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Abstract

In this work, we address the task of table image to LaTeX code generation, with
the goal of automating the reconstruction of high-quality, publication-ready tables
from visual inputs. A central challenge of this task lies in accurately handling
complex tables—those with large sizes, deeply nested structures, and semantically
rich or irregular cell content—where existing methods often fail. We begin with a
comprehensive analysis, identifying key challenges and highlighting the limitations
of current evaluation protocols. To overcome these issues, we propose a reinforced
multimodal large language model (MLLM) framework, where a pre-trained MLLM
is fine-tuned on a large-scale table-to-LaTeX dataset. To further improve generation
quality, we introduce a dual-reward reinforcement learning strategy based on Group
Relative Policy Optimization (GRPO). Unlike standard approaches that optimize
purely over text outputs, our method incorporates both a structure-level reward on
LaTeX code and a visual fidelity reward computed from rendered outputs, enabling
direct optimization of the visual output quality. We adopt a hybrid evaluation
protocol combining TEDS-Structure and CW-SSIM, and show that our method
achieves state-of-the-art performance, particularly on structurally complex tables,
demonstrating the effectiveness and robustness of our approach. Code and dataset
are available at https://github.com/newLLing/Table2LaTeX-RL.

1 Introduction

Tables are essential components of scientific and technical documents, providing a structured and
concise format for presenting quantitative data, experimental results, and complex relationships. As
document digitization becomes increasingly prevalent, the ability to automatically generate table
code from images is critical for enabling content reuse and high-quality reproduction. However,
most existing methods focus on generating HTML representations [[1H5] , which lack the structural
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expressiveness and typographic precision required for complex tables—especially those with nested
headers, merged cells, or mathematical content. In contrast, LaTeX is the standard in scientific
publishing, offering the flexibility and fidelity needed for professional-grade tables. Despite its
practical importance, the task of directly generating LaTeX code from table images has received
limited attention in prior work [6, [7]].

In this work, we study the task of table image to LaTeX generation and provide a comprehensive
analysis of its challenges. Through empirical observations, we find that the primary difficulty lies
in handling complex tables, which are often large, deeply nested, and semantically rich—structures
naturally suited to LaTeX but difficult for models to predict accurately. These challenges affect both
the vision encoder, which must extract fine-grained visual and structural cues, and the language
decoder, which must generate long, syntax-sensitive LaTeX sequences. Errors in either stage often
lead to hallucinated, malformed output or even compilation errors. To enable finer-grained evaluation
and better understand the current research gaps, we propose splitting the dataset into simple, medium,
and complex subsets based on structural complexity.

To tackle these challenges, we leverage pre-trained multimodal large language models (MLLMs),
which demonstrate strong capabilities in visual recognition, cross-modal reasoning, and LaTeX
fluency. We fine-tune an MLLM on a large-scale image-to-LaTeX dataset harvested from scientific
documents on arXiv. To further improve performance—particularly for complex tables—we intro-
duce a dual-reward reinforcement learning strategy built on Group Relative Policy Optimization
(GRPO) [8]], termed VSGRPO. While standard GRPO methods optimize text generation quality based
solely on textual output, we go a step further: we render the generated LaTeX code into images and
directly evaluate visual fidelity using CW-SSIM. This image-based reward complements a structure-
level reward computed from the LaTeX source, allowing us to jointly optimize for both structural
accuracy and rendered appearance. This novel visual-in-the-loop reinforcement design significantly
enhances the model’s ability to produce faithful, high-fidelity LaTeX code for structurally rich and
visually complex tables.

From an evaluation perspective, existing metrics are limited. TEDS [9]], a widely used structure-based
metric, lacks sensitivity to fine-grained errors and suffers from mismatches between HTML and
LaTeX. On the other hand, rendered image comparison metrics focus on local visual similarity but
ignore global structural correctness. To overcome this, we adopt a hybrid evaluation strategy that
combines TEDS-Structure [10] for structural fidelity and CW-SSIM for robust visual similarity.

Under this framework, our method achieves state-of-the-art performance on the table image to LaTeX
generation task, with particularly strong improvements on complex tables. This demonstrates the
effectiveness of combining MLLM fine-tuning with targeted reinforcement learning for high-fidelity,
publication-ready table generation.

* We delve deep into the under-explored task of table image to LaTeX code generation, offering
a comprehensive analysis of its core challenges—particularly for structurally complex
tables—and introducing a complexity-based data split for fine-grained evaluation.

* We develop a reinforced MLLM framework, where a pre-trained MLLM is fine-tuned on a
large-scale image-to-LaTeX dataset harvested from arXiv, effectively bridging visual input
and LaTeX code generation.

* We propose VSGRPO, a novel dual-reward reinforcement learning strategy based on GRPO,
which jointly optimizes structure-level accuracy and visual fidelity by incorporating both
LaTeX-based and rendered-image-based feedback.

* We introduce a hybrid evaluation strategy combining TEDS-Structure and CW-SSIM to
better reflect both structural and visual correctness. Extensive experiments demonstrate
state-of-the-art performance of our approach, especially on complex tables.

2 Related Work

Table Structure Recognition. Existing table recognition approaches fall into two main categories:
detection-based and image-to-text—based methods. Detection-based methods first predict the physical
structure—such as grid lines or cell bounding boxes—and then infer logical relationships. Grid-line-
based approaches [11-H17] segment tables along detected rows and columns and merge regions to



reconstruct cells. Cell-bounding-box methods [18H21] treat detected cells as graph nodes, using
GNN s to infer row/column associations.

Image-to-text—based table structure recognition (TSR) decomposes the task into predicting struc-
tural layout and transcribing cell content, which are then fused into a full table representation.
Encoder—decoder models [1H3]] generate structure tokens (e.g., HTML tags) and content separately.
TableFormer [3] improves this with Transformer-based decoding and regression for bounding boxes.
VAST [4] frames coordinate prediction as sequence generation and adds a visual alignment loss.
DRCC [5]] adopts a hybrid decoding scheme to reduce error accumulation.

Most detection and TSR methods target HTML outputs, which are not well-suited for LaTeX due to
syntactic and semantic differences. Recently, end-to-end LaTeX generation approaches have emerged.
LaTeXNet [[7] uses specialized submodules for equations, tables, and text. Nougat [22]] bypasses
OCR entirely to generate LaTeX directly. LATTE [6]] introduces iterative refinement via localization
and correction models. However, these methods do not explicitly address the combined challenges of
large-scale layout and deeply nested LaTeX structures.

Multimodal Large Language Models with Reinforced Fine-Tuning. Pre-trained multimodal
large language models (MLLMs) learn joint visual-text representations from large-scale image—text
corpora, equipping them with strong capabilities in visual understanding and LaTeX code generation.
While recent works such as Nougat [22] and LATTE [6] employ multimodal architectures, they
largely underutilize pre-trained priors, relying instead on from-scratch training.

To further improve performance, especially for complex tables, we apply reinforced fine-tuning using
the Group Relative Policy Optimization (GRPO) framework [8]. Compared to earlier reinforcement
methods such as RLHF[23]] and DPOJ[24], GRPO eliminates the need for a value network and uses
correctness-based rewards to guide learning with reduced computational overhead. Unlike prior
works that apply reinforcement learning purely in the text domain [25} 26]], our method designs
task-specific reward signals: we compile the generated LaTeX into HTML for TEDS-Structure
evaluation and into images for CW-SSIM computation, enabling joint optimization of both structural
accuracy and rendered visual fidelity. This visual-in-the-loop RL approach is particularly effective
for high-fidelity LaTeX generation on complex table structures.

3 Insight into the Task

We provide key insights into the task of table-to-LaTeX generation, focusing on two critical aspects:
the challenge of handling complex tables and the limitations of current evaluation protocols.

One of the central challenges in this task lies in accurately processing complex tables, which serve
as a meaningful indicator of a model’s true capability. Complex tables are prevalent in modern
documents, often used to convey large volumes of structured information compactly. However, their
intricate layouts, large dimensions, and diverse content introduce significant difficulties for vision
encoders—Ileading to higher computational costs, reduced performance, and increased inference
latency. Despite their importance, complex tables are often underrepresented or overlooked in
evaluation. To address this, we propose categorizing tables into three complexity levels—simple,
medium, and complex—to enable a more realistic and fine-grained evaluation of model performance.

In addition to data-level challenges, the evaluation of LaTeX code generation remains underdeveloped,
as shown in Appendix |A] Existing metrics generally fall into two categories: Text-based metrics,
such as TEDS [9] and BLEU [27] , compare the predicted and ground-truth LaTeX code at the
token level. However, they fail to account for the inherent syntactic ambiguity of LaTeX and ignore
structural semantics, often penalizing semantically equivalent but syntactically different outputs.
Visual-based metrics, such as CW-SSIM [28]], evaluate similarity between rendered images of
the generated and ground-truth tables. While useful for natural scenes, standard CW-SSIM is less
effective on binary, high-contrast table images, where sharp edges and sparse textures dominate.
Alternative pixel-level metrics, such as Edit (column-wise normalized edit distance) and Match (binary
pixel-wise agreement), also fall short in capturing higher-level structural or semantic similarity. To
address these limitations, we adopt a modified version of CW-SSIM, tuned for binary table images
with high visual sparsity, to better assess rendering fidelity. However, since CW-SSIM primarily
focuses on local visual similarity, we complement it with TEDS-Structure [10] to evaluate the global
structure and layout alignment.



4 Method

4.1 Large-Scale Table2LaTeX Collection

Due to the lack of publicly available large-scale datasets containing LaTeX table code, we propose a
dataset construction pipeline. Specifically, we develop a web crawler to scrape the LaTeX source
files of scientific papers from the open-access arXiv repository. We use regular expressions to
extract LaTeX code corresponding to table environments. To ensure data quality, we further clean
the extracted code by removing references, color settings, and other LaTeX control commands.
Through this process, we collect a dataset comprising 1,209,986 table-LaTeX pairs.To classify table
complexity, tables with 2 or more \multirow or \multicolumn commands and 100-160 cells are
defined as medium tables, while those with over 160 cells are labeled complex tables. All others
are considered simple. Within the training set, simple tables account for approximately 94%, while
medium and complex tables each represent about 3% of the data.

4.2 Supervised Fine-Tuning

To enable general multimodal large language models (MLLMs) to acquire preliminary capability
for handling the task of table-to-LaTeX generation, we design a second-stage supervised fine-tuning
(SFT) process. During this process, we perform SFT using data collected in stage 1. The input
consists of a table image and the prompt: ‘‘Convert this table to LaTeX’’, while the ground-
truth LaTeX code serves as the response. Thus, our dataset is structured as input-response pairs,

formally expressedas: D = {(xV,y(?) }fil where each x(*) is an input and y(*) the corresponding
target response. During training we optimize 6 to maximize the conditional likelihood of y(*) given
x(), Equivalently, we minimize the negative log-likelihood over the dataset:

N
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However, as shown in Table d] SFT alone is insufficient to fully unlock the model’s potential. A key
limitation stems from the widespread use of teacher forcing, where the model is trained to predict the
next token given the prefix. Yet, LaTeX code is inherently ambiguous—different syntactic forms (e.g.,
control sequences) may yield identical visual outputs. This mismatch between training supervision
and evaluation objectives leads to inefficient generalization, particularly for structurally complex
tables.

4.3 Reinforced Fine-Tuning via VSGRPO

As analyzed above, the next-token prediction paradigm used in SFT is limited in its ability to model
the semantic structure and syntactic dependencies embedded in long LaTeX sequences. Moreover,
the SFT objective focuses solely on text-level alignment and completely ignores the visual similarity
between the rendered LaTeX output and the original table image—despite visual appearance being
a direct and critical indicator of generation quality. However, since LaTeX rendering is a non-
differentiable operation, it cannot be directly incorporated into gradient-based supervised training.

To address these limitations, we propose a novel reinforced fine-tuning framework that introduces
rendered image feedback as an explicit optimization signal. Drawing inspiration from Group Relative
Policy Optimization (GRPO) [8]], we extend its scope beyond standard textual quality assessment and
design a dual-reward mechanism that jointly promotes structural accuracy and visual fidelity. While
conventional GRPO-based methods focus solely on improving text generation quality, our framework
leverages both the LaTeX code structure and its rendered appearance, offering a more task-aligned
supervision signal, as shown in Figure[I] We select 5,936 complex tables from the training dataset as
the training set for VSGRPO, whose ground-truth LaTeX code contains fewer than 3,000 characters
to balance complexity and computational feasibility.

Visual Reward. We compile and convert the set of predicted table LaTeX code—generated by the
model from a single table image input—by embedding them into LaTeX fragments with standard
macro packages, producing a group of predicted table images. At the same time, we compile
the ground-truth LaTeX code to obtain the ground-truth table image. If the compilation fails, the
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Figure 1: Demonstration of our proposed VSGRPO framework for table image to LaTeX code
generation. The top section shows an example table image alongside its corresponding LaTeX code,
representing the input-output pair used in training. The middle section illustrates the workflow of the
VSGRPO framework. The bottom section highlights the dual-reward mechanism: a visual fidelity
reward computed via CW-SSIM between the model-generated and ground-truth rendered images,
and a structure-level reward based on TEDS-Structure computed from the table’s structural elements.

corresponding reward is set to 0. We then compute the CW-SSIM between the ground-truth table
image and each predicted table image. If the CW-SSIM of a predicted image exceeds the predefined
threshold, it receives a reward of 1; otherwise, the reward is 0.

To accommodate black-and-white table images, we adopt the following CW-SSIM calculation
process: the CW-SSIM algorithm preprocesses two table images by converting them to grayscale,
resizing them to uniform dimensions, and aligning their rows and columns. It then divides the
images into 2x2 pixel blocks and applies a simplified Haar wavelet transform [29] to decompose
each block into four sub-bands: cA (low-frequency approximation), cH (horizontal), cV (vertical),
and cD (diagonal high-frequency details). For each sub-band, the algorithm calculates SSIM metrics
optimized for monochrome tables, incorporating pixel-level means, variances, covariance, and
stabilizing constants C_1 and C_2. Finally, it averages the SSIM scores from all four sub-bands to
generate the comprehensive CW-SSIM metric.

Structure Reward. We convert both the predicted table LaTeX code generated by the model and the
ground-truth LaTeX into HTML in order to compute their TEDS-Structure. If the HTML conversion
of a predicted table LaTeX fails, the reward is set to 0. For successfully converted predictions, if the
TEDS-Structure similarity with the ground-truth exceeds a predefined threshold, the reward is set to
1; otherwise, it is 0.

TEDS-Structure computes the Minimum Tree Edit Distance between the two trees by applying
unit-cost insertions, deletions, and structural-node substitutions to transform the predicted tree into
the ground-truth tree. It then normalizes this distance by the larger of the two tree sizes and converts
it into a similarity score.



During the RFT training process, we samples a group of generated output set {0y, 02, -+ ,on} for
each table image ¢ from policy model 7g_,,. Then RFT maximizes the following objective and
optimizes the model 7. The specific formula is shown below:

JrrT(0) = Eyop(Q). {0}V, ~ro.,, (Ol0)

1 m9(0i | @) mo(0i | g)
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N i=1 o1 (0 | q) T0o1a (0i | q)
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where € and 3 denote the clipping threshold in Proximal Policy Optimization (PPO) and the coefficient
controlling the Kullback—Leibler (KL) divergence penalty term, respectively [30,31]]. We set ¢ = 0.2
and 5 = 0.02 during training.

The advantage for the i-th sample is computed as

r; —mean({ry,r2,...,T
A — ({ 1,72 N}), 3)
std({rl,rg, e 7rN})
where {r1,r9,...,rn} denotes the set of group rewards. The KL divergence between the current
policy g and the reference policy 7 for the observation—action pair (g, 0;) is defined as
Trref (04 Trref (04
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S Experiments

In this section, we present our experimental results. Specifically, Section [5.1] details the datasets,
implementation settings, and evaluation metrics used in our study. Section[5.2|reports quantitative
comparisons against state-of-the-art baselines. To further assess whether the generated table images
align with human perception, we conduct a human evaluation, presented in Section Finally,
Section [5.4] provides an ablation analysis to highlight the key components and contributions of our
proposed method.

5.1 Experimental Setup

In this section, we first describe the detailed construction process and composition of the training
and testing datasets. We then present the implementation details for both the SFT and reinforced
fine-tuning (RFT) phases.

Training Dataset. We collect LaTeX source code from arXiv papers published between October
2017 and April 2023, extracting a total of 1,209,986 table entries using regular expression matches
between \begin{tabular} and \end{tabular}. After filtering out references, color commands,
and other non-structural LaTeX elements, we classify the tables into three categories. This full dataset
is used for SFT.

Testing Dataset. We construct the testing dataset using the same processing pipeline as the training
set. Specifically, we crawl 101,469 LaTeX table entries from arXiv papers published between January
and November 2024, covering a diverse range of scientific domains. From this pool, we randomly
sample 496 simple, 354 medium, and 361 complex tables to form the final testing set.

Implementation Details. We adopt full-parameter fine-tuning for all training phases. During SFT,
all models are trained for one epoch with a maximum output length of 4096 tokens. For Nougat [22],
training is conducted on 4 nodes (each with 8xA100 GPUs) using a batch size of 2. InternVL2-1B
is trained on 4 nodes with a batch size of 4 and gradient accumulation steps set to 2. Qwen2.5-
VL-3B [32] is trained on 2 nodes, also with a batch size of 4 and gradient accumulation steps of
2.

For reinforced fine-tuning (RFT), InternVL2-1B adopts the VLM-R1 framework [33]] and is trained
on 2 nodes with 8 sampled generations per input (num_gens = 8), a batch size of 8, and gradient



accumulation steps of 2. Qwen2.5-VL-3B uses the ms-swift infrastructure [34], trained on 2 nodes
with 4 generations per input (num_gens = 4), a batch size of 4, and the same gradient step setting.
The reward thresholds are set to 0.6 for CW-SSIM and 0.9 for TEDS-Structure.

During testing, we use a maximum output length of 8192 tokens, a batch size of 1, and a temperature
of 0. All testing is conducted within a texlive-full Docker environment to ensure LaTeX rendering
fidelity. For metrics, we use Python-based implementations of CW-SSIM, TEDS-Structure, and
TEDS for performance evaluation. The scores range from O to 1, and the exact formulas are shown in

Appendix [B]
5.2 Main Results

We compare VSGRPO with various solutions across different categories. In the commercial and
paid domain, we evaluate it against the most powerful system to date, Mathpix [35]]. To compare
with current general-purpose multimodal large models, we include the closed-source GPT-40 [36], as
well as the open-source Qwen2.5-VL-72B [37] and Intern2.5-VL-78B [38]]. For specialized expert
models, we compare against Nougat [22]], a state-of-the-art open-source LaTeX generation system.

To more accurately evaluate the correctness of LaTeX generation, we assess model performance
from two complementary perspectives: rendered image quality and LaTeX source fidelity. First, we
evaluate the visual accuracy of the generated LaTeX by compiling it into table images. Two metrics
are used: the compile ratio, which reflects the proportion of LaTeX outputs that can be successfully
compiled using standard LaTeX packages, and CW-SSIM, which quantifies the visual similarity
between the rendered output and the ground-truth image. These results are reported in Table [T}
Second, we assess the semantic and structural correctness of the LaTeX source code itself. To this
end, we compute TEDS-Structure, which measures cell-level structural alignment, and TEDS, which
additionally considers the tabular content. These metrics provide a deeper view into how well the
generated code captures the underlying table semantics, and are summarized in Table 2] To further
evaluate the generalization ability of our method, we additionally test it on an external benchmark
dataset introduced in [6], with the results shown in Table 3}

Table [T shows that the CW-SSIM values of all models exhibit a decreasing trend as table complexity
increases (from simple to complex). However, the proposed VSGRPO method achieves comprehen-
sive improvements across two model families. Specifically, Intern2-VL-1B-VSGRPO sets a new
record on the simple tables with a CW-SSIM of 0.8201, surpassing the previous best model by 0.049.
Meanwhile, Qwen2.5-VL-3B-VSGRPO significantly outperforms baselines on the medium tables and
complex tables, achieving CW-SSIM scores of 0.7236 (+0.1113) and 0.6145 (+0.0903), respectively.
Furthermore, it attains a compile success rate of 0.9917 on the complex tables, exceeding Mathpix’s
0.9889. These results demonstrate that the proposed VSGRPO strategy effectively enhances the
robustness of complex tables reconstruction while maintaining high LaTeX compilability through
visual- and structure-guided optimization.

Table 1: Model performance on CW-SSIM and compile ratio across three table complexity levels.

Simple Medium Complex
CW-SSIM  Compile ratio | CW-SSIM ~ Compile ratio | CW-SSIM  Compile ratio

Models

Commercial Tools

Mathpix [35] 0.6884 1.0000 \ 0.5647 0.9943 \ 0.4862 0.9889
General VLMs

GPT4o [36] 0.6792 0.9918 0.5612 0.9972 0.4747 0.9917
Qwen2.5-VL-72B [37] 0.7077 0.9858 0.6009 0.9887 0.5112 0.9335
Intern2.5-VL-78B [38] 0.7814 0.9959 0.6123 0.9773 0.5242 0.4515
Expert VLMs

Nougat [22] 0.7401 0.7617 \ 0.5505 0.1813 \ 0.4699 0.3352
Our Results

Intern2-VL-1B-VSGRPO 0.8201 0.9939 0.7185 0.9830 0.5899 0.9640
Qwen2.5-VL-3B-VSGRPO 0.8186 0.9980 0.7236 0.9943 0.6145 0.9917

Table 2] presents results for TEDS and TEDS-Structure metrics. The trend of TEDS scores largely
mirrors that of TEDS-Structure, although the absolute values are consistently lower due to TEDS
additionally accounting for cell content alignment. The commercial tool Mathpix demonstrates
relatively stable performance across table types, achieving its highest TEDS-Structure score on



medium-complexity tables (0.8965). In the general-purpose VLM category, Qwen2.5-VL-72B shows
consistently strong structural performance, with the highest TEDS-Structure score on simple tables
(0.9400). However, it exhibits a gradual performance decline as complexity increases—TEDS drops
from 0.8720 (simple) to 0.8090 (medium) and 0.7448 (complex). By contrast, other large-scale
models such as Intern2.5-VL-78B experience a sharp drop on complex tables (TEDS: 0.3379), and
the expert model Nougat collapses almost entirely (TEDS: 0.0424), revealing severe limitations in
both structural and content-level generalization. In contrast, our proposed Qwen2.5-VL-3B-VSGRPO
achieves consistently superior results across all levels of table complexity. Despite its compact
size (3B parameters), it outperforms significantly larger models, reaching a TEDS score of 0.8673
on complex tables—0.1225 higher than the next-best model—and achieving a TEDS-Structure
score of 0.9218, the first to surpass the 0.9 threshold on complex tables. These results underscore
the effectiveness of our dual-reward optimization strategy, which integrates structural and visual
supervision to enable robust, high-fidelity LaTeX code generation, especially for structurally rich and
visually complex tables.

Table 2: Performance of different models on TEDS and TEDS-Structure across three table complexity
levels.

Models Simple Medium Complex
TEDS TEDS-Structure \ TEDS TEDS-Structure \ TEDS TEDS-Structure

Commercial Tools

Mathpix [35] 0.7804 0.8701 \ 0.8044 0.8965 \ 0.7176 0.8100
General VLMs

GPT4o [36] 0.8259 09117 0.6986 0.8451 0.5865 0.7745
Qwen2.5-VL-72B [37] 0.8720 0.9400 0.8090 0.8920 0.7448 0.8334
Intern2.5-VL-78B [38] 0.8368 0.8795 0.7123 0.7652 0.3379 0.3735
Expert VLMs

Nougat [22] 0.3856 0.4308 \ 0.1193 0.1357 \ 0.0424 0.0527
Our Results

Intern2-VL-1B-VSGRPO 0.8959 0.9358 0.8604 0.8988 0.8054 0.8625
Qwen2.5-VL-3B-VSGRPO 0.8997 0.9405 0.9004 0.9427 0.8673 0.9218

To evaluate the generalization capability of our method, we conduct additional experiments on an
external benchmark dataset introduced in [6]]. The results are presented in Table 3] Manual inspection
reveals that this dataset is primarily composed of simple tables with limited structural complexity.
Consequently, the performance trends largely mirror those observed in the simple-table subsets
reported in Table[T|and Table

Once again, our method, Qwen2.5-VL-3B-VSGRPO, achieves superior performance, outperforming
both task-specific baselines for table image to LaTeX generatio and general-purpose multimodal
large language models. These results underscore the model’s strong generalization capability.

Table 3: Experimental comparison on external dataset [6] on CW-SSIM and TEDS-Structure.

Models CW-SSIM  TEDS-Structure
LATTE [6] 0.7615 0.9445
GPT4o [36] 0.6897 0.8568
Qwen2.5-VL-72B [37] 0.7176 0.8915
Intern2.5-VL-78B [38] 0.7696 0.9009
Qwen2.5-VL-3B-VSGRPO 0.8225 0.9461

5.3 Human Evaluation

To complement automated metrics and better capture perceived visual quality, we conduct a human
preference study on 200 randomly selected tables (50 simple, 50 medium, 100 complex), as shown in
Appendix [C] For each case, rendered outputs from four models are displayed anonymously alongside
the ground-truth image. Multiple human assessors independently vote on the most visually similar
result, and the final decision is determined by majority voting. As shown in Table ] Qwen2.5-VL-
3B-VSGRPO receives the highest number of votes across all difficulty levels, clearly outperforming
other models in terms of visual and structural fidelity.

>The LATTE model proposed in [6] is not publicly available. We compute results based on the authors’
released outputs and apply our own metric calculations.



Table 4: Results of human evaluation.

Models Simple Medium Complex
GPT4o0 5 2 2
Mathpix 19 2 10
Qwen2.5-VL-3B-SFT 29 28 56
Qwen2.5-VL-3B-VSGRPO 42 37 70

5.4 Ablation Study

To validate the effectiveness and robustness of our proposed method, we conduct a series of ablation
studies focusing on three aspects: the impact of data selection strategies, the contribution of individual
reward components, and the necessity of staged training. All experiments are evaluated on the complex
table subset.

Evaluation on the Dataset Selection Strategy for VSGRPO. As shown in Table[5] we compare
different strategies for constructing the reinforcement learning (RL) training set. Specifically, we
evaluate three variants of Qwen2.5-VL-3B fine-tuned with VSGRPO: (1) using only simple tables
(-Simple), (2) using a balanced mixture of simple, medium, and complex tables (-Mixed-Data),
and (3) using only complex tables (-VSGRPO). The results clearly demonstrate that restricting the
RL fine-tuning data to complex tables leads to the best overall performance across all metrics. This
validates our design choice of focusing on structurally difficult examples during reinforcement
learning to better generalize across complexity levels.

Table 5: Ablation experiments on the dataset selection for VSGRPO.

Models CW-SSIM  Compile ratio TEDS  TEDS-Structure
Qwen2.5-VL-3B-VSGRPO-Simple 0.5993 0.9861 0.8614 09113
Qwen2.5-VL-3B-VSGRPO-Mixed-Data 0.6107 0.9861 0.8614 0.9136
Qwen2.5-VL-3B-VSGRPO 0.6145 0.9917 0.8673 0.9218

Evaluation on the Reward Design in VSGRPO. Table[6] presents the effectiveness of the two
reward components used in our RL framework—TEDS-Structure and CW-SSIM. Adding either
reward individually to the base model leads to noticeable performance gains over the SFT-only
baseline, demonstrating that both structure-level accuracy and visual similarity are important for
improving LaTeX generation quality. The best performance is achieved when both reward signals are
combined, suggesting they are complementary in guiding the model toward faithful and well-aligned
outputs.

Table 6: Ablation experiments on the reward design.

Models CW-SSIM  Compile ratio TEDS  TEDS-Structure
Qwen2.5-VL-3B-SFT 0.5806 0.9889 0.8481 0.9047
Qwen2.5-VL-3B-GRPO-TEDS-Structure 0.5925 0.9889 0.8608 0.9155
Qwen2.5-VL-3B-GRPO-CW-SSIM 0.6064 0.9889 0.8607 0.9133
Qwen2.5-VL-3B-VSGRPO 0.6145 0.9917 0.8673 0.9218

Evaluation on the Necessicity of SFT. To verify the necessity of SFT before reinforcement fine-
tuning, we perform one epoch of reinforcement learning directly on the pre-trained Qwen2.5-VL-3B
model (VSGRPO without SFT). As shown in Table[7] the performance of the model without SFT
initialization is significantly lower across all metrics, indicating that SFT is essential to provide a
reasonable starting point for subsequent RL-based optimization.

6 Conclusion and Limitations

Our work tackled the challenge of converting table images into syntactically correct, publication-
quality LaTeX code by integrating vision-language modeling with targeted reinforcement learning.
We leveraged a pre-trained multimodal large language model (MLLM), fine-tuned it on a diverse
corpus of scientific table images, and further enhanced it through a dual-reward scheme: one reward
evaluated structural integrity using TEDS-Structure, while the other measured visual fidelity via a
refined CW-SSIM on rendered outputs. By jointly optimizing these objectives, the model was able to
accurately capture complex table layouts—including nested headers, merged cells, and mathematical
expressions—and produce outputs that closely matched the original visual appearance.



Table 7: Ablation experiments on the effectiveness of SFT.

Models CW-SSIM  Compileratio TEDS  TEDS-Structure
Qwen2.5-VL-3B-VSGRPO w/o SFT 0.4695 0.9668 0.6884 0.8167
Qwen2.5-VL-3B-VSGRPO 0.6145 0.9917 0.8673 0.9218

Limitations. Although VSGRPO effectively improved MLLM performance on complex tables,
it introduced notable computational overhead during training. Specifically, each LaTeX output
had to be rendered into a PDF and then converted to a PNG image for CW-SSIM computation—a
time-consuming process that created a training bottleneck, even with multi-threading. Due to this
overhead and limited GPU resources, we trained VSGRPO on only 5,936 complex tables.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to the Introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the Limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13



Justification: This work does not include a theoretical result.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have demonstrated all technical details to reproduce the results.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The data and the code would be released after acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to the experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to resource limitations, we do not repeat one of the experiments. Running
a complete experiment takes one week.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include the device information in the experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeuroIPS Code of Ethics and checked the paper in every
respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This work is not related to any private or personal data, and there’s no explicit
negative social impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such models or datasets are involved.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers that offer the original idea or technical
details.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We invite 5 graduate students majoring in computer science to participate
in the volunteer-based evaluation. The instructions below are provided for each evaluator:
at the top of the page, a reference table image is presented, followed by four model-
generated table images. You are asked to anonymously select the image that best matches
the reference. Preferably, choose only one. If multiple candidates appear equally similar,
multiple selections are allowed. In cases where no image is clearly similar, prioritize those
with the most similar structural layout.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use the pretrained MLLM in the task of table image to LaTeX code
generation.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Case Study

In this section, we demonstrate the limitations of relevant metrics through result visualizations, and
the capability of our method VSGRPO to generate such complex table and analyze the effectiveness
of our approach.

The Limitation of Metric. We illustrate LaTeX-level ambiguity with two visually identical table
renderings whose TEDS scores nonetheless differ. In Figure 2 (TEDS 0.8047), the ground-truth code
wraps every cell’s contents in an empty group { }, whereas the model output omits these no-op braces.
Although neither variation alters the final rendering, they change the underlying token sequence and
thus reduce the TEDS score. In both figures, the relevant LaTeX code differences are highlighted in
yellow. In Figure [3](TEDS 0.8983), the sole divergence lies in the use of different bold commands.

/ Train Dev Test LaTeX \
J-, = 2 , 745 21 3 248 \\begin{tabular}{lccc} \hline

& {Train} & {Dev} & {Test} \\hline
=D 1,477 138 144 {>=2} & {2,745} & {213} & {248\
{>=5} & {1477} & {138} & {144}\

=10 793 64 66 {>=10} & {793} & {64} & {66}\
. {>=20} & {459} & {0} & {O}\
.,=20 459 0 0 {>=50} & {163} & {0} & {03\ \hline
\\ (J:50 1 63 0 0 \end{tabular} /
(a) Ground Truth
/ Train Dev Test LaTeXx \
X \begin{tabular}{cccc} \hline
b:2 27745 213 248 & Train & Dev & Test \\hline
. >=2 & 2,745 & 213 & 248 \\
‘5—5 17477 138 144 >=5 & 1,477 & 138 & 144 \\
=10 793 64 66 >=10 & 793 & 64 & 66 \\
>=20 & 459 & 0 & 0\
., =20 459 0 0 >=50 & 163 & 0 & 0 \\ \hline
\ () =50 163 0 0 \end{tabular} /

(b) Qwen2.5-VL-3B-VSGRPO Metric: CW-SSIM=0.9816, TEDS-Structure=1, TEDS=0.8047

Figure 2: Example 1: LaTeX code ambiguity.

Visualisation of Complex Tables. As shown in Figure ] and Figure 5] they are the complex table
image from the ground truth and the table image rendered from the LaTeX generated by our method
VSGRPO, respectively.

Visualisation of effectiveness. As shown in Figure[6] our method VSGRPO improves the quality
of the LaTeX generated by SFT, and the CW-SSIM score also reflects the visual similarity between
the images.

B Metric
CW-SSIM. The specific formula is as follows:
1 o
CW-SSIM(X,Y) = 5 > SSIM(ck, ¢), 5)
i€{A,H,V,D}
where for each sub-band i:

(Z,LLXJ}JY;' + Ol) (ZOXiy% + 02)

SSIM(cy, ¢i) = '

(6
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LaTeX \
/ Problem ‘ UMAD 0.1 ‘ Bandit ‘ GESMR | SAMR

\begin{tabular}{c|c|c|c|c}\toprule
Nguyenl 50 50 47 47 Problem & UMAD 0.1 & Bandit & GESMR & SAMR
Nguyen2 50 50 48 34 \\midrule
Nguyen3 48 43 12 9 Nguyen1&{\bf 50}&{\bf 50}&47&A47\\
Nguyen4 34 43 14 2 Nguyen2&{\bf 50} &{\bf 50}&48&\underline{34}\\
Nguyenh 50 42 24 23 -
Nguyen6 50 30 (1 23 Nguyen7 & {\bf 8} & 2 & 0& {\bf 3}\\
Nguyen? 8 2 0 3 Nguyen8 & 0 & 0 & 0 & OWhottomrule
\ Newen8 | 0 0 0 0 \endftabular} )

(a) Ground Truth

LaTeX \
- \begin{tabular}{c|c|c|c|c}\toprule
Problem | UMAD 0.1 | Bandit | GESMR | SAMR  proplem & UMAD 0.1 & Bandit & GESMR & SAMR\\
Nguyenl 50 50 47 47 \midrule
Nguyen2 50 50 48 34 Nguyenl & \textbf{50} & \textbf{50} & 47 & 47 \\
Nguyen3 48 43 12 9 Nguyen2 & \textof{50} & \textbf{50} & 48 &
Nguyend 34 43 14 2 \underline{34} \\
Nguyen5 50 42 24 23 .
Nguyen6 50 30 6 23 Nguyen7 & \textbf{8} & 2 & 0 & \textbf{3} \\
Nguyen? 8 2 0 3 Nguyen8 & 0 & 0 & 0 & 0 \\
Nguyen8 0 0 0 0

\bottomrule
\\ \end{tabular} /

(b) Qwen2.5-VL-3B-VSGRPO Metric: CW-SSIM=1, TEDS-Structure=1, TEDS=0.8983

Figure 3: Example 2: LaTeX code ambiguity.

Let X and Y be two aligned grayscale table images trimmed to even dimensions. Apply a one-level
Haar wavelet to each, yielding four sub-bands ¢’ and c§- for = A (approximation), H (horizontal
detail), V' (vertical detail), and D (diagonal detail). For each sub-band ¢, let ux, and py, be the

pixel-wise means, 0%, and o}, the variances, and ox,y, the covariance. Constants C; = (K1L)?

and Cy = (K5 L)? stabilize the denominator (L is 255.0, K is 0.01 and K is 0.03).
TEDS-Structure. The specific formula is as follows:

TEDstructure

TEDS-Structure = 1 — ,
maX(‘Tpredla |Tgt|)

@)

|Tored| denotes the total number of nodes in the structural tree parsed from the predicted table, and
| T4 | denotes the total number of nodes in the structural tree parsed from the ground-truth table.

TEDS. The Tree Edit Distance—based Similarity (TEDS) computation extends TEDS-Structure by
first calculating the total edit distance: TED = TEDgrycture + TEDcontent, and finally normalizing
by the larger of the two tree sizes to yield the similarity score. The specific formula is as follows:

S TED . ®)
maX(|Tpred‘7 |Tgt|)

C Human Evaluation

To evaluate whether the table images rendered from the model-generated LaTeX better align with
human preferences, we place the ground truth table image at the top and display the model’s predicted
table image below it, side by side. The order is randomly shuffled, and the names are hidden. We
place the ground truth table image at the top, allowing humans to select one or more images based on
subjective similarity. As shown in Figure[7]
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D,

Model

Score

w/0 SACP \ w/ SACP

a = 0.05

a=0.1

Coverage

Size (V)

SSCV ()

Coverage

Size ()

SSCV (V)

Indian Pines

1D-CNN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.94
0.95 \ 0.95

3.68 \ 2.28
4.09\ 2.29
6.68 \ 4.31

0.41\ 0.28
0.54 \ 0.57
248\ 1.83

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

252\ 1.75
254\ 1.74
5.56 \ 3.02

0.51 \ 0.45
0.88 \ 0.30
4.84 \ 1.95

3D-CNN

APS
RAPS
SAPS

0.94 \ 0.95
0.95 \ 0.95
0.95 \ 0.95

573\ 3.27
4.12 \ 3.92
6.40 \ 5.44

0.47\0.38
0.10 \ 0.21
0.98 \ 0.95

0.90 \ 0.90
0.90 \ 0.90
0.91\0.90

2.85\ 2.06
3.21\2.38
4.97\ 3.72

0.35\0.34
0.11\0.25
1.61\ 1.51

HybridSN

APS
RAPS
SAPS

0.95 \ 0.95
0.95\ 0.95
0.95 \ 0.95

5.56 \ 4.83
734\ 7.12
6.79 \ 6.07

0.20 \ 0.16
0.40 \ 0.96
0.19 \ 0.41

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

3.28\2.74
429\ 3.95
4.03 \ 3.40

0.92 \ 0.15
0.98\ 0.75
0.64 \ 0.61

SSTN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.95
0.95\ 0.95

2,81\ 1.73
2,52\ 1.62
6.98\ 4.16

0.42\0.18
0.29 \ 0.30
438\ 1.74

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

2.00\1.38
1.87\ 1.36
533\3.25

0.41\ 0.47
0.29 \ 0.34
6.35\ 3.09

Pavia University

1D-CNN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.95
0.95 \ 0.95

2.26 \ 1.92
2.00 \ 1.83
3.92 \ 3.99

0.39\ 0.37
0.23\0.31
177\ 2.21

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

1.65\ 1.57
1.59 \ 1.54
3.44\ 3.04

0.40 \ 0.27
0.40 \ 0.29
3.62 \ 2.68

3D-CNN

APS
RAPS
SAPS

0.94 \ 0.95
0.94 \ 0.94
0.94 \ 0.94

2.77\ 2.34
2.57\ 2.28
4.80\ 4.31

1.04 \ 0.69
0.41 \ 0.46
4.56 \ 3.85

0.89 \ 0.89
0.89 \ 0.89
0.89 \ 0.89

2.14\ 1.79
2.04\ 1.76
4.04 \ 3.32

0.94 \ 0.66
0.64 \ 0.56
6.56 \ 4.23

HybridSN

APS
RAPS
SAPS

0.95\0.95
0.94 \ 0.95
0.95 \ 0.95

4.79\ 4.59
5.50\ 5.36
5.57\ 5.44

4.59\ 3.58
0.47 \ 0.36
1.98 \ 2.35

0.90\ 0.90
0.89 \ 0.90
0.90 \ 0.90

3.38\3.01
3.70\ 3.74
3.99\3.71

2.39\1.33
0.81 \ 0.07
3.33\ 3.47

SSTN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.95
0.95 \ 0.95

1.75\ 1.24
1.60\ 1.22
3.26\ 2.24

0.22\0.26
0.20\ 0.20
2.07\ 0.92

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

139\ 1.11
133\ 1.10
275\ 1.91

0.23\0.29
0.13\0.23
2.96 \ 1.64

Salinas

1D-CNN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.95
0.95\ 0.95

1.40\ 1.20
1.37\ 1.20
363\ 1.71

0.15\ 0.15
0.06 \ 0.20
1.20\0.16

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

1.20\ 1.09
1.19\ 1.07
297\ 1.28

0.18\0.25
0.23\0.25
2.04\0.16

3D-CNN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.95
0.95 \ 0.95

1.48\ 1.25
147\ 1.24
2.94\ 2.02

0.20\ 0.19
0.13\ 0.18
0.58 \ 0.28

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

117\ 1.08
1.15\ 1.07
2.39\ 1.29

0.12\ 0.16
0.15\ 0.17
1.07 \ 0.13

HybridSN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.95
0.95 \ 0.95

1.37 \ 1.09
1.20\ 1.07
1.90 \ 1.37

0.18 \ 0.07
0.12 \ 0.10
0.42\ 0.33

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

1.10\ 1.03
1.06 \ 1.00
1.66 \ 1.18

0.18\ 0.23
0.12\ 0.31
0.69 \ 0.31

SSTN

APS
RAPS
SAPS

0.95 \ 0.95
0.95 \ 0.95
0.95 \ 0.95

1.70\ 1.19
1.60 \ 1.18
5.42 \ 2.65

0.21\ 0.16
0.12 \ 0.14
3.58 \ 0.86

0.90 \ 0.90
0.90 \ 0.90
0.90 \ 0.90

137\ 1.08
1.29 \ 1.06
3.91\2.07

0.23\ 0.10
0.10\ 0.11
3.64\1.26

Ground Truth Table Image

Figure 4: Ground truth example of complex table.
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w/o SACP \ w/ SACP

D, Model Score o = 0.05 a=01
Coverage Size (V) Sscv ({) Coverage Size (V) SSCV (V)
APS 095\ 095 368\2.28 0.41\0.28 0.90\090 252\1.75 0.51\0.45
1D-CNN RAPS 0.95\094 4.09\2.29 0.54\057 0.90\0.90 254\1.74 0.88\0.30
SAPS 095\095 668\4.31 248\1.83 0.90\0.90 5.56\3.02 4.84\1.95
@ APS 0.94\ 095 573\3.27 047\0.38 090\090 285\2.06 0.35\0.34
-QE_ 3D-CNN RAPS 095\095 4.12\392 0.10\0.21 0.90\0.90 3.21\2.38 0.11\0.25
c SAPS 095\095 640\5.44 098\0.95 0.91\0.90 497\3.72 1.61\1.51
]
"E APS 095\ 095 556\4.83 0.20\0.16 0.90\ 0.90 3.28\2.74 0.92\0.15
=  HybridSN RAPS 0095\0.95 734\7.12 040\096 0.90\090 4.29\3.95 098\0.75
SAPS 095\095 679\6.07 0.19\0.41 090\090 4.03\3.40 0.64\0.61
APS 095\095 281\1.73 0.42\0.18 0.90\0.90 2.00\1.38 0.41\0.47
SSTN RAPS 095\095 252\1.62 0.29\0.30 0.90\0.90 1.87\1.36 0.29\0.34
SAPS 0.95\095 698\4.16 4.38\1.74 0.90\0.90 533\3.25 6.35\3.09
APS 0.95\ 095 226\1.92 0.39\0.37 090\090 1.65\1.57 0.40\0.27
1D-CNN RAPS 095\095 200\1.83 0.23\031 0.90\090 159\1.54 0.40\0.29
SAPS 095\095 3.92\3.99 1.77\2.21 090\ 090 3.44\3.04 362\2.68
>
£ APS 094\095 277\2.34 1.04\0.69 0.89\0.89 214\1.79 0.94\0.66
.
g 3D-CNN RAPS 094\094 257\2.28 041\046 089\089 204\1.76 0.64\0.56
g SAPS 094\094 480\4.31 456\3.85 0.89\0.89 4.04\3.32 6.56\4.23
® APS 095\ 095 479\4.59 4.59\3.58 0.90\0.90 3.38\3.01 239\1.33
5 HybridSN RAPS 094\ 095 550\5.36 0.47\0.36 0.89\0.90 3.70\0.74 0.81\ 0.07
SAPS 0.95\095 557\5.44 1.98\235 0.90\0.90 3.99\3.71 3.33\3.47
APS 0.95\ 095 175\1.24 0.22\0.26 090\ 090 1.39\1.11 0.23\0.29
SSTN RAPS 095\095 160\1.22 0.20\0.20 0.90\0.90 1.33\1.10 0.13\0.23
SAPS 0.95\095 3.26\2.24 207\0.92 0.90\090 275\191 296\ 1.64
APS 0.95\0.95 140\1.20 0.15\0.15 090\ 090 1.20\1.09 0.18\0.25
1D-CNN RAPS 095\095 137\1.20 0.06\0.20 0.20\0.90 1.19\1.07 0.23\0.25
SAPS 095\095 363\1.71 1.20\0.16 0.20\0.90 297\1.28 2.04\0.16
APS 095\ 095 148\ 1.25 0.20\0.19 0.90\0.90 1.17\1.08 0.12\0.16
f 3D-CNN RAPS 095\095 147\1.24 0.13\0.18 0.90\0.90 1.15\1.07 0.15\0.17
é SAPS 0.95\095 294\2.02 0.58\0.28 0.90\0.90 239\1.29 1.07\0.13
5]
v APS 095\ 095 137\1.09 0.18\0.07 0.90\0.90 1.10\1.03 0.18\0.23
HybridSN RAPS 0.95\095 1.20\1.07 0.12\0.10 0.0\ 090 1.06 \1.00 0.12\0.31
SAPS 095\095 190\ 1.37 0.42\0.33 0.90\090 1.66\1.18 0.69\0.31
APS 0.95\ 095 170\1.19 0.21\0.16 090\ 090 1.37\1.08 0.23\0.10
SSTN RAPS 095\095 160\ 1.18 0.12\0.14 0.20\0.90 129\1.06 0.10\0.11
SAPS 095\095 542\2.65 358\0.86 0.90\0.90 391\2.07 364\1.26

Qwen2.5-VL-3B-VSGRPO

Figure 5: Prediction example of complex table.
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Data Model | xZ., Ho ab, M ABTC
OHD LDEM | 30.19 | 65.4970%; | 0.290275075%2 — -2.23
ACDM | 32.42 | 69.93 10 | 0.2658 Joirp —

OHD + SNe Ia LDEM | 1778.67 | 65.82£0.72 | 0.2830 ;3 | —19.46 £0.02 | —20.42
ACDM | 1799.09 | 67.16705; | 0.3163700135 | —19.44 £0.02

OHD + SNe la + BAO LDEM | 1780.53 | 66.04 +0.51 | 0.2800+0.01 | —19.46 +0.02 | —20.50
ACDM | 1803.71 | 68.0870¢; | 0.29907 000 | —19.42 +0.02

OHD + SNe la + CMB LDEM | 1778.67 | 65.83 +0.72 | 0.2800+0.01 | —19.46 +0.02 | —4.81

ACDM | 1800.04 | 67.75£0.56 | 0.30527 90075 | —19.42 £0.02
OFD + SNe Ia + BAO + CMB | LDEM | 1778.67 | 65.83 £0.72 | 0.2800 £ 0.01 | —19.46 £ 0.02 | —2.70
ACDM | 1803.74 | 68.02702, | 0.30007) 009 | —19.42 £0.02

(a) Ground Truth

Data Model | %%, Ho b M ABIC
OHD LDEM | 30.19 | 65497030 | 0.290270 015 — -2.23
ACDM | 3242 | 69.93770; | 0.26587017% —

OHD + SNe la LDEM | 1778.67 | 65.82£0.72 | 0.28307 0135 | —19.46 £0.02 | —20.42
ACDM | 1799.09 | 67.167045; | 0316375035 | —19.44 £0.02

OHD + SNe la + BAO LDEM | 1780.53 | 66.04 £ 0.51 | 0.2800 +0.01 | —19.46 £0.02 | —20.50
ACDM | 1803.71 | 68.0850¢; | 0.29907 700 | —19.42 £0.02

OHD + SNe la + CMB LDEM | 1778.67 | 65.83£0.72 | 0.2800 £ 0.01 | —19.46 £0.02 | —4.81
ACDM | 1800.04 | 67.75 £ 0.56 | 0.30527 00075 | —19.42 £0.02

OHD + SNe la + BAO + CMB | LDEM | 1778.67 | 65.83 £0.72 | 0.2800 * 0.01 | —19.46 £0.02 | —2.70
ACDM | 1803.74 | 68.027025 | 03000100008 | —19.42 £0.02

(b) Qwen2.5-VL-3B-VSGRPO (CW-SSIM:0.9876)

Data Model | XZin Ho ol M ABTC
OHD LDEM | 30.19 [ 65497057 | 0.2902* ?,1'91,)}432 I —2.23
. +0.1
ACDM 32.42 69.93770c | 0.26587g0r7c —
LDEM | 1778.67 | 65.82 £0.72 | 0.2830" 47,35 | —19.46 = 0.02
OHD + SNe | —0.0132 —90.4
== ACDM | 179900 | 67.16°0% | 03163°353 | -1 £0.02
LDEM | 1780.53 | 66.04 £0.51 | 0.2800 = 0.01 | —19.46 + 0.02

OHD + SNe la + BAO

ACDM 1803.71 68.087025 | 0.299073 0028 ~1582%.02
LDEM | 1778.67 | 65.83 +£0.72 | 0.2800 £ 0.01 | —19.46 * 0.02 _AH
ACDM 1800.04 67.75+0.56 | 0.3052 5000 | —19.42°%0.02
LDEM | 1778.67 | 65.83 £0.72 | 0.2800 £ 0.01 | —19.46 + 0.02
ACDM | 1803.74 68:0270e | 0:30007 500 -1945%0.02

(c) Qwen2.5-VL-3B-SFT (CW-SSIM:0.6092)

OHD + SNe la + CMB

OHD + SNe la + BAO + CMB

Figure 6: Visualization of result comparisons. (a) Ground Truth refers to the ground truth table
image from the simple testing dataset; (b) Qwen2.5-VL-3B-VSGRPO represents the table image
rendered from LaTeX generated by the Qwen2.5-VL-3B model trained with our VSGRPO method;
(c) Qwen2.5-VL-3B-SFT represents the table image rendered from LaTeX generated by the Qwen?2.5-
VL-3B model trained with SFT. The corresponding CW-SSIM scores are reported. Blue boxes
highlight examples where Qwen2.5-VL-3B-VSGRPO differs from the ground truth, and red boxes
highlight examples where Qwen2.5-VL-3B-SFT differs from the ground truth.
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Interactive Image Selection

) Progress: 2/50 images

oo le e CMU-Mocap Mixl
pre | ~ree | Mnf Tisec  2sec  3sec | Isec  2sec  3sec
Processed 2 images, 48 remaining 010 045 045 91 150 207 | 175 301 406

020 040 040 | 87 145 189 | 172 296 39.8

030 030 035 85 141 186 | 166 278 357

Reference |mage (|ndex: 262) 040 030 030 | 83 138 184 | 149 252 314
050 025 025 81 13.6 181 | 142 244 30.7

060 020 020 | 79 135 17.8 | 139 240 30.1

060 030 010 | 79 134 177 | 139 239 300

070 015 015 | 7.8 132 176 | 13.7 239 29.8

0.70 0.20 0.10 7.8 13.0 17.3 | 13.6 23.6 29.4

070 010 020 | 7.8 132 175 | 13.7 238 29.7

T | OO 080 010 010 | 7.9 133 177 | 138 239 209
090 005 005 7.9 135 178 | 13.9 239 30.1

Toec | Jaec | Seec |

oo

010 [ 045 0.5 | 91 [ 150 [207 ]
.6

020 | 040 0.0 | 87 [145] 189 |
8

030 [ 0.35 035 [ 84 | 145 | 186 |

040 | 030 0.0 | 83 | 135 | 181 CMU-Mocap Mixl
154 | 252 314 Lyre Lree Liny |[Tooc e Tsec sec 3see Lre | Lo | Long
[ CMUMocap | Mixd 050|025 025| 81 [186)181| 010 045 045 [ 91 150 207 [ 175 301 406 = =
. e e (2 [de | T[T [T | | 149 | 544 | 307 020 040 040 | 87 145 189 | 172 296 398 om | o | od8
ok ot ey Lo ey 1ry | are| | 060 [020 020 | 7o |13 |178] 030 030 035 | 85 186 | 166 278 357 030 | 030 | 035
142|250 289 040 030 030 | 83 184 | 149 252 314 040 | 030 | 030
070 | 015 015 |18 178|030 025 025 | 81 181 | 142 24 307 050 | o3 | 038
157 | 256 20.4 060 020 020 | 79 178 | 139 240 301 060 | 020 | 020

070 [020 010 | 78 [180[1ra| 060 030 010 |79 177189 239 300 080 | 030 | 010
136 | 236 204 070 015 015 | 78 176 | 137 239 298 070 | 015 | 015
080|010 010 | 79 [133[175| 070 020 0.10 | 7.8 17.3 0.70 | 0.20  0.10
137 | 288 207 070 010 020 | 78 175 070 | 010 | 020
010 T 7 090 | 005 005 | 7.0 [135]178| 080 010 010 | 79 1.7 050 | 010 | 0.10
090 [005 | 005 135 178 139 |29 301|139 | 239 301 090 005 005 | 7.9 178 | 139 239 301 090 | 005 | 0.05
Next Image O Finish Evaluation

Figure 7: The table image selection page for human evaluation.
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