
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LORA: THE PAST, PRESENT, AND FUTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Full fine-tuning of large pre-trained models is constrained by computational and
memory overhead, motivating parameter-efficient fine-tuning approaches, such as
low-rank adaptation (LoRA) and its variants. Yet, questions remain about their
convergence behavior, comparative generalization, and practical limits compared
to full fine-tuning. We present a historical framing (the past: full fine-tuning and
original LoRA; the present: different variants of LoRA) and introduce simpler,
cheaper, parameter-efficient extensions: Cheap LoRA (cLA)—training a single
low-rank factor with the other fixed (deterministically or, in its randomized variant,
stochastically)—and the chained circulant variant, c3LA. While analyzing these
LoRA variants, we realized that nonconvex convergence analysis is only feasible
for the variants where one low-rank factor is kept frozen; for LoRA, Lipschitz
smoothness of the loss function does not hold. However, we derived information-
theoretic generalization error bounds for all variants, which, to our knowledge, is
one of the first endeavors in this area. We conduct an extensive empirical study
that spans 7 LoRA-based methods and full fine-tuning across 9 pre-trained models
on diverse tasks and datasets, and dissect their performance using a multitude of
analytical tools, including the loss landscape of the resulting fine-tuned models,
their spectral properties, and generalizability. Despite the theoretical results, our
experimental study shows that fine-tuning performance, in practice, may or may
not be better, depending on the actual trained model, the datasets used, and multiple
other factors. In summary, the performance of LoRA-based PEFT methods suggests
that using their cheaper variants would be advantageous for effective cost reduction
and improved generalizability of pre-trained models.

1 INTRODUCTION

Full fine-tuning (FFT) (60) modifies a pre-trained neural network’s parameters on new datasets that
might be relatively expensive to curate, and adapts the network to new downstream tasks. Due to the
growth of model sizes and datasets, full fine-tuning is often computationally infeasible or prohibitively
costly. Additionally, the growth of these complex models and the hardware’s compute capacity are
incoherent (12; 59). Large multimodal models (LMMs) such as OpenAI’s GPT series (5), Meta’s
LLaMA (2), Google’s Gemini (52), image-text model CLIP (43), video-text model DeepMind’s
Flamingo (3), etc., are pre-trained on massive high-quality data corpora and fine-tuned to adapt to
different tasks or domains. The smallest variant of the recent large language model, Llama-3 (2),
has 8B parameters; it requires 32GB GPU memory to load and 64GB GPU memory to train with
state-of-the-art training protocols. Compared to this, the half-precision of the H100 GPU accelerator
released in 2022 is barely 2.4× more than its 2020-released A100 predecessor, while their memory
capacity remains the same (1; 45).

An alternative to FFT, parameter-efficient fine-tuning (PEFT) (24; 60), saves space and time, circum-
vents overfitting, and is widely used. In that direction, low-rank adaptation (LoRA) (24) achieves
albeit similar performance to fully fine-tuned models, but with an extreme reduction in trainable
parameters. However, questions remain regarding the generalizability of LoRA-adapted models
compared to their fully fine-tuned counterparts (49). To mitigate LoRA’s flaws, researchers have
proposed different variants, such as the chain of LoRA (CoLA) (57), asymmetric LoRA (65), ran-
domized asymmetric chain of LoRA (38), LoRA+ (19), adaptive LoRA (62), and a few others. At
the same time, efforts were made to analyze and compare these PEFT methods with full fine-tuning
(60; 49; 38). However, none of these benchmarks is conclusive; see Figure 1. We have a limited
theoretical understanding of how these methods work, and ignore many real deployment artifacts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: 3D loss landscapes of ViT-Base (11) pretrained on ImageNet-1K (7) and fine-tuned on CIFAR-10 (27)
by different fine-tuning strategies, including FFT. FFT has the narrowest volume local minima among the other
PEFT methods, and the fine-tuned model renders the worst test accuracy. However, it has the least generalization
error, G(W), among all the methods; see Definition 1 and Table 15. In (d), when we superimpose the loss
landscapes, FFT shows the spikiest landscape; RAC (38) has the smoothest landscape with the highest G(W).
According to (29), this is counterintuitive; a model with a spiky landscape and small-volume local minima does
not generalize well.

In the era of resource-constrained IoTs and edge deployments (13; 23), pushing parameter efficiency
to the point that storage, memory bandwidth, and hardware interface constraints are satisfied during
adaptation, and that inference latency benefits from optimized sparse or structured libraries (46; 14)
have become a practical imperative. Can sparse training be the new trend? GPT-4.5, the new OpenAI
LLM, has an order of magnitude larger parameters compared to GPT4’s 1.3T, but only obtained
a marginal performance improvement, and could be indicative of the idea that effective parameter
reduction might be beneficial for these models (15). At this end, we propose four simpler, cheaper,
and parameter-efficient extensions of LoRA: Cheap LoRA (cLA), which trains only one low-rank
factor and sets the other low-rank factor deterministically, its randomized variant, random-cLA, its
chain circulant variant, c3LA, and its randomized chain variant, random-c3LA. But how does the
theoretical behavior of these methods practically compare on different fine-tuning tasks? In practice,
are there significant differences and trade-offs in terms of convergence behavior and performance of
our reduced-parameter LoRA variants? And if there are, how do these differences vary across PEFT
methods, hyperparameter configurations, and DNN models? To answer these questions, we make the
following contributions:

Theoretical insights through generalization and nonconvex convergence (§3). To gain more
insights into the PEFT methods discussed in this paper, we use an information-theoretic approach
to measure their generalization error bounds. See summary of results in Table 1. We also adapt
the optimization framework of (38), and present the convergence analysis of the PEFT methods for
smooth, nonconvex loss functions, under our layerwise setup, where each layer’s adapters are updated
using gradient descent (GD) and show O(T−1) convergence rate for these methods.

Evaluation and benchmarking (§4). We empirically evaluate 9 LoRA-based fine-tuning methods
(LoRA (24), CoLA (57), Asymmetric LoRA (65), RAC LoRA (38), LoRA Plus (19), cLA, r-cLA,
c3LA, and r-c3LA) and full fine-tuning, encompassing 9 different pretrained models: (i) GPT2-
small (44), (ii) DeBERTa v3 Base (20), (iii) DeBERTa v2 XXL (21), (iv) RoBERTa Base (35), (v)
RoBERTa Large (35), (vi) Deepseek-Coder-1.3B-base (16), (vii) TinyLlama-1.1B (61), and (viii)
vision Transformers, (ViTs), tiny and base (11), on 4 different fine-tuning tasks, natural language
processing on PAWS (64), TREC-50 (31), and various GLUE benchmarks (56), image recognition
on OfficeHome (55) and CIFAR-10 (27), coding generation on DJANGO (40), and logical reasoning
tasks on OpenBookQA (39), FOLIO (17), LogiQA (33), and CLUTRR (50) datasets.

2 DNN FINE-TUNING: THE PAST, PRESENT, AND FUTURE

Historically, full fine-tuning updates all parameters of deep networks, an approach that becomes
increasingly impractical as model size and deployment multiplicity grow. This leads to the advent
of LoRA and its variants. Based on their evolutionary timeline, we divide this section into three
temporal phases. The past contains full-fine tuning, and we introduce LoRA, while different LoRA
variants dominate the present. Finally, extreme compute efficiency characterizes the future where we
propose our new variants.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2.1 THE PAST: FULL FINE-TUNING (FFT) AND LORA

Pre-training. Without loss of generality, consider a L-layer, fully-connected, neural network whose
layers are, {W i}Li=1, where W i ∈ Rni×mi are trainable weights. Let x ∈ Rm1 be the input and
W = (W 1, ...,WL). The network fW(·) : Rdin → Rdout is of the form:

fW(x) = σL(WL · · ·σ3(W 3σ2(W 2σ1(W 1(x))...)), (1)

where σi(·) : Rni → Rni is a nonlinear activation function for the ith layer. Given a pre-training
set, (xi, yi) ∈ Npre ⊂ Rm1 × Rdout , and the loss function, ℓpre(·) : Rdout × Rdout → R, we train
the network by solving:

W0 ≈ argminW

Lpre(W)
def
=

1

|Npre|

|Npre|∑
i=1

ℓpre(fW(xi), yi)

 , (2)

obtaining the trained weights W0 = [W 1
0 , · · · ,WL

0]. Sophisticated DNNs, such as CNNs, RNNs,
Transformers, etc., can be adapted with some modification to (1).

Full fine-tuning (FFT) (9; 22; 60; 24). Given the pre-trained weights, W0, FFT updates each
DNN layer with corresponding ∆W i to adapt the model to a downstream task defined by the
domain-specific training data, (x′i, y

′
i) ∈ N . Denote ∆W as the update, and define W0 +∆W :=

[W 1
0 +∆W 1, · · · ,WL

0 +∆WL]. Given a loss function, ℓ(·) : Rdout×dout → R, FFT updates the
model weights by solving:

∆Ŵ ≈ argmin∆W

L(W0 +∆W)
def
=

1

|N |

|N |∑
i=1

ℓ(fW0+∆W(x′i), y
′
i)

 , (3)

and obtains the fine-tuned model, fW0+∆Ŵ, adapted to the downstream task. The computational
overhead for FFT can be prohibitively expensive. E.g., LLMs for task-specific fine-tuning. In contrast,
parameter-efficient fine-tuning (PEFT) trains orders of magnitude fewer parameters while often
attaining performance comparable to FFT (22; 60).

LoRA (24) is a popular PEFT method that replaces the layer-wise updates ∆W i with a low-rank
representation BiAi, such that Bi ∈ Rni×r, Ai ∈ Rr×mi , r ≪ min(mi, ni) for all i ∈ [L]. Denote
W0 + α

r BA := [W 1
0 + α

rB
1A1, · · · ,WL

0 + α
rB

LAL], where α > 0 is a scaling factor. LoRA
initializes each Bi = 0, Ai ∼ N (0, 0.022), and solves:

(B̂, Â) ≈ argminB,A

L(W0 +
α

r
BA) :=

1

|N |

|N |∑
i=1

ℓ(fW0+
α
r BA(x

′
i), y

′
i)

 , (4)

to obtain Bi, Ai for each layer that results in the fine-tuned model. LoRA may not need to be
applied to all layers; some layers can remain frozen (24). LoRA substantially reduces trainable
parameters, saves training time, and the update BA can be merged into the base weights to avoid
additional inference latency. For adapting the same pre-trained model to multiple downstream K

tasks, each update, {B̂jÂj}Kj=1, is stored separately. Then each task can be switched to by taking the
current model fW0+

α
r B̂j Âj , for j ∈ [K], subtracting the current update B̂jÂj , and adding the update

corresponding to the new task. LoRA is computationally and storage-efficient, but renders worse
generalization compared to FFT (49); LoRA may also fail (25).

2.2 THE PRESENT: EVOLUTION OF LORA

Many variants of LoRA exist to enhance efficiency while addressing weaknesses. They excel in
certain tasks but are less optimal in others. Including full fine-tuning, empirical evidence suggests that
no single fine-tuning method is the best fit for all cases, and that different variations are successful in
varying circumstances (60). Thus, there exists compelling reasoning as to why new variants of LoRA
continue to emerge. For limited space, we move the discussion in §A.

2.3 THE FUTURE: CAN WE PUSH FOR MORE COMPUTE EFFICIENCY?

With rapidly increasing model dimensionality amplifying memory and adaptation costs, we char-
acterize this phase as one of the next evolutionary steps for LoRA: maximizing efficiency while
maintaining parity with the current variants of LoRA. Training B generally performs better (65),
together with insights from structured chaining methods (57; 38), leads us to two simple, easy-to-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

analyze and implement variants, where we postulate that the update of the pre-trained parameter can
be restricted to r columns of B.

(i) Cheap LoRA (cLA) is a simplified instance of Asymmetric LoRA (65), where only the low-rank
factor B is optimized, while A is kept fixed to the Identity matrix of rank r concatenated with ze-
ros. We consider two instantiations of the fixed factor, deterministic (cLA) and random (random-cLA).
Empirical results show that the deterministic choice suffices (the randomized variant does not yield
better performance), even though the random version is more convenient for convergence analysis.
In cLA, the fixed matrix, Ai, for each layer i, is set to an r × r identity matrix, concatenated with
0r×mi−r, and is of the form Ai :=

[
Ir|0r×(mi−r)

]
∈ Rr×mi . For each layer, with W i ∈ Rni×mi ,

andBi ∈ Rni×r,we have ∆W i = Bi
[
Ir|0r×(mi−r)

]
=

[
Bi|0ni×(mi−ni)

]
.Denote Bc as the layer-

wise update with Bi, Ai chosen above, and W0 +
α
r Bc := [W 1

0 + α
rB

1
[
Ir|0r×(m1−r)

]
, · · · ,WL

0 +
α
rB

L
[
Ir|0r×(mL−r)

]
]. Then cLA solves:

B̂
c
≈ argminBc

L(W0 +
α

r
Bc) =

1

|N |

|N |∑
i=1

ℓ(fW0+
α
r Bc(x

′
i), y

′
i)

 . (5)

(ii) Circulant Chain of Cheap LoRA (c3LA). As noted in CoLA (57) and RAC-LoRA (38),
chaining LoRA modules leverages repeated initializations to avoid poor minima. We extend this
principle to cLA with a structured chaining, c3LA. This method shifts the identity Ir in each matrix[
Ir|0r×(mi−r)

]
by r columns to the left. That is, starting with

[
Ir|0r×(mi−r)

]
, the next chain

is
[
0r×r

∣∣ Ir ∣∣ 0r×(mi−2r)

]
, and so on. Let Bc

3

denote c3LA’s update and denote W(k,Bc
3
) :=

W0 +
∑k
j=1

α
r B̂

c3,j
, and W(0,Bc

3
) = W0, then c3LA of chain length k solves:

For j ∈ [k], B̂
c3,j

≈ argminBc3,j

[
L
(

W(j−1,Bc
3
)

0 +
α

r
B̂
c3,j

)]
, (6)

to obtain the fine-tuned model f
W(k,Bc

3
)

for a chain of length k. Given sufficient epochs and chain
length, this ensures we can update all elements in each W0 layer-wise. We formalize this in the
following proposition.
Proposition 1. Let k ∈ N be such that din = kr. Let E be the total number of epochs used in c3LA
fine-tuning. Then by creating a new chain in every

⌊
E
k

⌋
epochs, c3LA updates each element in W0.

The intuition behind c3LA goes beyond merely chaining cheap LoRA modules; its structured shifts
expand the representational capacity of the learned B matrices. We provide pseudocode of our
proposed variants in §B.

3 THEORETICAL INSIGHTS

In this Section, we follow two different angles: (i) we use an information-theoretic approach to
measure the generalization error bounds; (ii) we adapt the optimization framework of (38), and
present the convergence analysis of the PEFT methods for smooth, nonconvex loss functions, under
our layerwise setup, where each layer’s adapters are updated using gradient descent (GD).

3.1 ON THE GENERALIZATION OF DIFFERENT VARIANTS OF LORA
In this section, we provide the generalization error upper bounds of the PEFT methods discussed in
this paper under an information-theoretic framework (48; 58).

Generalizability measures how well a model’s loss on its training dataset represents the model’s loss
on its entire feature space, and demonstrates the model’s capacity to avoid overfitting. Let X × Y be
an input space and label space with ν distribution of pairs (x, y) ∈ X × Y . Let N = {(xi, yi)}|N |

i=1
represent the training dataset, where each (xi, yi) is i.i.d. from ν distribution of X × Y . Given a
hypothesis, fW(·) : X → Y , and a nonnegative loss function, ℓ(·) : Y × Y → R, the empirical risk
of a hypothesis on the dataset is defined as, L(W) := 1

|N |
∑|N |
i=1 ℓ(fW(xi), yi). The true risk of the

hypothesis fW(·) is defined as, L̂global(W) := EX ,Y∼ν [ℓ(fW(X), Y)]. With the above setup, next
we define generalization error, which tells us how well the hypothesis, fW, generalizes from the
training sample to the underlying population distribution.
Definition 1. (Generalization Error (58)) The generalization error, G(W), is the difference between a
hypothesis’s true risk and its empirical risk on the training dataset, i.e., G(W) := L̂global(W)−L(W).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Variant Reference Chain Construction? Non-convex convergence applies? Upper bound on G(W0 + ∆W)

LoRA (24) × × ΦW0
+

√
2rqσ2 ln 2

∑L
i=1(mi+ni)

|N|

LoRA+ (19) × × ΦW0
+

√
2rqσ2 ln 2

∑L
i=1(mi+ni)

|N|

Asym-LoRA (65) × ✓ ΦW0
+

√
2rqσ2 ln 2

∑L
i=1 ni

|N|

CoLA (57) ✓ × ΦW0
+

√
2rqσ2k ln 2

∑L
i=1(mi+ni)

|N|

RAC (38) ✓ ✓ ΦW0
+

√
2rqσ2k ln 2

∑L
i=1 ni

|N|

random-cLA This paper × ✓ ΦW0
+

√
2rqσ2 ln 2

∑L
i=1 ni

|N|

c3LA This paper ✓ ✓ ΦW0
+

√
2rqσ2k ln 2

∑L
i=1 ni

|N|

Table 1: Generalization error upper bounds of LoRA variants. The expression, ΦW0 is in Theorem 1. Note
that, r is the adapter rank, k is the chain length, |N | is the size of fine-tuned dataset, q is the quantization bitwidth,
(mi, ni) are the input and output dimensions of the ith layer, and the loss, L is σ-sub-Gaussian (Assumption 6).

Assumption 1. (Boundedness of input vectors) The input vectors are bounded, i.e., there exists a
constant C ≥ 0 such that ∥x∥ ≤ C, for all x ∈ X .
Assumption 2. (Lipschitz continuity of the loss) The loss function, ℓ(·) : Rd → R is LL-
Lipschitz continuous, i.e., |ℓ(fW(x), y) − ℓ(fW′(x), y)| ≤ LL∥fW(x) − fW′(x)∥ for all W,W′ ∈
Rd and (x, y) ∈ X × Y .
Assumption 3. (Lipschitz continuity of activation) The vector-valued activation function, σi(·) :
Rni → Rni , for each layer, i, is Lσi -Lipschitz continuous, i.e., ∥σi(u)− σi(v)∥ ≤ Lσi∥u− v∥, for
all u, v ∈ Rni .

The following theorem upper bounds the generalization error of a fine-tuned, L-layer fully connected
DNN, parameterized by W0 +∆W, by the better of two alternatives: the generalization error of W0

and a correction term, or the generalization error of ∆W and a different correction term.

Theorem 1. (Generalization bounds) Let fW0+∆W(x) = σL([W0
L + ∆WL](· · ·σ2([(W 2

0 +
∆W 2]σ1([W

1
0 + ∆W 1]x)) · · ·)) be a L-layers fine-tuned DNN, where W0 +∆W is a fine-tuned

update. Let the loss function, L for fine-tuning, follow Assumption 2 and Assumptions 1–3 hold. Then
G(W0 +∆W) ≤ min (G(W0) + Φ∆W,G(∆W) + ΦW0

), where

Φ∆W := 2LL

C L∏
i=1

Lσi

2L−1∑
i=1

L∏
j=1

P (i, j) +

2L−1∑
i̸=2a−1:a∈[L]

F (i)

 and

ΦW0
:= 2LL

C L∏
i=1

Lσi

2L∑
i=2

L∏
j=1

P (i, j) +

2L−1∑
i ̸=2a:a∈[L]

F (i)

,
are the correction terms, F (i) := ∥σL−ψ(i)(0)∥

∏ψ(i)
j=1[LσL−j+1

H(i, j)], ψ(i) := ⌊log2(i)⌋, and

P (i, j) :=

{
∥W (L−j+1)

0 ∥ if ⌊ i−1
2L−1 ⌋ is odd,

∥∆W (L−j+1)∥ if ⌊ i−1
2L−1 ⌋ is even

,H(i, j) :=

{
∥∆W (L−j+1)∥ if ⌊ i

2ψ(i)−j ⌋ is odd,
∥W (L−j+1)

0 ∥ if ⌊ i
2ψ(i)−j ⌋ is even.

In Theorem 1, the expression,
∑2L

i=1

∏L
j=1 P (i, j) = (∥W (L)

0 ∥ + ∥∆W (L)∥)(∥W (L−1)
0 ∥ +

∥∆W (L−1)∥) · · · (∥W (1)
0 ∥ + ∥∆W (1)∥) is the sum of the product of all possible combinations

of {∥W (i)
0 ∥, ∥∆W (i)∥}i∈[L]. We note that

∏L
j=1 P (2

L, j) := ∥W (L)
0 ∥∥W (L−1)

0 ∥ · · · ∥W (1)
0 ∥, and∏L

j=1 P (1, j) := ∥∆W (L)∥∥∆W (L−1)∥ · · · ∥∆W (1)∥, as they are the terms not included in ΦW0

and Φ∆W, respectively. The term, F (i), represents the sum of all offset terms ∥σi′(0)∥ based on the
recursive collapse of the difference of ∥fW0+∆W − fW0∥; see Figure 4 for an illustration. In §C.1.4,
we show that the bounds provided in Theorem 1 are tight, and we present special cases in §C.1.3.

Theorem 1 under special conditions. The generalization upper bound G(W0 +∆W) in Theorem
1 contains two terms: (i) G(W0) + Φ∆W and (ii) G(∆W) + ΦW0

. We can adapt some additional
assumptions on loss, quantization bit-width, size of fine-tuning datasets, and layer dimensions; see
§C.1.5 and bound G(W0) and G(∆W).

(i) Bounding G(W0). We use the PAC-Bayes generalization bound for fine-tuning using Theorem 4.1

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

in (28); see Theorem 3 in §C.1.5. The loss function, L, is bounded by C2. Since ∥W (i)
0 −W

(i)
0 ∥ = 0,

for all i ∈ [L], in Theorem 3, we obtainQi := 0. Hence, G(W0) ≤ ϵ+C2

√
|N |−1(3 ln |N |δ−1 + 8),

holds with probability at least 1 − 2δ, where ϵ, δ > 0 are arbitrary small numbers. Together with
Theorem 1, we arrive at G(W0 +∆W) ≤ ϵ+ C2

√
|N |−1(3 ln |N |δ−1 + 8) + Φ∆W; we quote this

result formally in Theorem 4 in §C.1.5.

(ii) Bounding G(∆W). For a DNN, let q be the quantization bitwidth. We assume L is σ-sub-
gaussian for all W and use the generalization upper bound of G(∆W) as in Lemma 4.5 of (65), for
each PEFT method. Together with Theorem 1, we arrive at G(∆W0+∆W) ≤ ΦW0 +G(BA), where
G(BA) represents the generalization error of different LoRA variants; see Table 1 and § C.1.5.

Although Table 1 demonstrates the generalization behavior of different PEFT methods, we emphasize
that these results are upper bounds, and in practice, different DNN models may deviate from them.
E.g., Although c3LA has similar upper bounds to RAC-LoRA in theory, in practice, we notice
stronger generalization trends for c3LA in comparison to all other variants; see Tables 3 and 15.

3.2 ON THE NONCONVEX CONVERGENCE OF DIFFERENT VARIANTS OF LORA
We adapt the convergence results of (38) for the layer-wise case, where each layer is updated using
GD, and the rest are kept frozen. For our analysis, we make some general assumptions in §C.2.

The update step. Our structure considers layer-wise gradient calculation, which is a natural artifact
in deep learning toolkits. The update step follows directly from (38): For each layer i ∈ [L], the
update step of the ith layer with RAC-LoRA structure is

W i,t+1 =W i,t − γ∇if(W
t)Hi,

where Hi = (Ai0)
⊤(Ai0(A

i
0)

⊤)†Ai0 is a projection matrix.

The smallest eigenvalue of the expected projection matrix, Hi, plays a critical role in the optimization
process (38). For each layer i ∈ [L], let Ai0 ∼ Di, where Di is the set of all possible Ai0s when
training the model. We denote λH,imin := λmin[EDi [H

i]] and let λgmin := min{λH,imin}Li=1 be the
smallest. Now we are set to state our convergence result.
Theorem 2. (Nonconvex convergence) Let Assumption 7 and 8 hold. Let λgmin > 0

and the stepsize satisfy 0 < γ < 1
LG

. Let W(t,·) represent RAC-LoRA (9), or random-
cLA (5), or c3LA (6) update trained using gradient descent. Then {W(0,·), ...,W(T,·)} sat-
isfies E[∥∇L(W̃(T))∥2] ≤ 2(L(W0)−L∗)

λgminγT
, where W̃(T) is sampled uniformly at random from

{W(0,·), ...,W(T,·)}.

Next, we adapt Theorem 2, to show the convergence of Asymmetric-LoRA (8), RAC-LoRA (9),
random-cLA (5), and c3LA (6) by explicitly determining λgmin for each PEFT method’s from their
commonly chosen Di in practice; see Table 1. For Asymmetric-LoRA and RAC-LoRA, Di =

N (0, σ2) (65; 38), and λH,imin = r
ni

. This implies, λgmin = r
nmax

, where nmax := maxi∈[L] ni. For
c3LA and random-cLA, λH,imin = r

ni
, for i ∈ [L]; see Proposition 4.

In the LoRA adaptation, the Lipschitz smoothness is lost even if the loss, L, is Lipschitz-smooth (38).
One can recover L-smoothness when freezing one of the matrices B or A; see Theorem 6 in §C.2.
Therefore, Theorem 2 cannot be used to describe LoRA, LoRA+, and CoLA’s convergence behavior.
This is indeed a shortcoming of the result. Moreover, the layerwise analysis does not bring any new
insight into the efficacy of the PEFT methods, as the upper bound on E[∥∇L(W̃(T))∥2] remains the
same for all the methods that we could analyze.

4 BENCHMARKING AND EVALUATION

Despite theoretical studies, our experimental study of 8 fine-tuning methods shows that fine-tuning,
in practice, may or may not be better, depending on the actual pre-trained model, datasets used, and a
multitude of other factors. The unpredictable performance of LoRA-based PEFT methods suggests
that it would be advantageous to use their cheaper variants for effective cost reduction and a better
generalizability of pre-trained models.

Implementation details and models used. We provide implementation details of each fine-tuning
method in §D.1. Our empirical evaluation encompasses 9 pretrained models: (i) DeBERTa v3
Base (20), (ii) DeBERTa v2 XXL (21), (iii) GPT2-small (44), (iv) RoBERTa Base (35), (v) RoBERTa

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Performance of fine-tuned models with adapter rank r = 16. We use green, red, and blue to indicate
the best, second best, and third best result. For our variants, ↓ indicates the accuracy drop percentage compared
to the best.

Model Dataset The Past The Present The Future

FFT LoRA CoLA Asym RAC LoRA+ cLA c3LA r-cLA r-c3LA

ViT-Tiny (11) OfficeHome 79.68 80.13 79.54 78.02 78.55 77.87 78.01 (↓2.65%) 78.69 (↓1.80%) 78.01 (↓2.65%) 79.32 (↓1.01%)
CIFAR10 96.59 96.17 95.85 94.80 95.36 95.29 94.94 (↓1.71%) 95.23 (↓1.41%) 95.12 (↓1.52%) 95.22 (↓1.42%)

ViT-Base (11) OfficeHome 86.42 88.96 89.01 89.00 89.33 87.87 89.21 89.18 88.83 89.17
CIFAR10 98.06 98.71 98.48 98.68 98.73 98.36 98.63 98.54 98.78 98.72

DeBERTa v2 XXL (21) MRPC 87.49 88.28 87.47 87.03 86.97 87.53 86.13 (↓2.44%) 85.11 (↓3.59%) 85.55 (↓3.09%) 85.15 (↓3.55%)
TREC-50 91.99 91.47 85.65 92.26 92.02 84.92 91.73 (↓0.57%) 90.87 (↓1.51%) 91.67 (↓0.64%) 91.07 (↓1.29%)
PAWS 94.69 94.97 95.22 94.95 94.66 95.20 94.77 (↓0.47%) 94.90 (↓0.34%) 94.38 (↓0.88%) 94.71 (↓0.54%)

DeBERTa v3 Base (20) MRPC 85.80 88.33 87.91 86.40 86.34 84.51 84.43 (↓4.42%) 80.22 (↓9.18%) 85.42 (↓3.29%) 84.17 (↓4.71%)
RTE 82.47 86.34 83.80 78.94 79.40 84.72 76.00 (↓11.98%) 75.08 (↓13.04%) 79.40 (↓8.04%) 79.40 (↓8.04%)
STSB 89.52 89.09 89.34 89.04 88.71 89.15 87.56 (↓2.19%) 87.90 (↓1.81%) 88.05 (↓1.64%) 87.90 (↓1.81%)
TREC-50 90.15 89.29 89.88 90.67 89.22 85.52 86.04 (↓5.11%) 87.96 (↓2.99%) 86.04 (↓5.11%) 87.70 (↓3.28%)
PAWS 94.76 94.62 94.40 94.48 94.45 94.44 94.23 94.60 94.36 94.42

RoBERTa-Base (35) MRPC 87.40 86.34 86.76 86.40 86.67 84.29 84.83 (↓2.94%) 84.39 (↓3.44%) 85.08 (↓2.65%) 85.33 (↓2.37%)
CoLA 56.08 57.33 58.39 52.35 53.76 50.40 51.86 (↓11.18%) 53.29 (↓8.73%) 52.56 (↓9.98%) 53.10 (↓9.06%)

RoBERTa-Large (35) MRPC 87.57 88.46 88.43 87.56 87.69 72.91 87.81 86.36 86.24 86.59
CoLA 64.58 62.42 60.03 63.42 59.84 28.80 59.47 (↓7.91%) 59.60 (↓7.71%) 58.60 (↓9.26%) 60.24 (↓6.72%)

TinyLlama (61) OpenBookQA 55.47 52.41 52.47 45.96 47.59 53.26 44.92(↓19.02%) 45.12(↓18.66%) 47.07(↓15.14%) 27.34(↓50.71%)
FOLIO 60.71 57.59 59.40 58.33 55.45 54.17 58.97 58.01 54.81 59.82
LogiQA 47.54 41.54 43.70 41.50 40.86 45.83 39.09 (↓17.77%) 39.30 (↓17.33%) 39.09 (↓17.77%) 39.31 (↓17.31%)
CLUTRR 42.01 37.44 39.38 37.98 37.98 38.10 39.12 37.79 36.23 37.03

DeepseekCoder (16) DJANGO 22.73 23.60 19.79 35.12 30.27 27.27 7.83 (↓77.71%) 19.48 (↓44.53%) 19.36 (↓44.87%) 15.34 (↓56.32%)

GPT2-Small (44) E2E 2.98 3.18 3.29 3.36 3.34 3.23 3.34(↑12.08%) 3.29(↑10.4%) 3.30(↑10.7%) 3.29(↑10.4%)

Large (35), (vi) DeepseekCoder-1.3B-base (16), (vii) TinyLlama-1.1B (61), (viii) ViT Base (11),
and (ix) ViT-Tiny (11). See Table 4 in §D.1 for a detailed summary of the models and Table 5 for
reproducibility. We report the epoch when a model has the lowest validation loss.

Fine-tuning tasks and datasets. We perform 4 different fine-tuning tasks:(i) Natural Language
Processing (NLP). We use the datasets, PAWS (64), TREC-50 (31), and various GLUE benchmarks
(56), including MRPC, CoLA, STS-B, and RTE for NLP tasks. (ii) Image Classification. We fine-
tuned LoRA and its variants on OfficeHome (55) and CIFAR-10 (27). (iii) Coding Generation. Code
generation presents unique challenges; minor deviations can lead to runtime errors or semantic
mismatches. There is relatively limited LoRA-focused literature on programming tasks; we evaluate
how different LoRA variants adapt to these tasks on DJANGO (40), and report results using Exact
Match (EM). (iv) Logical Reasoning. We use OpenBookQA (39) for elementary science multiple-
choice reasoning, FOLIO (17) for natural language reasoning with first-order logic, LogiQA (33) for
logical comprehension, and CLUTRR (50) for compositional relational reasoning from text.

4.1 QUALITY OF THE FINE-TUNED MODELS

In Table 2, we present fine-tuning performance of various models with full fine-tuning and LoRA-
based fine-tuning. For the CoLA dataset, we report the Matthews Correlation Coefficient (the higher
the better) (6), for reporting GPT2-small’s results, we use perplexity (the lower the better), and for
other models and datasets, we report test accuracies (the higher the better). Each model and dataset
is trained over three seeds, and we average the results. We find that no one method substantially
outperforms the others for adapting the model to their downstream tasks, including FFT, which
confirms the previous findings in (60). In many cases, FFT performs rather poorly (e.g., ViT-Base on
OfficeHome, DeBERTa v3 on RTE, DeepseekCoder on DJANGO). Importantly, our sparse LoRA
variants outperform FFT and LoRA in some tasks by a larger margin (e.g., ViT-Base on OfficeHome,
DeBERTA v3 on MRPC); in many cases, their performance drop is modest. We note that our variants
cannot always produce the best accuracy in low-epoch fine-tuning but they still generalize well; see
Table 15. This suggests that, when fine-tuning a model for a downstream task, it may be optimal to
select a fine-tuning method based on its other characteristics and user-specific needs, rather than just
the generated accuracy. To highlight this point, in §4.2, we analyze the performance of each method
based on its training time, generalizability, and robustness for adapting to further downstream tasks.
Additionally, we note that our sparse variants do not reduce the number of trainable parameters, but
reduce the number of FLOPs, even with naïve, non-optimized, sparse implementation; see §D.3.

4.2 PERFORMANCE ANALYSIS

We dissect the performance of different LoRA variants using the following tools:

(i) Loss Landscape (29) is a 3D surface that visualizes how the empirical loss of a model differs
under small parameter perturbations; see details in §D.4.1. The sharpness of a model’s loss landscape
correlates with better generalization, and smoother landscapes indicate the PEFT method is more

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: Loss landscapes of ViT-Base fined tuned on OfficeHome (top row) with PCA directions, and
RoBERTa-Base fine-tuned on CoLA (bottom row) with random directions. In both cases, we observe the worst
generalization error, G(W), in (a) and (f), respectively, which are the spikiest landscapes in their class of models.
Additionally, chain methods consistently produce spikier landscapes.

robust to initialization (29). Fine-tuning pretrained models tends to produce smoother landscapes than
training from scratch (18; 37). In Figure 2, top row shows the loss-landscapes of ViT-Base, pretrained
on Imagenet-21K, and fine-tuned on OfficeHome by cLA, c3LA, LoRA, FFT, and RAC, while the
bottom row shows the loss-landscapes of RoBERTa-Base, pretrained on a large corpus of English
data and fine-tuned on CoLA by r-c3LA, LoRA, CoLA, Asymmetric LoRA, and FFT. For ViT-Base,
we used PCA directions, whereas for RoBERTa-Base, we used random directions; see §D.4.1, for
comparison of these two implementations. We present a direct comparison of non-chain LoRA
methods (LoRA, Asymmetric LoRA, cLA) with their chain counterparts (CoLA, RAC-LoRA, c3LA)
in Figure 6. In §D.4.1, we plotted the 2D contour plots to show the optimizer path.

Based on the characteristics of the loss landscapes as in (29), FFT would generalize worse, as it has
the spikiest losses, and our results in Figure 2 confirm that. Based on the sharpness of the landscapes,
chain methods sharpen the minima, and this perspective indicates they should generalize worse.
However, in practice, this is not the case. E.g., For ViT-Base, in Figure 2, RAC has the least G(W).
Therefore, the loss landscape rhetoric, as we also witnessed in Figure 1, does not always match with
the generalization error. Motivated by this discrepancy, we present an alternative analysis that is more
aligned with our empirical observation on the generalization error.

(ii) Intruder Dimensions (49). Given the pretrained and fine-tuned models, W0 and W0 +∆W, the
number of intruder dimensions correlates with their performance in a downstream task; see §D.4.2.
Higher intruder dimensions correlate to a worse performance (49). We analyze the number of intruder
dimensions present in FFT and various LoRA-based PEFT methods for the RoBERTa-Base (35)
and ViT-Base (11). We divide the total fine-tuning epochs for each method into 4 equal points, and
report the number of intruder dimensions present at 25th, 50th, 75th, and 100th percentile of the
training epoch by using the ε-thresholds set at a lower and higher value, 0.4 and 0.8, respectively.
Tables 13 and 14 present the average number of intruder dimensions per layer for RoBERTa-Base and
ViT-Base, respectively. Figures 3a and 3b present the number of intruder dimensions of a fine-tuned
model, obtained from each method by varying the range of threshold, ε ∈ (0, 1]. As shown in the
Figures 3a and 3b, the chain variant of each LoRA-based PEFT method produces more intruders
than its non-chain counterpart. This effect is least pronounced in LoRA and CoLA, which produced
almost the same number of intruders for RoBERTa. This is consistent with our empirical results in
Figure 2—If CoLA produced more intruders than LoRA, it would never have a better G(W) than
LoRA. But, for ViT-Base, this observation does not hold. Also, we note that RAC has the best G(W)
on ViT-Base, while producing substantially more intruders than LoRA and LoRA+. Additionally,
from Figure 3c, we find that FFT has the highest intruder dimensions but the least G(W) (Table
15), LoRA+ has more than average intruder dimensions but the second best G(W) (Table 15); only
LoRA’s intruder dimensions and G(W) follow the correct trend.

(iii) Generalizability. The generalization error, G(W) (Definition 1), is hard to realize in practice, as
the true distribution of a feature space and label space, X × Y , cannot be obtained. Therefore, we
cannot use the theoretical bounds on G(W) in Table 1 without modification. Since test samples are
i.i.d. from (X × Y), as an alternative, the difference between the loss of a model on a collection of
unseen test samples and the loss on its training set approximates how well the model generalizes to
the true distribution of the instance space it was trained on. Therefore, we approximate G(W) ≈
E(Ltest) − Ltrain. As the size of the test set increases, the difference approaches the actual G(W)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) RoBERTa-Base (CoLA) (b) ViT-Base (OfficeHome) (c) ViT-Base (CIFAR-10)

Figure 3: The average number of intruder dimensions present in different fine-tuned models.
Table 3: Generalization error, G(W), of the fine-tuning methods over various models and datasets.

Model Dataset The Past The Present The Future

FFT LoRA CoLA Asym RAC LoRA+ cLA c3LA r-cLA r-c3LA

ViT-Tiny (11) OfficeHome 4.85e−1 6.96e−2 9.55e−3 7.22e−2 6.17e−2 7.39e−2 1.98e−2 3.40e−2 2.16e−2 3.51e−2

DeBERTa v2 XXL (21) PAWS 6.07e−2 1.99e−2 3.63e−2 3.26e−2 3.95e−2 5.41e−2 6.68e−2 5.11e−2 1.98e−2 6.99 e−2

DeBERTa v3 Base (20) MRPC 1.06e−1 8.90e−2 2.59e−2 7.28e−2 9.86e−2 1.52e−2 2.58e−2 8.52e−3 1.16e−1 2.57e−2

TREC50 4.56e−1 2.73e−1 3.99e−1 2.16e−1 2.67e−1 2.61e−2 2.25e−1 3.70e−1 3.36e−1 2.63e−2

PAWS 2.62e−2 6.43e−2 2.40e−2 6.27e−2 8.17e−2 5.55e−2 7.39e−2 5.77e−2 1.01e−1 5.82e−2

RoBERTa-Base (35) CoLA 1.39 7.74e−1 4.04e−1 2.22e−1 1.96e−1 8.10e−1 4.70e−1 4.43e−1 4.38e−1 4.01e−1

TinyLlama (61) OpenBookQA 1.78e−1 2.82e−1 3.41e−1 2.15e−1 1.86e−1 2.07e−1 1.51e−1 2.20e−1 3.16e−1 7.59e−2

FOLIO 1.82e−1 2.37e−1 2.17e−1 1.75e−1 1.93e−1 5.11e−2 2.35e−1 1.91e−1 1.05e−1 2.49e−1

LogiQA 3.61e−1 6.12e−3 1.45e−1 1.16e−2 1.75e−1 2.37e−1 8.60e−2 1.1e−1 6.64e−2 6.25e−2

CLUTRR 4. 29 2.25 1.55 2.34 2.27 5.48 2.16 2.19 2.59 4.23

DeepseekCoder (16) DJANGO 3.48e−2 4.65e−2 3.4e−2 5.16e−2 4.64e−2 3.87e−2 4.19e−2 3.89e−2 3.64e−2 3.62e−2

GPT2-Small (44) E2E 1.65e−1 1.93e−1 1.85e−1 1.83e−1 1.85e−1 1.87e−1 1.77e−1 1.82e−1 1.88e−1 1.82e−1

of the model; see discussion in §D.5. We report the approximate generalizability of all fine-tuned
models in Tables 3; also, see 15 in §D.5.

Drawing a connection from our theoretical upper bounds in Table 1, we find PEFT methods with the
same upper bounds perform similarly in practice. More precisely, cLA has a smaller upper bound on
G(W) than r-c3LA in practice, indicating the validity of theoretical upper bounds. This observation
also holds for cLA and RAC, and c3LA and Asymmetric LoRA pairs. On the other hand, cLA and
r-cLA have the same upper bound on G(W), and they also perform almost similarly in practice.
Nevertheless, there are some discrepancies, and we attribute them to the fact that Table 1 gives us an
upper bound on G(W). E.g., although the upper bound on G(W) of Asymmetric LoRA is smaller
than RAC by a factor of

√
k, they behave similarly in practice. Similarly, r-cLA performs marginally

worse than RAC, although RAC has a higher theoretical bound on G(W). In an extreme case, r-c3LA
empirically outperforms r-cLA while having a higher theoretical bound on G(W).

5 CONCLUSION

Through extensive benchmarking spanning four different fine-tuning tasks, nine models, and fourteen
datasets, we show that no fine-tuning method, including full fine-tuning, is a clear choice for fine-
tuning an arbitrary task. This observation confirms the finding in some previous works that dissect
LoRA’s efficacy. As the future of computing and hardware interfaces moves towards memory-
and compute-efficiency, we propose simple LoRA variants with inherent sparsity, cLA and c3LA
and their randomized variants, and observe their surprisingly good performance. Therefore, we
postulate that it is advantageous to choose a fine-tuning method based on its characteristics and
user-specific needs rather than on generated accuracy. To support this, we analyzed our methods
and various common LoRA PEFT variants through the lens of generalizability. To our knowledge,
we are among the first to obtain generalization error bounds for a wide range of PEFT methods.
We show that, in theory, our methods have the same generalization error upper bounds as their
non-sparse counterparts. While comparing the theoretical results of generalization error bounds with
experimentally observed generalization error, we find that our generalization error upper bounds
closely follow the generalizability of the models in practice, among all other experimental perspectives,
such as loss-landscape and intruder dimensions. In the advent of artificial general intelligence, when
we want a model to behave human-like across many tasks, it is better to choose PEFT methods that
generalize well and are computationally efficient.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

[1] NVIDIA GPUs: H100 vs. A100—A detailed comparison. https://gcore.com/blog/nvidia-h100-
a100, January 6, 2025.

[2] Meta AI. Introducing Meta Llama 3: The most capable openly available LLM to date.
https://ai.meta.com/blog/meta-llama-3/.

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. In Advances in Neural Information Processing Systems,
volume 35, pages 23716–23736, 2022.

[4] Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard,
Connor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns
less and forgets less. Transactions on Machine Learning Research.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901, 2020.

[6] Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):6,
2020.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, pages 248–255, 2009.

[8] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
Finetuning of Quantized llms. Advances in neural information processing systems, 36:10088–
10115, 2023.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[10] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and
Maosong Sun. Sparse low-rank adaptation of pre-trained language models. arXiv preprint
arXiv:2311.11696, 2023.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR, 2020.

[12] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. Efficient sparse collec-
tive communication and its application to accelerate distributed deep learning. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages 676–691, 2021.

[13] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In ICLR, 2019.

[14] Trevor Gale, Erich Elsen, and Sara Hooker. Sparse gpu kernels for deep learning. In The
International Conference for High Performance Computing, Networking, Storage and Analysis,
2020.

[15] Giancarlo Mori. GPT-4.5 vs GPT-4o: Comparing OpenAI’s Latest AI Models.
https://giancarlomori.substack.com/p/gpt-45-vs-gpt-4o-comparing-openais, March 13, 2025.

[16] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

[17] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou,
James Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah
Szabo, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm
Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri,
Wojciech Kryściński, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming
Xiong, Rex Ying, Arman Cohan, and Dragomir Radev. Folio: Natural language reasoning with
first-order logic. arXiv, 2022.

[18] Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Visualizing and understanding the effectiveness of
bert. arXiv preprint arXiv:1908.05620, 2019.

[19] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient Low Rank Adaptation of Large
Models. In International Conference on Machine Learning, pages 17783–17806, 2024.

[20] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using
electra-style pre-training with gradient-disentangled embedding sharing. arXiv preprint
arXiv:2111.09543, 2021.

[21] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

[22] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, volume 97,
pages 2790–2799, 2019.

[23] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[24] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. LoRA: Low-Rank Adaptation of Large Language Models. In International
Conference on Learning Representations, 2022.

[25] Junsu Kim, Jaeyeon Kim, and Ernest K Ryu. Lora training provably converges to a low-rank
global minimum or it fails loudly (but it probably won’t fail). arXiv preprint arXiv:2502.09376,
2025.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR,
2015.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images.(2009), 2009.

[28] Dongyue Li and Hongyang Zhang. Improved regularization and robustness for fine-tuning in
neural networks. In Advances in Neural Information Processing Systems, volume 34, pages
27249–27262, 2021.

[29] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the Loss
Landscape of Neural Nets. In NeurIPS, volume 31, 2018.

[30] Houyi Li, Wenzhen Zheng, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie Xuyang, Yuantao
Fan, Zhenyu Ding, Haoying Wang, Ning Ding, Shuigeng Zhou, Xiangyu Zhang, and Daxin
Jiang. Predictable scale: Part i, step law – optimal hyperparameter scaling law in large language
model pretraining, 2025.

[31] Xin Li and Dan Roth. Learning question classifiers: the role of semantic information. Natural
Language Engineering, 12(3):229–249, 2006.

[32] Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. arXiv preprint arXiv:2307.05695, 2023.

[33] Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

[34] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
Forty-first International Conference on Machine Learning, 2024.

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[36] Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics
and econometrics. John Wiley & Sons, 2019.

[37] Subhajit Maity, Killian Hitsman, Xin Li, and Aritra Dutta. Kolmogorov-arnold attention: Is
learnable attention better for vision transformers? arXiv preprint arXiv:2503.10632, 2025.

[38] Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
Elesedy, Mete Ozay, and Peter Richtárik. Randomized asymmetric chain of LoRA: The first
meaningful theoretical framework for low-rank adaptation. arXiv preprint arXiv:2410.08305,
2024.

[39] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[40] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda,
and Satoshi Nakamura. Learning to generate pseudo-code from source code using statistical
machine translation. In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 574–584. IEEE, 2015.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An Imperative
Style, High-Performance Deep Learning Library. In NeurIPS, volume 32, 2019.

[42] Kaustubh Ponkshe, Raghav Singhal, Eduard Gorbunov, Alexey Tumanov, Samuel Horvath, and
Praneeth Vepakomma. Initialization using update approximation is a silver bullet for extremely
efficient low-rank fine-tuning. arXiv preprint arXiv:2411.19557, 2024.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763, 2021.

[44] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[45] Rafael Ramos. Comparing NVIDIA H100 vs A100 GPUs for AI Workloads.
https://openmetal.io/resources/blog/nvidia-h100-vs-a100-gpu-comparison/, July 29, 2025.

[46] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations for large-scale deep learning. arXiv preprint arXiv:2007.00399, 2020.

[47] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156(1):433–484, 2016.

[48] Daniel Russo and James Zou. How much does your data exploration overfit? controlling bias
via information usage. IEEE Transactions on Information Theory, 66(1):302–323, 2019.

[49] Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. Lora vs full
fine-tuning: An illusion of equivalence. arXiv preprint arXiv:2410.21228, 2024.

[50] Koustuv Sinha, Shagun Sodhani, Joelle Pineau, and William L. Hamilton. Clutrr: A diagnostic
benchmark for inductive reasoning from text. arXiv, 2019.

[51] Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving LoRA in Privacy-preserving
Federated Learning. In ICLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

[52] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[53] Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. In Advances in Neural Information Processing Systems,
volume 37, pages 9565–9584, 2024.

[54] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

[55] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5018–5027, 2017.

[56] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353–355, 2018.

[57] Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: Efficient Fine-tuning of Language
Models via Residual Learning. In ICML 2024 Workshop on LLMs and Cognition, 2024.

[58] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. Advances in neural information processing systems, 30, 2017.

[59] Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstanti-
nos Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication
framework for distributed machine learning. In 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), pages 561–572. IEEE, 2021.

[60] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

[61] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024.

[62] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

[63] Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automat-
ically tuning matrix ranks in low-rank adaptation based on meta learning. arXiv preprint
arXiv:2403.09113, 2024.

[64] Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word
scrambling. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1298–1308,
2019.

[65] Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez De Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. In Proceedings of the 41st International
Conference on Machine Learning, pages 62369–62385, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CONTENTS

1 Introduction 1

2 DNN Fine-Tuning: The Past, Present, and Future 2

2.1 The Past: Full fine-tuning (FFT) and LoRA . 3

2.2 The Present: Evolution of LoRA . 3

2.3 The Future: Can we push for more compute efficiency? 3

3 Theoretical Insights 4

3.1 On the generalization of different variants of LoRA 4

3.2 On the nonconvex convergence of different variants of LoRA 6

4 Benchmarking and Evaluation 6

4.1 Quality of the Fine-Tuned Models . 7

4.2 Performance Analysis . 7

5 Conclusion 9

A The Present: Evolution of LoRA—Continued 15

B Pseudo Code of our proposed LoRA variants 16

C Theoretical Results 16

C.1 Generalization . 16

C.1.1 Inequalities used . 18

C.1.2 Proof of Theorem 1. 18

C.1.3 Neural Network with No activation Function—Special case of Theorem 1 . 22

C.1.4 Tightness of the bounds in Theorem 1 . 23

C.1.5 Adapting Theorem 1 under special cases 23

C.2 Nonconvex Convergence . 26

C.2.1 Auxiliary Results . 27

C.2.2 Nonconvex Convergence Result . 27

C.2.3 Additional Results . 30

D Addendum to Benchmarking and Evaluation 32

D.1 Implementation Details . 32

D.2 The effects of learning rate, scaling factor, and chain reset frequency on quality metric
over various ranks . 32

D.3 Computational Cost, FLOPs, and Efficiency . 33

D.4 Performance Analysis—Continued . 33

D.4.1 Loss Landscape—Continued . 33

D.4.2 Intruder Dimension implementation . 40

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

D.5 Generalization Error—Continued . 40

E Limitations and Discussion 41

F Table of notations 41

Organization of Appendix. We organize the Appendix with the following structure:In §A, we
discuss the popular contemporary LoRA variants; this is a continuation of §2.2 of the main paper.
In §B, we give the pseudocode of our proposed LoRA variants, cLA, random-cLA, and c3LA.
§C contains the proofs to the theorems in §3. Particularly, it contains the proofs for Theorem 2,
Theorem 1, Theorem 4 and Theorem 6. In §D, we discuss the implementation details and extend our
empirical study by including various ablation studies and developing discussion topics. This section
acts as an addendum to §4 of the main paper. For notations used in this paper, we refer to Table 16 in
§F.

A THE PRESENT: EVOLUTION OF LORA—CONTINUED

Below, we sketch a few popular LoRA variants.

Chain of LoRA (CoLA) (57) increases LoRA’s performance without substantially increasing com-
pute or memory costs. After fine-tuning B1A1 for the downstream task to obtain B̂

1
Â

1
, CoLA merges

B̂
1
Â

1
into the base weights and continues training with a new B2A2 on the same task, treating

W0 +
α
r B̂

1
Â

1
as the base weights. Denote W(k,BA) := W0 +

∑k
j=1

α
r B̂

j
Â
j

and W(0,BA) = W0

for convenience. CoLA of chain length k solves:
For j ∈ [k], B̂

j
Â
j
≈ argminBjAj

[
L(W(j−1,BA)

0 +
α

r
B̂
j
Â
j
)
]

(7)

to obtain the fine-tuned model, fW(k,BA) . CoLA simulates a higher-rank approximation of a single
LoRA update (32) and claims to reduce LoRA’s failure (25).

Asymmetric LoRA (65) modifies LoRA adaptation for each layer by freezing one of the low-rank
matrices, conventionally, A to A0, initializing the frozen matrix via a Normal distribution, and setting
the trainable matrix to 0, and solves:

B̂ ≈ argminB[L(W0 +
α

r
BA0) =

1

|N |

|N |∑
i=1

ℓ(fW0+
α
r BA0

(xi), yi)], (8)

to obtain the fine-tuned model fW0+B̂A0
. Under trainable-parameter constraints, Asymmetric LoRA

competes with LoRA (65) and retains the Lipschitz smoothness of the loss function, which LoRA
does not (51).

Randomized Asymmetric Chain of LoRA (RAC-LoRA) (38) combines Asymmetric LoRA and
CoLA. RAC-LoRA fixes one of the low-rank matrices (conventionally A), initializing via some
fixed distribution of matrices D, and sets the trainable one to 0. Like CoLA, the trained B̂

1
A1

0 is
then merged into the base weights, and a new BA0 is trained on the same task. Denote W(k,B) :=

W0 +
∑k
j=1

α
r B̂

j
Aj0 and W(0,B) = W0. RAC-LoRA of chain length k solves:

For j ∈ [k], B̂
j
≈ argminBj

[
L(W(j−1,B)

0 +
α

r
B̂
j
Aj0)

]
(9)

to obtain the fine-tuned model fW(k,B) .

LoRA+ (19) applies separate learning rates {γiB , γiA} to the adapter matrices, {Bi, Ai} of each layer,
respectively, and maintains the identical structure to LoRA. LoRA+ prioritizes a substantially higher
learning rate (2− 16×) for B.

Other variants. There are other popular LoRA variants, such as HydraLoRA (53), designed for
fine-tuning on datasets with high heterogeneity. LoRA-SB (42) simulates the FFT process within
low-rank subspaces by adding a trainable r × r matrix R, initializing BRA based on the SV D of
the first step of FFT, and freezing B,A. QLoRA (8) fine-tunes quantized LLMs. AdaLoRA (62) uses
varying rank by layer and uses an SVD initialization. SoRA (10) introduces sparsity in the low-rank
updates. DoRA (34) separates fine-tuning the direction and magnitude components of the model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

AutoLoRA (63) trains each LoRA update as a sum of rank-one matrices and learns which to discard
during training. DyLoRA (54) concentrates the more important features in the first columns and rows
of B and A, respectively.

B PSEUDO CODE OF OUR PROPOSED LORA VARIANTS

In this Section, we present the pseudocode of our proposed LoRA variants, cLA (Algorithm 1),
random-cLA (Algorithm 2), c3LA (Algorithm 3) and r-c3LA (Algorithm 4).

Algorithm 1 Cheap LoRA (cLA)

1: Parameters: Loss function L and model fW(·). Pretrained weights W0 = (W 1
0 , ...,W

L
0),

where W i
0 ∈ Rni×mi . rank r ≪ min{mi, ni}i∈[L], learning rate γ > 0, scaling factor α > 0,

total training iterations T .
2: Initialize Aj0 = [Ir |0 r×(mj−r)]; B

0,j = 0 for j ∈ [L]
3: for t = 1, ..., T do
4: forward pass with LoRA modules
5: backward pass then update Bt

6: for j = 1, ..., L do

7: Bt,j = Bt−1,j − γ αr∇jL(W0 +
α
rB

t−1A0)Diag(

1 to r︷ ︸︸ ︷
1, ..., 1, 0, ..., 0)

8: end for
9: end for

10: ĵ = argminj∈[T] L(W0 +
α
rB

jA0) or task-based metric.

11: return Fine-tuned weights W0 +
α
rB

ĵA0

Algorithm 2 random Cheap LoRA (r-cLA)

1: Parameters: Loss function L and model fW(·). Pretrained weights W0 = (W 1
0 , ...,W

L
0),

where W i
0 ∈ Rmi×ni . rank r ≪ min{mi, ni}i∈[L], learning rate γ > 0, scaling factor α > 0,

total training iterations T .
2: Initialize
3: ξj = randint(0, ⌊njr ⌋ − 1) for j ∈ [L]

4: Aj0 =
[
0r×ξj | Ir | 0r×(nj−ξj−r)

]
; B0,j = 0 for j ∈ [L]

5: for t = 1, ..., T do
6: forward pass with LoRA modules
7: backward pass then update Bt

8: for j = 1, ..., L do

9: Bt,j = Bt−1,j − γ αr∇jL(W0 +
α
rB

t−1A0)Diag(0, ..., 0,

ξj+1 to ξj+r︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0)

10: end for
11: end for
12: ĵ = argminj∈[T] L(W0 +

α
rB

jA0) or task-based metric.

13: return Fine-tuned weights W0 +
α
rB

ĵA0

C THEORETICAL RESULTS

This section complements Section 3 in the main paper.

C.1 GENERALIZATION

In this section, we give a detailed proof of the generalization error bound. We start by listing the
inequalities used in this section.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Algorithm 3 Circulant Chain of Cheap LoRA (c3LA)

1: Parameters: Loss function L and model fW(·). Pretrained weights W(0)
0 = (W 1, ...,WL),

where W i ∈ Rmi×ni . rank r ≪ min{mi, ni}i∈[L], learning rate γ > 0, scaling factor α > 0,
total training iterations T , chain-length k <= T .

2: Initialize Aj0 = [Ir |0 r×(nj−r)]; B
0,j = 0 for j ∈ [L], current chain c = 0.

3: for t = 1, ..., T do
4: if t ≡ 0 (mod ⌊Tk ⌋) then
5: c = c+ 1
6: Merge LoRA to backbone weights W(c)

0 = W
(c−1)
0 + α

rB
t−1A0

7: Re-initialize with A0 shifted by r:
8: Aj0 = [0r×cr | Ir | 0r×ni−r−cr]; Bt−1,j = 0 for j ∈ [L]
9: end if

10: forward pass with LoRA modules
11: backward pass then update Bt

12: for j = 1, ..., L do

13: Bt,j = Bt−1,j − γ αr∇jL(W(c)
0 + α

rB
t−1A0)Diag(0, ..., 0,

cr to (c+1)r︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0)

14: end for
15: end for
16: ĉ, ĵ = argminj∈[⌊Tk ⌋],c∈[k] L(W

(c)
0 + α

rB
cjA0) or task-based metric.

17: return Fine-tuned weights Wĉ
0 +

α
rB

ĉĵA0

Algorithm 4 Random Circulant Chain of Cheap LoRA (r-c3LA)

1: Parameters: Loss function L and model fW(·). Pretrained weights W(0)
0 = (W 1, ...,WL),

where W i ∈ Rmi×ni . rank r ≪ min{mi, ni}i∈[L], learning rate γ > 0, scaling factor α > 0,
total training iterations T , chain-length k <= T .

2: Initialize
3: ξj = randint(0, ⌊njr ⌋ − 1) for j ∈ [L].

4: Aj0 =
[
0r×ξj | Ir | 0r×(nj−ξj−r)

]
; B0,j = 0 for j ∈ [L], current chain c = 0.

5: for t = 1, ..., T do
6: if t ≡ 0 (mod ⌊Tk ⌋) then
7: c = c+ 1
8: Merge LoRA to backbone weights W(c)

0 = W
(c−1)
0 + α

rB
t−1A0

9: Re-initialize with A0 shifted by a new random variable ξ′j :

10: Aj0 =
[
0r×ξ′j | Ir | 0r×(nj−ξ′j−r)

]
; Bt−1,j = 0 for j ∈ [L]

11: end if
12: forward pass with LoRA modules
13: backward pass then update Bt

14: for j = 1, ..., L do

15: Bt,j = Bt−1,j − γ αr∇jL(W0 +
α
rB

t−1A0)Diag(0, ..., 0,

ξj+1 to ξj+r︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0)

16: end for
17: end for
18: ĉ, ĵ = argminj∈[⌊Tk ⌋],c∈[k] L(W

(c)
0 + α

rB
cjA0) or task-based metric.

19: return Fine-tuned weights Wĉ
0 +

α
rB

ĉĵA0

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C.1.1 INEQUALITIES USED

1. If A,B ∈ Rm×n and x ∈ Rn, then the Triangle-Inequality gives:
∥(A+B)x∥ ≤ ∥Ax∥+ ∥Bx∥. (10)

2. For A ∈ Rm×n and x ∈ Rn, we have:
∥Ax∥ ≤ ∥A∥2∥x∥. (11)

3. If σ(0) ̸= 0, then by the triangle inequality and using Assumption 3 we have:
∥σ(Ax)∥ ≤ ∥σ(Ax)− σ(0)∥+ ∥σ(0)∥ ≤ Lσ∥Ax∥+ ∥σ(0)∥. (12)

4. For a finite collection of matrices, {A1, · · · , Ak};Ai ∈ Rm×n, we have:

rank(
k∑
i=1

Ai) ≤
k∑
i=1

rank(Ai). (13)

5. Let I(X;Y) denote the mutual information between random variablesX and Y . It measures
how much the knowledge of one random variable reveals about measuring the other, i.e.,

I(X;Y) = D(PXY ∥PX ⊗ PY) = sup
F

{
∫
FdPXY − log

∫
eF d(PX ⊗ PY)},

where F is a bounded, measurable function (58). Let T be a deterministic map for A ∈
Rm×n. Then the Data Processing Inequality (DPI) gives us I(T (A);N) ≤ I(A;N). If T
is a bijective mapping then (DPI) gives us (65):

I(A;N) = I(T (A);N). (14)

C.1.2 PROOF OF THEOREM 1.

Theorem 1. (Generalization bounds) Let fW0+∆W(x) = σL([W0
L + ∆WL](· · ·σ2([(W 2

0 +
∆W 2]σ1([W

1
0 + ∆W 1]x)) · · ·)) be a L-layers fine-tuned DNN, where W0 +∆W is a fine-tuned

update. Let the loss function, L for fine-tuning, follow Assumption 2 and Assumptions 1–3 hold. Then
G(W0 +∆W) ≤ min (G(W0) + Φ∆W,G(∆W) + ΦW0

), where

Φ∆W := 2LL

C L∏
i=1

Lσi

2L−1∑
i=1

L∏
j=1

P (i, j) +

2L−2∑
i̸=2a−1:a∈[L]

F (i)

 and

ΦW0
:= 2LL

C L∏
i=1

Lσi

2L∑
i=2

L∏
j=1

P (i, j) +

2L−1∑
i ̸=2a:a∈[L]

F (i)

,
are the correction terms, F (i) := ∥σL−ψ(i)(0)∥

∏ψ(i)
j=1[LσL−j+1

H(i, j)], ψ(i) := ⌊log2(i)⌋, and

P (i, j) :=

{
∥W (L−j+1)

0 ∥ if ⌊ i−1
2L−1 ⌋ is odd,

∥∆W (L−j+1)∥ if ⌊ i−1
2L−1 ⌋ is even

,H(i, j) :=

{
∥∆W (L−j+1)∥ if ⌊ i

2ψ(i)−j ⌋ is odd,
∥W (L−j+1)

0 ∥ if ⌊ i
2ψ(i)−j ⌋ is even.

Proof. Let
fW0+∆W := σ(L)([W

(L)
0 +∆W (L)]σ(L−1)(...σ(1)([W

(1)
0 +∆W (1)]x)...))

represent our fine-tuned model and
fW0 := σ(L)(W

(L)
0 σ(L−1)(...σ(1)(W

(1)
0 x)...))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

represent our pretrained model. First, we upper bound the quantity ∥fW0+∆W − fW0
∥. We have

∥fW0+∆W − fW0
∥

=
∥∥σ(L)([W (L)

0 +∆W (L)]σ(L−1)(· · ·σ(1)([W
(1)
0 +∆W (1)]x) · · ·))

− σ(L)(W
(L)
0 σ(L−1)(· · ·σ(1)(W

(1)
0 x) · · ·))

∥∥
Assumption 3

≤ LσL
∥∥[W (L)

0 +∆W (L)]σ(L−1)(· · ·σ(1)([W
(1)
0 +∆W (1)]x) · · ·))

− [W
(L)
0]σ(L−1)(· · ·σ(1)(W

(1)
0 x) · · ·))

∥∥
= LσL

∥∥∆W (L)σ(L−1)(· · ·σ(1)([W
(1)
0 +∆W (1)]x) · · ·))

−W
(L)
0 [(σ(L−1)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·))− σ(L−1)(· · ·σ(1)(W

(1)
0 x) · · ·)))]

∥∥
Triangle Inequality and Inequality (11)

≤ LσL [∥∆W (L)∥2∥σ(L−1)(· · ·σ(1)([W
(1)
0 +∆W (1)]x) · · ·))∥

+ ∥W (L)
0 ∥2∥(σ(L−1)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)− σ(L−1)(· · ·σ(1)(W

(1)
0 x) · · ·))∥].

Note that our inequality is now composed of two components:
(A): LσL∥∆W (L)∥2∥σ(L−1)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)∥

(B): LσL∥W
(L)
0 ∥2∥(σ(L−1)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)− σ(L−1)(· · ·σ(1)(W

(1)
0 x) · · ·))∥.

We will show for any k > 1 that the (B) component can expand out to two sub-components that
mimic (A) and (B).
(B)k := Lσk ∥W

(k)
0 ∥2

∥∥∥σ(k−1)(· · ·σ(1)([W
(1)
0 +∆W (1)]x) · · ·)− σ(k−1)(· · ·σ(1)(W

(1)
0 x) · · ·)

∥∥∥
Assumption 3

≤ Lσk ∥W
(k)
0 ∥2 Lσk−1

∥[W (k−1)
0 +∆W (k−1)]σ(k−2)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)

− W
(k−1)
0 σ(k−2)(· · ·σ(1)(W

(1)
0 x) · · ·)∥

=LσkLσk−1
∥W (k)

0 ∥2
∥∥∥∆W (k−1) σ(k−2)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)

+ W
(k−1)
0

(
σ(k−2)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)− σ(k−2)(· · ·σ(1)(W

(1)
0 x) · · ·)

)
∥

Inequality (11)
≤ LσkLσk−1

∥W (k)
0 ∥2

(
∥∆W (k−1)∥2 ∥σ(k−2)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)∥

+ ∥W (k−1)
0 ∥2 ∥σ(k−2)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)− σ(k−2)(· · ·σ(1)(W

(1)
0 x) · · ·)∥

)
.

(B)k ≤ Lσk ∥W
(k)
0 ∥2 Lσk−1

∥∆W (k−1)∥2 ∥σ(k−2)(· · ·σ(1)([W
(1)
0 +∆W (1)]x) · · ·)∥︸ ︷︷ ︸

(A)k−1

+ Lσk ∥W
(k)
0 ∥2 Lσk−1

∥W (k−1)
0 ∥2 ∥σ(k−2)(· · ·σ(1)([W

(1)
0 +∆W (1)]x) · · ·)− σ(k−2)(· · ·σ(1)(W

(1)
0 x) · · ·)∥︸ ︷︷ ︸

(B)k−1

.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

When k = 1, we see that (B) no longer splits into (A) and (B) subcomponents, but rather:

(B)1 :=
(L∏
j=2

Lσj

)(L∏
i=2

∥W (i)
0 ∥2

)∥∥∥σ(1)([W (1)
0 +∆W (1)]x

)
− σ(1)

(
W

(1)
0 x

)∥∥∥
Assumption 3

≤
(L∏
j=1

Lσj

)(L∏
i=2

∥W (i)
0 ∥2

)∥∥[W (1)
0 +∆W (1)]x−W

(1)
0 x

∥∥
=

(L∏
j=1

Lσj

)(L∏
i=2

∥W (i)
0 ∥2

)∥∥∆W (1)x
∥∥

Inequality (11)
≤

(L∏
j=1

Lσj

)(L∏
i=2

∥W (i)
0 ∥2

)
∥∆W (1)∥2 ∥x∥

Assumption 1

≤ C
(L∏
j=1

Lσj

)(L∏
i=2

∥W (i)
0 ∥2

)
∥∆W (1)∥2.

We now present the recursive step for the (A) terms:
(A)k := Lσk ∥∆W (k)∥2

∥∥∥σ(k−1)

(
[W

(k−1)
0 +∆W (k−1)]σ(k−2)

(
· · ·σ(1)([W

(1)
0 +∆W (1)]x)

))∥∥∥
Inequality (12)

≤ Lσk ∥∆W (k)∥2
(
Lσk−1

∥∥[W (k−1)
0 +∆W (k−1)]σ(1)

(
[W

(1)
0 +∆W (1)]x

)∥∥
+ ∥σ(k−1)(0)∥

)
Inequality (11)

≤ Lσk ∥∆W (k)∥2
(
Lσk−1

∥W (k−1)
0 ∥2

∥∥σ(1)([W (1)
0 +∆W (1)]x

)∥∥
+ Lσk−1

∥∆W (k−1)∥2
∥∥σ(1)([W (1)

0 +∆W (1)]x
)∥∥+ ∥σ(k−1)(0)∥

)
.

Recursive collapse of (A). Applying Inequality (12) to the outer activation σ(k−1) splits (A)k into a
W0-branch, a ∆W -branch, and an offset term σ(k−1)(0). The W0 and ∆W branches recurse inward,
each step multiplying by Lσi and either ∥W (i)

0 ∥2 or ∥∆W (i)∥2, until σ(1) returns Lσ1
∥W (1)

0 x∥,
Lσ1∥∆W (1)x∥, and ∥σ(1)(0)∥, which reduce via property (i). Hence (A)k collapses to a sum of
terms based on permutations of matrix spectral norms, plus offset contributions from the nonlinear
activation of zero vectors.

If fW0
and fW0+∆W are both 1-layer, we can expand out their difference by:

∥fW0+∆W − fW0
∥ ≤ CLσ1

∥∆W (1)∥2
If fW0

and fW0+∆W are both 2-layer, we can expand out their difference by:
∥fW0+∆W − fW0

∥ ≤ C Lσ2
Lσ1

∥W (2)
0 ∥2 ∥∆W (1)∥2 + CLσ2

Lσ1
∥∆W (2)∥2∥W (1)

0 ∥2
+ CLσ2Lσ2∥∆W (2)∥2∥∆W (1)∥2 + Lσ2∥∆W (2)∥2∥σ1(0)∥

If fW0 and fW0+∆W are both 3-layer, we can expand out their difference by:
∥fW0+∆W − fW0∥ ≤ C Lσ1Lσ2Lσ3

(
∥W (3)

0 ∥2 ∥W (2)
0 ∥2 ∥∆W (1)∥2

+ ∥W (3)
0 ∥2 ∥∆W (2)∥2 ∥W (1)

0 ∥2 + ∥W (3)
0 ∥2 ∥∆W (2)∥2 ∥∆W (1)∥2

+ ∥∆W (3)∥2 ∥W (2)
0 ∥2 ∥W (1)

0 ∥2 + ∥∆W (3)∥2 ∥W (2)
0 ∥2 ∥∆W (1)∥2

+ ∥∆W (3)∥2 ∥∆W (2)∥2 ∥W (1)
0 ∥2 + ∥∆W (3)∥2 ∥∆W (2)∥2 ∥∆W (1)∥2

)
+ Lσ3

Lσ2
∥σ(1)(0)∥

(
∥W (3)

0 ∥2 ∥∆W (2)∥2 + ∥∆W (3)∥2 ∥W (2)
0 ∥2

)
+ Lσ3

Lσ2
∥∆W (3)∥2 ∥∆W (2)∥2 ∥σ(1)(0)∥+ Lσ3

∥∆W (3)∥2 ∥σ(2)(0)∥.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 4: ∥fW0+∆W − fW0
∥ Visual representation of the recursive collapse of (A,B).

Thus a proof by induction indicates the difference between fW0
and fW0+∆W L-layered hypothesis

can be upper bounded by:

∥fW0+∆W − fW∥ ≤ C

L∏
i=1

Lσi [

2L−1∑
i=1

L∏
j=1

PL(i, j)] +

2L−2∑
i=2;i ̸=2a−1,a∈[L]

F (i)

If we treat ∆W (i) and W (i)
0 as binary classes, we can give each identity 0 and 1 respectively; thus

W
(3)
0 W

(2)
0 W

(1)
0 corresponds to 1112 or 7 and ∆W (3)W

(2)
0 ∆W (1) corresponds to 0102 or 2. Thus,

using this pattern, we can expand our summation using the following expression:

PL(i, j) =


∥W0

(L−j+1)∥2, if
⌊
i− 1

2L−j

⌋
mod 2 = 1,

∥∆W (L−j+1)∥2, if
⌊
i− 1

2L−j

⌋
mod 2 = 0.

,

F (i) = ∥σ(L−⌊log2(i)⌋)(0)||
⌊log2(i)⌋∏
j=1

[Lσ(L−j+1)
H(i, j)]

and

H(i, j) =

{
∥∆W (L−j+1)∥2 if ⌊ i

2⌊log2(i)⌋−j ⌋ mod 2 = 1,

∥W (L−j+1)
0 ∥2 if ⌊ i

2⌊log2(i)⌋−j ⌋ mod 2 = 0.
,

where F (i) and H(i, j) are index functions that can be visualized in Figure 4. For representational
purposes, every vertex that has three red edges adds the ℓ2 norm of the layer below its activation
function on the zero vector. When a vertex has two different colored edges strictly below it, it
collapses into an A and B sub-component. When this occurs, no additional offset term is added to
our summation. A total of 2L − (L+1) of these offset terms will be added. Both P (i, j) and H(i, j)
can also take cases by even and odd inputs as their indexing requires modulus arithmetic over binary
classifications (∥W (i)

0 ∥ and ∥∆W (i)∥).
Now that we have an upper bound for the difference of our hypotheses, we write the difference in
terms of true loss and empirical loss:
Lglobal(W0 +∆W)− Lglobal(W0) = EX ,Y∼ν [ℓ(fW0+∆W(X), Y)]− EX ,Y∼ν [ℓ(fW0

(X), Y)]

= EX ,Y∼ν [ℓ(fW0+∆W(X), Y)− ℓ(fW0(X), Y)].

≤ EX ,Y∼ν [LL∥fW0+∆W(X)− fW0
(X)∥]

≤ EX ,Y∼ν

LL

C L∏
k=1

Lσi

2L−1∑
i=1

L∏
j=1

PL(i, j)

+

2L−2∑
i ̸=2a−1

F (i)


= LL

C L∏
k=1

Lσi

2L−1∑
i=1

L∏
j=1

PL(i, j)

+

2L−2∑
i̸=2a−1

F (i)

 .
21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Similarly,

L(W0 +∆W)− L(W0) =
1

L

L∑
i′=1

ℓ
(
fW0+∆W(x′i), y

′
i

)
− 1

L

L∑
i′=1

ℓ
(
fW0(x

′
i), y

′
i

)
=

1

L

L∑
i′=1

[
ℓ
(
fW0+∆W(x′i), y

′
i

)
− ℓ

(
fW0(x

′
i), y

′
i

)]
≤ 1

L

L∑
i′=1

LL
∥∥fW0+∆W(x′i)− fW0

(x′i)
∥∥

≤ 1

L

L∑
i′=1

LL

(
C

L∏
k=1

Lσk

[2L−1∑
i=1

L∏
j=1

PL(i, j)
]
+

2L−2∑
i ̸=2a−1

F (i)
)

= LL

(
C

L∏
k=1

Lσk

[2L−1∑
i=1

L∏
j=1

PL(i, j)
]
+

2L−2∑
i̸=2a−1

F (i)
)
.

Using the triangle inequality, we reach:∣∣G(W0 +∆W)− G(W0)
∣∣ = ∣∣Lglobal(W0 +∆W)− L(W0 +∆W)− Lglobal(W0) + L(W0)

∣∣
≤

∣∣Lglobal(W0 +∆W)− Lglobal(W0)
∣∣+ ∣∣L(W0 +∆W)− L(W0)

∣∣
≤ 2LL

(
C

L∏
k=1

Lσk

[2L−1∑
i=1

L∏
j=1

PL(i, j)
]
+

2L−2∑
i ̸=2a−1

F (i)
)
.

Finally, we obtain the inequality:

G(W0 +∆W) ≤ G (W0) + 2LL

C L∏
k=1

Lσk

[2L−1∑
i=1

L∏
j=1

PL(i, j)
]
+

2L−2∑
i=1;i ̸=2a−1;a∈[L]

F (i)

 .

Bound around f∆W. We can also perturb around G(∆W) by swapping the roles or conditions of
W

(i)
0 and ∆W (i) in the zero–activation bookkeeping function H(i, j). This requires us to ignore the

indices 2a, a ∈ [L] as opposed to 2a − 1, a ∈ [L] as viewable in Figure 4. Similarly, the function
PL(·, ·) can be kept unchanged by shifting the summation index range from 1:2L−1 to 2:2L. Thus

G(W0 +∆W) ≤ G(∆W) + 2LL

C L∏
k=1

Lσk

[2L∑
i=2

L∏
j=1

PL(i, j)
]
+

2L−1∑
i=3;i ̸=2a;a∈[L]

F (i)

 .

Consequently, we can conclude with:
G(W0 +∆W) ≤ min (G(W0) + Φ∆W,G(∆W) + ΦW0)

ΦW =

2LL

(
C

∏L
k=1 Lσk

[∑2L−1
i=1

∏L
j=1 PL(i, j)

]
+

∑2L−2
i ̸=2a−1 F (i)

)
, for W = ∆W,

2LL

(
C

∏L
k=1 Lσk

[∑2L

i=2

∏L
j=1 PL(i, j)

]
+

∑2L−1
i ̸=2a F (i)

)
, for W = W0.

C.1.3 NEURAL NETWORK WITH NO ACTIVATION FUNCTION—SPECIAL CASE OF THEOREM 1

We can upper bound the generalization error of a neural network with no nonlinear activation
functions, i.e., σi = Ini for all i ∈ [L]. We additionally include the simplest case of a one-layer linear
network.
Corollary 1. Let Assumption 1 hold and L follow Assumption 2. Let σi = Ini , for all i ∈ [L], and
fW0+BA(x) = (WL

0 +BLAL(· · · (W 2
0 +B2A2(W 1

0 +B1A1)x) · · ·)). Then we have:

G(W0 +∆W) ≤ min(G(W0) + 2CLL

2L−1∑
i=1

L∏
j=1

PL(i, j),G(∆W) + 2CLL

2L∑
i=2

L∏
j=1

PL(i, j)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Remark 1. Let Assumption 1 hold and L follow Assumption 2. If L = 1, i.e., the model consists of
only 1 layer, then we have:

G(W0 +∆W) ≤ min(G(W0) + 2CLL∥∆W∥,G(∆W) + 2CLL∥W0∥).

C.1.4 TIGHTNESS OF THE BOUNDS IN THEOREM 1

We demonstrate Theorem 1 as an appropriate upper bound on the generalization error. We show the
trivial case where fW0+∆W = fW0

and guarantee that G(W0 +∆W) = G(W0).

Assume ∆W was never trained, i.e., ∥∆W (i)∥ = 0, for all i ∈ [L]. Denote F̂ :=∑2L−2
i=1|i ̸=2a−1;i∈[L] F (i) Then we have:

|G(W0 +∆W)− G(W0)|
Theorem 1

≤ 2LL(C

L∏
i=1

Lσi

2L−1∑
i=1

L∏
j=1

PL(i, j) +

2L−2∑
i̸=2a−1:a∈[L]

F (i))

= 2LL
(
C

L∏
i=1

Lσi(∥W
(i)
0 ∥2 + ∥∆W (i)∥2)− C

L∏
i=1

Lσi∥W
(i)
0 ∥2 + F̂

)
∥∆W(i)∥2=0;

= 2LL
(
C

L∏
i=1

Lσi∥W
(i)
0 ∥2 − C

L∏
i=1

Lσi∥W
(i)
0 ∥2 + F̂

)
= 2LLF̂ .

Since each F (i) does not take entries from 2a − 1, where a ∈ [L], at least one H(i, j) returns the
spectral norm of one of the ∆W layers, returning 0 by construction. Hence, each F (i) returns 0 and
we obtain the result: |G(W0 + ∆W) − G(W0)| ≤ 0 confirming that G(W0 + ∆W) = G(W0), if
∆W was never trained. This way, we make sure the generalization measure would be unchanged and
does not risk including unnecessary terms.

C.1.5 ADAPTING THEOREM 1 UNDER SPECIAL CASES

To adapt Theorem 1 under special cases, we need the following general assumptions.

Assumption 4. The loss function, ℓ(·) : Rd → R, is 1-Lipschitz, i.e, |ℓ(fW(x), y)− ℓ(fW′(x), y)| ≤
∥fW(x)− fW′(x)∥ for all W, W’ ∈ Rd and (x, y) ∈ X × Y.

Assumption 5. The loss function, ℓ(·) : Rd → R, is bounded, i.e., there exists a constant C2 ≥ 0
such that ∥ℓ(fW(x), y)∥ ≤ C2, for all W ∈ Rd and (x, y) ∈ X × Y.

(i) Perturbing around G(W0). First, we adapt Theorem 4.1 in (28) into our notation and quote it
below.

Theorem 3. (PAC-Bayes generalization bound for fine-tuning)[(28), Theorem 4.1] Let Assumption 1
hold with the requirement that C ≥ 1. Let the loss function, L, follow Assumptions 4 and 5. Let
∥W (i)

0 ∥2 ≤ Ai with fixed Ai > 1, ∥∆W (i)∥ ≤ Qi, for all i ∈ [L] and V = maxi∈[L]{mi, ni}. Let
ϵ and δ be arbitrary small values. Then with probability 1− 2δ, the following inequality holds:

G(W0+∆W) ≤ ϵ+C2

√√√√ 36
ϵ2C

2V log(4LV C2)(
∑L
i=1

∏L
j=1(Aj+Qj)
Ai+Qi)2(

∑L
i=1Q

2
i) + 3 ln |N |

δ + 8

|N |
.

We now use Theorem 3, to obtain a bound for G(W0). The following Theorem gives that.

Theorem 4. Using the Assumptions made for Theorem 1 and Theorem 3, the following inequality
holds with probability at least 1− 2δ :

G(W0 +∆W) ≤ ϵ+ C2

√
3 ln |N |

δ + 8

|N |
+ 2LL

(
C

L∏
i=1

Lσi

2L−1∑
i=1

L∏
j=1

P (i, j) +

2L−2∑
i̸=2a−1:a∈[L]

F (i)
)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Proof. We wish to find G(W0), and note that if we never train the model, we obtain the expression
∥W (i)

0 −W
(i)
0 ∥2 = 0. Thus, we can use Qi = 0 for all i ∈ [L] and obtain:

G(W0)
Theorem 3

≤ ϵ+ C2

√√√√ 36
ϵ2C

2V log(4LV C2)(
∑L
i=1

∏L
j=1(Aj+Qj)
Ai+Qi)2(

∑L
i=1Q

2
i) + 3 ln |N |

δ + 8

|N |

Qi=0;i ∈ [L]
= ϵ+ C2

√√√√ 36
ϵ2C

2V log(4LV C2)(
∑L
i=1

∏L
j=1(Aj+0)

Ai+0)2(
∑L
i=1 0

2) + 3 ln |N |
δ + 8

|N |

= ϵ+ C2

√
3 ln |N |

δ + 8

|N |
.

Now that we have an upper bound for G(W0), we can apply Theorem 1 and obtain the following:

G(W0 +∆W)
Theorem 1

≤ G(W0) + Φ∆W

≤ ϵ+ C2

√
3 ln |N |

δ + 8

|N |
+Φ∆W.

By substituting the expression for Φ∆W, in the above expression we have:

G(W0 +∆W) ≤ ϵ+ C2

√
3 ln |N |

δ + 8

|N |
+ 2LL

(
C

L∏
i=1

Lσi

2L−1∑
i=1

L∏
j=1

P (i, j) +

2L−2∑
i̸=2a−1:a∈[L]

F (i)
)
.

This concludes the proof.

(i) Perturbing around G(A). First, we make another assumption on the loss function and then adapt
Theorem 1 in (58) to our notation.

Assumption 6. The loss function, ℓ(·) : Rd → R, is σ-sub-gaussian, i.e.,

E(eλ[ℓ(fW(X),Y)−E(ℓ(fW(X),Y))]) ≤ e
λ2σ2

2 for all λ ∈ R, W ∈ Rd.
Theorem 5. (Upper bound on generalization error using mutual information)[Theorem 1 (58)] Let
A denote a LoRA-based algorithm that outputs {∆Wi}i∈[L] on a fine-tuning dataset, N . By ν we
denote the underlying distribution of the input space, X , of which the elements of the fine-tuning
dataset N are chosen following i.i.d. Let Assumption 6 hold. Then we have the following:

G(A)ν ≤

√
2σ2I({∆Wi}i∈[L];N |A;W)

|N |
.

Let the loss function L follow Assumption 6. We present the generalization error upper bounds of the
LoRA variants in Table 1. For this, we use the inequality G(W0 +A) ≤ G(A) + ΦW0 , where G(A)
is upper bounded by the use of Lemma 1 quoted below.

Lemma 1. (Upperbound on mutual-information)[(58)] Let {∆Wi}i∈[L] be an update to a learning
algorithm. Then the mutual information is upper bounded by the uniform distribution over an updated
support set, i.e., I(∆{Wi}i∈[L];N |A;W) ≤ ln 2qp = qp ln 2, where q represents the number of
bits the learning algorithm is quantized on, and p is the number of trainable parameters. Thus, with

the use of Theorem 5, if Assumption 6 holds, then G(A) ≤
√

2σ2qp ln 2
|N | .

How do we arrive at the bounds of different LoRA variants?

(a) LoRA+ has G(A) upper bounded by
√

2rqσ2 ln 2
∑L
i=1(mi+ni)

|N | . The learning rate does not alter the
number of trainable parameters, which leads LoRA+ to possess the same upper bounds as LoRA. We
note a unique observation regarding this claim, as γA → 0, LoRA+ takes the lowered generalization
error bound of Asymmetric LoRA since the adapter matrix, A, is no longer trainable.

(b) cLA has the fine-tuned update B[Ir|0mi−r], where [Ir|0mi−r] is a fixed constant orthogonal
matrix. Thus, by using data processing inequality (14), the mutual information between the two is
preserved, i.e,

I({Bi[Ir|0mi−r]i}i∈[L];N |A;W) = I({Bi}i∈[L];N |A;W).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 4: Summary of the benchmarks, quality metrics, and trainable parameters. For LoRA and
Asymmetric LoRA methods, we report their ratio of trainable parameters relative to FFT.

Task Model Pretrained On Fine-Tuned On Trainable
Parameters (FFT)

Quality
Metric

Natural Language Processing

RoBERTa-Base English language corpora MRPC 124.6M Accuracy
CoLA 124.6M MCC

RoBERTa-Large English language corpora MRPC 355.4M Accuracy
CoLA 355.4M MCC

DeBERTa v2 XXL English language corpora
MRPC 1.56B Accuracy

TREC-50 1.56B Accuracy
PAWS 1.56B Accuracy

DeBERTa v3 Base English language corpora

MRPC 184.4M Accuracy
RTE 184.4M Accuracy

STS-B 184.4M Accuracy
TREC-50 184.4M Accuracy

PAWS 184.4M Accuracy

GPT2-Small WebText E2E 124.4M Accuracy

Image Classification
ViT-Tiny ImageNet-1K OfficeHome 5.54M Accuracy

Cifar10 5.53M Accuracy

ViT-Base ImageNet-21K then ImageNet-1K OfficeHome 85.8M Accuracy
Cifar10 85.8M Accuracy

Coding Generation DeepSeek-Coder-Base Repo-Level Code Corpus DJANGO 1.35B Exact Match

Logical Reasoning TinyLlama SlimPajama
OpenBookQA 1.03B Accuracy

FOLIO 1.03B Accuracy
LogiQA 1.03B Accuracy

CLUTRR 1.03B Accuracy

Similar to (65), we upper bound mutual information by the uniform distribution of a model’s support;
particularly I({Bi}i∈[L];N |∆W;W) ≤ qr ln 2

∑L
i=1 ni, by Lemma 1. Finally, by Theorem 5, we

obtain the result G(A) ≤
√

2rqσ2 ln 2
∑L
i=1 ni

|N | .

(c) c3LA has the fine-tuned updateB1[Ir|0mi−r]+B2[0r|Ir|0mi−2r]+· · ·+Bk[0r(k−1)|Ir|0mi−kr].
This expansion can be simplified by

∑k
j=1Bj [0r×r(j−1) | Ir | 0r×(mi−rj)] = [B1 | B2 | · · · |

Bk|0ni(mi−kr)]. Using (13), we can upper bound the rank of
∑k
j=1B

j [0r×r(j−1) | Ir | 0r×(mi−rj)]

by kr. Thus, the mapping [B1| · · · |Bk] → ∆W is injective and can be inverted by slicing the last
ni − kr columns. Using DPI, this leads to the expression

I({
k∑
j=1

Bji [0r×r(j−1) | Ir | 0r×(mi−rj)]}i∈[L];N |A;W) = I({[B1| · · · |Bk]i}i∈[L];N |A;W).

We upper bound I({[B1| · · · |Bk]i}i∈[L];N |A;W) by qrk ln 2
∑L
i=1 ni, using Lemma 1. Hence, by

Theorem 5, we obtain: G(A) ≤
√

2rqσ2k ln 2
∑L
i=1 ni

|N | .

(d) CoLA has the update structure ∆W =
∑k
j=1B

jAj . Using inequality (13), we upper bound the

rank of each layer’s update by kr. By Lemma 1, we upper bound I({
∑L
j=1B

j
iA

j
i}i∈[L];N |A;W)

by qrk ln 2
∑L
i=1(mi + ni). Hence, we obtain G(A) ≤

√
2rqσ2k ln 2

∑L
i=1(mi+ni)

|N | , by Theorem 5.

(e) RAC-LoRA has the fine-tuned update
∑k
j=1B

jQj , where we consider each Qj to

be a frozen orthogonal matrix. This update can be represented by
∑k
j=1B

jQj =

[B1|B2| · · · |Bk][Q1|Q2| · · · |Qk]T , where we can invert [B1|B2| · · · |Bk][Q1|Q2| · · · |QL]T] to
[B1|B2| · · · |BL]. Thus by using inequality (13), DPI, and Lemma 1 we have
I({[B1|B2| · · · |BL]i[Q1|Q2| · · · |QL]Ti]}i∈[L];N |A;W) = I({B1|B2| · · · |BL]i]}i∈[L];N |A;W),

which is

I({B1|B2| · · · |BL]i]}i∈[L];N |A;W) ≤ qrk ln 2

L∑
i=1

ni.

Hence, by Theorem 5, we have the result: G(A) ≤
√

2rqσ2k ln 2
∑L
i=1 ni

|N | .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

C.2 NONCONVEX CONVERGENCE

We make the following general assumptions to prove our nonconvex convergence result.

Assumption 7. (Lipschitz gradient) The gradients are Lipschitz continuous. That is, there exists
a constant LG such that for any W = (W 1, ...,WL) and ∆W = (∆W 1, ...,∆WL), ∥∇L(W +
∆W)−∇L(W)∥ ≤ LG∥∆W∥.
Assumption 8. (Global minimum) There exists W⋆ such that L⋆ := L(W⋆) ≤ L(W), for all
W ∈ Rd.

We start by introducing a block structure for the parameter space of the network that accurately
represents the layer-wise updates of LoRA done in practice with the vector input convention for
parameter space done in theory, followed by the assumptions and properties used to prove the results
in 3.2.

Layerwise structure. LoRA modifies each layer in a network. We adopt block structure notation
where each block is a layer in the neural network in order to formally present the proofs. We use the
convention in (47).

Definition 2. We define β(·) : Rn×m → Rnm to be a function that applies on a matrix, A ∈ Rn×m,
and produces a vector β(A) ∈ Rnm by stacking the columns of the matrix A.

Let d =
∑L
i=1 nimi be the parameter count of the network. The block structure of W is given by

a decomposition of Rd as follows: Let U = [U1, ..., UL] be a decomposition of U ∈ Rd into L
submatrices, U i ∈ Rd×nimi . Then U i projects ith layer vectors to Rd in the following way:

W i =

 w1
...

wnimi

 is mapped by U i to U iW i =



0
...
w1
...

wnimi
...
0


︸ ︷︷ ︸

Only ith layer non-zero

.

Conversely, U i⊤ projects vectors in Rd to the ith layer in the following way:

W =



w1
...

wn1m1

wn1m1+1
...

wn1m1+n2m2

...
wd


is mapped by U i

⊤
to U i

⊤
W =

 w∑i−1
j=1 njmj+1

...
w∑i=1

j=1 njmj+nimi


︸ ︷︷ ︸

Note that, by construction, U i⊤U j =
{
Inimi i = j

0 otherwise
.

Proposition 2. (47) For any weight vector W = (w1 · · · wd)
⊤
, the set {U i⊤W}Li=1 uniquely

represents the L layers of W mapped to their respective spaces Rnimi , and we define W i := U i
⊤
W

as the weight vector of the ith layer.

L-Layer update. We denote the full-fine tuning update ∆W ∈ Rd as follows:

W +∆W = W +

L∑
i=1

U i∆W i,

where ∆W i = U i
⊤
∆W.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

For LoRA, the layer-wise update is identical

W +BA = W +

L∑
i=1

U iβ(BiAi), (15)

where BA = (αrB
1A1, ..., αrB

LAL), for each layer i ∈ [L]. Under this update structure, we have

that ∇iL(W) = U i
⊤∇L(W). In the proof, we use the standard Euclidean inner product.

Adapting the update rule. The update rule Wt+1 = Wt −
∑L
i=1 γ∇iL(Wt)Ht,i, assumes

∇iL(Wt) ∈ Rmi×ni and Ht,i ∈ Rni×ni . In the layerwise structure, we have ∇iL(Wt) ∈ Rnimi .
To represent the matrix-product ∇iL(Wt)Ht,i in parameter space, we map the vector ∇iL(Wt) to
Rmi×ni , then map ∇iL(Wt)Ht.i back to Rnimi . That is, β(β−1(∇iL(Wt))Ht,i). To condense
this, we apply Roth’s lemma from (36) Theorem 18.5,

β(ABC) = (C⊤ ⊗A)β(B) (16)

to show that β(β−1(∇iL(Wt))Ht,i) = (Ht,i⊤ ⊗ Imi)∇iL(Wt). Therefore, the adapted update
rule for the layerwise structure is Wt+1 = Wt −

∑L
i=1 γ(H

t,i⊤ ⊗ Imi)∇iL. To help make the
proofs more clear, we define Ht,i := (Ht,i⊤ ⊗ Imi).

C.2.1 AUXILIARY RESULTS

Proposition 3. Let x, y ∈ Rd. Then, under the standard inner products in Rd,Rnimi , i ∈ [L]
respectively, we have

⟨x, y⟩ =
L∑
i=1

⟨U ixi, U iyi⟩ (17)

where xi = U i
⊤
x, yi = U i

⊤
y, i ∈ [L].

Proof. Based on the construction, we have that

⟨x, y⟩ =

〈
L∑
i=1

U ixi,

L∑
j=1

U jyj

〉

=

L∑
j=1

L∑
i=1

〈
U j

⊤
U ixi, yj

〉

=

L∑
i=1

⟨xi, yi⟩.

Hence the result. In particular, this shows that ∥∇L(W)∥2 =
∑L
i=1 ∥∇iL(W)∥2.

C.2.2 NONCONVEX CONVERGENCE RESULT

Now we are all set to prove our nonconvex convergence result.

Theorem 2. Let Assumption 7 and 8 hold. Let λgmin > 0 and the stepsize satisfy 0 < γ < 1
LG

. Let
W(t,·) represent update steps with RAC-LoRA (9), or random-cLA (5), or c3LA (6), trained using
gradient descent. Then the updates, {W(0,·), ...,W(T,·)} satisfy E[∥∇L(W̃(T))∥2] ≤ 2(L(W0)−L∗)

λgminγT
,

where W̃(T) is sampled uniformly at random from {W(0,·), ...,W(T,·)}.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 5: Summary of the hyperparameters. We used the same learning rate for LoRA methods that train B,A,
and Asymmetric LoRA methods that only train B, we write (FFT, LoRA, Asym) to indicate those three sets. We
selected the best model out of all epochs based on the lowest validation loss, except for the CoLA dataset, where
we used the lowest Matthews Correlation Coefficient. We used rank r = 16 and scaling factor α = 2r for all
LoRA PEFT methods. For all models, we used the ADAM optimizer (26) with (β1, β2, ϵ) = (0.9, 0.999, 1e−8).
For ViT, RoBERTa, and GPT2, we used gradient clipping on global L2 norm with a max of 1, and did not
otherwise. For LoRA+, the learning rate for our B matrix is 16 times that of A.

Model Dataset Scheduler
(Warmup LR, Ratio)

Learning Rates
(FFT,LoRA,Asym)

Chain reset
frequency

Weight decay
(FFT,LoRA) Batch size Epochs Max length or

Image size Seeds

RoBERTa-Base MRPC Linear(1e−6, 0.1) (1e−5, 3e−4, 3e−4) 3 (0.01, 0) 32 20 128 (12,22,32)

CoLA Linear(1e−6, 0.1) (1e−5, 3e−4, 3e−4) 3 (0.01, 0) 32 20 128 (12,22,32)

RoBERTa-Large MRPC Linear(1e−6, 0.1) (1e−5, 3e−4, 3e−4) 3 (0.01, 0) 32 20 128 (12,22,32)

CoLA Linear(1e−6, 0.1) (1e−5, 3e−4, 3e−4) 3 (0.01, 0) 32 20 128 (12,22,32)

DeBERTa v2 XXL
MRPC Constant (1e−5.5 ,1e−4.5 ,1e−4) 5 0 8 25 512 (100,101,102)

TREC-50 Constant (1e−5.5 ,1e−4.5 ,1e−4) 5 0 8 25 512 (100,101,102)

PAWS Constant (1e−6.5 , 1e−4.5 , 1e−4) 5 0 8 10 512 (100,101,102)

DeBERTa v3 Base

MRPC Constant (1e−5 , 1e−3.5 , 1e−3) 5 0 8 40 512 (100,101,102)

RTE Constant (1e−4.75 , 1e−3.5 , 1e−3) 5 0 8 40 512 (100,101,102)

STS-B Constant (1e−4.75 , 1e−3.5 , 1e−3) 5 0 8 40 512 (100,101,102)

TREC-50 Constant (1e−4.75 , 1e−3.25 , 1e−3) 5 0 8 40 512 (100,101,102)

PAWS Constant (1e−5 , 1e−3.5 , 1e−3) 5 0 8 20 512 (100,101,102)

GPT2-Small E2E Linear(1e−6, 0.1) (5e−5, 3e−4, 3e−4) 1 (0.01,0) 16 30 64 (12,22,32)

ViT-Tiny OfficeHome Cosine(1e−6, 0.05) (3e−4, 1e−3, 1e−3) 5 (0.05,0) 64 1 224 (12,22,32)

CIFAR-10 Cosine(1e−6, 0.05) (3e−4, 1e−3, 1e−3) 5 (0.05,0) 64 1 224 (12,22,32)

ViT-Base OfficeHome Cosine(1e−6, 0.05) (3e−4, 1e−3, 1e−3) 5 (0.05,0) 64 1 224 (12,22,32)

CIFAR-10 Cosine(1e−6, 0.05) (3e−4, 1e−3, 1e−3) 5 (0.05,0) 64 1 224 (12,22,32)

DeepSeek-Coder Base DJANGO Constant (1e−5.5 ,1e−4.5 ,1e−4) 1 0 8 5 512 (100,101,102)

TinyLlama
OpenBookQA Constant (1e−6.25 ,1e−3.75 ,1e−3.25) 2 0 8 10 512 (100,101,102)

FOLIO Constant (1e−5 ,1e−3.75 ,1e−3.5) 2 0 8 10 512 (100,101,102)

LogiQA Constant (1e−5.75 ,1e−4 ,1e−3.25) 2 0 8 10 512 (100,101,102)

CLUTRR Constant (1e−6.25 ,1e−5.25 ,1e−4.75) 2 0 8 10 512 (100,101,102)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Proof. Using the update rule and Lipschitz smoothness, we have

L(Wt+1) = L(Wt − γ

L∑
i=1

U iHt,i∇iL)

By Assumption 7

≤ L(Wt) + ⟨∇L(Wt),−γ
L∑
i=1

Ht,i∇iL⟩+
LG
2

∥γ
L∑
i=1

Ht,i∇iL∥2

∥x2∥=⟨x,x⟩
= L(Wt)− γ

L∑
i=1

⟨∇iL(Wt),Ht,i∇iL⟩+
LG
2
γ2

L∑
i=1

⟨Ht,i∇iL,Ht,i∇iL⟩

⟨Ax,Ax⟩=⟨x,A⊤Ax⟩
= L(Wt)− γ

L∑
i=1

⟨∇iL(Wt),Ht,i∇iL⟩+
LG
2
γ2

L∑
i=1

⟨∇iL(Wt),Ht,i⊤Ht,i∇iL⟩

Ht,i⊤Ht,i=Ht,i

= L(Wt)− γ

L∑
i=1

⟨∇iL(Wt),Ht,i∇iL⟩+
LG
2
γ2

L∑
i=1

⟨∇iL(Wt),Ht,i∇iL⟩

γ ≤ 1
LG

≤ L(Wt)− γ

2

L∑
i=1

⟨∇iL(Wt),Ht,i∇iL⟩.

Taking the expectation conditional on the randomness of Wt, we have

E[L(Wt+1)|Wt] ≤ E[L(Wt)− γ

2

L∑
i=1

⟨∇iL(Wt),Ht,i∇iL⟩|Wt]

= L(Wt)− γ

2

L∑
i=1

⟨∇iL(Wt),E[Ht,i|Wt]∇iL(Wt)⟩

E[Ht,i|Wt]≤λH,imin

≤ L(Wt)− γ

2

L∑
i=1

λH,imin⟨∇iL(Wt),∇iL(Wt)⟩

λgmin≤λ
H,i
min for all i∈[L]

≤ L(Wt)− γ

2
λgmin

L∑
i=1

⟨∇iL(Wt),∇iL(Wt)⟩

By equation (17)
= L(Wt)− γ

2
λgmin∥∇L(Wt)∥2.

Subtracting L∗ from both sides of the above relation and solving for γ2λ
g
min∥∇L(Wt)∥2 we arrive at

γ

2
λgmin∥∇L(Wt)∥2 ≤ (L(Wt)− L∗)− (E[L(Wt+1)|Wt]− L∗).

Denote et := E[L(Wt)|Wt−1]− L∗. Taking expectation conditioned on Wt−1, we have
γ

2
λgminE[∥∇L(Wt)∥2|Wt−1] ≤ et − et+1.

In the above relation, we take summation from t = 0 to t = T − 1, apply the telescoping property of
et − et+1, and divide by T , to obtain

T∑
t=0

γ

2
λgminE[∥∇L(Wt)∥2] ≤

T−1∑
t=0

(et − et+1),

which further reduces to
1

T

T−1∑
t=0

γ

2
λgminE[∥∇L(Wt)∥2] ≤ e0 − eT

T
≤ e0

T
.

Multiplying the above by 2
γλgmin

we have

1

T

T−1∑
T=0

E[∥∇L(Wt)∥2] ≤ 2e0

λgminγT
=

2(L(W0)− L∗)

λgminγT
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

The left-hand side is equivalent to selecting one value uniformly from {W0, ...,WT−1} for our
argument of L

E[∥∇L(W̃T)∥2] ≤ 2(L(W0)− L∗)

λgminγT
.

This concludes the proof.

C.2.3 ADDITIONAL RESULTS

Proposition 4. Let Ai ∈ Rr×ni , and Di = {A1,i, A2,i, ..., Ak,i}, where Aj,i =[
0r×jr

∣∣ Ir ∣∣0r×(ni−(j+1)r

]
and ni = rk for some k ∈ N. Then, for c3LA and random-

CLA, λH,imin = r
ni
, for i ∈ [L].

Proof. By definition, λH,imin = λmin[EDi [H
i]], and Hj,i = (Aj,i)⊤(Aj,i(Aj,i)⊤)†Aj,i. We start by

writting Aj.i in terms of row vectors
Aj,i = (ej,1 · · · ej,r)

⊤
,

where (ej,m)p =

{
1 p = j +m

0 otherwise
.

We calculate

Aj,i(Aj,i)⊤ =

ej,1ej,1
⊤ · · · ej,rej,1

⊤

...
...

ej,1ej,r
⊤ · · · ej,rej,r

⊤

 = Ir.

Next, writing Aj,i in terms of column vectors we have
Aj,i = (cj,1 · · · cj,ni) ,

where (cj,m)p =

{
0 p ̸= m (mod r) or m ≤ jr or m > (j + 1)r

1 otherwise
.

Next, we calculate

(Aj,i)⊤Aj,i =

 cj,1
⊤cj,1 · · · cj,ni

⊤cj,1
...

...
cj,1

⊤c⊤j,ni · · · cj,ni
⊤c⊤j,ni

 = Diag(0, ..., 0,

r(j−1) to r︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0).

Using these, we find

EDi [H
i]] =

1

k

k∑
j=1

Diag(0, ..., 0,

r(j−1) to r︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0) = Diag(

1

k
, ...,

1

k
).

Finally, λH,imin = λmin[Diag(1k , ...,
1
k)] =

1
k = r

ni
. This concludes the proof.

Theorem 6. (Smoothness conditions)[(51) Appendix A.1 Theorem 2] For a low-rank decomposition
on model parameter W to W0 +BA0, we have the following properties:(i) If B is trainable, A0 is
fixed with ∥Ai0∥ ≤ C, i ∈ [L] and L(W) is Lipschitz smooth with factor LG then the loss function
L(W0 +BA0) is Lipschitz smooth with respect to B with factor LGC2

√
L. (ii) If both A and B

are trainable and L(W) is Lipschitz smooth with factor L, the loss function L(W0 +BA0) has no
Lipschitz smoothness guarantees.

Proof. First, denote the layerwise gradient with respect to W, B as ∇W,iL(W+BA0),∇B,iL(W+

BA0) respectively. Then ∇W,iL(W +BA0) = ∇B,iL(W +BA0)A
i
0
⊤ since, for each i ∈ [L],

we have
⟨Bi1 −Bi2,∇B,iL(W +BA0)⟩ = ⟨Bi1Ai0 −Bi2A

i
0,∇W,iL(W +BA0)⟩

= ⟨Bi1 −Bi2,∇W,iL(W +BA0)A
i
0

⊤⟩.

Similarly, we have ∇A,iL(W +BA) = Bi
⊤∇W,iL(W +BA) for i ∈ [L]. We provide the proof

for each property below.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

For property 1, we know that for any B1,B2 Asymmetric LoRA (8) updates with shared fixed A0,
we have that

∥∇BL(W +B1A0)−∇BL(W +B2A0)∥

∇L=
∑L
i=1 ∇iL
= ∥

L∑
i=1

U i(∇B,iL(W +B1A0)−∇B,iL(W +B2A0))∥

∇B,iL(·)=∇W,iL(·)Ai0
⊤

and equation (16)
= ∥

L∑
i=1

U i((Ai0 ⊗ Imi)∇W,iL(W +B1A0)− (Ai0 ⊗ Imi)∇W,iL(W +B2A0)∥

∥PQ∥≤∥P∥∥Q∥
≤

L∑
i=1

∥U i(∇W,iL(W +B1A0)−∇W,iL(W +B2A0))∥∥Ai0 ⊗ Imi∥

∥Ai0⊗Imi∥2=∥Ai0∥2

∥Ai0∥≤C
≤ C

L∑
i=1

∥U i(∇W,iL(W +B1A0)−∇W,iL(W +B2A0))∥

∑L
i=1 ∥xi∥≤

√
L
∑L
i=1 ∥xi∥2

≤ C

√√√√L

L∑
i=1

∥U i(∇W,iL(W +B1A0)−∇W,iL(W +B2A0)∥2

By equation (17)
= C

√
L
√

∥∇WL(W +B1A0)−∇WL(W +B2A0)∥2
L lipschitz smooth

≤ LGC
√
L∥W +B1A0 −W −B2A0∥

By equation (15) and (16)
= LGC

√
L∥

L∑
i=1

U iβ((Bi1 −Bi2)A
i
0)∥

∥x+y∥≤∥x∥+∥y∥
≤ LGC

√
L

L∑
i=1

∥U i(Ai0
⊤ ⊗ Imi)β(B

i
1 −Bi2))∥

∥Ai0
⊤⊗Imi∥2=∥Ai0∥2

∥AB∥≤∥A∥∥B∥
≤ LGC

√
L

L∑
i=1

∥Ai0∥∥U i(Bi1 −Bi2)∥

∥Ai0∥≤C
≤ LGC

2
√
L

L∑
i=1

∥U iβ(Bi1 −Bi2)∥

Bk=
∑L
i=1 U

iβ(Bik)
= LGC

2
√
L∥B1 −B2∥.

This completes the proof of property 1.

For the second property, we construct a counter-example such that the 1-Lipschitz smooth function
L(W) = 1

2∥W∥2 is not Lipschitz smooth with respect to both B,A updating simultaneously ∇B,A.
Consider an MLP where ni = mi, i ∈ [L], let r = ni. Define the sequence {Ak,Bk}∞k=1 such that
Ak,Bk = [kIir], i ∈ [L].

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Then

lim
k→∞

∥∇B,AL(0+BkAk)−∇B,AL(0+B0A0)∥
∥BkAk −B0A0∥

∇B,AL=

(
∇AL
∇BL

)
= lim

k→∞

∥∇AL(BkAk)∥+ ∥∇BL(BkAk)∥
∥BkAk∥

∇L=
∑L
i=1 ∇iL
= lim

k→∞

∥
∑L
i=1 ∇A,iL(BkAk)∥+ ∥

∑L
i=1 ∇B,iL(BkAk)∥

∥BkAk∥
Definition

By equation (16)
= lim

k→∞

∥
∑L
i=1 k

3β(Ir)∥+ ∥
∑L
i=1 k

3β(Ir)∥
∥
∑L
i=1 U

i(Aik
⊤ ⊗ Imi)β(B

i
k)∥

= lim
k→∞

2Lk3∥β(Ir)∥
k2∥

∑L
i=1 U

i(Aik⊤⊗ Imi)β(B
i
k)∥

= ∞.

This concludes the proof.

D ADDENDUM TO BENCHMARKING AND EVALUATION

In §D.1, we summarize the quality metrics and trainable parameters used for training the models
in Table 2 and provide the specific hyperparameters for fine-tuning each model for each dataset
in Table 5. In §D.2, we present ablation studies on the effects of learning rate (γ), scaling factor
(α), and chain reset indices on the resulting test accuracy and test loss for varying ranks. In §D.3,
we comment on the potential of our methods by naively leveraging the sparsity of our A matrices.
In §D.4.2 and §D.4.1, we extend 4.2 with the implementation details of the loss landscapes and
provide additional loss landscapes and intruder dimension results. In §D.5, we extend section §3.1
with empirical results on generalization.

D.1 IMPLEMENTATION DETAILS

We implement the framework in Python using PyTorch (41). We train all models with the ADAM
optimizer (26). The training of most models was done with one 80 GB NVIDIA H100 GPU. The
ablation studies on ViT-Tiny in Tables 7, 9, and 11 were trained using one NVIDIA V100 GPU.
We provide the hyperparameter settings, i.e., the learning rates, learning rate scheduler, chain reset
frequency, weight decay, batch size, training epochs, maximum token length or image resolution, and
random seeds for all of the runs used in Table 5.

D.2 THE EFFECTS OF LEARNING RATE, SCALING FACTOR, AND CHAIN RESET FREQUENCY ON
QUALITY METRIC OVER VARIOUS RANKS

The ideal learning rate of an LLM tends to scale inversely with its size (30). Many papers suggest a
default scaling factor of 2r (4; 49). (38) suggests that, for sufficiently low learning rates, performing
a chain reset every epoch is optimal. We validate the first claim under LoRA fine-tuning methods via
ablation studies over learning rates presented in Tables 6-7. Similarly, we assess the scaling factor
baseline choice in Tables 8 and 9 and the optimal chain reset frequency in Table 10. For the ablation
studies, we fine-tuned DeBERTaV3-Base on the MRPC, TREC-50, and PAWS for learning rate,
MRPC and TREC-50 for scaling factor, and MRPC, CoLA, RTE, and TREC-50 for chain reset all
over various ranks. We then re-ran the same experiments on ViT-Tiny fine-tuned on the OfficeHome
and CIFAR-10 datasets. We ran for 30 epochs.

As shown in Tables 6 and 7, Asymmetric LoRA methods are more sensitive to varying learning rates
than methods that train both matrices B,A. We notice that the cLA has a wide variety of acceptable
learning rates. Furthermore, across varying ranks, cLA and c3LA often underperform compared
to other LoRA variants. As rank increases, this gap tends to narrow. This is a byproduct of their
structure, limiting how much of the pretrained weights they can update at any one time.

For our ablation study on scaling factor shown in Tables , the use of α = 2r works as a baseline
given how often it was the best choice 8 and 9. With Asymmetric methods, the ideal scaling factor

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure 5: 3D loss landscapes of ViT-Base (11) pretrained on ImageNet-1K (7) and fine-tuned on CIFAR-10 (27)
using the PCA directions of the model’s weights updates (top) and random directions (bottom).

tends to be larger; this follows from the number of trainable parameters decreasing, requiring a larger
effective learning rate, as the scaling factor can be interpreted as a scale on the learning rate.

Our ablation study on chain reset frequency, shown in Tables 10, revealed no clear correlation between
the frequency of chain resets.

D.3 COMPUTATIONAL COST, FLOPS, AND EFFICIENCY

We report empirical results regarding the computational efficiency of PEFT methods developed in
this paper. We report the percentage of trainable parameters for each PEFT method in Table 4.

Our focus in this study is on examining the behaviors of the PEFT methods, including our proposed
variant. Although the total fine-tuning time is an important factor, we do not present wall-clock results
because our unoptimized implementation does not present a valid point for the training speedup that
well-engineered PEFT methods can offer.

We naively leverage the sparsity inherent in the structure of cLA, c3LA, and its random variants
by replacing the Ax product in B(A(x)) for each layer’s LoRA adapter with a gather operation,
removing any FLOPs accrued from the multiplications by zero. In Table 12, we show that this leads
to a minor reduction in FLOPs. This could be improved by more advanced implementations of
leveraging the sparsity. However, running inference on the frozen base model accrues most of the
training FLOPs; thus, this use may be limited for very high rank adapters.

D.4 PERFORMANCE ANALYSIS—CONTINUED

We extend §4.2 by reporting additional empirical results regarding PEFT models, including prediction
capacity and model behaviors.

D.4.1 LOSS LANDSCAPE—CONTINUED

3D landscapes. We obtained the top two principle directions of the model’s update path via PCA of the
update matrix [W0−WT ; ...;WT−1−WT], where {Wt}Tt=0. are the model weight’s update steps.
Let δ, η be those two directions. For random directions, we generate them via a Gaussian distribution.
For LoRA methods, we merged the adapters into the base weights before calculating. We normalize
the directions similar to the methods of (29). We plot the function f(α, β) := L(W + αδ + βη) over
a 512 grid of α, β values uniformly distributed over [−2, 2]× [−2, 2], we use mini-batches of size 12
when finding the values for L.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Table 6: Test accuracies obtained by fine-tuning DeBERTa v3 on MRPC, TREC-50, and PAWS
varying learning rates (columns), ranks (rows), and LoRA PEFT methods. We center our search at
1e−4. The learning rate for all methods decreases with increasing rank; the relationship between
learning rate and model size observed in LLMs (30) persists when fine-tuning via LoRA methods.
Chain methods and their non-chain counterparts produce the best results in similar learning rate
ranges, therefore, chain resets do not influence the optimal learning rate. We repeated the experiment
with ViT-Tiny on Table 7.

DeBERTa v3 LoRA MRPC

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 66.4 66.4 79.9 84.2 85.5 87.3 88.1 66.4 66.4
4 66.4 74.4 81.8 84.6 85.6 87.9 87.7 66.4 66.4
8 66.4 76.1 83.0 85.1 86.9 87.3 87.1 66.4 66.4
16 66.4 78.1 83.1 85.0 86.8 87.9 72.9 66.4 66.4
32 66.4 80.1 83.9 84.9 87.1 87.9 66.4 66.4 66.4
64 76.1 81.7 84.6 85.1 88.0 81.5 66.4 66.4 66.4
128 77.5 81.9 84.9 86.2 88.5 87.6 66.4 66.4 66.4

DeBERTa v3 CoLA MRPC

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 66.5 66.5 75.9 82.2 85.7 87.7 88.3 66.5 66.5
4 66.5 66.5 76.7 82.7 85.1 87.8 87.2 66.5 66.5
8 66.5 66.5 79.1 84.0 86.8 88.3 86.9 66.5 66.5
16 66.5 75.3 80.8 84.0 86.4 88.9 79.6 66.5 66.5
32 66.5 76.8 82.3 83.9 86.5 88.0 66.5 66.5 66.5
64 69.3 79.6 83.3 85.7 87.1 88.5 66.5 66.5 66.5
128 75.8 80.7 83.1 85.9 88.2 88.0 66.5 66.5 66.5

DeBERTa v3 Asym MRPC

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 66.4 66.4 66.4 68.1 81.4 85.3 86.1 86.9 86.0
4 66.4 66.4 66.4 76.0 82.9 84.2 85.7 86.8 85.6
8 66.4 66.4 66.5 80.6 84.2 85.2 86.5 86.3 72.3
16 66.4 66.4 76.7 82.6 84.3 86.2 86.8 87.3 66.4
32 66.4 66.6 79.6 83.1 84.6 86.1 87.3 75.0 66.4
64 66.4 77.7 81.7 82.5 84.7 86.1 87.4 66.4 66.4
128 69.0 79.6 82.2 84.3 86.1 80.1 66.4 66.4 66.4

DeBERTa v3 RAC MRPC

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 66.5 66.5 66.5 66.5 66.5 76.5 82.0 87.0 86.2
4 66.5 66.5 66.5 66.5 74.0 79.4 84.6 85.4 85.5
8 66.5 66.5 66.5 66.5 76.9 82.8 86.3 87.5 76.7
16 66.5 66.5 66.5 74.1 78.8 83.0 86.9 87.2 66.5
32 66.5 66.5 66.5 76.7 83.9 86.3 87.7 72.4 66.5
64 66.5 66.5 74.2 80.4 84.1 87.9 87.3 66.5 66.5
128 66.5 66.5 76.1 82.3 86.4 87.6 72.0 66.5 66.5

DeBERTa v3 cLA MRPC

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 66.4 66.4 66.4 71.0 82.4 84.0 85.0 83.1 80.4
4 66.4 66.4 70.2 79.0 84.9 85.5 85.9 85.5 66.4
8 66.4 66.4 73.7 81.5 84.6 84.5 85.2 85.5 66.4
16 66.4 67.0 76.1 81.9 83.3 84.4 85.3 78.8 66.4
32 66.4 74.4 79.6 80.8 83.2 85.0 85.2 66.4 66.4
64 66.4 77.0 80.8 81.8 84.5 85.1 86.7 66.4 66.4
128 71.3 78.6 79.5 82.0 85.5 87.1 84.8 66.4 66.4

DeBERTa v3 c3LA MRPC

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 66.5 66.5 66.5 66.5 73.0 80.1 85.6 86.4 72.3
4 66.5 66.5 66.5 66.8 74.6 83.1 85.7 87.2 66.5
8 66.5 66.5 66.5 72.6 79.5 86.2 86.8 85.5 66.5
16 66.5 66.5 66.5 75.6 82.8 86.0 86.5 78.6 66.5
32 66.5 66.5 71.9 79.1 84.5 86.8 86.8 66.5 66.5
64 66.5 66.5 73.9 82.4 86.3 87.2 86.4 66.5 66.5
128 66.5 66.5 81.9 86.3 87.9 86.7 72.3 66.5 66.5

DeBERTa v3 LoRA TREC-50

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 3.2 10.9 10.9 39.1 59.5 76.6 86.9 10.9 10.9
4 10.1 10.9 10.9 42.3 70.6 82.3 87.7 10.9 10.9
8 10.9 10.9 10.9 50.0 70.6 84.7 90.1 10.9 10.9
16 1.4 10.9 10.9 50.0 73.0 89.3 88.3 10.9 10.9
32 1.4 10.9 42.9 59.5 76.4 89.1 10.9 10.9 10.9
64 10.9 10.9 48.2 66.1 82.9 87.1 10.9 10.9 10.9
128 10.9 10.9 58.1 71.6 86.1 10.9 10.9 10.9 10.9

DeBERTa v3 CoLA TREC-50

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 10.9 10.9 42.1 54.4 71.8 88.1 89.1 10.9 10.9
4 10.9 10.9 42.7 58.3 81.7 84.5 88.3 10.9 10.9
8 10.9 10.9 42.9 65.5 82.3 87.1 90.9 10.9 10.9
16 10.9 10.9 39.9 66.7 84.9 87.1 68.1 10.9 10.9
32 10.9 26.8 53.2 71.4 85.3 86.7 10.9 10.9 10.9
64 10.9 37.5 58.5 75.6 86.9 10.9 10.9 10.9 10.9
128 10.9 43.5 66.1 82.7 86.7 10.9 10.9 10.9 10.9

DeBERTa v3 Asym TREC-50

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 10.9 10.9 10.9 32.5 46.2 80.6 86.5 82.5 26.6
4 10.9 10.9 10.9 33.3 58.9 85.1 88.1 85.7 10.9
8 10.9 10.9 10.9 40.1 73.6 87.3 86.7 84.5 10.9
16 10.9 10.9 10.9 42.9 78.8 89.1 86.9 82.7 10.9
32 10.9 10.9 10.9 57.5 83.1 90.9 91.7 56.5 10.9
64 10.9 10.9 41.9 73.0 88.5 90.7 87.5 10.9 10.9
128 10.9 10.9 52.2 78.8 89.9 90.9 10.9 10.9 10.9

DeBERTa v3 RAC TREC-50

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 10.9 10.9 10.9 10.9 34.9 46.6 72.8 85.9 87.5
4 1.2 10.9 10.9 10.9 38.5 59.7 82.9 88.3 89.5
8 10.9 10.9 10.9 10.9 43.8 68.1 82.9 88.1 72.4
16 10.1 10.9 10.9 13.3 59.5 78.0 87.1 90.3 10.9
32 10.9 10.9 10.9 45.6 70.6 84.9 88.5 88.1 10.9
64 10.9 10.9 34.9 50.6 74.2 86.7 87.7 10.9 10.9
128 2.0 10.9 42.9 62.3 84.5 88.9 87.3 10.9 10.9

DeBERTa v3 cLA TREC-50

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 10.9 10.9 10.9 10.9 10.9 40.9 71.2 81.3 34.5
4 9.5 10.9 10.9 10.9 35.3 61.9 79.6 82.7 10.9
8 0.4 10.9 10.9 10.9 53.0 71.8 83.1 86.3 10.9
16 10.9 10.9 10.9 40.7 60.7 84.3 85.5 87.5 10.9
32 10.1 10.1 10.9 47.0 70.0 86.1 88.9 10.9 10.9
64 10.9 10.9 42.7 62.3 76.2 86.9 89.1 52.4 10.9
128 3.6 10.9 50.2 67.1 85.1 86.7 66.7 10.9 10.9

DeBERTa v3 c3LA TREC-50

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 10.9 10.9 10.9 34.7 42.3 79.2 66.7 62.1 10.9
4 10.9 10.9 19.4 34.7 56.9 86.5 87.7 73.8 10.9
8 10.9 10.9 20.6 36.9 68.7 87.3 78.8 66.7 10.9
16 10.9 10.9 10.9 43.8 76.8 88.5 83.9 71.0 10.9
32 10.9 10.9 38.7 58.1 84.3 88.1 80.4 34.3 10.9
64 10.9 10.9 45.8 74.2 85.9 89.1 80.4 10.9 10.9
128 10.9 35.1 56.5 79.2 85.9 90.9 10.9 10.9 10.9

DeBERTa v3 LoRA PAWS

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 92.1 93.7 94.0 94.2 94.7 94.5 94.0 55.8 55.8
4 92.3 94.1 94.0 94.4 94.2 94.8 94.0 55.8 55.8
8 92.4 93.5 94.3 94.3 94.7 94.5 93.5 55.8 55.8
16 93.1 94.0 94.4 94.6 94.6 93.6 55.8 55.8 55.8
32 93.8 93.9 94.7 94.5 94.7 55.8 55.8 55.8 55.8
64 93.6 94.1 94.6 94.6 94.6 93.5 55.8 55.8 50.0
128 94.0 94.2 94.4 94.7 94.7 55.8 55.8 55.8 50.0

DeBERTa v3 CoLA PAWS

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 55.8 89.8 92.5 93.9 94.6 94.7 94.2 55.8 55.8
4 55.8 90.6 92.9 94.0 94.8 94.8 94.0 55.8 55.8
8 55.8 89.3 93.2 94.1 94.3 94.1 93.0 55.8 55.8
16 55.8 91.8 93.7 94.3 94.5 94.7 55.8 55.8 55.8
32 89.9 92.9 94.3 94.5 94.3 94.8 55.8 55.8 55.8
64 90.5 93.3 94.5 94.5 94.8 93.2 55.8 55.8 55.8
128 91.8 93.8 94.7 95.1 95.0 92.7 55.8 55.8 44.2

DeBERTa v3 Asym PAWS

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 55.8 55.8 86.9 92.3 93.7 93.9 93.9 94.4 93.4
4 55.8 55.8 90.3 92.5 93.2 94.0 94.4 94.2 92.7
8 55.8 55.8 92.3 93.1 94.1 94.7 94.7 94.2 55.8
16 55.8 55.8 92.4 94.1 94.0 94.5 94.6 94.0 55.8
32 55.8 92.9 93.6 94.4 94.4 94.6 94.1 92.9 55.8
64 55.8 92.5 94.1 94.1 94.8 94.8 93.4 55.8 55.8
128 91.7 92.9 94.1 94.4 94.6 94.7 91.8 55.0 44.2

DeBERTa v3 RAC PAWS

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 55.8 55.8 55.8 89.0 93.3 94.1 93.8 94.4 93.4
4 55.8 55.8 91.0 93.0 93.5 93.9 94.4 93.8 90.6
8 55.8 55.8 89.4 93.4 93.8 94.5 94.2 94.3 88.9
16 55.8 55.8 92.6 92.8 94.2 95.1 94.7 93.5 55.8
32 55.8 91.0 92.6 93.8 94.2 94.0 94.7 55.8 55.8
64 55.8 92.7 93.5 94.3 94.8 94.5 93.8 55.8 55.8
128 91.8 93.1 94.2 94.3 94.6 94.6 55.8 55.8 55.8

DeBERTa v3 cLA PAWS

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 55.8 55.8 55.8 90.5 92.5 94.0 93.8 93.7 55.8
4 55.8 55.8 89.3 90.9 93.1 93.8 94.0 93.7 55.8
8 55.8 55.8 89.7 92.6 92.9 94.3 93.9 93.7 55.8
16 55.8 55.8 91.5 93.0 93.7 94.5 94.1 55.8 55.8
32 55.8 89.5 91.6 93.4 93.8 94.2 94.1 55.8 55.8
64 55.8 90.0 93.2 93.8 93.9 94.3 93.5 55.8 55.8
128 87.2 92.5 93.6 93.9 94.7 94.2 55.8 55.8 55.8

DeBERTa v3 c3LA PAWS

Rank/LR 1e-6 1e-5.5 1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2

2 55.8 55.8 55.8 91.4 93.3 93.8 93.9 93.9 55.8
4 55.8 55.8 89.8 91.2 93.7 94.0 94.0 93.3 55.8
8 55.8 55.8 91.8 93.7 93.9 94.7 93.5 93.3 55.8
16 55.8 55.8 92.6 93.5 94.1 94.1 93.7 55.8 55.8
32 55.8 92.0 93.2 94.0 94.1 94.4 93.9 55.8 55.8
64 91.3 92.2 93.8 94.1 93.9 94.2 93.7 55.8 55.8
128 92.5 93.3 94.0 94.3 94.8 55.8 55.8 55.8 55.8

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Table 7: Test accuracies obtained by fine-tuning ViT-Tiny on CIFAR-10 and OfficeHome over varying
learning rates (columns), ranks (rows), and LoRA PEFT methods. We center our search at 1e−3.
Consistent with the results of 6, the learning rate for all methods decreases with increasing rank.
Chain methods and their non-chain counterparts produce the best results in similar learning rate
ranges.

ViT-Tiny LoRA CIFAR-10

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 89.08 90.91 92.85 92.92 93.56 91.76 87.13 49.75 10.70
4 89.38 91.55 93.49 94.50 94.18 95.11 81.16 17.82 11.15
8 89.56 92.04 94.00 95.20 95.68 95.65 77.10 11.85 10.00
16 90.03 92.69 94.36 95.69 95.91 91.27 59.09 13.52 10.08
32 90.85 93.05 95.14 96.14 96.26 87.87 17.79 18.07 10.67
64 91.79 94.00 95.30 96.44 96.43 81.73 14.33 11.30 13.21
128 92.47 94.71 96.03 96.50 96.17 64.03 11.16 12.00 11.41

ViT-Tiny CoLA CIFAR-10

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 87.90 90.43 92.13 93.79 93.77 93.57 87.13 20.52 12.61
4 88.43 90.77 92.73 94.30 95.21 94.49 83.74 17.82 11.15
8 88.96 91.26 93.37 94.95 95.39 94.74 77.09 11.85 10.00
16 89.50 92.00 93.86 95.26 95.72 91.27 62.12 15.42 11.25
32 90.02 92.63 94.54 95.72 95.96 87.87 19.10 18.07 12.41
64 91.18 93.51 95.13 96.07 96.01 81.73 14.33 17.70 13.23
128 92.06 94.20 95.56 96.17 95.54 65.78 17.45 10.30 11.03

ViT-Tiny Asym CIFAR-10

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 85.34 89.63 90.86 91.64 92.03 91.88 90.85 90.18 80.81
4 86.82 90.29 91.66 92.58 93.32 92.73 91.63 87.88 78.91
8 88.34 90.87 92.35 93.34 93.71 93.81 93.74 86.88 64.43
16 89.23 91.61 93.18 94.23 94.65 95.08 90.39 82.52 50.44
32 90.12 92.17 93.81 95.20 95.15 95.36 93.94 73.55 34.13
64 91.20 93.11 94.66 95.77 96.08 92.99 92.18 53.07 24.52
128 92.27 94.03 95.36 96.09 94.56 94.97 69.81 27.77 16.58

ViT-Tiny RAC CIFAR-10

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 85.61 89.68 90.98 91.87 92.72 91.94 91.47 89.51 80.23
4 86.64 90.35 91.89 92.96 93.71 93.46 93.49 87.88 77.56
8 88.26 90.87 92.40 93.65 94.09 94.33 90.69 86.88 64.43
16 89.26 91.75 93.26 94.40 95.31 94.24 89.56 82.52 50.44
32 90.27 92.28 94.05 95.43 95.54 95.68 93.14 73.55 24.92
64 91.12 93.20 94.86 95.91 94.78 95.35 82.86 53.07 24.52
128 92.19 94.03 95.56 96.11 96.10 94.21 69.81 27.77 16.58

ViT-Tiny cLA CIFAR-10

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 87.30 89.65 91.13 92.12 92.49 91.70 88.92 82.43 51.06
4 88.06 90.47 91.91 92.00 93.45 92.05 88.78 73.27 11.47
8 89.14 91.38 93.13 93.36 93.22 90.72 85.78 68.40 13.39
16 90.43 92.27 93.91 94.86 94.53 94.11 78.83 44.03 17.11
32 91.32 93.37 94.91 95.63 95.33 89.55 71.95 30.90 19.23
64 92.50 94.17 95.82 96.26 95.54 83.63 50.91 21.61 15.50
128 93.86 95.39 96.50 96.45 94.85 75.52 28.65 19.95 31.06

ViT-Tiny c3LA CIFAR-10

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 87.29 89.83 91.49 92.48 93.04 91.35 88.65 80.39 53.28
4 88.57 90.76 92.50 93.36 93.98 91.55 87.25 73.27 11.47
8 89.69 91.84 93.52 94.68 94.80 90.72 85.78 68.40 27.84
16 90.63 92.69 94.33 95.35 95.30 90.04 81.13 44.03 17.11
32 91.39 93.68 95.12 95.57 95.30 89.55 71.95 21.94 17.60
64 92.86 94.71 95.92 96.41 95.07 83.63 41.60 21.61 14.03
128 93.83 95.38 96.43 96.22 94.89 75.52 27.84 19.95 14.48

ViT-Tiny LoRA OfficeHome

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 47.33 65.03 70.80 75.55 77.81 75.93 77.08 40.57 1.80
4 48.57 64.90 71.36 75.33 77.85 78.50 77.55 26.51 2.01
8 49.42 64.81 72.08 75.93 79.39 78.88 59.09 4.28 2.61
16 50.41 65.33 72.30 77.21 79.26 79.69 49.17 1.97 4.53
32 50.53 65.50 73.54 79.09 79.56 66.01 36.43 2.44 2.05
64 51.86 66.35 74.99 78.97 79.86 61.48 10.77 1.75 2.09
128 54.68 66.82 76.70 79.91 80.33 53.53 2.78 1.75 2.91

ViT-Tiny CoLA OfficeHome

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 45.28 64.64 70.50 74.48 76.96 76.70 74.05 40.57 2.01
4 46.43 64.94 70.63 74.39 76.87 76.61 72.60 26.51 2.01
8 47.71 65.11 70.97 75.12 77.73 76.96 59.09 3.04 5.77
16 49.47 64.51 71.40 75.63 78.71 77.68 49.17 1.97 2.22
32 50.32 65.20 72.12 77.38 80.38 66.01 36.43 2.44 2.05
64 51.05 65.63 73.79 78.32 79.35 61.48 10.77 1.75 2.69
128 52.29 66.35 75.29 79.48 79.52 52.29 2.78 1.75 4.10

ViT-Tiny Asym OfficeHome

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 43.91 63.06 70.20 73.45 74.65 74.48 74.22 75.29 74.09
4 44.72 63.83 70.59 73.71 75.76 73.92 76.14 75.37 51.69
8 45.79 64.47 71.31 74.65 75.93 75.50 75.84 75.72 40.49
16 47.20 65.80 72.21 75.12 77.13 75.67 76.87 54.77 21.42
32 49.68 66.27 72.47 76.66 78.50 77.94 77.04 45.28 13.85
64 51.52 67.04 74.13 77.81 79.31 78.37 57.46 23.56 8.85
128 53.53 68.06 75.25 79.35 80.72 77.85 46.81 10.65 2.05

ViT-Tiny RAC OfficeHome

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 44.38 63.75 70.54 73.54 75.29 76.14 75.16 70.97 54.85
4 44.76 64.04 70.71 74.01 76.36 74.22 72.85 66.44 51.69
8 45.83 65.07 71.65 74.78 76.31 77.04 75.97 64.73 40.49
16 47.29 65.71 72.55 75.29 77.94 77.47 75.46 67.38 21.42
32 49.64 66.10 72.60 77.47 79.26 78.79 75.07 45.28 13.85
64 51.60 67.12 74.39 78.32 79.91 75.33 57.46 23.56 9.49
128 53.53 67.76 75.72 79.26 80.63 76.74 46.81 10.65 2.05

ViT-Tiny cLA OfficeHome

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 44.04 64.04 70.12 73.45 75.89 75.72 74.35 73.19 30.14
4 46.09 64.86 70.84 74.90 76.53 75.37 74.99 54.81 2.01
8 47.50 65.16 72.12 75.16 76.57 76.87 75.25 45.10 2.86
16 50.75 65.63 72.98 77.00 78.37 77.17 59.30 36.55 3.42
32 52.93 66.99 74.39 77.85 76.83 76.83 51.13 12.61 2.35
64 55.96 68.53 75.67 79.14 79.26 63.06 35.49 4.02 2.69
128 61.22 71.95 77.34 79.78 77.77 53.91 17.44 3.42 3.42

ViT-Tiny c3LA OfficeHome

1e-5 1e-4.5 1e-4 1e-3.5 1e-3 1e-2.5 1e-2 1e-1.5 1e-1

2 45.02 64.51 70.29 73.88 76.36 75.93 73.07 57.46 30.14
4 46.30 64.94 70.80 74.31 77.17 76.19 66.65 54.81 2.01
8 49.21 65.37 72.68 75.93 77.51 72.60 64.73 45.10 3.04
16 51.13 66.44 73.15 77.55 78.71 71.23 59.30 36.55 2.48
32 53.31 67.55 74.22 79.26 79.22 67.38 51.13 12.01 2.35
64 56.18 69.22 76.06 79.52 78.24 63.06 35.49 6.50 3.59
128 61.18 72.00 77.38 79.91 78.45 53.91 17.44 8.38 3.42

Table 8: Test accuracies obtained by fine-tuning DeBERTa v3 on MRPC and TREC-50 over varying
scaling factors (columns), ranks (rows), and LoRA PEFT methods. The standard baseline 2r often
was the best, and asymmetric methods preferred higher scaling factors.

DeBERTa v3 LoRA MRPC

Rank/α r
4

r
2

r 2r 4r

4 87.2 88.3 88.5 88.1 87.4
8 86.9 86.1 89.2 87.0 66.5
16 87.8 88.9 89.1 66.5 66.5

DeBERTa v3 CoLA MRPC

Rank/α r
4

r
2

r 2r 4r

4 87.8 88.9 88.5 89.2 87.1
8 89.6 87.4 88.7 87.2 86.3
16 89.2 87.6 86.9 87.2 66.5

DeBERTa v3 Asym MRPC

Rank/α r
4

r
2

r 2r 4r

4 75.5 79.9 80.4 85.0 84.2
8 76.7 82.1 83.6 86.1 86.9
16 79.2 81.4 84.8 84.8 86.1

DeBERTa v3 RAC MRPC

Rank/α r
4

r
2

r 2r 4r

4 75.6 79.4 82.2 85.0 85.7
8 77.8 81.6 84.6 85.7 87.2
16 80.4 84.5 85.0 85.6 87.0

DeBERTa v3 cLA MRPC

Rank/α r
4

r
2

r 2r 4r

4 86.2 86.0 86.3 86.4 86.4
8 86.6 84.8 85.4 85.5 85.9
16 86.8 86.9 86.2 86.2 86.4

DeBERTa v3 c3LA MRPC

Rank/α r
4

r
2

r 2r 4r

4 79.3 83.3 86.5 88.5 86.1
8 78.3 84.9 86.9 87.6 86.9
16 85.0 85.7 87.3 85.8 66.5

DeBERTa v3 LoRA TREC-50

Rank/α r
4

r
2

r 2r 4r

4 88.9 89.7 90.7 83.1 90.3
8 88.7 90.7 91.3 85.3 75.4
16 91.1 91.5 90.7 88.5 10.9

DeBERTa v3 CoLA TREC-50

Rank/α r
4

r
2

r 2r 4r

4 92.1 91.9 92.5 90.7 91.1
8 91.7 89.7 90.9 90.3 85.5
16 91.9 92.3 86.1 87.3 10.9

DeBERTa v3 Asym TREC-50

Rank/α r
4

r
2

r 2r 4r

4 79.8 84.7 87.7 90.5 89.9
8 82.9 87.7 84.5 89.3 90.7
16 89.3 86.7 90.7 91.3 89.7

DeBERTa v3 RAC TREC-50

Rank/α r
4

r
2

r 2r 4r

4 60.1 72.6 81.0 85.5 88.7
8 75.2 81.5 85.7 88.1 89.7
16 83.1 86.3 87.7 90.3 78.0

DeBERTa v3 cLA TREC-50

Rank/α r
4

r
2

r 2r 4r

4 57.9 74.8 80.0 82.9 86.3
8 73.6 76.6 83.7 82.5 87.3
16 79.6 80.2 87.9 88.1 86.1

DeBERTa v3 c3LA TREC-50

Rank/α r
4

r
2

r 2r 4r

4 73.8 81.5 83.1 89.3 88.7
8 78.2 82.3 83.9 84.7 81.7
16 83.1 85.5 85.3 87.5 86.3

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Table 9: Test accuracies obtained by fine-tuning ViT-Tiny on OfficeHome and CIFAR-10 over varying
scaling factors (columns), ranks (rows), and LoRA PEFT methods. The standard baseline 2r often
was the best, and asymmetric methods preferred higher scaling factors.

ViT-Tiny LoRA CIFAR-10

Rank/α r
4

r
2

r 2r

4 93.9 94.1 94.0 94.0
8 94.8 95.7 95.7 95.8
16 95.8 96.1 96.1 95.2

ViT-Tiny CoLA CIFAR-10

Rank/α r
4

r
2

r 2r

4 94.3 94.5 94.5 95.3
8 94.7 94.9 95.3 95.1
16 95.0 95.5 95.7 96.2

ViT-Tiny Asym CIFAR-10

Rank/α r
4

r
2

r 2r

4 91.7 92.2 92.8 92.4
8 92.6 93.1 93.7 94.
16 93.1 94.0 94.4 94.4

ViT-Tiny RAC CIFAR-10

Rank/α r
4

r
2

r 2r

4 91.8 92.6 93.2 94.2
8 92.8 93.4 94.0 94.8
16 93.6 94.3 94.8 95.6

ViT-Tiny cLA CIFAR-10

Rank/α r
4

r
2

r 2r

4 92.0 92.6 93.1 93.5
8 93.4 93.4 93.5 93.4
16 94.3 94.5 94.5 94.5

ViT-Tiny c3LA CIFAR-10

Rank/α r
4

r
2

r 2r

4 92.7 93.4 93.4 94.4
8 93.8 94.4 94.6 94.8
16 94.8 95.3 95.2 95.3

ViT-Tiny LoRA OfficeHome

Rank/α r
4

r
2

r 2r

4 76.8 77.1 77.8 77.9
8 76.9 77.9 78.5 79.4
16 77.9 78.4 79.2 79.4

ViT-Tiny CoLA OfficeHome

Rank/α r
4

r
2

r 2r

4 75.5 75.9 76.6 77.8
8 76.0 76.4 77.4 79.6
16 76.3 77.2 78.2 79.4

ViT-Tiny Asym OfficeHome

Rank/α r
4

r
2

r 2r

4 74.0 74.5 75.2 75.6
8 74.5 75.1 75.6 76.2
16 75.2 75.9 76.4 76.9

ViT-Tiny RAC OfficeHome

Rank/α r
4

r
2

r 2r

4 74.3 74.6 75.6 76.0
8 74.8 75.2 75.9 77.1
16 75.2 75.5 76.4 77.7

ViT-Tiny cLA OfficeHome

Rank/α r
4

r
2

r 2r

4 75.3 75.9 76.5 76.5
8 76.3 76.5 76.6 76.5
16 76.4 76.9 77.3 78.4

ViT-Tiny c3LA OfficeHome

Rank/α r
4

r
2

r 2r

4 75.6 75.9 76.3 77.3
8 76.4 77.0 76.9 77.5
16 76.6 77.7 78.4 78.5

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Table 10: Test accuracies obtained by fine tuning DeBERTa v3 on MRPC, CoLA, TREC-50 and RTE
using chain LoRA methods CoLA, RAC, and c3LA over varying ranks and chain reset frequencies.
No clear correlation between optinal chain reset frequency and rank is observed.

DeBERTa v3 MRPC

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20

CoLA
4 88.0 86.8 89.2 88.1 86.7 86.7

8 87.8 88.0 87.2 87.2 86.7 87.2

16 66.5 87.2 87.2 87.2 87.2 87.2

RAC
4 68.3 77.4 85.0 85.7 85.7 86.6

8 68.1 82.0 85.7 86.4 85.7 85.6

16 69.1 84.2 85.6 86.1 86.5 86.3

c3LA
4 84.8 86.7 87.2 85.2 85.8 85.2

8 85.2 87.7 86.6 86.7 85.3 86.9

16 87.6 87.0 86.7 86.6 86.6 87.6

DeBERTa v3 TREC-50

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20

CoLA
4 91.3 91.1 89.9 88.5 90.5 91.3

8 92.7 91.1 85.3 10.9 92.7 90.5

16 10.9 10.9 93.1 91.7 92.1 65.1

RAC
4 84.3 84.1 85.5 84.1 86.3 86.5

8 88.3 88.5 88.1 88.7 87.7 88.9

16 87.7 91.5 90.3 89.9 89.9 88.9

c3LA
4 86.3 88.1 89.3 85.9 88.9 88.9

8 86.1 89.3 84.7 83.7 86.1 90.7

16 89.7 90.5 87.5 91.1 87.3 88.1
DeBERTa v3 CoLA

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20

CoLA
4 86.9 86.5 86.2 86.6 87.1 86.7

8 85.5 85.1 85.1 85.1 85.1 85.1

16 84.2 69.1 69.1 69.1 69.1 69.1

RAC
4 87.0 86.7 87.7 87.4 88.0 87.7

8 87.5 87.8 87.8 87.5 86.6 86.6

16 86.7 86.9 87.3 87.0 87.0 87.6

c3LA
4 86.4 86.6 86.1 85.8 86.0 86.3

8 86.0 86.1 86.1 86.2 86.3 86.3

16 86.2 85.7 86.3 85.6 85.4 86.7

DeBERTa v3 RTE

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20

CoLA
4 82.9 84.4 85.1 83.7 85.4 86.2

8 88.2 84.6 84.8 87.1 87.1 86.7

16 85.1 52.6 81.4 84.8 84.3 73.5

RAC
4 82.3 83.0 81.6 82.1 82.4 82.4

8 85.5 86.8 86.4 87.5 87.5 87.5

16 84.2 84.4 84.1 83.5 83.7 84.3

c3LA
4 79.0 77.9 72.6 71.9 74.0 72.4

8 80.0 80.3 76.6 73.9 76.2 75.4

16 85.0 82.5 83.6 83.0 82.9 82.4

Table 11: Test accuracies obtained by fine tuning ViT-Tiny on OfficeHome and CIFAR-10 using
chain LoRA methods CoLA, RAC, and c3LA over varying ranks and chain reset frequencies.

ViT-Tiny OfficeHome

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20

CoLA
4 76.4 76.5 77.2 77.2 77.6 77.8

8 77.6 77.1 78.3 77.3 78.7 79.6

16 77.9 77.9 78.8 78.6 79.4 79.1

RAC
4 75.5 75.8 76.0 75.7 75.7 75.7

8 77.1 76.1 76.3 76.6 76.1 76.4

16 77.4 77.7 77.7 77.0 77.3 77.0

c3LA
4 76.7 77.3 77.3 76.3 76.5 76.6

8 77.5 76.9 77.2 76.7 76.8 76.8

16 77.5 78.1 78.4 78.5 78.1 78.4

ViT-Tiny CIFAR-10

Chain Reset Frequency

Variant Rank 1 2 5 10 15 20

CoLA
4 94.5 94.8 94.7 95.3 94.0 94.0

8 95.1 95.1 95.3 94.9 94.7 94.5

16 95.5 95.5 95.7 96.0 96.0 96.2

RAC
4 94.2 94.0 94.0 93.4 92.4 92.5

8 94.5 94.8 94.5 94.2 94.1 94.0

16 95.6 95.2 95.3 95.1 95.0 94.3

c3LA
4 94.4 94.2 94.0 93.9 92.7 92.7

8 93.6 94.2 94.8 94.5 93.4 93.4

16 94.0 93.6 95.3 95.1 94.8 95.0

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Table 12: Total FLOPs per epoch to fine-tune RoBERTa-Base/Large (CoLA/MRPC), GPT2-Small (E2E), and
ViT-Tiny/Base (OfficeHome/CIFAR-10) using FFT, LoRA, Asymmetric LoRA, and a naive sparse implementa-
tion. All models use rank r = 16. In each row, the best value is bold.

Model Dataset Flops per epoch
FFT LoRA Asym Naive Sparse

RoBERTa-Base MRPC 1.1× 1014 7.5× 1013 7.5× 1013 7.4× 1013

CoLA 6.8× 1013 4.6× 1013 4.6× 1013 4.5× 1013

RoBERTa-Large MRPC 3.9× 1014 2.6× 1014 2.6× 1014 2.6× 1014

CoLA 2.4× 1014 1.6× 1014 1.6× 1014 1.6× 1014

ViT-Tiny OfficeHome 6.8× 1013 4.8× 1013 4.7× 1013 4.6× 1013

CIFAR-10 3.0× 1014 2.1× 1014 2.1× 1014 2.0× 1014

ViT-Base OfficeHome 1.1× 1015 7.4× 1014 7.4× 1014 7.3× 1014

CIFAR-10 4.8× 1015 3.2× 1015 3.2× 1015 3.2× 1015

Figure 6: 3D loss landscapes of ViT-Base (11) pretrained on ImageNet-1K (7) and fine-tuned on Office-
Home (55) (top) and RoBERTa-Base (35) pretrained on a corpus of English text fine-tuned on CoLA (56)
(bottom) using the non-chain then chain variants of each LoRA method. The chain variants consistently produce
sharper landscapes than the non-chain variants. In asymmetric LoRA methods, this often correlates to worse
generalizability, but not in symmetric methods where B,A are both trained as shown in 15.

Comparison between using random or PCA directions. To understand the differences between
the loss landscapes of the models in the PCA directions compared to random directions, we plotted
the loss landscape of ViT-Base fine-tuned on CIFAR-10 in both PCA directions (top) and random
directions (bottom) in Figure 5. For random directions, the FFT landscape is substantially smoother;
this is consistent with (29), but this is inconsistent with the loss landscapes of RoBERTa-Base with
random direction in Figure 6, where chain methods produce spikier landscapes with no substantial
change in generalizability.

2D landscapes. The initial setup is identical to the 3D landscape. We obtain the same principal
directions and plot the same function. For 2D landscapes, when generating our α, β grid of values, we
uniformly distribute over [−m,m]× [−m,m] where m is chosen to ensure the optimizer trajectory
(blue arrows) is entirely contained in the image. As shown in Figure 7, chain methods have more
diverse loss landscapes than their non-chain counterparts due to their overall update to the pre-trained
weights having a higher effective rank (57).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

(a) LoRA (b) Asym LoRA (c) cLA

(d) r-cLA (e) CoLA (f) c3LA

(g) r-c3LA (h) RAC (i) LoRA+

(j) Full Fine-Tuning

Figure 7: 2D loss landscapes of RoBERTa-Base fine-tuned on CoLA for FFT and many PEFT LoRA
methods. The axes dirX and dirY are the constants we scale the top two PCA components of the
weight displacement matrix with. The range was chosen to contain the entire gradient path. The top
row is the non-chain variant of the bottom row, save for the last column. The center is marked with a
cross for visibility; the arrows indicate the direction of the model’s updates.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Table 13: Average per-layer count of intruder dimensions for given ϵ-thresholds for RoBERTa-Base fine-tuned
on CoLA at 25%, 50%, 75%, and 100% points of training.

ε = 0.4 ε = 0.8

Method 25% 50% 75% 100% 25% 50% 75% 100%

FFT 0.2 0.4 0.6 1.0 47.8 93.3 110.5 128.4
LoRA 0.3 1.4 1.9 3.0 73.0 112.9 141.0 162.8

CoLA 1.4 4.2 5.1 5.9 129.0 156.5 164.4 168.5
Asym 1.1 3.2 4.2 4.4 81.2 106.8 122.7 126.7
RAC 1.2 3.4 5.5 5.3 142.5 167.3 177.6 183.6

cLA 3.0 6.7 8.2 8.5 261.1 318.0 345.0 356.7
r-cLA 2.5 6.6 9.0 9.1 257.2 329.1 364.2 376.9
c3LA 9.3 18.2 21.2 23.2 392.6 433.4 444.3 446.6
r-c3LA 5.8 8.8 14.1 14.6 383.2 409.7 433.9 437.9

Table 14: Average per-layer count of intruder dimensions for given ϵ-thresholds for ViT-Base fine-tuned on
CIFAR-10 at 25%, 50%, 75%, and 100% points of training completion.

ε = 0.4 ε = 0.8

Method 25% 50% 75% 100% 25% 50% 75% 100%

FFT 517.1 630.2 646.2 648.1 745.2 750.9 751.7 751.7
LoRA 133.2 230.3 254.0 258.4 718.3 726.5 728.0 728.1

CoLA 147.2 393.5 550.2 582.5 716.6 731.3 734.0 734.2
Asym 41.0 105.0 152.0 168.8 653.2 686.6 699.8 704.1
RAC 176.4 447.3 502.1 534.8 696.9 715.5 717.8 718.4

cLA 199.3 276.3 290.6 294.4 709.5 720.7 722.2 722.7
r-cLA 215.7 289.0 306.2 315.2 707.4 720.2 723.4 724.6
c3LA 340.8 552.0 640.6 651.1 716.0 726.4 729.8 730.4
r-c3LA 416.0 621.0 645.3 660.6 720.2 729.8 730.5 731.3

D.4.2 INTRUDER DIMENSION IMPLEMENTATION

Given the pretrained and fine-tuned models, W0 and W0 + ∆W we find intruder dimensions as
follows: first, we decompose each layer of W0 and W0 + ∆W into their corresponding SVDs,
U iΣiV i

T
(W0)i and U iΣiV iT(W0+∆W)i , i ∈ [L], respectively. Then, given a threshold ε ∈ (0, 1), a

singular vector uj,i(W0+∆W) in U i(W0+∆W) is an intruder dimension if for all uk,i(W0)
in U i(W0)

, the

expression,
|⟨uj,i

(W0+∆W]),u
k,i
(W0)

⟩|

∥uj,i
(W0+∆W)

∥∥uk,i
(W0)

∥
| < ε. For ε small enough, this indicates the vector uj,i(W0+∆W) is

almost orthogonal to all vectors in U i(W0)
. We denote these vectors as intruder dimensions.

D.5 GENERALIZATION ERROR—CONTINUED

Let X ×Y be our input space and label space with ν distribution of pairs (x, y) ∈ X ×Y , our dataset
N = {(x1, y1), ..., (xn, yn)} where each (xi, yi) is i.i.d. from ν distribution of X × Y , thus the
distribution over our dataset does not represent the true distribution of input-output pairs from our
instance space. Let H be our hypothesis space, where w ∈ H;w(xi) = ŷi thus, we are concerned
with how accurately w can adapt to the true distribution ν of X × Y . This can be addressed by the
generalization error of our hypothesis w ∈ H given our loss function ℓ. The true risk of w over
X × Y given ℓ is Lglobal(w) := EX ,Y [ℓ(w(x), y)] =

∫
X×Y ℓ(w(x), y)dν, while empirical risk is

L := 1
n

∑n
ℓ(w(xi), yi); (xi, yi) ∈ N . Let M denote the full dataset, where M = N ∪ T , N being

the train dataset, and T being the test dataset. In practice, the empirical risk can be computed based
on N , and the test dataset, T , can be used to show how well the model has generalized. N and T are
independent samples from ν; their distributions approximate ν but differ due to random and finite
sampling. Although Ltest −Ltrain is not a true testament for calculating the generalization error of a

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Table 15: Generalization error approximations (test-loss minus train-loss) on the past (FFT, LoRA), the present
(CoLA, Asymm, RAC, LoRA+), and the future (cLA, c3LA, r-cLA, r-c3LA) fine tuning methods over various
models and datasets. For the dataset CoLA we report the Matthews Correlation Coefficient and test accuracy
otherwise. The color green indicates the best result for each particular model and dataset combination, red is the
second best result and blue the third.

Model Dataset The Past The Present The Future

FFT LoRA CoLA Asymm RAC LoRA+ cLA c3LA r-cLA r-c3LA

ViT-Tiny (11) OfficeHome 4.85e−1 6.96e−2 9.55e−3 7.22e−2 6.17e−2 7.39e−2 1.98e−2 3.40e−2 2.16e−2 3.51e−2

CIFAR-10 1.42e−1 2.64e−1 2.87e−1 3.36e−1 3.18e−1 2.80e−1 3.13e−1 3.03e−1 3.12e−1 2.92e−1

ViT-Base (11) OfficeHome 3.66e−1 1.07e−1 1.43e−2 8.52e−3 1.02e−2 1.41e−1 3.16e−2 3.62e−2 5.53e−2 3.00e−2

CIFAR-10 9.98e−2 1.92e−1 2.21e−1 2.38e−1 2.30e−1 1.84e−1 2.33e−1 2.34e−1 2.26e−1 2.15e−1

DeBERTa v2 XXL (21) MRPC 8.15e−2 6.89e−2 6.53e−2 8.09e−2 8.02e−2 9.08e−2 9.31e−2 1.10e−1 9.47e−2 1.22e−1

TREC50 3.38e−1 2.36e−1 7.04e−2 1.53e−1 2.24e−1 1.36e−1 1.85e−1 2.22e−1 1.93e−1 1.92e−1

PAWS 6.07e−2 1.99e−2 3.63e−2 3.26e−2 3.95e−2 5.41e−2 6.68e−2 5.11e−2 1.98e−2 6.99 e−2

DeBERTa v3 Base (20) MRPC 1.06e−1 8.90e−2 2.59e−2 7.28e−2 9.86e−2 1.52e−2 2.58e−2 8.52e−3 1.16e−1 2.57e−2

TREC50 4.56e−1 2.73e−1 3.99e−1 2.16e−1 2.67e−1 2.61e−2 2.25e−1 3.70e−1 3.36e−1 2.63e−2

PAWS 2.62e−2 6.43e−2 2.40e−2 6.27e−2 8.17e−2 5.55e−2 7.39e−2 5.77e−2 1.01e−1 5.82e−2

RoBERTa-Base (35) MRPC 9.48e−1 6.01e−1 2.05e−1 1.64e−1 2.20e−1 5.33e−1 4.37e−1 3.78e−1 3.35e−1 3.21e−1

CoLA 1.39 7.74e−1 4.04e−1 2.22e−1 1.96e−1 8.10e−1 4.70e−1 4.43e−1 4.38e−1 4.01e−1

RoBERTa-Large (35) MRPC 7.29e−1 4.64e−1 4.71e−1 2.77e−1 2.68e−1 2.64e−1 6.54e−1 5.57e−1 5.27e−1 3.84e−1

CoLA 8.06e−1 4.25e−1 4.18e−1 2.36e−1 1.75e−1 2.28e−1 4.96e−1 4.56e−1 6.14e−1 4.05e−1

TinyLlama (61) OpenBookQA 1.78e−1 2.82e−1 3.41e−1 2.15e−1 1.86e−1 2.07e−1 1.51e−1 2.20e−1 3.16e−1 7.59e−2

FOLIO 1.82e−1 2.37e−1 2.17e−1 1.75e−1 1.93e−1 5.11e−2 2.35e−1 1.91e−1 1.05e−1 2.49e−1

LogiQA 3.61e−1 6.12e−3 1.45e−1 1.16e−2 1.75e−1 2.37e−1 8.60e−2 1.1e−1 6.64e−2 6.25e−2

CLUTRR 4. 29 2.25 1.55 2.34 2.27 5.48 2.16 2.19 2.59 4.23

DeepseekCoder (16) DJANGO 3.48e−2 4.65e−2 3.4e−2 5.16e−2 4.64e−2 3.87e−2 4.19e−2 3.89e−2 3.64e−2 3.62e−2

GPT2-Small E2E 1.65e−1 1.93e−1 1.85e−1 1.83e−1 1.85e−1 1.87e−1 1.77e−1 1.82e−1 1.88e−1 1.82e−1

model, it can be used as a heuristic for determining generalization. An important aspect of evaluating
fine-tuning methods is not only their peak performance but also their consistency across training runs.
Understanding how stable these models are provides insight into their reliability and reputability for
practical use.

Tying our theoretical developments to our empirical tests, we see a connection where the frozen
variants tend to have a lower difference between test loss and train loss over varying epochs.

An important aspect of evaluating fine-tuning methods is not only their peak performance but also
their consistency across training runs. Understanding how stable these models are provides insight
into their reliability and reputability for practical use.

E LIMITATIONS AND DISCUSSION

cLA and c3LA particularly train only a small subsection of our pretrained model at a time, leading to
underperformance on lower ranks in comparison to alternate LoRA variants.

We observed that cLA and c3LA performed nearly as well as their non-sparse counterparts, Asym-
metric LoRA and RAC, while being less expensive. The nature of the methods they were inspired
by already had a frozen matrix component; we leave it up to researchers to study more potential
identity-based LoRA variants to save computational resources.

We emphasize that some of the analytical tools in §4.2 are not necessarily strong indicators of a
model’s performance. However, they tell us about some of the fine-tuned model’s subspace properties,
such as changes in direction and magnitude. Particularly, they depict how a fine-tuned model deviates
from a pretrained model. This is relevant if the preservation of structure is important for alternative
purposes such as cross-training, hybrid fine-tuning, or preservation of historical datasets.

F TABLE OF NOTATIONS

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Table 16: Table of notations.

Notation Definition

∥x∥ The ℓ2 norm of a vector, x

∥A∥ The Frobenius norm of a matrix, A

∥A∥2 The spectral norm of a matrix, A

A† The Moore-Penrose pseudoinverse of a matrix A.

L Number of layers in a deep neural network

W i ith layer of network

W (W1, ...,WL)

x Input to the network

fW(x) σL(WL · · ·σ3(W3σ2(W2σ1(W1(x))...)))

σi(·) ith layer non-linear activation function

Npre pre-training dataset (xi, yi)
|Npre|
i=1

ℓpre(·) pre-training loss function

W0 pre-training weights

∆W FFT weight-update

∆Ŵ FFT argmin update

ℓ(·) fine-tuning loss function

BA LoRA weight-update

B̂Â LoRA argmin weight update

k Chain-length of chain methods (CoLA, RAC, C3LA)

BjAj CoLA jth chain weight update

B̂jÂj CoLA jth chain argmin weight update

W
(k,BA)
0 k chains of CoLA updates, where W

(k,BA)
0 := W0 +

∑k
j=1 B̂jÂj

A0 Frozen A layers.

BA0 Assymetric LoRA weight update

B̂A0 Assymetric LoRA argmin weight update

BjA
j
0 RAC-LoRA jth chain weight update

B̂jA
j
0 RAC-LoRA jth chain argmin weight update

W
(k,B)
0 k chains of RAC-LoRA updates, where W

(k,B)
0 := W0 +

∑k
j=1 B̂jA

j
0

Bc Cheap LoRA (cLA) weight update

B̂c cLA argmin weight update

Bc
3,j Circulant chain of cheap LoRA’s (c3LA) jth chain weight update

B̂c
3

c3LA jth chain argmin weight update

W
(k,Bc

3
)

0 k chains of c3LA updates, where W
(k,Bc

3
)

0 := W0 +
∑k
j=1 B̂c

3,j

LG Lipschitz constant for the gradient of the loss function.

X feature space of the network

Y label space of the network

L̂global(·) true risk of an input network

42

	Introduction
	DNN Fine-Tuning: The Past, Present, and Future
	The Past: Full fine-tuning (FFT) and LoRA
	The Present: Evolution of LoRA
	The Future: Can we push for more compute efficiency?

	Theoretical Insights
	On the generalization of different variants of LoRA
	On the nonconvex convergence of different variants of LoRA

	Benchmarking and Evaluation
	Quality of the Fine-Tuned Models
	Performance Analysis

	Conclusion
	The Present: Evolution of LoRA—Continued
	Pseudo Code of our proposed LoRA variants
	Theoretical Results
	Generalization
	Inequalities used
	Proof of Theorem 1.
	Neural Network with No activation Function—Special case of Theorem 1
	Tightness of the bounds in Theorem 1
	Adapting Theorem 1 under special cases

	Nonconvex Convergence
	Auxiliary Results
	Nonconvex Convergence Result
	Additional Results

	Addendum to Benchmarking and Evaluation
	Implementation Details
	The effects of learning rate, scaling factor, and chain reset frequency on quality metric over various ranks
	Computational Cost, FLOPs, and Efficiency
	Performance Analysis—Continued
	Loss Landscape—Continued
	Intruder Dimension implementation

	Generalization Error—Continued

	Limitations and Discussion
	Table of notations

