)), and
present the convergence analysis of the PEFT methods for smooth, nonconvex loss functions, under
our layerwise setup, where each layer’s adapters are updated using gradient descent (GD).

3.1 ON THE GENERALIZATION OF DIFFERENT VARIANTS OF LORA

In this section, we provide the generalization error upper bounds of the PEFT methods discussed in
this paper under an information-theoretic framework (48; 58)).

Generalizability measures how well a model’s loss on its training dataset represents the model’s loss
on its entire feature space, and demonstrates the model’s capacity to avoid overfitting. Let X x) be
an input space and label space with v distribution of pairs (z,y) € X x Y. Let N = {(«;, yz)}ltj;”1
represent the training dataset, where each (z;,y;) is i.i.d. from v distribution of X x). Given a

hypothesis, fw(-) : X —), and a nonnegative loss function, £(-) : Y x) — R, the empirical risk
of a hypothesis on the dataset is defined as, L(W) := ﬁ Zgll ¢(fw(x;),y:). The true risk of the
hypothesis fw(-) is defined as, Lgobal(W) := Ex yo [£(fw(X),Y)]. With the above setup, next

we define generalization error, which tells us how well the hypothesis, fyw, generalizes from the
training sample to the underlying population distribution.

Definition 1. (Generalization Error (58)) The generalization error, G(W), is the difference between a
hypothesis’s true risk and its empirical risk on the training dataset, i.e., G(W) := Lgiobal (W) — L(W).

Variant Reference Chain Construction? Non-convex convergence applies? Upper bound on G (W + AW)

2rq02 In2 ZiLzl (m;+mn;)
+ V]

LoRA 24) X X Pw,
2 L
2 In 2 - :
LoRA+ ({19) X % By, + \/ rqo? In ‘Z]\lﬂzl(mﬂrn%)
2 L
2 In 2 - n;
Asym-LoRA (65) X v CI)WQ + rqo H‘N\Z1:1 n;
2rqo2kin2 "L Vi
CoLA (S v X QWO + \/ - - \Xlifl‘zl(ml*—"”
2rqo2kn2 Yk :
RAC 38 v v Pw, + %‘Emlnl
2rgo2 In2 L i
random-cLA This paper X v Py, + r47 U‘N‘Zq,ZI i
2rgo2kin2 YL i
LA This paper v v Py, + %‘Z%ZI"L

Table 1: Generalization error upper bounds of LoRA variants. The expression, Pw, is in Theorem Note
that, r is the adapter rank, k is the chain length, | N| is the size of fine-tuned dataset, g is the quantization bitwidth,

ms,n;) are the input and output dimensions of the i*® layer, and the loss, £ is o-sub-Gaussian (Assumption|6).
p P y p

Assumption 1. (Boundedness of input vectors) The input vectors are bounded, i.e., there exists a
constant C > 0 such that ||z|| < C, forall z € X.

Assumption 2. (Lipschitz continuity of the loss) The loss function, () : R? — R is L.-
Lipschitz continuous, i.e., |{(fw(z),y) — £(fw (2),y)| < Lc|fw(z) — fw (x)| for all W,W' €
Re and (z,y) € X x).

Assumption 3. (Lipschitz continuity of activation) The vector-valued activation function, o;(-) :
R™ — R™, for each layer, i, is L,-Lipschitz continuous, i.e., ||o;(u) — 0;(v)|| < L, ||lu — v||, for
all u,v € R™,

The following theorem upper bounds the generalization error of a fine-tuned, L-layer fully connected
DNN, parameterized by Wy + AW, by the better of two alternatives: the generalization error of Wy
and a correction term, or the generalization error of AW and a different correction term.

Theorem 1. (Generalization bounds) Let fw, aw(x) = or([Wo" + AWE](- - oo([(WE +
AW? o (W3 + AW1z))--+)) be a L-layers fine-tuned DNN, where Wo + AW is a fine-tuned
update. Let the loss function, L for fine-tuning, follow Assumption[2land Assumptions[IH3]hold. Then
G(Wo + AW) < min (G(Wy) + Paw, G(AW) + Dy,), where

L 2f 1 L 2k 1 i
Qaw:=2Lc |C[Lo > [[PG.H+ > F(i)| and
i=1 i=1 j=1 1#22—1:a€[L]
L of L 2F 1 T
Sw, :=2Le |CI[Lo, Y [PG+ D> FO|,
i=1 i=2 j=1 i#29:a€[L)]
are the correction terms, F'(i) := [|of,_y) (0)]| Hg}fl)[LgL_Hl H(i,7)], ¥(i) := |logy(i)], and

L—j+1 . i— . L—j+1 N
Plig) = {187 g isodd, gy gy, JISWHESE) Logtne] s odd
AW D i i is even IWETDN i s | s even.
L —

In Theorem the expression, Z?Zl Hle P(i,j) = (||WéL)|| + HAW(L)H)(”W(EL 1)” 4
JAWE=D|) - (W V|| + JAW D)) is the sum of the product of all possible combinations
i i L . L L—1 1
of (W[, AW }ierz). We note that [T, P(2",j) = [[Wg " [[W5"] -+ W5V and
Hle P(1,5) := |AWED AW E=D || ... AW D), as they are the terms not included in Py,
and ® Aw, respectively. The term, F'(7), represents the sum of all offset terms ||o;/(0)|| based on the

recursive collapse of the difference of || fw,+aw — fw, ||; see Figure[d]for an illustration. In §C.1.4]
we show that the bounds provided in Theorem I]are tight, and we present special cases in §C.1.3]

Theorem (1| under special conditions. The generalization upper bound G(Wo + AW) in Theorem
contains two terms: (i) G(Wo) + @aw and (i) G(AW) + Py,. We can adapt some additional
assumptions on loss, quantization bit-width, size of fine-tuning datasets, and layer dimensions; see
§C.1.5|and bound G(Wy) and G(AW).

(i) Bounding G(W;). We use the PAC-Bayes generalization bound for fine-tuning using Theorem 4.1

in (28); see Theoremin The loss function, £, is bounded by Cs. Since ||W0(i) - Wo(i) | =0,
foralli € [L], in Theorem we obtain @; := 0. Hence, G(W) < e+Ca/|N|~1(3In|N[§~ 1 +8),
holds with probability at [east 1 — 25, where €, > 0 are arbitrary small numbers. Together with
Theorem we arrive at G(Wo + AW) < e + Co/|[N|"1(3In|N|[6~T + 8) + ®aw; we quote this
result formally in Theorem [4]in

(ii) Bounding G(AW). For a DNN, let ¢ be the quantization bitwidth. We assume L is o-sub-

gaussian for all W and use the generalization upper bound of G(AW) as in Lemma 4.5 of (63)), for
each PEFT method. Together with Theorem |1} we arrive at G(AW, + AW) < ®w, + G(BA), where
G(BA) represents the generalization error of different LORA variants; see Table and §

Although Table[I|demonstrates the generalization behavior of different PEFT methods, we emphasize
that these results are upper bounds, and in practice, different DNN models may deviate from them.
E.g., Although c?LA has similar upper bounds to RAC-LoRA in theory, in practice, we notice
stronger generalization trends for ¢®LA in comparison to all other variants; see Tables and

3.2 ON THE NONCONVEX CONVERGENCE OF DIFFERENT VARIANTS OF LORA

We adapt the convergence results of (38) for the layer-wise case, where each layer is updated using
GD, and the rest are kept frozen. For our analysis, we make some general assumptions in §C.2]

The update step. Our structure considers layer-wise gradient calculation, which is a natural artifact
in deep learning toolkits. The update step follows directly from (38): For each layer ¢ € [L], the
update step of the i*" layer with RAC-LoRA structure is ‘

Wz7t+1 _ Wz,t _ vvif(Wt)Hl,
where H® = (A}) T (A§(AL)T)T AL is a projection matrix.
The smallest eigenvalue of the expected projection matrix, H°, plays a critical role in the optimization
process (38). For each layer i € [L]., let Ay ~ D*, where D* is the set of all possible Ajs when
training the model. We denote A:* := A, [Ep:[H?]] and let A, := min{A\":*}L | be the

min min minJfi=1

smallest. Now we are set to state our convergence result.

Theorem 2. (Nonconvex convergence) Let Assumption [2] and 8 hold. Let \2. >0
and the stepsize satisfy 0 <y < ﬁ Let W) represent RAC-LoRA ©), or random-
cLA @), or *LA (6) update trained using gradient descent. Then {W () . W(T)1 sqr-
isfies E[||VL(W™))|?] < %, where WT) is sampled uniformly at random from
IR VAURINR ACIDNS

Next, we adapt Theorem [2] to show the convergence of Asymmetric-LoRA (8), RAC-LoRA (9),
random-cLA (§), and ¢®LA (6)) by explicitly determining \? . = for each PEFT method’s from their

min

commonly chosen D? in practice; see Table |1} For Asymmetric-LoRA and RAC-LoRA, D =
N(0,0?) (63;38), and /\fi{; = . This implies, A}, = 5"—, where npyax := max;c(r) n;. For
LA and random-cLA,)\g;; = = fori € [L]; see Proposition

In the LoRA adaptation, the Lipschitz smoothness is lost even if the loss, £, is Lipschitz-smooth (38).
One can recover £-smoothness when freezing one of the matrices B or A; see Theorem@]in @
Therefore, Theorem [Z] cannot be used to describe LoRA, LoRA+, and CoLLA’s convergence behavior.
This is indeed a shortcoming of the result. Moreover, the layerwise analysis does not bring any new
insight into the efficacy of the PEFT methods, as the upper bound on E[||V.£(W (7))|2] remains the
same for all the methods that we could analyze.

4 BENCHMARKING AND EVALUATION

Despite theoretical studies, our experimental study of 8 fine-tuning methods shows that fine-tuning,
in practice, may or may not be better, depending on the actual pre-trained model, datasets used, and a
multitude of other factors. The unpredictable performance of LoRA-based PEFT methods suggests
that it would be advantageous to use their cheaper variants for effective cost reduction and a better
generalizability of pre-trained models.

Implementation details and models used. We provide implementation details of each fine-tuning
method in §D.I] Our empirical evaluation encompasses 9 pretrained models: (/) DeBERTa v3
Base (20)), (if) DeBERTa v2 XXL (21)), (iiif) GPT2-small (44)), (iv) RoBERTa Base (35), (v) RoBERTa

Table 2: Performance of fine-tuned models with adapter rank r = 16. We use green, red, and blue to indicate
the best, second best, and third best result. For our variants, | indicates the accuracy drop percentage compared
to the best.

Model Dataset The Past The Present The Future
FFT LoRA CoLA Asym RAC LoRA+| cLA LA r-cLA r-c3LA
ViT-Tiny (1) OfficeHome ~ 79.68 80.13 79.54 78.02 78.55 77.87| 78.01 (]2.65%) 78.69 (/1.80%) 78.01 (12.65%) 79.32 (11.01%)
CIFARI0 96.59 96.17 95.85 94.80 9536 9529 | 94.94([1.71%) 9523 (|1.41%) 95.12([1.52%) 95.22 ([1.42%)
ViT-Base {I1) OfficcHome ~ 86.42 88.96 89.01 89.00 89.33 87.87 89.21 89.18 88.83 89.17
CIFAR10 98.06 98.71 9848 98.68 98.73 98.36 98.63 98.54 98.78 98.72
DeBERTa v2 XXL 2I) MRPC 8749 8828 87.47 87.03 86.97 87.53| 86.13(/2.44%) 85.11(]3.59%) 85.55(/3.09%) 85.15 (13.55%)
TREC-50 91.99 9147 85.65 9226 92.02 84.92| 91.73 (10.57%) 90.87 (| 1.51%) 91.67 (10.64%) 91.07 (11.29%)
PAWS 94.69 94.97 9522 94.95 94.66 9520 | 94.77(10.47%) 94.90 (10.34%) 94.38 (10.88%) 94.71 (10.54%)
DeBERTa v3 Base (20) MRPC 85.80 88.33 87.91 86.40 8634 84.51| 84.43(|4.42%) 80.22(19.18%) 8542 ([3.29%) 84.17 (14.71%)
RTE 82.47 86.34 83.80 78.94 79.40 84.72|76.00 ([11.98%) 75.08 (13.04%) 79.40 (18.04%) 79.40 (18.04%)
STSB 89.52 89.09 89.34 89.04 88.71 89.15| 87.56 (12.19%) 87.90 (1.81%) 88.05(11.64%) 87.90 (11.81%)
TREC-50 90.15 89.29 89.88 90.67 89.22 85.52| 86.04 (15.11%) 87.96 (12.99%) 86.04 (15.11%) 87.70 (13.28%)
PAWS 9476 94.62 94.40 94.48 94.45 94.44 94.23 94.60 94.36 94.42
RoBERTa-Base (33) ~ MRPC 87.40 86.34 86.76 86.40 86.67 84.29| 84.83 (12.94%) 84.39 (13.44%) 85.08 (12.65%) 85.33 (12.37%)
CoLA 56.08 57.33 5839 5235 53.76 50.40|51.86 (L11.18%) 53.29 (18.73%) 52.56 (19.98%) 53.10 (19.06%)
RoBERTa-Large (35) MRPC 87.57 88.46 8843 87.56 87.69 7291 87.81 86.36 86.24 86.59
CoLA 6458 6242 60.03 63.42 59.84 28.80| 59.47 (17.91%) 59.60 (17.71%) 58.60 (19.26%) 60.24 (16.72%)
TinyLlama 1) OpenBookQA 55.47 5241 5247 4596 47.59 5326 | 44.92(119.02%) 45.12(118.66%) 47.07(115.14%) 27.34(150.71%)
FOLIO 60.71 57.59 59.40 5833 5545 54.17 58.97 58.01 54.81 59.82
LogiQA 4754 4154 4370 41.50 40.86 45.83 [39.09 (117.77%) 39.30 (117.33%) 39.09 (117.77%) 39.31 (117.31%)
CLUTRR 4201 3744 3938 37.98 37.98 38.10 39.12 37.79 36.23 37.03

DeepseekCoder (16) DJANGO 2273 23.60 19.79 35.12 3027 27.27| 7.83 (177.71%) 19.48 (144.53%) 19.36 (144.87%) 15.34 (156.32%)
GPT2-Small (44) E2E 298 318 329 336 334 3.23| 3.34(112.08%) 3.29(110.4%) 3.30(110.7%) 3.29(110.4%)

Large (35), (vi) DeepseekCoder-1.3B-base (16)), (vii) TinyLlama-1.1B (61), (viii) ViT Base (11),
and (ix) ViT-Tiny (LI). See TableH]in §D.T|for a detailed summary of the models and Table [5| for
reproducibility. We report the epoch when a model has the lowest validation loss.

Fine-tuning tasks and datasets. We perform 4 different fine-tuning tasks:(i/) Natural Language
Processing (NLP). We use the datasets, PAWS (64), TREC-50 (31)), and various GLUE benchmarks
(56), including MRPC, CoLLA, STS-B, and RTE for NLP tasks. (ii) Image Classification. We fine-
tuned LoRA and its variants on OfficeHome (55) and CIFAR-10 (27)). (iii) Coding Generation. Code
generation presents unique challenges; minor deviations can lead to runtime errors or semantic
mismatches. There is relatively limited LoRA-focused literature on programming tasks; we evaluate
how different LoRA variants adapt to these tasks on DJANGO (40), and report results using Exact
Match (EM). (iv) Logical Reasoning. We use OpenBookQA (39) for elementary science multiple-
choice reasoning, FOLIO (17) for natural language reasoning with first-order logic, LogiQA (33) for
logical comprehension, and CLUTRR (50) for compositional relational reasoning from text.

4.1 QUALITY OF THE FINE-TUNED MODELS

In Table 2} we present fine-tuning performance of various models with full fine-tuning and LoRA-
based fine-tuning. For the CoLA dataset, we report the Matthews Correlation Coefficient (the higher
the better) (6), for reporting GPT2-small’s results, we use perplexity (the lower the better), and for
other models and datasets, we report test accuracies (the higher the better). Each model and dataset
is trained over three seeds, and we average the results. We find that no one method substantially
outperforms the others for adapting the model to their downstream tasks, including FFT, which
confirms the previous findings in (60). In many cases, FFT performs rather poorly (e.g., ViT-Base on
OfficeHome, DeBERTa v3 on RTE, DeepseekCoder on DJANGO). Importantly, our sparse LoRA
variants outperform FFT and LoRA in some tasks by a larger margin (e.g., ViT-Base on OfficeHome,
DeBERTA v3 on MRPC); in many cases, their performance drop is modest. We note that our variants
cannot always produce the best accuracy in low-epoch fine-tuning but they still generalize well; see
Table[T5] This suggests that, when fine-tuning a model for a downstream task, it may be optimal to
select a fine-tuning method based on its other characteristics and user-specific needs, rather than just
the generated accuracy. To highlight this point, in §4.2] we analyze the performance of each method
based on its training time, generalizability, and robustness for adapting to further downstream tasks.
Additionally, we note that our sparse variants do not reduce the number of trainable parameters, but
reduce the number of FLOPs, even with naive, non-optimized, sparse implementation; see

4.2 PERFORMANCE ANALYSIS
We dissect the performance of different LoRA variants using the following tools:

(i) Loss Landscape (29) is a 3D surface that visualizes how the empirical loss of a model differs
under small parameter perturbations; see details in §D.4.1] The sharpness of a model’s loss landscape
correlates with better generalization, and smoother landscapes indicate the PEFT method is more

Full Fine-Tuning
Top 1 accuracy: 86.42
G(W) = 3.36 x 101

(@

1.5e+01

14:'
12 =
10 —
8 —
6 —
a_-

%
a4.1e-01

o

(M Full Fine-Tuning (@) LoRA 9 (h) CoLA Fin ing (i) Asymm-LoRA Fi
MCC: 56.08 MC Mcc MCC: 63.4
G(W) = 1.36 G(W) -1 G(W) =2.22x 101

e ea
Figure 2: Loss landscapes of ViT-Base fined tuned on OfficcHome (top row) with PCA directions, and
RoBERTa-Base fine-tuned on CoLLA (bottom row) with random directions. In both cases, we observe the worst
generalization error, G(W), in (a) and (f), respectively, which are the spikiest landscapes in their class of models.
Additionally, chain methods consistently produce spikier landscapes.

robust to initialization (29)). Fine-tuning pretrained models tends to produce smoother landscapes than
training from scratch (I8;37). In Figure 2} top row shows the loss-landscapes of ViT-Base, pretrained
on Imagenet-21K, and fine-tuned on OfficeHome by cLA, ¢*LA, LoRA, FFT, and RAC, while the
bottom row shows the loss—landscag)es of RoBERTa-Base, pretrained on a large corpus of English
data and fine-tuned on CoLA by r-c°’LA, LoRA, CoLA, Asymmetric LoRA, and FFT. For ViT-Base,
we used PCA directions, whereas for RoOBERTa-Base, we used random directions; see §D.4.1] for
comparison of these two implementations. We present a direct comparison of non-chain LoRA
methods (LoRA, Asymmetric LoRA, cLA) with their chain counterparts (CoLA, RAC-LoRA, ¢*LA)
in Figure[6] In §D-4.T] we plotted the 2D contour plots to show the optimizer path.

Based on the characteristics of the loss landscapes as in (29), FFT would generalize worse, as it has
the spikiest losses, and our results in Figure 2] confirm that. Based on the sharpness of the landscapes,
chain methods sharpen the minima, and this perspective indicates they should generalize worse.
However, in practice, this is not the case. E.g., For ViT-Base, in Figure[2] RAC has the least G(W).
Therefore, the loss landscape rhetoric, as we also witnessed in Figure[T] does not always match with
the generalization error. Motivated by this discrepancy, we present an alternative analysis that is more
aligned with our empirical observation on the generalization error.

(ii) Intruder Dimensions (49). Given the pretrained and fine-tuned models, Wy and Wy + AW, the
number of intruder dimensions correlates with their performance in a downstream task; see
Higher intruder dimensions correlate to a worse performance (49). We analyze the number of intruder
dimensions present in FFT and various LoRA-based PEFT methods for the ROBERTa-Base (35)
and ViT-Base (11)). We divide the total fine-tuning epochs for each method into 4 equal points, and
report the number of intruder dimensions present at 25", 50", 75t and 100" percentile of the
training epoch by using the e-thresholds set at a lower and higher value, 0.4 and 0.8, respectively.
Tables [13]and [T4] present the average number of intruder dimensions per layer for RoBERTa-Base and
ViT-Base, respectively. Figures [3a]and 3| present the number of intruder dimensions of a fine-tuned
model, obtained from each method by varying the range of threshold, ¢ € (0, 1]. As shown in the
Figures [3a and Bb] the chain variant of each LoRA-based PEFT method produces more intruders
than its non-chain counterpart. This effect is least pronounced in LoRA and CoL A, which produced
almost the same number of intruders for ROBERTa. This is consistent with our empirical results in
Figure If CoLA produced more intruders than LoRA, it would never have a better G(W) than
LoRA. But, for ViT-Base, this observation does not hold. Also, we note that RAC has the best G(W)
on ViT-Base, while producing substantially more intruders than LoRA and LoRA+. Additionally,
from Figure we find that FFT has the highest intruder dimensions but the least G(W) (Table
, LoRA+ has more than average intruder dimensions but the second best G(W) (Table [15); only
LoRA’s intruder dimensions and G(W) follow the correct trend.

(iii) Generalizability. The generalization error, G(W) (Definition , is hard to realize in practice, as
the true distribution of a feature space and label space, X x)/, cannot be obtained. Therefore, we
cannot use the theoretical bounds on G(W) in Tablewithout modification. Since test samples are
1.i.d. from (X x)), as an alternative, the difference between the loss of a model on a collection of
unseen test samples and the loss on its training set approximates how well the model generalizes to
the true distribution of the instance space it was trained on. Therefore, we approximate G(W) =~
E(Ltest) — Lirain- As the size of the test set increases, the difference approaches the actual G(W)

— Asym — Asym
700 LA
— aa
600 ColA
— T
— LoRA

— aa
600 ColA
— T

500 — LoRA
LoRA+
RAC

relA
LA

LoRA+
RAC
relA
LA

Average number of intruders per layer
Average number of intruders per layer
Average number of intruders per layer

0.0 02 0.4 06 0.8 10 0.0 02 04 06 08 L0 00 02 0.4 0.6 08 10
Cosine similarity threshold Cosine similarity threshold Cosine similarity threshold

(@) RoBERTa-Base (CoLA) (b) ViT-Base (OfficeHome) (C) ViT-Base (CIFAR-10)

Figure 3: The average number of intruder dimensions present in different fine-tuned models.
Table 3: Generalization error, G(W), of the fine-tuning methods over various models and datasets.

Model Dataset The Past The Present The Future
FFT LoRA CoLA Asym RAC LoRA+| cLA c®LA rcLA rc®LA
ViT-Tiny (11) OfficeHome ~ 4.85¢~! 6.96e™2 9.55¢7% 7.22¢72 6.17¢™2 7.39¢72|1.98¢ 2 3.40e~2 2.16e~2 3.51e™2
DeBERTa v2 XXL 1) PAWS 6.07e72 1.99¢72 3.63¢72 3.26e 72 3.95¢72 5.4le"2|6.68¢72 5.11e72 19872 6.99 e 2
DeBERTa v3 Base (20) MRPC 1.06e™" 890e™? 2.59¢™2 7.28¢7% 9.86e” % 152¢ 2|2.58¢~2 852¢ 7 1.16e”! 257¢”?
TREC50 456~ 273¢7! 3.99¢7! 2.16e7! 267e7! 26le?|2.25¢7! 3.70e7! 336e! 263¢ 7
PAWS 2.62¢72% 643e72 2.40e” 2 6.27e72 8.17e72 5.55¢7%|7.39¢72 577e72 1.0le™! 5.82¢72
RoBERTa-Base (35) ~ CoLA 139 7.74e™1 4.04e™! 222¢71 1.96e7! 8.10e71|4.70e 4.43e7t 4.38e 4.0le”t
TinyLlama (61) OpenBookQA 1.78¢ ™! 2.82¢™! 34le™" 2.15e™" 1.86e" 2.07¢™'|1.51e™ " 2.20e™ ! 3.16e™! 7592
FOLIO 18271 237¢7! 2.17e7! 175¢7! 1.93¢7! Sile ?(235¢7! 1.91e”! 1.05¢7! 249¢7!
LogiQA 3.6le” ! 6.12¢72 145e7 1 1.16e72 1.75e 71 237¢71[8.60e™2 1.le™ ! 6.64e72 6.25¢ 2
CLUTRR 4.29 2.25 1.55 2.34 2.27 5.48 2.16 2.19 2.59 4.23

DeepseekCoder (I6) ~ DJANGO 348¢7% 4.65e72 34e 2 5.16e72 4.64e72 3.87e72|4.19¢72 3.89e72 3.64e 2 3.62¢ 2

GPT2-Small (44) E2E 1.65¢7" 1.93e™" 1.85e7 " 1.83e~" 1.85e™ ! 1.87e | 1.77¢ 7 1.82¢7! 1.88¢~! 1.82¢71

of the model; see discussion in We report the approximate generalizability of all fine-tuned
models in Tables 3} also, see[T3]in

Drawing a connection from our theoretical upper bounds in Table[I] we find PEFT methods with the
same upper bounds perform similarly in practice. More precisely, cLA has a smaller upper bound on
G(W) than r-c®LA in practice, indicating the validity of theoretical upper bounds. This observation
also holds for cLA and RAC, and ¢3LA and Asymmetric LoRA pairs. On the other hand, cLA and
r-cLA have the same upper bound on G(W), and they also perform almost similarly in practice.
Nevertheless, there are some discrepancies, and we attribute them to the fact that Table |I| gives us an
upper bound on G(W). E.g., although the upper bound on G(W) of Asymmetric LoRA is smaller

than RAC by a factor of v/k, they behave similarly in practice. Similarly, r-cLA performs marginally
worse than RAC, although RAC has a higher theoretical bound on G(W). In an extreme case, r-c>LA
empirically outperforms r-cLA while having a higher theoretical bound on G(W).

5 CONCLUSION

Through extensive benchmarking spanning four different fine-tuning tasks, nine models, and fourteen
datasets, we show that no fine-tuning method, including full fine-tuning, is a clear choice for fine-
tuning an arbitrary task. This observation confirms the finding in some previous works that dissect
LoRA’s efficacy. As the future of computing and hardware interfaces moves towards memory-
and compute-efficiency, we propose simple LoRA variants with inherent sparsity, cLA and ¢’LA
and their randomized variants, and observe their surprisingly good performance. Therefore, we
postulate that it is advantageous to choose a fine-tuning method based on its characteristics and
user-specific needs rather than on generated accuracy. To support this, we analyzed our methods
and various common LoRA PEFT variants through the lens of generalizability. To our knowledge,
we are among the first to obtain generalization error bounds for a wide range of PEFT methods.
We show that, in theory, our methods have the same generalization error upper bounds as their
non-sparse counterparts. While comparing the theoretical results of generalization error bounds with
experimentally observed generalization error, we find that our generalization error upper bounds
closely follow the generalizability of the models in practice, among all other experimental perspectives,
such as loss-landscape and intruder dimensions. In the advent of artificial general intelligence, when
we want a model to behave human-like across many tasks, it is better to choose PEFT methods that
generalize well and are computationally efficient.

REFERENCES

[1] NVIDIA GPUs: H100 vs. A100—A detailed comparison. https://gcore.com/blog/nvidia-h100-
al00, January 6, 2025.

[2] Meta AI. Introducing Meta Llama 3: The most capable openly available LLM to date.
https://ai.meta.com/blog/meta-llama-3/.

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. In Advances in Neural Information Processing Systems,
volume 35, pages 2371623736, 2022.

[4] Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard,
Connor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns
less and forgets less. Transactions on Machine Learning Research.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877-1901, 2020.

[6] Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):6,
2020.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, pages 248-255, 2009.

[8] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
Finetuning of Quantized llms. Advances in neural information processing systems, 36:10088—
10115, 2023.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171-4186, 2019.

[10] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and
Maosong Sun. Sparse low-rank adaptation of pre-trained language models. arXiv preprint
arXiv:2311.11696, 2023.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In /CLR, 2020.

[12] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. Efficient sparse collec-
tive communication and its application to accelerate distributed deep learning. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages 676—691, 2021.

[13] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In ICLR, 2019.

[14] Trevor Gale, Erich Elsen, and Sara Hooker. Sparse gpu kernels for deep learning. In The
International Conference for High Performance Computing, Networking, Storage and Analysis,
2020.

[15] Giancarlo Mori. GPT-4.5 vs GPT-40: Comparing OpenAl’s Latest AI Models.
https://giancarlomori.substack.com/p/gpt-45-vs-gpt-4o-comparing-openais, March 13, 2025.

[16] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,

Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming — the rise of code intelligence, 2024.

10

[17] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou,
James Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah
Szabo, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm
Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri,
Wojciech KrySciniski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming
Xiong, Rex Ying, Arman Cohan, and Dragomir Radev. Folio: Natural language reasoning with
first-order logic. arXiv, 2022.

[18] Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Visualizing and understanding the effectiveness of
bert. arXiv preprint arXiv:1908.05620, 2019.

[19] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient Low Rank Adaptation of Large
Models. In International Conference on Machine Learning, pages 17783-17806, 2024.

[20] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using
electra-style pre-training with gradient-disentangled embedding sharing. arXiv preprint
arXiv:2111.09543, 2021.

[21] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

[22] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, volume 97,
pages 2790-2799, 2019.

[23] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[24] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. LoRA: Low-Rank Adaptation of Large Language Models. In International
Conference on Learning Representations, 2022.

[25] Junsu Kim, Jaeyeon Kim, and Ernest K Ryu. Lora training provably converges to a low-rank
global minimum or it fails loudly (but it probably won’t fail). arXiv preprint arXiv:2502.09376,
2025.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR,
2015.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images.(2009), 2009.

[28] Dongyue Li and Hongyang Zhang. Improved regularization and robustness for fine-tuning in
neural networks. In Advances in Neural Information Processing Systems, volume 34, pages
27249-27262, 2021.

[29] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the Loss
Landscape of Neural Nets. In NeurIPS, volume 31, 2018.

[30] Houyi Li, Wenzhen Zheng, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie Xuyang, Yuantao
Fan, Zhenyu Ding, Haoying Wang, Ning Ding, Shuigeng Zhou, Xiangyu Zhang, and Daxin
Jiang. Predictable scale: Part i, step law — optimal hyperparameter scaling law in large language
model pretraining, 2025.

[31] Xin Li and Dan Roth. Learning question classifiers: the role of semantic information. Natural
Language Engineering, 12(3):229-249, 2006.

[32] Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. arXiv preprint arXiv:2307.05695, 2023.

[33] Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv, 2020.

11

[34] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
Forty-first International Conference on Machine Learning, 2024.

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[36] Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics
and econometrics. John Wiley & Sons, 2019.

[37] Subhajit Maity, Killian Hitsman, Xin Li, and Aritra Dutta. Kolmogorov-arnold attention: Is
learnable attention better for vision transformers? arXiv preprint arXiv:2503.10632, 2025.

[38] Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
Elesedy, Mete Ozay, and Peter Richtarik. Randomized asymmetric chain of LoRA: The first
meaningful theoretical framework for low-rank adaptation. arXiv preprint arXiv:2410.08305,
2024.

[39] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[40] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda,
and Satoshi Nakamura. Learning to generate pseudo-code from source code using statistical
machine translation. In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 574-584. IEEE, 2015.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An Imperative
Style, High-Performance Deep Learning Library. In NeurIPS, volume 32, 2019.

[42] Kaustubh Ponkshe, Raghav Singhal, Eduard Gorbunov, Alexey Tumanov, Samuel Horvath, and
Praneeth Vepakomma. Initialization using update approximation is a silver bullet for extremely
efficient low-rank fine-tuning. arXiv preprint arXiv:2411.19557, 2024.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763, 2021.

[44] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[45] Rafael Ramos. Comparing NVIDIA H100 vs A100 GPUs for AI Workloads.
https://openmetal.io/resources/blog/nvidia-h100-vs-al100-gpu-comparison/, July 29, 2025.

[46] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations for large-scale deep learning. arXiv preprint arXiv:2007.00399, 2020.

[47] Peter Richtdrik and Martin Takac. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156(1):433-484, 2016.

[48] Daniel Russo and James Zou. How much does your data exploration overfit? controlling bias
via information usage. IEEE Transactions on Information Theory, 66(1):302-323, 2019.

[49] Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. Lora vs full
fine-tuning: An illusion of equivalence. arXiv preprint arXiv:2410.21228, 2024.

[50] Koustuv Sinha, Shagun Sodhani, Joelle Pineau, and William L. Hamilton. Clutrr: A diagnostic
benchmark for inductive reasoning from text. arXiv, 2019.

[51] Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving LoRA in Privacy-preserving
Federated Learning. In ICLR, 2024.

12

[52] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[53] Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. In Advances in Neural Information Processing Systems,
volume 37, pages 9565-9584, 2024.

[54] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

[55] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5018-5027, 2017.

[56] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353-355, 2018.

[57] Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: Efficient Fine-tuning of Language
Models via Residual Learning. In ICML 2024 Workshop on LLMs and Cognition, 2024.

[58] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. Advances in neural information processing systems, 30, 2017.

[59] Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstanti-
nos Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication
framework for distributed machine learning. In 2021 IEEFE 41st International Conference on
Distributed Computing Systems (ICDCS), pages 561-572. IEEE, 2021.

[60] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

[61] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024.

[62] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

[63] Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automat-
ically tuning matrix ranks in low-rank adaptation based on meta learning. arXiv preprint
arXiv:2403.09113, 2024.

[64] Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word
scrambling. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1298—-1308,
2019.

[65] Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sdez De Ocariz Borde, Rickard Briiel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. In Proceedings of the 41st International
Conference on Machine Learning, pages 62369—62385, 2024.

13

CONTENTS

I__Introduction| 1
[2__DNN Fine-Tuning: The Past, Present, and Future| 2
2.1 The Past: Full fine-tuning (FFT) and LoRA| 3
2.2 The Present: Evolution of LoRA| 3
2.3 The Future: Can we push for more compute efficiency? 3
[3 Theoretical Insights| 4
3.1 ~ On the generalization of different variants of LoRA|
[3.2 On the nonconvex convergence of different variants of LoRA|
|4 Benchmarking and Evaluation|
4.1 Quality of the Fine-Tuned Models|
4.2 Performance Analysis|. L
5 __Conclusion 9
[A_The Present: Evolution of LoRA—Continued| 15
[B~ Pseudo Code of our proposed LoRA variants| 16
[C Theoretical Results| 16
[CT Generalizationl. 16
IC.1.1 Inequalitiesused| 18
IC1.2 Proofof TheoremIlf 18
|C.1.3 Neural Network with No activation Function—Special case of Theorem|l| . 22
|C.1.4 Tightness of the bounds in Theorem|1| 23
|C.1.5 Adapting Theorem|l|under special cases|. 23
IC.2 Nonconvex CONVergence| v v v v v v vt i ettt 26
IC.2.1 AuxiharyResults| oo 27
|IC.2.2° Nonconvex Convergence Result| 27
IC23 Addiiopal Results| oo o oo 30
[DAddendum to Benchmarking and Evaluation| 32
ID.1 Implementation Details| 32
ID.2 'The effects of learning rate, scaling factor, and chain reset frequency on quality metric |
[overvariousranks| oL 32
ID.3 Computational Cost, FLOPs, and Effictency| 33
ID.4 " Performance Analysis—Continued| 33
ID.4.1 Loss Landscape—Continued| 33
ID.4.2 Intruder Dimension implementation| 40

14

D.5 Generalization Error—Continued|. o L. 40

Limitations and Di 10N 41

[_Table of notation: 41

Organization of Appendix. We organize the Appendix with the following structure:In we
discuss the popular contemporary LoRA variants; this is a continuation of §2.2]of the main paper.
In we give the pseudocode of our proposed LoRA variants, cLA, random-cLA, and c¢*LA.
§C| contains the proofs to the theorems in Particularly, it contains the proofs for Theorem [2]
Theorem I} Theorem @ and Theorem|[6] In we discuss the implementation details and extend our
empirical study by including various ablation studies and developing discussion topics. This section
acts as an addendum to §é]of the main paper. For notations used in this paper, we refer to Table[T6]in

B

A THE PRESENT: EVOLUTION OF LORA—CONTINUED

Below, we sketch a few popular LoRA variants.

Chain of LoRA (CoLA) (57) increases LoRA’s performance without substantially increasing com-
. . a1l

pute or memory costs. After fine-tuning B'A' for the downstream task to obtain B' A, CoLA merges

1Al

B A into the base weights and continues training with a new BZA? on the same task, treating

1.1 NPy
Wi + 2B A as the base weights. Denote wkBA) Wi + 25:1 %BJAJ and W(O-B4) — Wo
for convenience. CoLA of chain length k solves:

Forje k], B'A’~ argming, [ﬁ(ng‘l’B"‘) + %ﬁjz&j)} %)

to obtain the fine-tuned model, fy 54). COLA simulates a higher-rank approximation of a single
LoRA update (32) and claims to reduce LoRA’s failure (23)).

Asymmetric LoRA (65) modifies LoRA adaptation for each layer by freezing one of the low-rank
matrices, conventionally, A to Ay, initializing the frozen matrix via a Normal distribution, and setting

the trainable matrix to 0, and solves:
[N

. . o 1
B ~ argming[£(W, + ;BA()) = W Z ((fwo_,_%BAO (), 9i)], ®)
=1

to obtain the fine-tuned model fW0 +BA,- Under trainable-parameter constraints, Asymmetric LORA

competes with LoRA (65)) and retains the Lipschitz smoothness of the loss function, which LoRA
does not (51).

Randomized Asymmetric Chain of LoRA (RAC-LoRA) (38) combines Asymmetric LoRA and
CoLA. RAC-LoRA fixes one of the low-rank matrices (conventionally A), initializing via some
1
fixed distribution of matrices D, and sets the trainable one to 0. Like CoLA, the trained B Aé is
then merged into the base weights, and a new BA| is trained on the same task. Denote wkB) .~

Wy + Z§:1 %ﬁjA% and W(®5) = W,. RAC-LoRA of chain length k solves:
For j € [k], B’ ~ argming, [L(W(()j_l’B) + gﬁjAé)})
r
to obtain the fine-tuned model fyyx,5).

LoRA -+ (19) applies separate learning rates {%,~% } to the adapter matrices, { B, A'} of each layer,
respectively, and maintains the identical structure to LoORA. LoRA+ prioritizes a substantially higher
learning rate (2 — 16x) for B.

Other variants. There are other popular LoRA variants, such as HydraLoRA (53)), designed for
fine-tuning on datasets with high heterogeneity. LoRA-SB (42) simulates the FFT process within
low-rank subspaces by adding a trainable r x r matrix R, initializing BRA based on the SV D of
the first step of FFT, and freezing B, A. QLoRA (8) fine-tunes quantized LLMs. AdaLoRA (62) uses
varying rank by layer and uses an SVD initialization. SORA (10) introduces sparsity in the low-rank
updates. DoRA (34)) separates fine-tuning the direction and magnitude components of the model.

15

AutoLoRA (63)) trains each LoRA update as a sum of rank-one matrices and learns which to discard
during training. DyLoRA (54) concentrates the more important features in the first columns and rows
of B and A, respectively.

B PSEUDO CODE OF OUR PROPOSED LORA VARIANTS

In this Section, we present the pseudocode of our proposed LoRA variants, cLA (Algorithm [T,
random-cLA (Algorithm , ALA (Algorithm and r-c>LA (Algorithm E])

Algorithm 1 Cheap LoRA (cLA)

1: Parameters: Loss function £ and model fyw(-). Pretrained weights Wo = (W{, ..., W),
where W € R™*™:_ rank r < min{m,, ni}iem, learning rate v > 0, scaling factor « > 0,
total training iterations 7.

2: Initialize A} = (1[0, (n,—r]; B® = 0for j € [L]
3: fort=1,...,T do
4: forward pass with LoORA modules
5: backward pass then update B?
6: forj=1,...,Ldo
ltor
7: B% = Bt=1i — 42V, L(W, + 2B A) Diag(1, ..., 1,0, ..., 0)
8: end for
9: end for ‘
10: j = argmin; () £(Wo + $B? Ay) or task-based metric.

11: return Fine-tuned weights W + %B3 Ay

Algorithm 2 random Cheap LoRA (r-cLA)

1: Parameters: Loss function £ and model fw (). Pretrained weights Wy = (W, ..., wE),
where Wy € R™*™ rank r < min{m;, n; };c[r], learning rate y > 0, scaling factor o > 0,
total training iterations 7.

2: Initialize
3: & = randint(0, | %4 | — 1) for j € [L]
4: A{) = [Orx,fj | L. | OTX("]._&_T)] ; BY%i = 0forj € [L]
5:fort=1,...,Tdo
6: forward pass with LoORA modules
7: backward pass then update B?
8: forj=1,...,Ldo
E+10&+r
. . —~
9: B = BN — 42V, L(Wy + 2B 1 Ag) Diag(0,...,0, 1,..,1 ,0,...,0
10: end for
11: end for

12: 7 = argmin, ¢y £(Wo + 2B Ag) or task-based metric.

r

13: return Fine-tuned weights W + %B3 Ay

C THEORETICAL RESULTS

This section complements Section [3]in the main paper.

C.1 GENERALIZATION

In this section, we give a detailed proof of the generalization error bound. We start by listing the
inequalities used in this section.

16

Algorithm 3 Circulant Chain of Cheap LoRA (c*LA)

1:

AN A

11:
12:

13:
14:
15:
16:

17:

Parameters: Loss function £ and model fw(-). Pretrained weights W(()O) = (Wt .., W),
where W% € R™iX"i_ rank r < min{m,, ni}ie[L], learning rate v > 0, scaling factor o > 0,
total training iterations 7', chain-length k <= T
Initialize A} = (1,10, (n,—p]; B® = 0for j € [L], current chain ¢ = 0.
fort=1,...,Tdo
ift=0 (mod |Z]) then
c=c+1
Merge LoRA to backbone weights W” = W{*™! 4 aBI=1A,
Re-initialize with A g shifted by 7:
A(]) = [Orxcr | I, | Orxnifrfcr}; Bi=Li=0 fOI'j € [L]
end if
forward pass with LoORA modules
backward pass then update B?
forj=1,...,Ldo
crto (e+1),
. . —~
Bh = Bt=hi — 42y (WY + 2Bt Ag) Diag(0,...,0, 1,...,1 ,0,...,0)
end for
end for
¢,j = argmin e[) cepu) LW 4 2B Ag) or task-based metric.

return Fine-tuned weights W§ + 2B% A,

Algorithm 4 Random Circulant Chain of Cheap LoRA (r-c’LA)

1:

,_
4

——
b e

15:
16:
17:
18:

19:

AR A A T

Parameters: Loss function £ and model fyw(-). Pretrained weights Wéo) = (Wi .., Wkh),
where W € R™i*"i | rank r < min{m;, Ni}ie(r]» learning rate y > 0, scaling factor o > 0,
total training iterations 7, chain-length k <=T.
Initialize
&; = randint(0, | %2] — 1) for j € [L].
A = [0rxe, | Ir | Oy (n;—¢;—r)] ; B = 0for j € [L], current chain ¢ = 0.
fort=1,....,T do
ift=0 (mod |1]) then

c=c+1

Merge LoRA to backbone weights W(()C) = W(()c_l) + 2BI1A,

Re-initialize with A shifted by a new random variable §J’~:

A} = |:0'r><§'; | Zr | 0y (n;—¢;—r) | B = Ofor j € [L]
end if
forward pass with LoORA modules
backward pass then update B?
forj=1,...,Ldo
Ei+1lto&+r
. . —N—
Bbi = pBt=1J — YEVL(Wo + %Bt_lAO)Diag(O, w0, 1,1 0,0y
end for
end for
¢, J = argmin e 1) ey ﬁ(W(()C) + 2B% Ay) or task-based metric.

return Fine-tuned weights W§ + 2B% A,

17

C.1.1

INEQUALITIES USED

. If A, B € R™*™ and € R", then the Triangle-Inequality gives:

I(A+ B)z|| < [[Az] + || Bz]. (10)

. For A € R™*™ and x € R", we have:

[Az|| < [[All2]|z]] (11)

. If 6(0) # 0, then by the triangle inequality and using Assumptionwe have:

lo(Az)|| < lo(Az) = o (0)[| + [o(0)]| < Lo Az]| + To (0)]- (12)

. For a finite collection of matrices, {Al7 Ak} A; € R™*™ we have:

rank(ZA) < Zrank (13)

. Let I(X; Y') denote the mutual information between random variables X and Y. It measures

how much the knowledge of one random variable reveals about measuring the other, i.e.,
I(X,Y) = D(ny”PX X Py) = sup{/FdPXy — log/eFd(PX & Py)},
F

where F' is a bounded, measurable function (58). Let 7" be a deterministic map for A €
R™>"_ Then the Data Processing Inequality (DPI) gives us I(T'(A); N) <I(A; N). If T
is a bijective mapping then (DPI) gives us (65):

I(A; N) =L(T(A); N). (14)

C.1.2 PROOF OF THEOREM[II

Theorem 1. (Generalization bounds) Let fw, aw(x) = op([Wo + AWE|(- - oo([(WE +
AW? o (W3 + AW1)z))--+)) be a L-layers fine-tuned DNN, where Wo + AW is a fine-tuned
update. Let the loss function, L for fine-tuning, follow Assumption[2land Assumptions[IH3]hold. Then
G(Wo + AW) < min (G(Wy) + @Aw, G(AW) + Dy,), where

2l—1 L 2l 2
Paw:=2L, CHL > [P69 > F(i)| and
i=1 j=1 1762a71‘a€[L]
Dy, = 2L, CHLQZHPZJ)—F Z F(i)|,
=2 j=1 i£2%:a€[L]

are the correction terms, F'(i) := [|o,_y) (0)| Hw(z[Loy_,.y Hiy)], 9(3) = [logy(i)), and
P(i,j) = {|W0(L_j+l) if |32 1J is odd, H(i,j) = {HAW(L 7+ if | 55t is odd,

JAWE=5 4D | G2 | is even IWSE TV if | 3= | is even.

Proof. Let

fworaw = o) (W5 + AW Doy (o (W + AW DV]2)...))

represent our fine-tuned model and

fWo =0(L) (WéL)O'(L,l)(...O’(l)(Wél)x)...))

18

represent our pretrained model. First, we upper bound the quantity || fw,+aw — fw,||- We have
[fworaw — fw,ll

= |lo@) (W™ + AW D] o, 1><- ~-a(1><[wo<” +AWW]z)...))
L
— oy WH a1 (- o) (W, |

Assumption @
<

Lo, || W™ +AW<L>]J(L (o (W + AW D]z) . ..))
~ W ooy (- oy (W))|
_L,,LHAW(L)a(L,l)(--.a(l)([WO +AW(1)])
— W (o) (o) (W + AWWD2)) — o1y (- o0y (Wg V) -)|

Triangle Inequality and Inequality @

< Lo, AW D |allop 1y (- oy (W + AW D]z))|

L 1 1
W5 2l -0y (- o (W5 + AW D)) = apay (- o0y (Wg) -).
Note that our inequality is now composed of two components:
1
(A): Loy AW D) ooz (- (1)([Wé AW D))

B): Lo, W ll2ll (o1 (- - oy (WS + AWD]z)) — o1y (- o0y (W) -).

We will show for any £ > 1 that the (B) component can expand out to two sub-components that
mimic (A) and (B).

k
By = Lo, W55 HUWU(' o (WY + AW Wz) -) — oy (- oy (W) -)H

Assumption @
<

k k— _
Loy WP |12 Lo, nuwé Vb AWED 0 g (- oy (WS + AW D]z))
k—
— W 1)0(1@72)(0(1)(Wo x))l
Lo Loy, WG 2 [AW 0 (o (WD + AW D))
f—
+W(§ 1)(U(k—2)(0(1)([Wo +AW(1)]))_U(k—2)('"U(l)(Wél)x)"'))H

Inequality@) k _ 1
< LoLowy WS 2 (JAWEDllz oz (o (WY + AW D)))]

k—
+ WS e oo (- oy (WS + AW D)) = oy (- oy (W) -)]

k _
Bk < Loy W2 Loy 1AW ED s [lo_o) (- - o0y (W + AW D]z))|
(A1
k k—
+ Loy [W§ 2 Loy, W Vlla llog—ay (- o0y (WS" + AWD]z)) = 0_ay (- o0y (W)).

B —1

19

When k£ = 1, we see that (B) no longer splits into (A) and (B) subcomponents, but rather:
1
B), = (H%)(HHW) oW + AW D) = oW a) |
j=2 i=2

Assumption [3] L (4) 1) (1) (1)
2B (T,) (LTI 387 + AL i

=1 =2

.

()(liIZHWO I2) AW]

tnequality (ﬁ)(HHWOZ 2)||AW”)||2]

j=1 =2

(ﬁ V(LWL AW,

I\Eh

<.

Assumptlon m

We now present the recursive step for the (A) terms:
A = Loy [AW O3 ||y (W + AWED] o (oW + AW D)))|
Inequality @) _
< Lo WOz (Lo, WS + AWED o (WD + AW D)) |
+ llow-n)

Inequality (TT)
< Loy AW Oy (Lo, IWEE 2 oW + AW Wa) |

+ Lo, IAWED |y [|oy (WY + AWDL2) | + o1 (0)])-

Recursive collapse of (A). Applying Inequality (T2)) to the outer activation 0 (k—1) splits (A)y into a
Woy-branch, a AW -branch, and an offset term O(k—1) (0). The Wy and AW branches recurse inward,

each step multiplying by L,, and either ||W0(i)\|2 or [[AW@ ||, until o) returns L, ||WO(1)JZ||,

Lo, |AW Mz, and lloy (0)1], (A) collapses to a sum of
terms based on permutations of matrix spectral norms, plus offset contributions from the nonlinear
activation of zero vectors.

If fiw, and fw,+aw are both 1-layer, we can expand out their difference by:
| fwotaw = fwoll < CLo, AWM
If fw, and fw,+aw are both 2-layer, we can expand out their difference by:
| fwoeaw = fwoll < C Loy Loy [Wo™ 2 AWM 2 + CLo, Loy [AW o[W5V
+ OLo, Loy | AW P [AW V|2 + Lo, | AW P [5]l1 (0)
If fw, and fw,+aw are both 3-layer, we can expand out their difference by:
| fwosaw = fwall € C Lo, Loy Loy (IWEV 12 WS 2 1AW D,
Wl 1AW P 1o WGP ll2 + W™ [l2 [AW @ |2 [|AW D
+ AW W 1o WPl + AW o W |5 [|AW D]

1AW 3 AW 3 WiV + [AW D o AW 5 |AWD],)

3 2
+ Loy Loallow)1 (IWS 12 1AWz + AWy [wi?])
+ Loy Loy [AWO || [AWE |2 o) ()] + Loy AW o2 (0)

20

[log,,(i)]

— .'\'"\' 0
X — '
s]
¥ e
8 910 11 12 1314 15
. y . » P) () 3

Figure 4: || fw,+aw — fw, || Visual representation of the recursive collapse of (A, B).

Thus a proof by induction indicates the difference between fw, and fw,+aw L-layered hypothesis
can be upper bounded by:

oL_1 |, 2l —2
[fwotaw — fw| < CHLUL ST Petia+ > F(i)
i=1 i=1 j=1 1=2;1#2%—1,a€[L]

If we treat ATV (®) and Wo(i) as binary classes, we can give each identity 0 and 1 respectively; thus

WO(?’)WSQ)WCSI) corresponds to 1115 or 7 and AW(S)WSQ)AW(I) corresponds to 0102 or 2. Thus,
using this pattern, we can expand our summation using the following expression:

Wl Dt | S mod2 = 1
PL(Z7]) =

)

L—j+1 : i—1 _
AW (L=i+D)||y, if \‘QLJ'J mod 2 = 0.
[log,(4)]
F(i) = lo@—tog) Ol [T Low_sn H(ir)]

j=1
o AW EZTH Iy if | S5] mod 2 =1,
H()) =

IWo" 7™Vl if Lgmmtor=] mod 2=0.

where F (i) and H (i, j) are index functions that can be visualized in Figure[d] For representational
purposes, every vertex that has three red edges adds the ¢ norm of the layer below its activation
function on the zero vector. When a vertex has two different colored edges strictly below it, it
collapses into an A and B sub-component. When this occurs, no additional offset term is added to
our summation. A total of 2% — (L + 1) of these offset terms will be added. Both P (4, j) and H (i, 5)
can also take cases by even and odd inputs as their indexing requires modulus arithmetic over binary
classifications (W " and [|AW®)|)).

Now that we have an upper bound for the difference of our hypotheses, we write the difference in
terms of true loss and empirical loss:

Laiobal(Wo + AW) — Lyioba1(Wo) = Ex yu [0 fwy+aw (X), Y)] = Ex yu [0(fw, (X), Y)]
=Ex yu [l(fworaw (X),Y) = £(fw,(X),Y)].
< Exyu[Lel| fworaw (X) = fw, (X)]]

and

2l_1 L 2l 2
<Exy |Lr C’HLUI S I[Pt + D FG)
i=1 j=1 i#£20—1
2l_1 L 2l _9
=L, H o ZHPLZ] + Z F(i)
k=1 i=1 j=1 i#£29—1

21

Similarly,
L

(waraw (@) vl) = 73 Afwalad),)

/=1

1
L -

M=

LWy + AW) — L(W,) =

’

©
Il
_

I
=
VMN

@\
—

[waraw (@), 97) = A fwo (),)]

=l

< 22_: Le || fwosaw (z) — fw, (27|
23w (Ol [X I rea)] + 3 F0)
ir=1 k=1 i=1 j=1 i#20—1
=L, (Cﬁ [22_:1HPL2]} 22_:2 F(z))
k=1 i=1 j=1 i£20_1

Using the triangle inequality, we reach:
|G(Wo + AW) — G(Wo)| = | Lgiobat(Wo + AW) — L(Wg + AW) — Laioba(Wo) + L(W)|

< | Lgtobat(Wo + AW) — Laiopa1(Wo)| + | L(Wo + AW) — L(W)]
L 2l—1 L 2L _9
<2Le (CI[L [X TIPeG)] + 30 FG).
k=1 =1 j=1 i#20 1

Finally, we obtain the inequality:

L 21 L 2k 2
G(Wo +AW) <G (Wo)+ 2Lz | C [] Lo, [H] S F3)
k=1 i=1 j=1 i=1;i#2%—1;a€[L]

Bound around faw. We can also perturb around G(AW) by swapping the roles or conditions of
Wél) and AW) in the zero—activation bookkeeping function H (i, 5). This requires us to ignore the
indices 2%, a € [L] as opposed to 2* — 1, a € [L] as viewable in Figure[d] Similarly, the function
Pr(+,-) can be kept unchanged by shifting the summation index range from 1:2%—1 to 2:2F. Thus

ok 2b—1
G(Wy +AW) < GIAW) + 2L, |C HLUk [Z HPL i g} + Y FG)
i=2 j=1 1=3;i#2%a€[L]

Consequently, we can conclude with:
G(Wo + AW) < min (G(Wy) + Paw, G(AW) + Ow,)

2Le (C TTiy Loy [X050 TI Pulind)] + Shal i F()), for W = AW,

2Le (€ Tlios Loy | X2 T PLd)] + S50 @), for W =W,

O

C.1.3 NEURAL NETWORK WITH NO ACTIVATION FUNCTION—SPECIAL CASE OF THEOREM]

We can upper bound the generalization error of a neural network with no nonlinear activation
functions, i.e., o; = I,,, foralli € [L]. We additionally include the simplest case of a one-layer linear
network.

Corollary 1. Let Assumptto ,hold and L follow Assumptton@] Leto; = I,,, foralli € [L], and

fwot+pa(x) = + BLAE(+ B2A%2(W3 + BYAY)z) - --)). Then we have:
ok 1 L 2k L
G(Wo+ AW) <min(G(Wo) +2CLe > [] Poli,4),G(AW) +2CL Y] Pr(i i)
i=1 j=1 i=2 j=1

22

Remark 1. Let Assumptionhold and L follow Assumption If L =1, i.e., the model consists of
only 1 layer, then we have:
G(Wy + AW) < min(G(Wy) + 2C L. ||AW ||, G(AW) 4+ 2C L. ||[Wp]|)-

C.1.4 TIGHTNESS OF THE BOUNDS IN THEOREM[]]

We demonstrate Theorem [I] as an appropriate upper bound on the generalization error. We show the
trivial case where fw,+aw = fw, and guarantee that G(Wo + AW) = G(Wy).

Assume AW was never trained, ie., |[AW®| = 0, for all i € [L]. Denote F :=
L
Zz?:;\?;éza—l;ie[L] F(i) Then we have:
Theorem [I] L 2°71 L 202
G(Wo+AW) —G(Wo)| < 2Le(CT[Lo, D [[PeGoi)+ D). F()
i=1 i=1 j=1 i#2¢—1:a€[L]
L ‘ _ L ,
= 2L (CT] Lo, (Wl + AW @ o) — C T Lo, WS 12 + F)
i=1 i=1
HAW(i)HZ:O; L) L “) ~
=" 2L (C T LolW5 12 = C T Lo, IW5" |12 + F)
i=1 i=1
=2L.F.

Since each F(7) does not take entries from 2% — 1, where a € [L], at least one H (i, j) returns the
spectral norm of one of the AW layers, returning 0 by construction. Hence, each F'(i) returns 0 and
we obtain the result: |G(Wy + AW) — G(Wy)| < 0 confirming that G(W, + AW) = G(Wy), if
AW was never trained. This way, we make sure the generalization measure would be unchanged and
does not risk including unnecessary terms.

C.1.5 ADAPTING THEOREM [[]UNDER SPECIAL CASES

To adapt Theorem [TJunder special cases, we need the following general assumptions.

Assumption 4. The loss function, {(-) : R — R, is I-Lipschitz, i.e, |[{(fw(z),y) — £(fw (2),y)| <
|l fw(z) — fw (z)|| for all W, W’ € R and (z,y) € X x V.

Assumption 5. The loss function, £(-) : R? — R, is bounded, i.e., there exists a constant Cy > 0
such that | fw(x),y)|| < Ca, forall W € R¢ and (z,y) € X x).

(1) Perturbing around G(W,). First, we adapt Theorem 4.1 in (28)) into our notation and quote it
below.

Theorem 3. (PAC-Bayes generalization bound for fine-tuning)[(28), Theorem 4.1] Let Assumption|[I]
hold with the requirement that C' > 1. Let the loss function, L, follow Assumptions | and[5| Let

|‘W()(i)||2 < A; with fixed A; > 1, |AW D || < Q;, foralli € [L] and V = max;c(r{m;, n;}. Let
€ and 6 be arbitrary small values. Then with probability 1 — 26, the following inequality holds:

L . .
BOV log(ALVCo) (L1, 52)2(0, @) +3l L + 8

N

G(Wo+AW) < e+Ch

We now use Theorem to obtain a bound for G(Wy). The following Theorem gives that.

Theorem 4. Using the Assumptions made for Theorem|[I|and Theorem|[3] the following inequality
holds with probability at least 1 — 2§ :

3 V4 g L 2b—1 L 2b—2
G(Wo+ AW) < e+ Oy WTJrQLL(CHLWZHP(i,j)Jr > F(i).

i=1 i=1 j=1 i#20—1:a€[L)

23

Proof. We wish to find G(W), and note that if we never train the model, we obtain the expression
WP — W)y = 0. Thus, we can use Q; = 0 for all i € [L] and obtain:

[T5_, (A5 +Qy) L IN|

Theorem [3] 3602V10g 4LVCQ i— M 2 i— Q? +3ln+5 +8

gowo) =B L, ((X) (0, Q) 5
L (A
Qum0si € (L] 8602V log(4LV Cy) (X1, L=t Oyo (78 g2y 4 g1 1N 4 3
= €+ Cy Z
[N
3 N 48
=e+ Coy| —2—.
[N
Now that we have an upper bound for G(Wj), we can apply Theorem [1|and obtain the following:
Theorem [1]
GWo+AW) < G(Wo) + Paw
3 N 48
<e+ Cop| —2—— + Paw.
[V
By substituting the expression for ® Aw, in the above expression we have:
3 Y 48 2ok 22
G(Wo+ AW) < e+ Cy |]6V| +2L, CHL S I[P+ D F@).
i=1 j=1 i#2¢—1:a€[L]

This concludes the proof. O

(i) Perturbing around G(.A). First, we make another assumption on the loss function and then adapt
Theorem 1 in (58)) to our notation.

Assumption 6. The loss function, ((-) : RY — R, is o-sub-gaussian, i.e.,
E(Mw (X)) -EEw (X)) < 25 forall A € R, W € RY.

Theorem S. (Upper bound on generalization error using mutual information)[Theorem 1 (38))] Let
A denote a LoRA-based algorithm that outputs { AW ;};c(1) on a fine-tuning dataset, N. By v we

denote the underlying distribution of the input space, X, of which the elements of the fine-tuning
dataset N are chosen following i.i.d. Let Assumption[6|hold. Then we have the following:

202L1({AW.i}ie(r); N|A; W)
[V '

G(A)y <

Let the loss function £ follow Assumption[6] We present the generalization error upper bounds of the
LoRA variants in Table[l] For this, we use the inequality G(W + A) < G(A) + ®w,, where G(A)
is upper bounded by the use of Lemmaﬂ] quoted below.

Lemma 1. (Upperbound on mutual-information)[(58)] Let { AW ;};c(1) be an update to a learning
algorithm. Then the mutual information is upper bounded by the uniform distribution over an updated
support set, i.e., [(A{W}icir; N|A; W) < In29 = gpln2, where q represents the number of
bits the learning alrithm is quantized on, and p is the number of trainable parameters. Thus, with

if Assumptiotholds, then G(A) < \/@]

How do we arrive at the bounds of different LoRA variants?

the use of Theorem

2rqo2In23°F (m;+n;) .
(a) LoORA+ has G(.A) upper bounded by TN . The learning rate does not alter the

number of trainable parameters, which leads LoRA+ to possess the same upper bounds as LoRA. We
note a unique observation regarding this claim, as v4 — 0, LoORA+ takes the lowered generalization
error bound of Asymmetric LoRA since the adapter matrix, A, is no longer trainable.

(b) cLA has the fine-tuned update B[I,.|0,,,_], where [I,.|0,,,] is a fixed constant orthogonal
matrix. Thus, by using data processing inequality (T4), the mutual information between the two is

preserved, i.e,
I({B;[I+|0m,)i }icir); NIA; W) = I({Bi }ic(r); N|A; W).

24

Table 4: Summary of the benchmarks, quality metrics, and trainable parameters. For LoRA and
Asymmetric LoORA methods, we report their ratio of trainable parameters relative to FFT.

. . Trainable Quality
Task Model Pretrained On Fine-Tuned On Parameters (FFT) Metric
. S . MRPC 124.6M Accuracy
RoBERTa-Base English language corpora CoLA 124.6M MCC
. MRPC 355.4M Accuracy
RoBERTa-Large English language corpora CoL.A 355.4M MCC
Natural Language Processing MRPC 1.56B Accuracy
DeBERTa v2 XXL English language corpora TREC-50 1.56B Accuracy
PAWS 1.56B Accuracy
MRPC 184.4M Accuracy
RTE 184.4M Accuracy
DeBERTa v3 Base English language corpora STS-B 184.4M Accuracy
TREC-50 184.4M Accuracy
PAWS 184.4M Accuracy
GPT2-Small WebText E2E 124.4M Accuracy
S OfficeHome 5.54M Accuracy
ViT-Tin, ImageNet-1K p
Image Classification Yy 2 Cifar10 5.53M Accuracy
. OfficeHome 85.8M Accuracy
ViT-Base ImageNet-21K then ImageNet-1K Cifarl0 85.8M Accuracy
Coding Generation DeepSeek-Coder-Base Repo-Level Code Corpus DJANGO 1.35B Exact Match
OpenBookQA 1.03B Accuracy
. FOLIO 1.03B Accuracy
Logical Reasoning TinyLlama SlimPajama LogiQA 1.03B Accuracy
CLUTRR 1.03B Accuracy

Similar to (65), we upper bound mutual information by the uniform distribution of a model’s support;
particularly I({B; };¢c(r); N|[AW; W) < grin2 ZZ.LZI n;, by Lemmam Finally, by Theorem , we

2 L .
obtain the result G(A) < y/ 27102 2icy i ln‘i,lz’i:l"".

(¢) 3 LA has the fine-tuned update B [[.|0,,,]+ B2[0,|1|0p, —o,]+ - -+ B, [0, (k1) [17 |0, kv)-
This expansion can be simplified by Zle Bi[0rxr(j—1) | Ir | Opx(mi—rj)) = [B1 | B2 | -+ |
By|0,,, (m, —kr)]- Using (13)), we can upper bound the rank of Z?Zl BI [0rsri—1) | Ir | Orx(mi—rj)]
by kr. Thus, the mapping [B1]- - - |Br] = AW is injective and can be inverted by slicing the last

n; — kr columns. Using DPI, this leads to the expression
k

I({Z BZ[OTXT(jfl) | I | O"‘X(mi*”'j)]}ie[L]; N|A;W) = I({[Bl| T |Bk]i}i€[L];N|A; W).

j=1
We upper bound I({[B1| - - - | Bii }ic[z): N|A; W) by grkIn 2 ZiL:I n;, using Lemma Hence, by

2 L .
Theorem , we obtain: G(A) < %2‘&:1"1.

(d) CoLA has the update structure AW = Z?:l BJ AJ. Using inequality (T3], we upper bound the
rank of each layer’s update by kr. By Lemma we upper bound I({Zf=1 BJ A Yierr); NIA; W)
by grkIn2 ZiL:l(mi + n;). Hence, we obtain G(A) < \/2qu2k1n2 21 (mitn:) , by Theorem

[N]
(e) RAC-LoRA has the fine-tuned update 25:1 BiQ7, where we consider each Q7 to

be a frozen orthogonal matrix. This update can be represented by Z?Zl BiQi =
[BY|B2| -+ | BF][Q'|Q%| - |Q"]", where we can invert [B'[B?| - |B*][Q'|Q?]---|Q"]"] to
[B|B2|---|B%]. Thus by using inequality (T3], DPI, and Lemmawe have
I({[B"B?|--|B";[Q"Q% - - |Q"]I Thierwys NIA; W) = I({B[B?| -+ [B"|:]}iern)s N|A; W),
which is .

I{B'|B?- - |B"il}ieny; NIAW) < grkIn2) " n;.

i=1
P} T -
Hence, by Theorem we have the result: G(A) < 4/ %

25

C.2 NONCONVEX CONVERGENCE

We make the following general assumptions to prove our nonconvex convergence result.

Assumption 7. (Lipschitz gradient) The gradients are Lipschitz continuous. That is, there exists
a constant Lg such that for any W = (W1, ... WE) and AW = (AW, ..., AW?E), |[VL(W +
AW) — VL(W)|| < Le||AW]|.

Assumption 8. (Global minimum) There exists W* such that L* := L(W*) < L(W), for all
W e R4

We start by introducing a block structure for the parameter space of the network that accurately
represents the layer-wise updates of LoRA done in practice with the vector input convention for

parameter space done in theory, followed by the assumptions and properties used to prove the results
in

Layerwise structure. LoRA modifies each layer in a network. We adopt block structure notation
where each block is a layer in the neural network in order to formally present the proofs. We use the
convention in (47)).

Definition 2. We define §5(-) : R™*"™ — R™ to be a function that applies on a matrix, A € R"*™,
and produces a vector 3(A) € R™™ by stacking the columns of the matrix A.

Letd = Zle n;m; be the parameter count of the network. The block structure of W is given by
a decomposition of R? as follows: Let U = [U1,...,UL] be a decomposition of U € R? into L
submatrices, U? € R?*"™:_Then U’ projects i*® layer vectors to R? in the following way:

0
w1 U;l

Wi = : is mapped by U’ to U'W* =
0

Only ith layer non-zero

T
Conversely, U’ projects vectors in R? to the i'" layer in the following way:
wy

Wnim1
wn1m1 +1

W = . is mapped by Ui—r to UiTW =

Wizt nym+1

Wx~i=1
wnlml +nomao Z]:l Fmgtnim;

Wq
. i rri Ini'rm 1= .]
Note that, by construction, U* U’ = '

0 otherwise

Proposition 2. (47) For any weight vector W = (wy -+~ wd)T , the set {UiTVV}iL:1 uniquely

represents the L layers of W mapped to their respective spaces R™™i and we define W* := Ul'w
as the weight vector of the i*" layer:

L-Layer update. We denote the full-fine tuning update AW & R? as follows:
L

W+ AW =W + Y U'AWY,
=1

where AW = U1 AW,

26

For LoRA, the layer-wise update is identical
L

W+ BA =W+) U'B(BA), (15)
i=1
where BA = (2B'A!, ..., 2 B AL), for each layer i € [L]. Under this update structure, we have
that V,L(W) =U iTVL(W). In the proof, we use the standard Euclidean inner product.

Adapting the update rule. The update rule Wit! = Wt — S°F 4V, L(W!)H", assumes
ViL(W?) € Rmixni and H € R™*"_ In the layerwise structure, we have V;L(W?) € R™i™i,
To represent the matrix-product V;£L(W?)H%* in parameter space, we map the vector V;£(W?) to
R™i %" then map V;L£(W?')H"* back to R™™:. That is, (8~ 1(V;L(W!))H"?). To condense
this, we apply Roth’s lemma from (36) Theorem 18.5,

B(ABC) = (CT ® A)B(B) (16)
to show that B(B~L(V;L(W*))H) = (HY ' ® I,)V, L(W?). Therefore, the adapted update
rule for the layerwise structure is Wit = Wt — Zf:l fy(Ht’iT ® I,)V;L. To help make the

proofs more clear, we define H*% := (H“T ® Ipn,).

C.2.1 AUXILIARY RESULTS

Proposition 3. Let v,y € R%. Then, under the standard inner products in R R"™: i € [L]

respectively, we have
L

(@,y) = (U2, Uy (17)

i=1
, T , T

where z* =U" z,y* =U" y,i € [L].

Proof. Based on the construction, we have that

<x,y> — <Zszi7ZijJ>

i=1

L L .
— Z <UJ U’:cz,y3>
j=1i=1
L
= Y @'y
i=1
Hence the result. In particular, this shows that | VL(W)||2 = S22 || V,L(W)]|2. O

C.2.2 NONCONVEX CONVERGENCE RESULT
Now we are all set to prove our nonconvex convergence result.

W) represent update steps with RAC-LoRA @), or random-cLA @), or ¢*LA (6), trained using
gradient descent. Then the updates, {W) . . W)} satisfy B[| VL(W(T))|1?] < wo)v;ﬁ),

)‘ﬁﬁin
where W(T) is sampled uniformly at random from I VACRIR L ACIRNS

Theorem 2. Let Assumptionl?]and hold. Let N2 . > 0 and the stepsize satisfy 0 < y < i Let

27

Table 5: Summary of the hyperparameters. We used the same learning rate for LORA methods that train B, A,
and Asymmetric LORA methods that only train B, we write (FFT, LoRA, Asym) to indicate those three sets. We
selected the best model out of all epochs based on the lowest validation loss, except for the CoLA dataset, where
we used the lowest Matthews Correlation Coefficient. We used rank r = 16 and scaling factor o = 2r for all
LoRA PEFT methods. For all models, we used the ADAM optimizer (26) with (51, B2, €) = (0.9,0.999, 1e~®).
For ViT, RoBERTa, and GPT2, we used gradient clipping on global L2 norm with a max of 1, and did not
otherwise. For LoORA+, the learning rate for our B matrix is 16 times that of A.

Modd . it W A6t st Bpucs MmN e
ROBERTa-Base MRPC Linear(1e~%,0.1) (1e7?,3e7%,3¢7%) 3 (0.01, 0) 32 20 128 (12,22,32)
CoLA Linear(1e~%,0.1) (1e7%,3¢7%,3¢7%) 3 (0.01, 0) 32 20 128 (12,22,32)
RoBERTu-Large MRPC Linear(1e~%,0.1) (1e=5,3e7 4,37 %) 3 (0.01, 0) 32 20 128 (12,22,32)
CoLA Linear(1e~%,0.1) (1e2,3e7%,3¢7%) 3 (0.01, 0) 32 20 128 (12,22,32)
MRPC Constant (le P51e 45 1e~ %) 5 0 8 25 512 (100,101,102)
DeBERTa v2 XXL
TREC-50 Constant (le 55 1e 45 1e~ %) 5 0 8 25 512 (100,101,102)
PAWS Constant (16765 1745 174 5 0 8 10 512 (100,101,102)
MRPC Constant (le=5,1e735,1e79) 5 0 8 40 512 (100,101,102)
DeBERTa v3 Base RTE Constant (le= %75 1735 1¢73) 5 0 8 40 512 (100,101,102)
STS-B Constant (le= 475 1735 1¢73) 5 0 8 40 512 (100,101,102)
TREC-50 Constant (le=475 17325 1¢73) 5 0 8 40 512 (100,101,102)
PAWS Constant (le=5,1e735,1e79) 5 0 8 20 512 (100,101,102)
GPT2-Small E2E Linear(1e~%,0.1) (5¢7%,3¢7%,3¢7%) 1 (0.01,0) 16 30 64 (12,22,32)
VIT-Tiny OfficeHome ~ Cosine(1e %, 0.05) (3e %, 1e73,1e73) 5 (0.05,0) 64 1 224 (12,22,32)
CIFAR-10 Cosine(1e~9,0.05) (3e~%,1e73,1e73) 5 (0.05,0) 64 1 224 (12,22,32)
ViT-Base OfficeHome ~ Cosine(1e %, 0.05) (3e%,1e73,1e73) 5 (0.05,0) 64 1 224 (12,22,32)
CIFAR-10 Cosine(1e~%,0.05) (3e=%,1e73,1e73) 5 (0.05,0) 64 1 224 (12,22,32)
DeepSeek-Coder Base DIANGO Constant (le=%5,1e %51e~%) 1 0 8 5 512 (100,101,102)
OpenBookQA Constant (1e=6:25 1¢73:75 1¢—3:25) 2 0 8 10 512 (100,101,102)
TinyLlama FOLIO Constant (1e=5,1e3:75 1¢=3:5) 2 0 8 10 512 (100,101,102)
LogiQA Constant (1e=575 174 17325 2 0 8 10 512 (100,101,102)
CLUTRR Constant (1e=6:25 17525 1—4.75) 2 0 8 10 512 (100,101,102)

28

Proof. Using the update rule and Lipschitz smoothness, we have

C(WH_I)

By Assumption
<

o2l =(z.)

(Ax,Az)=

Ht,iTHt,i:Ht,i

(a: AT Az)

LIW! = UV, L)
=1
LW + (VL(WH),

i=1

L(WY) 'yz (ViL(WH, 1V, L) +

=1

LW — WZWiE(WtL”HmVQ

i=1

L(W?Y) 'yz (ViL(Wh), HYV, L) +

=1

L
LW?) — %Z (ViL(W), HIV,L).

Taking the expectation conditional on the randomness of W, we have

E[L(W')W

9.

VZ’H“V L)+ —||727—[“V L|?

LG 22 (MY iL, HYV L)

L
G2 Z<v£(wt) rHt,iTHt,ivi£>
=1
L

Lg t tiyy .
+ 50 Zvcw HY'V, L)

< 5Zvcwt), HE VL) W]
L
- LW — 3 S (VAL (W), B WL (W)
=1
E[H" W <A = A\,
< LW = 2 A (ViL(W), ViL (W)
2 i=1
9 i<)\{Z‘:‘ forall i€[L] L
< LIW') = 2N S (ViL(W'), ViL(W?)
2 =1
e B LW = DN IVEW)

Subtracting £* from both sides of the above relation and solving for Z\J .

|VL(W?!

)||? we arrive at

Y * *
Sl [VEW[* < (L(WF) = £7) = (E[L(WTH W] = £7).
Denote ¢! := E[£(W?!)|W!~1] — £*. Taking expectation conditioned on W!~1, we have

7)\g

t+1
2 min :

E[[VLWIPIW] <ef —e

In the above relation, we take summation from ¢ = 0to ¢t =T — 1, apply the telescoping property of
e! — e'*1, and divide by T, to obtain

T T-1
INELI VLW < 30 (! = e,
t=0 t=0
which further reduces to
T 0
. e e
— < .
ZQmm IVEWHIP] < = < 5
Multiplying the above by /\q we have
T—1
1 2¢0 2(L(Wq) — L")
7 2 EIVLWOIP] < 5 = =55 2
T=0 IIlln min

29

The left-hand side is equivalent to selecting one value uniformly from {W?, ... WT =1} for our

argument of £
2(L(Wo) — L7)
)\fninpyT .
This concludes the proof. O

E[|VL(W)?] <

C.2.3 ADDITIONAL RESULTS

Proposition 4. Let A'cR™" and D'={AY A% . AR} where AJY =
[ijr| I, ’()Tx(ni_(j_i'_l)r] and n; = vk for some k € N. Then, for c3LA and random-
CLA N = = fori € [L).

min

Proof. By definition, \72" = X\ i, [Ep: [H?]], and HI* = (A7) T (A% (A34)T)T ATi We start by

min

writting A7% in terms of row vectors

. T
12 — . .
APt = (€1 0 eir)
I p=j+m
where (€.m)p = {O otherwise
‘We calculate T T
€5,1€5,1 €€y
AT (AT = : : =1,
T T
€5,1€5,r T €€y

Next, writing AJ7% in terms of column vectors we have
i i
A :(le . Cjn-),

0 p#m (modr)orm<yr0rm>(]+1)

where (¢j.m)p = {1 otherwise

Next, we calculate

ca'ein o G G rG-Dwor
(AT A0 = ; ; = Diag(0, ...,0, 1,...,1,0,...,0).
ijlTC—'ljni T Cj-,niTCIni
Using these, we find
1 (,]—31)% 11
Epi[H' = Z iag(0 ;0 1,..,1,0,..,0) = Diag(E, E)'
Finally, \”;’ = Apin[Diag(, ..., 1)] = £ = . This concludes the proof. O

Theorem 6. (Smoothness conditions)[(51) Appendix A.1 Theorem 2] For a low-rank decomposition
on model parameter W to Wy + BA, we have the following properties:(i) If B is trainable, A is
Sfixed with || A}|| < C,i € [L] and L(W) is Lipschitz smooth with factor L¢ then the loss function
L(W + BAy) is Lipschitz smooth with respect to B with factor LgC?V/L. (ii) If both A and B
are trainable and L(W) is Lipschitz smooth with factor L, the loss function L(Wy + BAy) has no
Lipschitz smoothness guarantees.

Proof. First, denote the layerwise gradient with respect to W, B as Vw ;L(W+BAy), Vg, L(W+

BA,) respectively. Then Vw ;L(W + BAg) = Vg ;L(W + BAO)Aé—r since, for each i € [L],
we have) _ o o
(Bl — B3, VBiL(W +BAg)) = (B1Aj — ByAj, Vw,iL(W + BAy))

= (B} - By, Vw,L(W + BAO)A6T>-

Similarly, we have Va ,L(W + BA) = BiTVwJ-E(W + BA) for i € [L]. We provide the proof
for each property below.

30

For property 1, we know that for any By, Bs Asymmetric LoRA (8) updates with shared fixed Ao,

we have that

VL:ZiZl Vil

VB,iﬁ('):VW,iL"(')AéT
and equation (T6)

IPQl<IPIll
<

1AG® Tm, ll2=11 AG ll2
llAsll<C
<

i et ISVL X, llzf)?
<

By equation (T7)

L lipschitz smooth

By equation (T3) and (T6)

lz+yll<ll=zll+lyll
<

i1 i
1AG ®@Im,ll2=[lAgll2
AB <[Al B
<

llAsll<c
<

Bi= f:iUlﬁ(Bi)

[VBL(W + B1Ag) — VBL(W + BAy)|

L
1Y U (VBiL(W + B1Ag) — VBiL(W + BaAg))|

i=1

L
1) U ((A§ @ I) Vw i L(W + B1Ag) — (4§ @ L,) Vw i LIW + BaAy)
=1
L . .
Y U (VwiL(W +BiAg) — Vw i L(W + BaAg))|[[| 4§ ® I,
=1

L
CY U (Vw.i LW + B1Ag) — Vw i L(W + BaAg))|
=1

L
Cy| L Z [UH(Vw,iLIW +B1Ag) — Vw ; L(W + B2Ao)|?

i=1

CVIN|[VwL(W +B1Ag) — VwL(W + ByAg)||?

LoCVL|W 4+ B1Ag — W — ByAg|

L
LeCVI|| > U'B(B} — By) A
=1

L
igqd 1 i i
LeCVLY |UY(A) ® In,)B(B} — BY))|
=1

L
LaCVLY AU (B] - B)|

=1
L . .
LeC*VLY " |U'B(B; - B))|
=1

LoC?*VI|By — Ba.

This completes the proof of property 1.

For the second property, we construct a counter-example such that the 1-Lipschitz smooth function
L(W) = %|[W||? is not Lipschitz smooth with respect to both B,A updating simultaneously Vg, .
Consider an MLP where n; = m;, ¢ € [L], let r = n;. Define the sequence {Ay, By }7° ; such that

A, Br = [kI]],i € [L].

31

Then
[VB.AL(0+BrAy) — Ve aL(0+BoAy)|

lim
k—o0 ||BkAk — B0A0||
VAE)
Ve,al=
o (VBE i IVALBrAL) | + [VBLBAL)|
veest, vie 5 VasLBrAn) | £ 58, VeiLBirAL)|
By cqton {1 12, K8(,)||+||Zz Rt
S, UNALT ©) S(B
_ . s1i2l300)
koo k2| S0, UHALT ® In,) B(BY)|
= 00.
This concludes the proof. O

D ADDENDUM TO BENCHMARKING AND EVALUATION

§D.T] we summarize the quality metrics and trainable parameters used for training the models
in Table and prov1de the specific hyperparameters for fine-tuning each model for each dataset
1n Table In we present ablation studies on the effects of learning rate (), scaling factor

), and cham reset mdlces on the resulting test accuracy and test loss for varying ranks. In
we comment on the potential of our methods by naively leveraging the sparsity of our A matrlces
In §D.4.2)and §D.4.1] we extend [4.2] with the implementation details of the loss landscapes and
provide additional loss landscapes and intruder dimension results. In §D.5] we extend section §3.1]
with empirical results on generalization.

D.1 IMPLEMENTATION DETAILS

We implement the framework in Python using PyTorch (41). We train all models with the ADAM
optimizer (26). The training of most models was done with one 80 GB NVIDIA H100 GPU. The
ablation studies on ViT-Tiny in Tables[7] [0] and [IT] were trained using one NVIDIA V100 GPU.
We provide the hyperparameter settings, i.e., the learning rates, learning rate scheduler, chain reset
frequency, weight decay, batch size, training epochs, maximum token length or image resolution, and
random seeds for all of the runs used in Table

D.2 THE EFFECTS OF LEARNING RATE, SCALING FACTOR, AND CHAIN RESET FREQUENCY ON
QUALITY METRIC OVER VARIOUS RANKS

The ideal learning rate of an LLM tends to scale inversely with its size (30). Many papers suggest a
default scaling factor of 2r (45 49). (38) suggests that, for sufficiently low learning rates, performing
a chain reset every epoch is optimal. We validate the first claim under LoRA fine-tuning methods via
ablation studies over learning rates presented in Tables[6}{7] Similarly, we assess the scaling factor
baseline choice in Tables [8]and [9]and the optimal chain reset frequency in Table[I0] For the ablation
studies, we fine-tuned DeBERTaV3-Base on the MRPC, TREC-50, and PAWS for learning rate,
MRPC and TREC-50 for scaling factor, and MRPC, CoL A, RTE, and TREC-50 for chain reset all
over various ranks. We then re-ran the same experiments on ViT-Tiny fine-tuned on the OfficeHome
and CIFAR-10 datasets. We ran for 30 epochs.

As shown in Tables[6and[7] Asymmetric LORA methods are more sensitive to varying learning rates
than methods that train both matrices B, A. We notice that the cLLA has a wide variety of acceptable
learning rates. Furthermore, across varying ranks, cLA and ¢*LA often underperform compared
to other LoRA variants. As rank increases, this gap tends to narrow. This is a byproduct of their
structure, limiting how much of the pretrained weights they can update at any one time.

For our ablation study on scaling factor shown in Tables , the use of @ = 2r works as a baseline
given how often it was the best choice [8|and[0] With Asymmetric methods, the ideal scaling factor

32

1.5e+01

M |

10 —-
8 —
o —
a -

; j
3.0e02

&

Full Fine-Tuning LoRA Fine-Tuning Col A Fine-Tuning
Top 1 accuracy: 98.06 Top 1 accuracy: 98.71 Top 1 accuracy: 98.48
G(W) = 9.98 x 1072 G(W) = 1.92 x 101 G(W) =2.21 x 1071

Figure 5: 3D loss landscapes of ViT-Base (11)) pretrained on ImageNet-1K (7)) and fine-tuned on CIFAR-10 (27)
using the PCA directions of the model’s weights updates (top) and random directions (bottom).

tends to be larger; this follows from the number of trainable parameters decreasing, requiring a larger
effective learning rate, as the scaling factor can be interpreted as a scale on the learning rate.

Our ablation study on chain reset frequency, shown in Tables[I0} revealed no clear correlation between
the frequency of chain resets.

D.3 CoOMPUTATIONAL COST, FLOPS, AND EFFICIENCY

We report empirical results regarding the computational efficiency of PEFT methods developed in
this paper. We report the percentage of trainable parameters for each PEFT method in Table]

Our focus in this study is on examining the behaviors of the PEFT methods, including our proposed
variant. Although the total fine-tuning time is an important factor, we do not present wall-clock results
because our unoptimized implementation does not present a valid point for the training speedup that
well-engineered PEFT methods can offer.

We naively leverage the sparsity inherent in the structure of cLA, ¢LA, and its random variants
by replacing the Ax product in B(A(x)) for each layer’s LoRA adapter with a gather operation,
removing any FLOPs accrued from the multiplications by zero. In Table[T2] we show that this leads
to a minor reduction in FLOPs. This could be improved by more advanced implementations of
leveraging the sparsity. However, running inference on the frozen base model accrues most of the
training FLOPs; thus, this use may be limited for very high rank adapters.

D.4 PERFORMANCE ANALYSIS—CONTINUED

We extend §4.2]by reporting additional empirical results regarding PEFT models, including prediction
capacity and model behaviors.

D.4.1 Lo0SS LANDSCAPE—CONTINUED

3D landscapes. We obtained the top two principle directions of the model’s update path via PCA of the
update matrix [W? — W7T: - WT—1 - WT] where {W*}L_. are the model weight’s update steps.
Let 4, 7 be those two directions. For random directions, we generate them via a Gaussian distribution.
For LoRA methods, we merged the adapters into the base weights before calculating. We normalize
the directions similar to the methods of (29). We plot the function f(«, 8) := L(W + «d + 1) over
a 512 grid of o, 3 values uniformly distributed over [—2, 2] x [—2, 2], we use mini-batches of size 12
when finding the values for L.

33

Table 6: Test accuracies obtained by fine-tuning DeBERTa v3 on MRPC, TREC-50, and PAWS
varying learning rates (columns), ranks (rows), and LoRA PEFT methods. We center our search at
le—*. The learning rate for all methods decreases with increasing rank; the relationship between
learning rate and model size observed in LLMs persists when fine-tuning via LORA methods.
Chain methods and their non-chain counterparts produce the best results in similar learning rate
ranges, therefore, chain resets do not influence the optimal learning rate. We repeated the experiment

with ViT-Tiny on Table [7}

DeBERTa v3 LoRA MRPC

DeBERTa v3 CoLA MRPC

DeBERTa v3 Asym MRPC

Rank/LR le-6 1e-5.5 le-5 le-4.5 le-4 le-35 le3 le25 le2 Rank/LR le-6 le-5.5 le5 le-d.5 le-d le-35 le-3 le-25 le2 RankLR le-6 Ie-5.5 le-5 le-45 le-4 1e-35 le3 le-2.5 le2
2 664 664 799 842 855 873 881 664 664 2 665 665 759 822 857 §77 883 665 665 2 604 o4 004 GBI 814 853 S0l 509 860
4 664 744 818 846 856 870 877 664 664 4 66.5 665 767 827 85.1 8§78 872 665 66.5 4664 66 28 -
3 869 8 664 664 665 806 842 852 865 863 723
8 66.4 76.1 83 9 873 87.1 664 664 8 665 665 79.1 840 868 833 869 665 66.5 ¥ 4564 603 306 B2 82 RS M3 13
16 664 78.1 879 729 664 664 16 665 753 808 840 864 889 796 665 665 19 604 o4 J67 826 813 802 SO8 S5 4
32 66.4 80.1 879 664 664 664 32 665 768 823 839 865 880 665 665 66.5 o G4 777 817 5 847 361 874 664 664
64 76.1 817 815 664 664 664 64 69.3 796 833 857 87.1 885 665 665 66.5 Jog ¢00 7006 $22 813 $61 S01 664 664 664
128 775 819 87.6 664 664 664 128 758 807 831 859 882 880 66.5 665 66.5 - e SRS AL
DeBERTa v3 RAC MRPC DeBERTa v3 cLA MRPC DeBERTa v3 ¢’LA MRPC
Rank/LR le-6 le-5.5 le-5 le-d5 le-d le35 le3 le-25 le-2 Rank/LR le-6 1e55 le-5 led.S led 1e-35 le-3 1e25 le2 Rank/LR le-6 1055 o5 leds led 1635 le3 le25 lo2
2 66.5 66.5 66.5 66.5 66.5 765 820 870 862 2 664 664 664 71.0 850 83.1 804 o 66.5 665 66.5 66.5 730 80.1 856 864 723
4 66.5 66.5 66.5 66.5 740 79.4 84.6 4 66.4 664 702 79.0 859 855 664 4 665 66.5 665 668 746 83.1 857 872 66.5
8 5 665 665 665 769 $28 863 78 664 604 . 852 855 664 g 665 665 665 726 795 862 868 855 665
16 66. 788 830 809 .5 16 66.4 67.0 85.3 064 16 66.5 665 66.5 756 828 860 865 786 66.5
32 839 863 877 724 665 32 66.4 744 85.2 664 3 66.5 665 719 79.1 845 868 868 665 66.5
64 84.1 879 873 66.5 66.5 64 66.4 77.0 86. 66.4 64 66.5 665 739 824 863 872 864 66.5 66.5
128 864 876 720 665 665 128 713 786 84.8 664 128 665 665 819 863 8§70 867 723 665 66.5
DeBERTa v3 LoRA TREC-50 DeBERTa v3 CoLA TREC-50 DeBERTa v3 Asym TREC-50
Rank/LR le-6 1e5.5 l1e-5 ledS le-4 le-35 le3 1e25 le-2 Rank/LR le-6 1e-55 le-5 le-4.5 led le-3.5 le-3 1e25 le-2 RankLR le-6 1e-5.5 le-5 le-45 led 1e35 le-3 le-25 le2
2 32 109 109 39.1 595 766 869 109 109 2 109 109 42.1 544 718 881 80.1 109 109 2 109 109 109 325 462 80.6 86.5 825 26.6
4 101 109 109 423 706 823 877 109 109 4 109 109 427 583 817 845 883 109 109 4 109 109 109 333 589 851 881 857 109
8 109109 109 500 706 847 901 109 109 g 109 109 429 655 823 $71 900 109 109 8 109 109 109 401 736 873 867 845 109
16 14109 109 500 730 $93 883 109 109 ¢ 109 109 399 667 849 871 681 109 109 16 109 109 109 429 788 891 869 827 109
32 1.4 109 429 595 764 89.1 109 109 109 kY]0'9 26‘8 r '2 71'4 83"‘ 2467 10‘9]0'9]0‘9 32 109 109 109 575 831 909 91.7 565 109
64 10.9 109 482 66.1 829 87.1 109 109 109 ‘64]0'9 3 ‘S 5 75‘6 %Vﬁb‘J ‘109 10‘9]0'9]0‘9 64 10.9 109 419 730 885 907 875 109 109
b 9 3 575 9 109 109 109 15 90 90
128 109 109 581 716 861 109 109 109 109 934 100 352 27 B9 87 109 109 109 109 128 109 109 522 788 §99 909 109 109 109
DeBERTa v3 RAC TREC-50 DeBERTa v3 cLA TREC-50 DeBERTa v3 ¢*LA TREC-50
Rank/LR le-6 le-5.5 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 Rank/LR le-6 le-5.5 le-5 le-45 le-4 le-3.5 le-3 le-2 Rank/LR le-6 le-5.5 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le2
2 109 109 109 109 349 466 728 859 8§75 2 109109 109 109 109 409 712 345 3 109 109 109 347 423 792 667 621 109
4 12109 109 109 385 59.7 829 883 895 4 95 109 109 109 353 619 79.6 109 4 10.1 9 194 347 569 865 877 73.8 109
8 10.9 109 109 109 438 68.1 829 881 724 8 04 109 109 109 530 71.8 83.1 109 g 109 109 206 369 687 873 788 66.7 109
16 101109 109 133 595 780 871 903 109 16 109 109 109 407 607 843 855 109 16 109 109 109 438 768 885 839 710 10.9
32 X 56 706 849 885 881 109 32 101101 109 470 700 861 889 109 3 109 109 387 S8.1 8§43 881 804 343 109
64 742 867 877 109 109 64 109 109 427 623 762 869 89.1 10.9 64 109 109 458 742 859 89.1 80.4 109 10.9
128 845 889 873 109 109 128 36 109 502 67.1 85.1 867 66.7 109 128 109 351 565 792 859 909 109 109 109
DeBERTa v3 LoRA PAWS DeBERTa v3 CoLA PAWS DeBERTa v3 Asym PAWS
Rank/LR le-6 le-55 le-5 le-4.5 le4 le-3.5 le-3 le-2.5 le-2 Rank/LR le-6 le-5.5 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 Rank/LR le-6 le-5.5 le-5 le-d5 le-d le-35 le-3 le-25 le-2
2 921 937 940 942 947 945 940 558 558 2 925 939 046 947 942 558 558 2 869 923 937 939 939 944 934
4 923 941 040 041 942 048 940 558 558 4 929 040 048 948 940 558 558 4 903 925 932 940 944 942 927
8 924 935 943 043 947 045 935 558 558 ¢ 032 941 043 941 930 558 558 8 923 931 941 947 947 942 558
16 931 940 944 946 946 936 558 558 558 | 037 943 045 047 558 338 338 16 924 941 940 945 946 940 558
32 938 939 047 945 947 558 558 558 558 g5 043 045 043 048 358 558 338 2 9 936 944 944 946 941 929 558
64 93.6 941 946 946 946 935 558 558 50.0 ’64 94"; 045 948 92‘2 558 55.8 558 64 558 925 941 941 948 948 934 558 558
040 042 044 047 < 5 945 048 932 558 558 55, 017 929 044 946 047
128 94.0 942 944 947 947 558 558 558 50.0 128 047 951 950 927 358 558 442 128 917 929 941 944 946 94 918 550 442
DeBERTa v3 RAC PAWS DeBERTa v3 cLA PAWS DeBERTa v3 c®LLA PAWS
Rank/LR le-6 le-5.5 le-5 le-45 le-4 le-3.5 le-3 le-2.5 le-2 Rank/LR le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 Rank/LR le-6 1e-5.5 le-5 le-4.5 le-d le-3.5 le3 le25 le2
2 933 2 558 905 925 940 938 558 55, 933 938 930 9390 558
4 35 4 893 909 931 938 940 55 937 040 940 933 358
8 93.8 8 89.7 926 929 943 939 55.1 939 947 935 933 558
16 94.2 16 915 93.0 937 945 941 55.1 94.1 941 937 558 558
32 942 32 916 938 942 9411 92 941 944 939 558 558
64 94.8 64 932 939 943 935 ¥ 939 942 937 558 558
128 94.6 128 93. 94.7 942 . 3. 94.8 558 558 558 558

34

Table 7: Test accuracies obtained by fine-tuning ViT-Tiny on CIFAR-10 and OfficeHome over varying
learning rates (columns), ranks (rows), and LoRA PEFT methods. We center our search at le™
Consistent with the results of [6] the learning rate for all methods decreases with increasing rank.
Chain methods and their non-chain counterparts produce the best results in similar learning rate
ranges.

ViT-Tiny LoRA CIFAR-10 ViT-Tiny CoLA CIFAR-10 ViT-Tiny Asym CIFAR-10

le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1

2 89.08 90.91 92.85 92.92 93.56 91.76 87.13 49.75 10.70 2 87.90 90.43 92.13 93.79 93.77 93.57 87.13 20.52 12.61 2 8534 89.63 90.86 91.64 92.03 91.88 90.85 90.18 80.81
4 89.38 91.55 93.49 94.50 94.18 95.11 81.16 17.82 11.15 4 88.43 90.77 92.73 94.30 95.21 94.49 83.74 17.82 11.15 4 86.82 90.29 91.66 92.58 93.32 92.73 91.63 87.88 78.91
8 89.56 92.04 94.00 9520 95.68 95.65 77.10 11.85 10.00 8 88.96 91.26 93.37 94.95 9539 94.74 77.09 11.85 10.00 8 88.34 90.87 92.35 93.34 93.71 93.81 93.74 86.88 64.43
16 90.03 92.69 94.36 95.69 9591 91.27 59.09 13.52 10.08 16 89.50 92.00 93.86 95.26 95.72 91.27 62.12 1542 11.25 16 89.23 91.61 93.18 94.23 95.08 90.39 82.52 50.44
32 90.85 93.05 95.14 96.14 96.26 87.87 17.79 18.07 10.67 32 90.02 92.63 94.54 95.72 95.96 87.87 19.10 18.07 12.41 32 90.12 92.17 93.81 95.20 95.15 9536 93.94 73.55 34.13
64 91.79 94.00 95.30 96.44 96.43 81.73 14.33 11.30 13.21 64 91.18 93.51 95.13 96.07 96.01 81.73 14.33 17.70 13.23 64 91.20 93.11 94.66 95.77 96.08 92.99 92.18 53.07 24.52
128 92.47 94.71 96.03 96.50 96.17 64.03 11.16 12.00 11.41 128 92.06 94.20 95.56 96.17 95.54 65.78 17.45 10.30 11.03 128 92.27 94.03 95.36 96.09 94.56 94.97 69.81 27.77 16.58

ViT-Tiny RAC CIFAR-10 ViT-Tiny cLA CIFAR-10 ViT-Tiny c*LA CIFAR-10
le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1
2 8561 89.68 90.98 91.87 92.72 91.94 91.47 89.51 80.23 2 87.30 89.65 91.13 92.12 92.49 91.70 88.92 82.43 51.06 2 87.29 89.83 91.49 92.48 93.04 91.35 88.65 80.39 53.28
4 86.64 90.35 91.89 92.96 93.71 93.46 93.49 87.88 77.56 4 88.06 90.47 91.91 92.00 93.45 92.05 88.78 73.27 1147 4 8857 90.76 92.50 93.36 93.98 91.55 87.25 73.27 11.47
8 8826 90.87 92.40 93.65 94.09 94.33 90.69 86.88 64.43 8 89.14 91.38 93.13 93.36 93.22 90.72 85.78 68.40 1339 g 8969 91.84 93.52 94.68 94.80 90.72 85.78 68.40 27.84

168926 91.75 93.26 9440 9531 94.24 8956 8252 50.44 16 90.43 9227 9391 94.86 9453 94.11 78.83 44.03 17.11 16 90.63 92.69 9433 9535 9530 90.04 81.13 44.03 17.11
32 9027 92.28 94.05 9543 95.54 95.68 93.14 73.55 24.92 32 91.32 9337 94.91 95.63 9533 89.55 71.95 30.90 1923 32 91.39 93.68 95.12 95.57 9530 89.55 7195 21.94 17.60
64 91.12 9320 94.86 95.91 94.78 95.35 8286 53.07 2452 64 9250 94.17 9582 96.26 95.54 83.63 5091 21.61 1550 64 9286 94.71 9592 9641 95.07 83.63 41.60 21.61 14.03
128 92:19 94.03 95.56 96.11 96.10 94.21 69.81 27.77 16.58 128 93.86 9539 96.50 96.45 9485 75.52 28.65 19.95 31.06 128 93.83 9538 06.43 9622 94.89 75.52 27.84 19.95 14.48

ViT-Tiny LoRA OfficeHome ViT-Tiny CoLA OfficeHome ViT-Tiny Asym OfficeHome

le-5 le-4.5 le-d4 le-35 le-3 le-2.5 le-2 le-1.5 le-1 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1 le-5 le-4.5 le-4 le-3.5 le-3 le-2.5 le-2 le-1.5 le-1

2 4733 65.03 70.80 75.55 77.81 75.93 77.08 40.57 1.80 2 45.28 64.64 70.50 74.48 76.96 76.70 74.05 40.57 2.01 2 4391 63.06 70.20 73.45 74.65 74.48 7422 7529 74.09
4 4857 64.90 71.36 75.33 77.85 78.50 77.55 26.51 2.01 4 4643 64.94 70.63 74.39 76.87 76.61 72.60 26.51 2.01 4 4472 63.83 70.59 73.71 75.76 73.92 76.14 75.37 51.69
8 4942 64.81 72.08 75.93 79.39 78.88 59.09 428 2.61 8 47.71 65.11 70.97 75.12 77.73 76.96 59.09 3.04 577 8 4579 64.47 71.31 74.65 75.93 75.50 75.84 75.72 40.49
16 50.41 65.33 72.30 77.21 79.26 79.69 49.17 197 4.53 16 49.47 64.51 71.40 75.63 78.71 77.68 49.17 197 222 16 47.20 6580 72.21 75.12 77.13 75.67 76.87 54.77 21.42
32 50.53 65.50 73.54 79.09 79.56 66.01 36.43 2.44 205 32 5032 65.20 72.12 77.38 80.38 66.01 36.43 244 205 32 49.68 66.27 72.47 76.66 78.50 77.94 77.04 4528 13.85
64 51.86 66.35 74.99 78.97 79.86 61.48 10.77 1.75 2.09 64 51.05 65.63 73.79 78.32 79.35 61.48 10.77 1.75 2.69 64 51.52 67.04 74.13 77.81 79.31 78.37 57.46 23.56 8.85
128 54.68 66.82 76.70 79.91 80.33 53.53 2.78 1.75 291 128 5229 66.35 75.29 79.48 79.52 52.29 2.78 1.75 4.10 128 53.53 68.06 75.25 79.35 80.72 77.85 46.81 10.65 2.05

ViT-Tiny RAC OfficeHome ViT-Tiny cLA OfficeHome ViT-Tiny ¢*LA OfficeHome

le-5 le45 led 1e3.5 le-3 le-25 le2 le-15 le-l le-5 le45 led 1e3.5 le-3 le2.5 le-2 le-15 le-l Tes 1045 lod 1035 le3 1625 12 lel5 el

2 4438 63.75 70.54 73.54 7529 76.14 75.16 70.97 54.85 2 44.04 64.04 70.12 7345 7589 75.72 7435 73.19 30.14 2 4502 64.51 70.29 73.88 7636 75.93 73.07 57.46 30.14
44476 64.04 70.71 7401 7636 74.22 72.85 6644 51.69 4 46.09 64.86 70.84 74.90 76 37 7499 5481 201 1 4630 6494 70.80 7431 77.17 T6.19 66.65 3481 201
8 4583 65.07 71.65 74.78 76.31 77.04 7597 64.73 4049 8 47.50 65.16 72.12 75.16 76.57 76.87 7525 45.10 286 § 4921 6537 72.68 7593 77.51 72.60 6473 45.10

16 4729 6571 72.55 7529 77.94 77.47 7546 6138 21.42 16 50.75 65.63 72.98 77.00 7837 77.17 59.30 3655 342 16 51.13 66.44 7315 77.55 78.71 71.23 59.30 36.55 243
32 4964 6610 7260 7747 70.20 7879 7507 4328 1385 32 5203 6699 74.39 7785 7083 7083 SLI3 1261 235 33 5331 6755 7422 7920 7922 6738 3113 1201 235
64 5160 67.12 74.39 7832 79.91 7533 5746 23.56 9.49 55.96 68.53 75.67 79.14 7926 63.06 3549 402 269 64 5618 6922 76.06 79.52 7824 63.06 3549 6.50 3.59
T8 593 G776 7572 7936 4065 To7h 2681 Toes 205 a5 612 T1o% Traa 1078 7779 B91 1744 3B 1% 128 61.18 72,00 77.38 7901 78.45 5391 1744 838 342

3

Table 8: Test accuracies obtained by fine-tuning DeBERTa v3 on MRPC and TREC-50 over varying
scaling factors (columns), ranks (rows), and LoORA PEFT methods. The standard baseline 2r often
was the best, and asymmetric methods preferred higher scaling factors.

DeBERTa v3 LoRA MRPC DeBERTa v3 CoLA MRPC DeBERTa v3 Asym MRPC
Rank/ac % 5 r 2r 4r Rank/a 7} 5 r 2r 4r Rank/a 7 5 r 2r A4r
4 87.2 88.3 88.5 88.1 87.4 4 87.8 88.9 88.5 89.2 87.1 4 75.5 79.9 80.4 85.0 84.2
8 86.9 86.1 89.2 87.0 66.5 8 89.6 87.4 88.7 87.2 86.3 8 76.7 82.1 83.6 86.1 86.9
16 87.8 88.9 89.1 66.5 66.5 16 89.2 87.6 86.9 87.2 66.5 16 79.2 81.4 84.8 84.8 86.1

DeBERTa v3 RAC MRPC DeBERTa v3 cLA MRPC DeBERTa v3 ¢3LA MRPC
Rank/ac 7 5 r 2r 4r Rank/a J 5 r 2r 4r Rank/a £ z r 2r Adr
4 75.6 79.4 82.2 85.0 85.7 4 86.2 86.0 86.3 86.4 86.4 4 79.3 83.3 86.5 88.5 86.1
8 77.8 81.6 84.6 857 87.2 8 86.6 84.8 85.4 85.5 859 8§ 78.3 84.9 86.9 87.6 86.9
16 80.4 84.5 85.0 85.6 87.0 16 86.8 86.9 86.2 86.2 86.4 16 85.0 85.7 87.3 85.8 66.5

Rank/ac % 5 r 2r 4r Rank/ 1 5 r 2r 4r Rank/a 7} 5 r 2r A4r
4 88.9 89.7 90.7 83.1 90.3 4 92.1 91.9 92.5 90.7 91.1 4 79.8 84.7 87.7 90.5 89.9
8 88.7 90.7 91.3 85.3 754 8 91.7 89.7 90.9 90.3 85.5 8 82.9 87.7 84.5 89.3 90.7
16 91.1 91.5 90.7 88.5 10.9 16 91.9 92.3 86.1 87.3 10.9 16 89.3 86.7 90.7 91.3 89.7
DeBERTa v3 RAC TREC-50 DeBERTa v3 cLA TREC-50 DeBERTa v3 ¢’LLA TREC-50
Rank/ 1 5 r 2r 4r Rank/a J 5 r 2r 4r Rank/ £ z r 2r Ar
4 60.1 72.6 81.0 85.5 88.7 4 57.9 74.8 80.0 82.9 86.3 4 73.8 81.5 83.1 89.3 88.7
8 75.2 81.5 85.7 88.1 89.7 8 73.6 76.6 83.7 82.5 87.3 § 78.2 82.3 83.9 84.7 81.7
16 83.1 86.3 87.7 90.3 78.0 16 79.6 80.2 87.9 88.1 86.1 16 83.1 85.5 85.3 87.5 86.3

35

Table 9: Test accuracies obtained by fine-tuning ViT-Tiny on OfficeHome and CIFAR-10 over varying
scaling factors (columns), ranks (rows), and LoORA PEFT methods. The standard baseline 2r often
was the best, and asymmetric methods preferred higher scaling factors.

ViT-Tiny LoRA CIFAR-10

ViT-Tiny CoLA CIFAR-10

ViT-Tiny Asym CIFAR-10

Rank/a £ % r 2r 1 5 r Rank/ac 7 5 r 2r
4 93.9 94.1 94.0 94.0 4 94.3 94.5 94.5 9 4 91.7 92.2 92.8 92.4
8 94.8 95.7 957 95.8 8 94.7 949 953 9 8 92.6 93.1 93.7 94.
16 95.8 96.1 96.1 95.2 1 95.0 95.5 95.7 9 16 93.1 94.0 94.4 94.4

ViT-Tiny RAC CIFAR-10

ViT-Tiny cLA CIFAR-10

Rank/aa 7 ¢ r 2r 5 T Rank/o 7 ¢ r 2r
4 91.8 92.6 93.2 942 4 92.0 92.6 93.1 9 4 92.7 934 93.4 944
8 92.8 93.4 94.0 94.8 8 934 9349359 8 93.8 94.4 94.6 94.8
16 93.6 94.3 94.8 95.6 1 94.3 945 945 9 16 94.8 953 952 95.3
ViT-Tiny LoRA OfficeHome ViT-Tiny CoLA OfficeHome ViT-Tiny Asym OfficeHome
Rank/a 7 3 r 2r I 5 T Rank/a 7 5 r 2r
4 76.8 77.1 77.8 779 4 75.5 759 76.6 7 4 74.0 74.5 75.2 75.6
8 76.9 779 78.5 794 8 76.0 76.4 77.4 7 8 74.5 75.1 75.6 76.2
16 779 78.4 79.2 794 1 76.3 77.2 78.2 7 16 75.2 759 76.4 76.9
ViT-Tiny RAC OfficeHome ViT-Tiny cLA OfficeHome ViT-Tiny ¢®LA OfficeHome
Rank/a 7 5§ r 2r I 5 T Rank/ae 7 5§ r 2r
4 74.3 74.6 75.6 76.0 75.3 759 76.5 7 4 75.6 75.9 76.3 77.3
8 74.8 75.2 75.9 77.1 76.3 76.5 76.6 7 8 76.4 77.0 76.9 77.5
16 752 75.5 76.4 717.7 76.4 769 77.3 7 16 76.6 77.7 78.4 78.5

36

Table 10: Test accuracies obtained by fine tuning DeBERTa v3 on MRPC, CoLA, TREC-50 and RTE
using chain LoRA methods CoLA, RAC, and LA over varying ranks and chain reset frequencies.

No clear correlation between optinal chain reset frequency and rank is observed.

DeBERTa v3 MRPC

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20
4 88.0 86.8 89.2 88.1 86.7 86.7
CoLA
8 87.8 88.0 872 872 86.7 87.2
16 66.5 87.2 872 872 872 872
4 68.3 774 850 857 857 86.6
RAC
8 68.1 820 857 864 857 85.6
16 69.1 842 856 86.1 865 86.3
4 84.8 86.7 872 852 858 852
¢SLA
8 852 87.7 86.6 86.7 853 86.9
16 87.6 87.0 86.7 86.6 86.6 87.6
DeBERTa v3 CoLA
Chain Reset Frequency
Variant Rank 1 2 5 10 15 20
4 86.9 86.5 862 86.6 87.1 86.7
CoLA -
8 855 85.1 85.1 85.1 85.1 85.1
16 842 69.1 69.1 69.1 69.1 69.1
4 87.0 86.7 87.7 87.4 88.0 87.7
RAC
8 87.5 87.8 87.8 87.5 86.6 86.6
16 86.7 869 873 87.0 87.0 87.6
4 864 86.6 86.1 858 86.0 86.3
3
LA g 860 86.1 86.1 862 863 86.3
16 86.2 857 863 85.6 854 86.7

Table 11: Test accuracies obtained by fine tuning ViT-Tiny on OfficeHome and CIFAR-10 using

DeBERTa v3 TREC-50

Chain Reset Frequency

Variant Rank1 2 5 10 15 20
4 91.3 91.1 899 885 905 913
CoLA
8 927 91.1 853 109 92.7 90.5
16 109 109 93.1 91.7 92.1 65.1
4 843 84.1 855 84.1 863 86.5
RAC
8 88.3 885 88.1 887 877 889
16 87.7 91.5 903 899 899 88.9
4 86.3 88.1 893 859 889 889
LA
8 86.1 89.3 84.7 837 86.1 90.7
16 89.7 90.5 87.5 91.1 87.3 88.1
DeBERTa v3 RTE
Chain Reset Frequency
Variant Rank1 2 5 10 15 20
4 829 844 851 837 854 86.2
CoLA
8 882 84.6 84.8 87.1 87.1 86.7
16 85.1 526 814 848 843 735
4 823 83.0 81.6 82.1 824 824
RAC - _
8 855 86.8 864 875 875 875
16 842 844 84.1 835 837 843
4 79.0 779 726 719 740 724
¢3LA
8 80.0 80.3 76.6 739 762 754
16 85.0 825 83.6 830 829 824

chain LoRA methods CoLLA, RAC, and c3LA over varying ranks and chain reset frequencies.

ViT-Tiny OfficeHome

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20
4 764 765 772 712 776 77.8
CoLA
77.6 77.1 783 773 787 79.6
16 779 779 788 786 794 79.1
4 755 758 76.0 757 757 757
RAC
8 77.1 76.1 763 76.6 76.1 764
16 774 777 717 770 773 77.0
4 767 713 773 1763 76.5 76.6
c3LA
8 775 769 772 7677 76.8 768
16 77.5 78.1 784 785 78.1 784

37

ViT-Tiny CIFAR-10

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20
4 945 948 947 953 94.0 94.0
CoLA
95.1 95.1 953 949 947 945
16 955 955 957 96.0 96.0 96.2
4 942 940 940 934 924 925
RAC
8 945 94.8 945 942 94.1 94.0
16 95.6 952 953 95.1 950 943
4 944 942 940 939 92.7 927
c3LA
8 93.6 942 948 945 934 934
16 94.0 93.6 953 95.1 948 950

Table 12: Total FLOPs per epoch to fine-tune RoOBERTa-Base/Large (CoOLA/MRPC), GPT2-Small (E2E), and
ViT-Tiny/Base (OfficcHome/CIFAR-10) using FFT, LoRA, Asymmetric LoRA, and a naive sparse implementa-
tion. All models use rank » = 16. In each row, the best value is bold.

Model Dataset Flops per epoch
FFT LoRA Asym Naive Sparse
14 13 13 13
RoBERTa-Base MRPC 1.1 x 10 7.5x 10 7.5x10" 7.4x10
CoLA 6.8 x 1013 4.6 x 10'3 4.6 x 10> 4.5 x 1013
14 14 14 14
RoBERTa-Large MRPC 3.9 x10** 2.6 x 10-* 2.6 x 10-* 2.6 x 10
CoLA 2.4 %10 1.6 x 1014 1.6 x 10'* 1.6 x 1014
ViT-Tiny OfficeHome 6.8 x 1013 4.8 x 10'® 4.7 x 10'3 4.6 x 103
CIFAR-10 3.0 x 10'* 2.1 x 10 2.1 x 10'* 2.0 x 1014
ViT-Base OfficeHome 1.1 x 10'° 7.4 x 10 7.4 x 10'* 7.3 x 104
CIFAR-10 4.8 x 10%° 3.2 x 10® 3.2 x 105 3.2 x 10
(@)LoRrA Fine-Tuning (BEoLA Fine-Tuning (C)Asym Fine-Tuning (d) pac Fine-Tuning kLA Fine-Tuning (f)c3LA Fine-Tuning
Top 1 accuracy: 88.96 Top 1 accuracy: 89.01 Top 1 accuracy: 89 Top 1 accuracy: 89.33 Top 1 accuracy: 89.21 Top 1 accuracy: 89.18

G(W) = 1.07 x 10" G(W) = 1.43x 102 GW)=852x10% GW)=1.02x107? G(W) = 3.16 x 102 G(W) = 362 x 102

¥
=

(@) Mcc:57.33 (h) mcc: 58.39 (i) Mcc: 52.35 () mMcc:53.76 (k) mMmcc: 51.86 () Mcc: 5329
G(W) =7.74x 101 G(W) =4.04x 10! G(W) =222 x 107! G(W) =1.96 x 10! G(W)=47x 10" G(W) =4.43 x 10!

Figure 6: 3D loss landscapes of ViT-Base (I1) pretrained on ImageNet-1K (7) and fine-tuned on Office-
Home (33) (top) and RoBERTa-Base (33) pretrained on a corpus of English text fine-tuned on CoLA (56)
(bottom) using the non-chain then chain variants of each LoRA method. The chain variants consistently produce
sharper landscapes than the non-chain variants. In asymmetric LoORA methods, this often correlates to worse
generalizability, but not in symmetric methods where B, A are both trained as shown in@

Comparison between using random or PCA directions. To understand the differences between
the loss landscapes of the models in the PCA directions compared to random directions, we plotted
the loss landscape of ViT-Base fine-tuned on CIFAR-10 in both PCA directions (top) and random
directions (bottom) in Figure[5] For random directions, the FFT landscape is substantially smoother;
this is consistent with (29)), but this is inconsistent with the loss landscapes of RoOBERTa-Base with
random direction in Figure[6] where chain methods produce spikier landscapes with no substantial
change in generalizability.

2D landscapes. The initial setup is identical to the 3D landscape. We obtain the same principal
directions and plot the same function. For 2D landscapes, when generating our «, 3 grid of values, we
uniformly distribute over [—m, m] x [—m, m] where m is chosen to ensure the optimizer trajectory
(blue arrows) is entirely contained in the image. As shown in Figure[7] chain methods have more
diverse loss landscapes than their non-chain counterparts due to their overall update to the pre-trained
weights having a higher effective rank (57).

38

00
00100
oo {’g
00075
oo
00050
0005
o0
00025
% oo + % oo + 3 oo
~00025
a0l
o005
~00050 - -
~00075
~o010
~oomoo L LA\ AN
Sy Sy Fres e re -00i00 -ofurs -odw -adom oso ockn os0 oo ooo
o
003
o010
a0
0005
o
T x /
3 oo 5 ooof
a0
S ~000s
~o010

oa1s
o010

o00s{//

0005

-0010

oot

Coms oo 0005 0000 0005 oo oo EYT) oo 000 002 004
ax X

(h) RAC (i) LoRA+

0002
-

0001

airv

0000 +

000

0002

0003

(j) Full Fine-Tuning

Figure 7: 2D loss landscapes of RoBERTa-Base fine-tuned on CoLA for FFT and many PEFT LoRA
methods. The axes dirX and dirY are the constants we scale the top two PCA components of the
weight displacement matrix with. The range was chosen to contain the entire gradient path. The top
row is the non-chain variant of the bottom row, save for the last column. The center is marked with a
cross for visibility; the arrows indicate the direction of the model’s updates.

39

Table 13: Average per-layer count of intruder dimensions for given e-thresholds for ROBERTa-Base fine-tuned
on CoLA at 25%, 50%, 75%, and 100% points of training.

=04 e=0.8
Method 25% 50% 75% 100% 25% 50% 75% 100%
FFT 0.2 04 0.6 1.0 47.8 933 110.5 1284

LoRA 0.3 1.4 1.9 3.0 73.0 1129 141.0 1628

CoLA 14 42 51 59 129.0 1565 1644 168.5
Asym 1.1 32 42 44 81.2 106.8 122.7 126.7
RAC 1.2 34 55 53 1425 1673 177.6 183.6

cLA 30 67 8.2 8.5 261.1 318.0 345.0 356.7
r-cLA 2.5 6.6 90 9.1 2572 329.1 3642 3769
c3LA 9.3 182 212 232 392.6 4334 4443 446.6
r-c3LA 5.8 8.8 141 14.6 3832 409.7 4339 4379

Table 14: Average per-layer count of intruder dimensions for given e-thresholds for ViT-Base fine-tuned on
CIFAR-10 at 25%, 50%, 75%, and 100% points of training completion.

=04 =028
Method 25% 50% 75% 100% 25% 50% 75% 100%

FFT 517.1 630.2 6462 648.1 7452 7509 751.7 51.7
LoRA 1332 2303 2540 2584 7183 7265 728.0 728.1

CoLA 1472 3935 5502 5825 7166 7313 7340 7342
Asym 41.0 1050 152.0 168.8 6532 686.6 699.8 704.1
RAC 176.4 4473 502.1 5348 6969 7155 717.8 7184

cLA 199.3 2763 290.6 2944 709.5 720.7 7222 7227
r-cLA 215.7 289.0 3062 3152 7074 7202 7234 724.6
c3LA 340.8 5520 640.6 651.1 716.0 7264 7298 730.4
r-cLA 4160 621.0 6453 660.6 7202 729.8 730.5 731.3

D.4.2 INTRUDER DIMENSION IMPLEMENTATION

Given the pretrained and fine-tuned models, Wy and Wy + AW we find intruder dimensions as
follows: first, we decompose each layer of Wy and Wy + AW into their corresponding SVDs,

UiZiVi?WO)i and UiZiVi{WOJFAW)i,i € [L], respectively. Then, given a threshold € € (0,1), a
ki

singular vector u(Wo-l—AW)V in U(WUJrAw) is an intruder dimension if for all Uy, 1N U(WO), the

{ivg+ awn %y |
J,t ki
Hu(]w0+Aw)HHu(w0)H)
almost orthogonal to all vectors in U (lwo)' We denote these vectors as intruder dimensions.

. L. G, .
expression, | < e. For € small enough, this indicates the vector Ui+ aw) 19

D.5 GENERALIZATION ERROR—CONTINUED

Let X x) be our input space and label space with v distribution of pairs (z,y) € X x Y, our dataset
N = {(z1,y1), -, (Tn,Yn)} where each (z;,y;) is i.i.d. from v distribution of X x Y, thus the
distribution over our dataset does not represent the true distribution of input-output pairs from our
instance space. Let H be our hypothesis space, where w € H;w(x;) = 9, thus, we are concerned
with how accurately w can adapt to the true distribution v of X x). This can be addressed by the
generalization error of our hypothesis w € H given our loss function ¢. The true risk of w over
X x Y given £ is Lgiobal(w) 1= Ex y[l(w(x),y)] = fXxy (w(z),y)dv, while empirical risk is
L:=L5"0(w(w;),y); (xi,y;) € N. Let M denote the full dataset, where M = N U T, N being
the train dataset, and 7" being the test dataset. In practice, the empirical risk can be computed based
on N, and the test dataset, T', can be used to show how well the model has generalized. N and 7" are
independent samples from v; their distributions approximate v but differ due to random and finite
sampling. Although Liest — Lirain 1S not a true testament for calculating the generalization error of a

40

Table 15: Generalization error approximations (test-loss minus train-loss) on the past (FFT, LoRA), the present
(CoLA, Asymm, RAC, LoRA+), and the future (cLA, LA, r-cLA, r—c3LA) fine tuning methods over various
models and datasets. For the dataset CoLA we report the Matthews Correlation Coefficient and test accuracy
otherwise. The color green indicates the best result for each particular model and dataset combination, red is the
second best result and blue the third.

Model Dataset The Past The Present The Future
FFT LoRA CoLA Asymm RAC LoRA+ cLA c®LA rclA rc®LA
ViT-Tiny (I1) OfficeHome ~ 4.85¢™" 6.96e™2 9.55¢™ % 7.22¢72 6.17¢™% 7.39¢™2 198¢™ % 3.40e™2 2.16e™> 3.5le™?
CIFAR-10 142¢™" 2.64e™" 2.87e™" 336e™" 3.18¢7! 2.80e™ " 3.13¢" 3.03e™" 3.12¢7" 2.92¢7*
ViT-Base (I1) OfficeHome ~ 3.66e ™' 1.07e™! 143e™2 852¢ % 1.02¢7 % l4le™! 3.16e™2 3.62¢~2 553¢> 3.00e >
CIFAR-10 9.98¢ 2 1.92¢™" 221e™" 2.38¢™"! 230e™! 184e~' 233e™" 234e™" 226" 2.15¢*
DeBERTa v2 XXL (21) MRPC 8.15¢7% 6.89¢™ % 6.53¢ > 8.09¢7% 8.02¢7> 9.08¢72 9.31e”? 1.10e”! 9.47e7% 122¢7!
TREC50 338e" 2367 7.04e> 1537 2247 136! 1.85e7! 222¢7! 193¢ 192¢7!
PAWS 6.07e"% 1.99¢ 2 3.63¢™2 3.26e72 3.95¢72 54le”? 6.68¢ % 5.1le”? 198¢ % 6992
DeBERTa v3 Base (20) MRPC 1.06e™" 890e™? 2.59¢™2 7.28¢7% 9.86e % 1.52¢ 2 2.58¢” % 852¢ 7 1.16e™ ! 257e?
TREC50 456~ 273¢7! 3.99¢7! 2.16e7! 267e7! 26le”? 225! 370e! 336" 2.63¢’
PAWS 2622 64372 240e? 62772 8.17e”? 555¢~ 7 7.39e™% 577e”% 10le”" 5822
RoBERTa-Base (35) ~ MRPC 9.48¢" 6.0le™ 2.05¢7 " 1.64e !t 2.20e7! 533¢7! 437¢7! 3.78¢7! 335e7! 321e7!
CoLA 139 7.74e™" 4.04e™! 222¢7" 196e” " 8.10e™ 4707 443" 4.38e”! 401!
RoBERTa-Large (35) MRPC 7.29¢7 ! 4.64e7 471e7t 277e ! 2.68¢7 ! 2.64e7 ! 6.54e! 5577 527e7 384e7 !
CoLA 8.06e™" 425¢" 418e”! 236e”! 1.75¢7 ! 228¢ " 4.96e " 4.56e” " 6.14e” ! 4.05¢7"
TinyLlama (61) OpenBookQA 1.78¢™" 2.82e™" 34le™" 2.15¢™" 1.86e™" 2.07¢™! 1.51e™! 220e™ ! 3.16e™" 759>
FOLIO 18271 2.37¢7! 2.17e7 1.75¢7! 1.93e7! Sle”? 235e7! 1917 1.05¢7 249¢7 !
LogiQA 36le™! 6.12¢7 % 1.45¢7 ! 1.16e 2 1.75e! 237¢7! 8.60e"2 1.le”! 6.64e 2 6.25¢ 2
CLUTRR 429 225 155 234 227 548 216 219 259 423

DeepseekCoder (I6) ~ DJANGO 348¢72 4.65¢72 34e 2 5.16e”2 4.64e72 387e72 4.19¢72 3.89¢72 3.64e"2 3.62¢ 2

GPT2-Small E2E 1.65¢7 1 1.93e7! 1.85¢7 1 1.83e~! 1.85¢7! 1.87e™! 1.77¢~! 1.82¢7 ! 1.88¢™! 1.82¢7!

model, it can be used as a heuristic for determining generalization. An important aspect of evaluating
fine-tuning methods is not only their peak performance but also their consistency across training runs.
Understanding how stable these models are provides insight into their reliability and reputability for
practical use.

Tying our theoretical developments to our empirical tests, we see a connection where the frozen
variants tend to have a lower difference between test loss and train loss over varying epochs.

An important aspect of evaluating fine-tuning methods is not only their peak performance but also
their consistency across training runs. Understanding how stable these models are provides insight
into their reliability and reputability for practical use.

E LIMITATIONS AND DISCUSSION

cLA and c3LA particularly train only a small subsection of our pretrained model at a time, leading to
underperformance on lower ranks in comparison to alternate LoRA variants.

We observed that cLA and c3LA performed nearly as well as their non-sparse counterparts, Asym-
metric LORA and RAC, while being less expensive. The nature of the methods they were inspired
by already had a frozen matrix component; we leave it up to researchers to study more potential
identity-based LoRA variants to save computational resources.

We emphasize that some of the analytical tools in §4.2] are not necessarily strong indicators of a
model’s performance. However, they tell us about some of the fine-tuned model’s subspace properties,
such as changes in direction and magnitude. Particularly, they depict how a fine-tuned model deviates
from a pretrained model. This is relevant if the preservation of structure is important for alternative
purposes such as cross-training, hybrid fine-tuning, or preservation of historical datasets.

F TABLE OF NOTATIONS

41

Table 16: Table of notations.

Notation Definition
[E3]] The £2 norm of a vector,
1A The Frobenius norm of a matrix, A
| A]l2 The spectral norm of a matrix, A
Af The Moore-Penrose pseudoinverse of a matrix A.
L Number of layers in a deep neural network
wi ith layer of network
w wl, ..., wh)
x Input to the network
fw (@) st Bt (W (W (2))-)))
o () i*® layer non-linear activation function
Npre pre-training dataset (x; , y;)iz‘fre‘
Lpre(-) pre-training loss function
Wy pre-training weights
AW FFT weight-update
AW FFT argmin update
£(+) fine-tuning loss function
BA LoRA weight-update
BA LoRA argmin weight update
k Chain-length of chain methods (CoLA, RAC, C3LA)
BIAJT CoLA ' chain weight update
BIAJ CoLA jth chain argmin weight update
wFB4) ke chains of CoLA updates, where W{* 5 4) .= W + $F_| BIAJ
Ap Frozen A layers.
BAy Assymetric LoRA weight update
EAO Assymetric LoORA argmin weight update
BJ Aé RAC-LoRA jth chain weight update
B Aé RAC-LoRA jth chain argmin weight update
w5 k chains of RAC-LoRA updates, where W (¥ 5) .= W + Sk_) BIAJ
B¢ Cheap LoRA (cLA) weight update
BC cLA argmin weight update
B Circulant chain of cheap LoRA’s (¢c3LA) 5P chain weight update
BC3 c3LA j*P chain argmin weight update
3 3
Wék’Bc) K chains of ¢>LA updates, where W(()k’BC - Wy + Z?=1 ECS J
Lg Lipschitz constant for the gradient of the loss function.
X feature space of the network
y label space of the network
‘églobal (+) true risk of an input network

42

	Introduction
	DNN Fine-Tuning: The Past, Present, and Future
	The Past: Full fine-tuning (FFT) and LoRA
	The Present: Evolution of LoRA
	The Future: Can we push for more compute efficiency?

	Theoretical Insights
	On the generalization of different variants of LoRA
	On the nonconvex convergence of different variants of LoRA

	Benchmarking and Evaluation
	Quality of the Fine-Tuned Models
	Performance Analysis

	Conclusion
	The Present: Evolution of LoRA—Continued
	Pseudo Code of our proposed LoRA variants
	Theoretical Results
	Generalization
	Inequalities used
	Proof of Theorem 1.
	Neural Network with No activation Function—Special case of Theorem 1
	Tightness of the bounds in Theorem 1
	Adapting Theorem 1 under special cases

	Nonconvex Convergence
	Auxiliary Results
	Nonconvex Convergence Result
	Additional Results

	Addendum to Benchmarking and Evaluation
	Implementation Details
	The effects of learning rate, scaling factor, and chain reset frequency on quality metric over various ranks
	Computational Cost, FLOPs, and Efficiency
	Performance Analysis—Continued
	Loss Landscape—Continued
	Intruder Dimension implementation

	Generalization Error—Continued

	Limitations and Discussion
	Table of notations

