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ABSTRACT

Recent advances in text-to-image (T2I) generation have achieved impressive re-
sults, yet existing models often struggle with simple or underspecified prompts,
leading to suboptimal image-text alignment, aesthetics, and quality. We propose a
prompt rewriting framework that leverages large language models (LLMs) to re-
fine user inputs before feeding them into T2I backbones. Our approach introduces
a carefully designed reward system and an iterative direct preference optimiza-
tion (DPO) training pipeline, enabling the rewriter to enhance prompts without
requiring supervised fine-tuning data. We evaluate our method across diverse T2I
models and benchmarks. Results show that our prompt rewriter consistently im-
proves image-text alignment, visual quality, and aesthetics, outperforming strong
baselines. Furthermore, we demonstrate strong transferability by showing that
a prompt rewriter trained on one T2I backbone generalizes effectively to others
without needing to be retrained. We also systematically study scalability, eval-
uating how performance gains scale with the capacity of the large LLM used as
the rewriter. These findings highlight that prompt rewriting is an effective, scal-
able, and practical model-agnostic strategy for improving T2I systems. We plan
to release the code and trained prompt rewriters soon.

1 INTRODUCTION

city skyline in visual
novel

A futuristic cityscape at dusk serves
as the backdrop for a visual novel
interface, featuring a ornate user
interface with anime-style characters
and dialogue boxes amidst a
sprawling metropolis with neon-lit
skyscrapers, bustling streets, and a
vibrant night sky.

Input User Prompts Rewritten Prompts

 a giant monster
fighting a mini
monster

 A colossal beast clashes with a
diminutive creature in an epic
battle, as a gigantic monster
towers over a tiny monster
amidst a backdrop of
destruction and chaos.

full body, a slender
anime girl with long
cyan hair, powerful
arcane wizard,
beautiful white outfit,
extremely detailed,
realistic shading

A majestic, slender anime sorceress
... Her lengthy, vibrant cyan hair
cascades down her back like a
waterfall, with strands flowing
upwards, surrounded by a halo of
radiant, swirling runes. She poses
amidst a lavish, ornate backdrop of
ancient tomes, mystical artifacts, and
celestial bodies, ....

(a) Comparison between images generated from the
original user prompts (left) and from rewritten, more
detailed prompts (right), which yield results that are
both more pleasing and better aligned with the input.

Input User
Prompt Round 2 Round 6Round 4

An stylized entrance
to a rocky cave

A fantastical, ornate
gateway leads to a
mystical rocky cave,
surrounded by
ancient stones and
lush greenery.

A fantastical, ornate
gateway adorned with
mystical symbols and
vines, leading to a
majestic, ancient rocky
cave surrounded by lush
greenery and towering
trees, with a warm,
golden light emanating
from within.

A ornate, fantastical
entrance adorned with
ancient carvings and
mystical symbols,
leading to a majestic
rocky cave surrounded
by lush greenery and
towering mountains in
the background, with a
warm glow emanating
from within.

(b) Illustration of how rewritten prompts and their
corresponding images progressively become more
detailed and aesthetically pleasing across succes-
sive rounds of DPO training.

Figure 1: Rewritten prompts lead to images that are more detailed, visually pleasing, and better
aligned with the input text, with quality improving through successive rounds of DPO training.

Text-to-image (T2I) generation has progressed rapidly along several fronts, including diffusion mod-
els (Wu et al., 2025a; Labs, 2024; Esser et al., 2024a), autoregressive models (Chen et al., 2025a;
Wang et al., 2024), and emerging paradigms such as next-scale prediction (Tian et al., 2024), all
of which demonstrate strong performance in terms of image quality and fidelity. However, one
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important direction remains relatively underexplored: a simple, model-agnostic, and training-free
pipeline that systematically addresses common shortcomings, such as weak text–image alignment
and inconsistent aesthetics, by modifying only the input text.

In this work, we study an input-side, inference-time strategy that treats the T2I model as a black
box and refines the user prompt, leaving the model parameters unchanged. This direction has two
manifolds of importance: (i) from a practical perspective, real-world prompts are often short, vague,
or underspecified, and rewriting them into clearer and more complete instructions mitigates align-
ment errors and stabilizes stylistic consistency; (ii) from a methodological perspective, it is of great
interest to systematically study the achievable gain from optimizing the inputs only.

Prior work refines prompts by using the In-Context Learning ability of LLMs to expand or re-
structure the input text (Wu et al., 2025a; Hu et al., 2024), and by employing human-in-the-loop
systems (Feng et al., 2023; Brade et al., 2023) that iteratively adjust prompts with feedback from
complex engineering pipelines and human evaluators. These methods are not fully automated and
depend on substantial human effort. Other approaches (Betker et al., 2023; Datta et al., 2024) train
dedicated rewriters with supervised fine-tuning (SFT) on curated pairs of short and refined prompts.
However, because different T2I models encode different preferences for “good” prompts, collecting
high-quality, model-specific annotations is costly, may not transfer well across backbones, and ties
improvements to a particular target model and dataset.

Inspired by inference-time scaling in LLMs (Muennighoff et al., 2025; Wu et al., 2024a; Chen et al.,
2024a), which improves outputs by allocating more compute at test time, we adopt a complementary
strategy for T2I that scales on the input side. Because output-side scaling is hard to unify across dif-
ferent T2I generators, we instead optimize the prompt that feeds a frozen T2I model. Concretely, we
train a prompt rewriter using reinforcement learning with iterative Direct Preference Optimization
(DPO) (Rafailov et al., 2023). Starting from a short user-provided prompt, the rewriter generates a
set of candidate refined prompts. Each candidate is then used to synthesize images with a frozen
T2I model, which are subsequently evaluated by multimodal LLM judges according to a compos-
ite reward function that integrates (i) image quality, (ii) aesthetics, and (iii) text–image alignment.
Pairwise preferences inferred from these reward scores are employed to update the rewriter itera-
tively via DPO. Empirical evaluations on real-world user prompts demonstrate that our approach
attains state-of-the-art performance, while avoiding the substantial costs associated with SFT data
collection and curation. We further summarize our contributions below:

• We introduce input-side inference-time scaling to enhance T2I model performance, which
is both model-agnostic and training-free for T2I models. We develop an RL-trained
prompt rewriter that optimizes only the input text, improving both diffusion and autore-
gressive T2I backbones without SFT pairs, parameter updates, or architectural access.

• We conduct a systematic study of scalability and transferability. Specifically, we inves-
tigate (i) how performance scales with rewriter capacity, i.e., LLM size, and (ii) how an
RL-trained rewriter transfers across diverse T2I backbones, quantifying cross-model ro-
bustness without per-model adaptation.

• Through extensive experiments across multiple LLMs, T2I models, and benchmarks, we
show that our method consistently improves T2I performance in terms of image quality,
aesthetics, and text–image alignment, achieving state-of-the-art results.

2 RELATED WORK

Prompts play a pivotal role in determining the quality and fidelity of outputs in downstream tasks.
Consequently, a growing body of research (Kong et al., 2024; Li et al., 2024; Wang et al., 2025)
has investigated techniques for prompt refinement in natural language processing. In the context of
text-to-image (T2I) generation, prompt refinement methods can be broadly categorized as follows.
We provide a more thorough discussion about related work in Appendix B.

Learning-free Methods A number of works (Feng et al., 2023; Brade et al., 2023) explore in-
teractive refinement approaches that leverage human input to produce more detailed and effective
prompts for image synthesis. Mañas et al. (2024) propose a backpropagation-free optimization
strategy that automatically rewrites prompts to improve prompt–image consistency. Similarly, Chen
et al. (2024b) present a method that exploits historical user interactions to rewrite prompts, thereby
better aligning generated images with individual user preferences.

2
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a cat disney

cartoon style

User Input
Prompt

A cat in Disney cartoon style, featuring

vibrant colors, exaggerated

expressions, and a playful demeanor.

Candidate rewritten prompts

Prompt
Rewriter

Calculate
Rewards

Chosen&Rejected
PromptsCandidate Images

T2I
Model

A playful, chubby cat designed in a

classic Disney cartoon style, featuring

vibrant watercolor backgrounds,

expressive eyes... 

A whimsical Disney-inspired cartoon

illustration featuring a majestic

anthropomorphic cat adorned in a

ornate crown and lavish attire...

Rewrite
prompts

Generate
Images

Reward
Models

Updating Using DPO

A cat in Disney cartoon style, featuring

vibrant colors, exaggerated

expressions, and a playful demeanor.

A whimsical Disney-inspired cartoon

illustration featuring a majestic

anthropomorphic cat adorned in a

ornate crown and lavish attire...

Figure 2: The Iterative DPO Training Pipeline. Given a user input prompt, the rewriter generates
multiple candidate refinements, which are used by a frozen T2I model to synthesize images. Reward
models evaluate these images to produce pairwise preferences. The chosen and rejected prompt pairs
are then used to update the rewriter via Direct Preference Optimization, and the process is repeated
iteratively for multiple rounds. The T2I model is kept frozen.

Supervised Fine-Tuning A straightforward strategy for prompt refinement is supervised fine-
tuning. For instance, DALL-E 3 (Betker et al., 2023) employs an auxiliary image captioner trained
to generate high-quality captions, which are subsequently used to recaption images and enhance T2I
training. Datta et al. (2024) introduce a Prompt Expansion framework that automatically generates
multiple aesthetically rich prompt variants from a single user query, thereby improving generation
quality.

Reinforcement Learning Reinforcement learning (RL) has also been applied to prompt refine-
ment. An early study by Hao et al. (2023) utilized PPO (Schulman et al., 2017) to fine-tune a GPT-2
model for prompt rewriting. Building on this direction, Wu et al. (2024b) combined SFT and PPO
to mitigate prompt toxicity and generate safer images. Lee et al. (2024a) proposed a multi-reward
RL framework that jointly fine-tunes a T2I diffusion model and a prompt-expansion network. A
concurrent work, RePrompt (Wu et al., 2025b) explores RL-based refinement for T2I prompts. A
detailed comparison between our method and RePrompt is provided in Appendix D.

3 METHOD

We train the rewriter with iterative DPO, without relying on SFT, and our results demonstrate that
the rewriter can successfully learn the task purely through reinforcement learning. For each input
prompt, the policy generates n candidate rewrites, which are then passed to a frozen T2I model to
synthesize images. A multimodal LLM judge evaluates these images and provides pairwise pref-
erences across multiple criteria. The aggregated preferences yield a single winner–loser pair per
prompt, which is used to optimize the DPO loss. This procedure is repeated over multiple rounds to
progressively refine the rewriter. The overall pipeline is illustrated in Figure 2.

3.1 LEARNING ALGORITHM: ITERATIVE DPO WITHOUT SFT

Training a prompt rewriter for T2I models is challenging. SFT typically requires model-specific data
curation, which is both costly and prone to biases tied to a particular backbone, thereby hindering
transferability. Moreover, our preliminary experiments revealed that SFT diminishes the policy’s
exploratory capacity, resulting in overfitting to the training prompts rather than exhibiting robust
generalization at test time. To overcome these limitations, we bypass SFT entirely and instead train
the rewriter exclusively through iterative Direct Preference Optimization (DPO).

Concretely, at each training round the rewriter proposes multiple candidate rewrites for a user prompt
x; images synthesized from these rewrites by a frozen T2I model are scored to produce pairwise
preferences. We then update the policy via DPO using the following objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
, (1)

where x is the input prompt, yw and yl represent the chosen and rejected rewritten prompts, respec-
tively, and πref is the reference model distribution.

3
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We do not adopt GRPO (Shao et al., 2024; Guo et al., 2025a) or its variants, as these methods work
best when a reliable scalar reward is available. In our setting, pointwise image rewards are too noisy
to trust, so we rely on pairwise image comparisons to reduce variance. These pairwise signals map
poorly to GRPO but align natively with DPO. Moreover, Tong et al. (2025) report that, in image
generation settings with chain-of-thought reasoning, DPO yields stronger in-domain performance
than GRPO, an empirical finding that aligns with our setting and supports our choice of DPO over
GRPO.

3.2 REWARD DESIGN

We adopt the MLLM-as-a-judge paradigm and employ Qwen2.5-VL-72B-Instruct as the evalua-
tion model. During training, the judge is provided with an instruction together with two candidate
images, and it outputs a pairwise preference or a tie.

To capture the primary aspects of user interest, we define four reward dimensions: (1) image qual-
ity, rQuality; (2) general image–text alignment, rGeneral-Alignment; (3) physical image–text alignment,
rPhysical-Alignment; and (4) aesthetics, rAesthetics.

Image Quality. The image quality reward evaluates whether the generated image is plausible across
five dimensions: (1) correctness of human or animal body parts, (2) plausibility of geometric details
(e.g., absence of unintended wavy or misaligned lines, and consistency in symmetrical objects or
features), (3) adherence to basic physical laws such as reflections and shadows, (4) semantic and
logical coherence of the scene, and (5) correctness of fine-grained details without noticeable noise
or distortions.

General Image–Text Alignment. This reward evaluates the degree to which an image adheres to
the input prompt at a holistic level. Since assessing the entire prompt directly can be challenging,
we employ a two-step procedure:

Step 1. Decomposition. Given the input prompt, the judge generates a concise list of key questions
that capture its essential components. For instance, for the prompt “four apples on a table,” the
decomposition may yield: “Are there four apples?”; “Is there a table?”; and “Are the four apples on
the table rather than below it?”

Step 2. Comparison. The decomposed questions, together with the candidate image pair, are then
provided to the judge, which produces a pairwise preference decision.

Physical Image–Text Alignment. This reward is designed to assess concrete physical relationships
that text-to-image models frequently fail to capture. Specifically, it evaluates: (i) the correctness of
object counts, (ii) spatial relations such as left/right, on/under, and in front/behind, and (iii) attribute
binding, i.e., whether the specified color, size, or style is accurately associated with the correspond-
ing object.

Image Aesthetics. The aesthetics reward assesses the relative visual appeal and stylistic quality
of two candidate images, taking into account factors such as composition, richness of detail, and
overall artistic merit.

Based on these rewards, we train two distinct types of prompt rewriters: a general rewriter, which
prioritizes semantic faithfulness and overall image quality, and an aesthetics rewriter, which em-
phasizes visual appeal while maintaining alignment and quality. We trained the two rewriters by
combining the above rewards in different ways:

rGeneral Rewriter = rQuality + rGeneral-Alignment + rPhysical-Alignment. (2)

rAesthetics Rewriter = rQuality + rGeneral-Alignment + rPhysical-Alignment + rAesthetics. (3)
More details on the prompt design for the MLLM-as-a-judge reward are provided in Appendix H.

3.3 SELECTION OF CHOSEN AND REJECTED PROMPTS

For each original prompt, we construct a single chosen-rejected pair for DPO training using pairwise
image comparisons, which provide more reliable supervision than pointwise scoring.

Given a prompt x, we sample n rewritten candidates and render n corresponding images. From
these, we form all n(n − 1) ordered pairs. Each ordered pair is evaluated by all reward models

4
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associated with the current rewriter. For each comparison, the reward model issues a preference: the
preferred image receives +1, the other receives −1, and a tie assigns 0 to both.

We then aggregate these votes across all reward models and all ordered pairs to obtain a cumulative
score for each rewritten candidate. The candidate with the highest score is selected as the chosen
prompt yw, while the one with the lowest score is designated as the rejected prompt yl. The triplet
(x, yw, yl) is subsequently used as a DPO training instance. The complete procedure for selecting
the chosen and rejected prompts is summarized in Alg. 1.

Algorithm 1 Selection of chosen and rejected rewritten prompts

Require: Original prompt x, rewritten candidates {y1, y2, . . . , yn}, text-to-image model g, reward
models {RMk}Kk=1
for i = 1 to n do

Generate image Imgi ← g(yi)
Initialize rewards rki ← 0 for all k = 1, . . . ,K

end for
for i = 1 to n do

for j = 1 to n such that j ̸= i do
for k = 1 to K do

if Imgi ≻ Imgj | RMk, x then
rki ← rki + 1, rkj ← rkj − 1

else if Imgi ≺ Imgj | RMk, x then
rki ← rki − 1, rkj ← rkj + 1

end if ▷ No update if Imgi ≈ Imgj | RMk, x
end for

end for
Aggregate rewards: Ri ←

∑K
k=1 r

k
i

end for
Select chosen prompt yw ← yiw , iw ← argmaxi Ri

Select rejected prompt yl ← yil , il ← argmini Ri

return (yw, yl)

Algorithm 2 Iterative DPO for Prompt Rewriting

Require: Base LLM fθ, training prompt set D, samples-per-round m, candidates-per-prompt n
for each round do

Update reference policy fref = fθ.
Sample prompts for each round: {xi}mi=1 ∼ D.
for i = 1 to m do

Generate rewritten prompts: {yji }nj=1 ∼ fθ( · | xi).
Get chosen and rejected rewritten prompts (ywi , y

l
i) with Alg. 1.

end for
for each step do

Sample a batch B from {(xi, y
w
i , y

l
i)}mi=1,

Update fθ with fref and B using Eq. 1.
end for

end for
return fθ

3.4 ITERATIVE DPO PIPELINE

At each iteration of the DPO training, we draw a batch of prompts and employ the current rewriter to
generate n candidate rewrites for each prompt. Subsequently, Algorithm 1 is applied to the pairwise
comparisons in order to identify a single preferred and a single rejected rewrite per prompt. The
policy is then updated by minimizing the DPO loss defined in Equation 1. The overall training
process is summarized in Algorithm 2.

5
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Table 1: Pick-a-Pic v2 results with Llama-3-70B-Instruct as the LLM backbone. Reported values
are GPT-4o–judged win rates vs. DALL·E 3. The general rewriter achieves the highest text–image
alignment while also improving quality and aesthetics; the aesthetics rewriter delivers the best aes-
thetics while maintaining quality and alignment. Bold is the best and underline the second-best.

Image
Quality

Image
Aesthetics

Image-Text
Alignment Average LAION

Dalle-3 0.500 0.500 0.500 0.500 6.19

FLUX.1-schnell 0.469 0.314 0.419 0.401 6.07
+ ICL 0.475 0.307 0.422 0.401 6.07
+ Ours (General Rewriter) 0.494 0.476 0.561 0.510 6.08
+ Ours (Aesthetics Rewriter) 0.495 0.818 0.424 0.579 6.39

FLUX.1-dev 0.513 0.350 0.360 0.408 6.22
+ ICL 0.531 0.363 0.457 0.450 6.17
+ Ours (General Rewriter) 0.536 0.491 0.575 0.534 6.06
+ Ours (Aesthetics Rewriter) 0.576 0.800 0.391 0.589 6.41

SD-3.5-medium 0.424 0.230 0.425 0.359 5.74
+ ICL 0.487 0.327 0.455 0.423 5.92
+ Ours (General Rewriter) 0.504 0.456 0.542 0.501 5.95
+ Ours (Aesthetics Rewriter) 0.481 0.799 0.401 0.560 6.23

JanusPro 0.193 0.181 0.392 0.255 5.89
+ ICL 0.213 0.180 0.335 0.243 5.97
+ Ours (General Rewriter) 0.183 0.268 0.421 0.291 5.95
+ Ours (Aesthetics Rewriter) 0.200 0.612 0.317 0.377 6.23

4 EXPERIMENT

We provide the details of LLMs for prompt rewriter, T2I models, training datasets, baselines, as well
as the detailed experimental settings and hyperparameters in Appendix C.

4.1 MLLM-AS-A-JUDGE RESULTS

On Pick-a-Pic v2, as reported in Table 1, and with GPT-4o serving as the evaluation judge, our
rewriters consistently outperform the original test prompts without requiring additional training of
the underlying T2I backbones. The general rewriter attains the highest win rate on text–image
alignment while also improving image quality and aesthetics. The aesthetics rewriter achieves the
strongest performance in terms of visual appeal, with an aesthetics win rate of 0.818, while main-
taining competitive results on both image quality and alignment.

On PartiPrompts, as reported in Appendix Table 7, GPT-4o evaluation demonstrates consistent im-
provements across all T2I backbones when combined with our rewriter, with win rates compared to
original user input prompts exceeding 0.5 for every evaluation dimension.

We further observe that simple in-context learning (ICL) prompts frequently improve generation
quality. Contemporary T2I models often underperform when conditioned on short or underspeci-
fied prompts, which are prevalent in real-world usage, whereas straightforward prompt expansions
provide consistent benefits. This phenomenon likely arises from a distributional gap, as training
captions are generally longer and more descriptive than prompts provided by real users.

4.2 BENCHMARK RESULTS

As shown in Tables 2 and 3, our method achieves strong performance on GenEval, T2I-
CompBench++, and the TIFA-Benchmark in terms of text–image alignment, and attains lower FID
scores on MS-COCO-30K for image quality. Across all benchmarks, our approach consistently im-
proves alignment, for example increasing the FLUX.1-dev GenEval score from 0.70 to 0.79, while
simultaneously enhancing image quality as reflected by reduced FID.

4.3 BASELINES COMPARISON

We compile recent state-of-the-art baseline methods that report on GenEval, spanning both autore-
gressive (Show-o) and diffusion (FLUX) T2I families. Under the same evaluation protocol (Table 4),

6
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Table 2: GenEval results for the general rewriter across T2I backbones. It consistently outperforms
the original prompts and ICL baselines, and performance improves with LLM size; Llama-3-70B-
Instruct achieves the best results.

Model Single
object

Two
object Counting Colors Position Color

attribution Overall

FLUX.1-schnell 0.99 0.87 0.61 0.79 0.35 0.43 0.67
+ ICL 0.99 0.87 0.55 0.81 0.50 0.50 0.69
+ Ours (Llama 3 3B) 1.00 0.89 0.63 0.81 0.47 0.59 0.73
+ Ours (Llama 3 8B) 1.00 0.93 0.58 0.86 0.55 0.55 0.74
+ Ours (Llama 3 70B) 0.99 0.91 0.65 0.77 0.64 0.57 0.75

FLUX.1-dev 1.00 0.87 0.76 0.84 0.22 0.49 0.70
+ ICL 1.00 0.89 0.80 0.83 0.54 0.41 0.74
+ Ours (Llama 3 70B) 1.00 0.95 0.78 0.88 0.58 0.56 0.79

SD-3.5-medium 1.00 0.84 0.68 0.85 0.24 0.61 0.70
+ ICL 0.96 0.92 0.60 0.86 0.42 0.54 0.72
+ Ours (Llama 3 70B) 1.00 0.92 0.68 0.85 0.57 0.56 0.76

Table 3: Results on T2I-CompBench++, TIFA-Benchmark, and FID on MS COCO 30K using
the general rewriter with Llama-3-70B-Instruct as the LLM backbone. The rewriter improves
text–image alignment and image quality across all evaluated T2I backbones.

T2I-CompBench++ TIFA COCO

Color↑ Shape↑ Texture↑ Spatial↑ Numeracy↑ Complex↑ Score↑ FID↓
FLUX.1-schnell 0.7492 0.5673 0.6911 0.2754 0.6062 0.3614 0.8803 20.57
+ Ours 0.7614 0.6010 0.7063 0.3216 0.6161 0.3713 0.8868 17.76

FLUX.1-dev 0.7647 0.5053 0.6336 0.2763 0.6130 0.3586 0.8572 24.38
+ Ours 0.7978 0.5834 0.6929 0.3206 0.6343 0.3694 0.8809 19.57

SD-3.5-medium 0.7988 0.5800 0.7206 0.2889 0.6033 0.3614 0.8782 17.81
+ Ours 0.8040 0.5855 0.7346 0.3322 0.6320 0.3707 0.8878 17.13

JanusPro 0.5294 0.3247 0.4168 0.1579 0.4380 0.3778 0.8457 19.28
+ Ours 0.7861 0.5892 0.7220 0.2773 0.5983 0.3911 0.8845 16.71

our method achieves the best overall GenEval score, outperforming all other methods across both
architecture types by a substantial margin.

4.4 CASE STUDY

We provide qualitative examples in Appendix G that trace the evolution of rewritten prompts
throughout the iterative DPO training process. Additionally, we visualize the stylistic differences be-
tween the outputs of the general rewriter, which prioritizes faithfulness, and the aesthetics rewriter,
which focuses on visual appeal. Detailed examples can be found in Appendix Table 16.

5 ABLATION STUDY

5.1 REWARD TYPE

Table 10 presents an ablation study of the reward terms. Removing the quality reward substantially
decreases the image–quality win rate, from 0.494 to 0.364. Excluding either the general or physical
alignment rewards reduces alignment, from 0.561 to 0.521 and to 0.504 respectively, confirming
that each reward effectively drives its intended objective. Incorporating the aesthetics reward yields
a pronounced improvement in aesthetics, increasing from 0.476 to 0.818, but simultaneously reduces
alignment from 0.561 to 0.424, highlighting a trade-off. Qualitative analysis in Table 16 suggests
that the aesthetics reward often enriches scenes by introducing additional objects or ornamentation,
which can dilute the main subject and thereby weaken alignment. To accommodate different objec-
tives, we report two variants: a general rewriter optimized for faithfulness and overall quality, and
an aesthetics rewriter tailored to visual appeal.
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Table 4: GenEval results compared with state-of-the-art methods. Using the general rewriter with
Llama-3-70B-Instruct as the LLM backbone, our method achieves the best overall GenEval score
(higher is better). †Results reported by Wu et al. (2025b). ‡Results reported by Guo et al. (2025b).

Method T2I
Backbone

Single
object

Two
object Counting Colors Position Color

attribution Overall

Baseline‡ Show-o 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Baseline FLUX.1-dev 1.00 0.87 0.76 0.84 0.22 0.49 0.70

PARM‡ Show-o 0.99 0.77 0.68 0.86 0.29 0.45 0.67
PARM++‡ Show-o 0.99 0.71 0.69 0.95 0.36 0.49 0.70
Idea2Img† FLUX.1-dev - - - - - - 0.69
Zero-Shot FLUX.1-dev 0.98 0.89 0.71 0.82 0.47 0.49 0.73
ICL FLUX.1-dev 1.00 0.89 0.80 0.83 0.54 0.41 0.74
RePrompt† FLUX.1-dev 0.98 0.87 0.77 0.85 0.62 0.49 0.76
Ours FLUX.1-dev 1.00 0.95 0.78 0.88 0.58 0.56 0.79

5.2 REWRITTEN PROMPT LENGTH

Figure 5 illustrates a steady increase in the average token length of rewritten prompts over train-
ing. The rewriter progressively incorporates additional specificity, such as attributes, relations, and
constraints, and this increase in length correlates with higher win rates.

5.3 FULL FINETUNE VS. LORA

We conduct a controlled comparison between LoRA and full-model finetuning under identical exper-
imental conditions, as shown in Figure 6. Full-model finetuning does not yield consistent improve-
ments, whereas LoRA attains comparable performance while requiring substantially less memory
and computation. These results suggest that LoRA constitutes a strong and practical choice for
prompt-rewriter training.

6 ANALYSES

6.1 SCALABILITY

Image Quality Image Aesthetics Image-Text Alignment Average
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(a) Win rate against DALL-E 3 using FLUX.1-schnell as test-time T2I.
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(b) Win rate against DALL-E 3 using SD-3.5-medium as test-time T2I.

Figure 3: Win rates for rewriters trained on various T2I backbones but evaluated on a fixed target,
either (a) FLUX.1-schnell or (b) SD-3.5-medium. Evaluation is on the Pick-a-pic v2 dataset using a
GPT-4o judge. Results show strong transferability.
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Table 5: GPT-4o judged win rates vs. DALL-E 3 on the Pick-a-Pic v2 dataset when using various
LLMs as the rewriter backbone. The results demonstrate a clear scaling trend: rewriter performance
improves with the size of the LLM, with Llama-3-70B achieving the highest average win rate.

Image
Quality

Image
Aesthetics

Image-Text
Alignment Average

FLUX.1-schnell 0.469 0.314 0.419 0.401

+ Ours (Qwen2.5 14B) 0.455 0.275 0.452 0.394
+ Ours (Qwen2.5 32B) 0.454 0.277 0.431 0.387
+ Ours (Qwen2.5 72B) 0.458 0.305 0.465 0.409
+ Ours (Qwen3 8B) 0.511 0.376 0.491 0.459
+ Ours (Qwen3 14B) 0.490 0.362 0.473 0.442
+ Ours (Qwen3 32B) 0.517 0.424 0.534 0.492
+ Ours (DeepSeek 8B) 0.527 0.402 0.461 0.463
+ Ours (DeepSeek 32B) 0.499 0.405 0.503 0.469
+ Ours (DeepSeek 70B) 0.502 0.380 0.506 0.463

+ Ours (Llama3 3B) 0.517 0.455 0.524 0.499
+ Ours (Llama3 8B) 0.511 0.441 0.565 0.506
+ Ours (Llama3 70B) 0.494 0.476 0.561 0.510

We systematically vary the rewriter’s backbone across four LLM families and sizes to quantify
input-side scaling (Table 5). Larger backbones generally yield higher averaged GPT-4o win rates,
with the strongest average obtained using Llama-3-70B-Instruct.

Improvements are not uniform across metrics: smaller models can occasionally lead on a single
axis (e.g., alignment or aesthetics), reflecting inherent trade-offs in prompt rewriting. This pattern
is consistent with the reward ablation study above, where emphasizing aesthetics increases aesthetic
preference but reduces alignment (Table 10).

Models tuned for explicit reasoning (e.g., DeepSeek-R1-Distilled series) underperform Llama-3-
70B-Instruct overall, especially on aesthetics, suggesting that reasoning-oriented tuning can conflict
with aesthetic goals and may limit exploratory prompt enrichment during rollout.

6.2 TRANSFERABILITY

We evaluate transferability by training multiple rewriters, each paired with a different T2I backbone,
and subsequently freezing the rewriter for testing on a fixed target backbone. We consider two target
models, FLUX.1-schnell and Stable Diffusion 3.5. For each target, we report performance in three
conditions: when the training and target T2I backbones are identical, when they differ, and when
using the original unmodified prompt as a baseline. Results are presented in Figure 3 and Table 8.

Across both targets, rewritten prompts consistently improve over the original prompts, irrespective
of whether the training and testing backbones match. Performance differences under train–test mis-
match are generally small and often comparable to the matched setting. These findings suggest
that the rewriter acquires prompt refinements that generalize across T2I backbones, enabling reuse
without per-model retraining. We hypothesize that this transferability arises because T2I models are
commonly trained on image–caption pairs from similar distributions, rendering our rewrites broadly
portable.

7 CONCLUSION

In this work, we propose an inference-time scaling framework that enhances text-to-image genera-
tion through LLM-based prompt rewriting. Our approach, trained with iterative DPO and composite
rewards, consistently improves image quality, alignment, and aesthetics across diverse T2I back-
bones without modifying or retraining them. Experiments further demonstrate scalability, transfer-
ability, and a controllable trade-off between faithfulness and visual appeal, establishing input-side
optimization as a practical and versatile strategy for advancing T2I systems.
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A USE OF LLMS

LLMs are employed to refine our writing and to provide assistance with coding.

B RELATED WORK

B.1 IN-CONTEXT LEARNING

In-Context Learning (ICL) has demonstrated strong effectiveness across a wide range of text-related
tasks. Extending this concept to text-to-image generation, Zeng et al. (2024) formally define T2I
ICL and introduce a benchmark for evaluating the in-context capabilities of T2I models. Several
recent models, including Image-Qwen (Wu et al., 2025a), Emu2 (Sun et al., 2024), and ELLA (Hu
et al., 2024), report performance gains attributable to ICL. Furthermore, Lee et al. (2024b) apply
in-context few-shot learning strategies to further enhance T2I generation quality.

B.2 CHAIN-OF-THOUGHT REASONING

Chain-of-thought (CoT) reasoning has proven highly effective for complex text-based tasks. Guo
et al. (2025b) provide the first systematic study on adapting CoT techniques to autoregressive image
generation, introducing specialized reward models that iteratively verify and refine outputs during
the generation process. Complementarily, ImageGen-CoT (Liao et al., 2025) proposes an automated
pipeline for constructing high-quality datasets to fine-tune unified multimodal large language mod-
els, thereby enhancing their contextual reasoning abilities and improving image generation quality.

B.3 PROMPT REFINEMENT

Prompts play a pivotal role in determining the quality and fidelity of outputs in downstream tasks.
Consequently, a growing body of research (Kong et al., 2024; Li et al., 2024; Wang et al., 2025)
has investigated techniques for prompt refinement in natural language processing. In the context of
text-to-image (T2I) generation, prompt refinement methods can be broadly categorized as follows.

Learning-free Methods A number of works (Feng et al., 2023; Brade et al., 2023) explore in-
teractive refinement approaches that leverage human input to produce more detailed and effective
prompts for image synthesis. Mañas et al. (2024) propose a backpropagation-free optimization
strategy that automatically rewrites prompts to improve prompt–image consistency. Similarly, Chen
et al. (2024b) present a method that exploits historical user interactions to rewrite prompts, thereby
better aligning generated images with individual user preferences.

Supervised Fine-Tuning A straightforward strategy for prompt refinement is supervised fine-
tuning. For instance, DALL-E 3 (Betker et al., 2023) employs an auxiliary image captioner trained
to generate high-quality captions, which are subsequently used to recaption images and enhance T2I
training. Datta et al. (2024) introduce a Prompt Expansion framework that automatically generates
multiple aesthetically rich prompt variants from a single user query, thereby improving generation
quality.

Reinforcement Learning Reinforcement learning (RL) has also been applied to prompt refine-
ment. An early study by Hao et al. (2023) utilized PPO (Schulman et al., 2017) to fine-tune a GPT-2
model for prompt rewriting. Building on this direction, Wu et al. (2024b) combined SFT and PPO
to mitigate prompt toxicity and generate safer images. Lee et al. (2024a) proposed a multi-reward
RL framework that jointly fine-tunes a T2I diffusion model and a prompt-expansion network. A
concurrent work, RePrompt (Wu et al., 2025b) explores RL-based refinement for T2I prompts. A
detailed comparison between our method and RePrompt is provided in Appendix D.
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C EXPERIMENT SETTING DETAILS

C.1 MODELS AND DATASETS

We conduct training on two datasets: Pick-a-Pic v2 (Kirstain et al., 2023), which consists of real
user prompts, and T2I-CompBench++ (Huang et al., 2025), which provides compositional prompts
designed to evaluate text–image alignment. For T2I-CompBench++, we adopt the official training
split. Since Pick-a-Pic v2 does not provide predefined splits, we partition the data ourselves and uti-
lize only the training portion. In total, our training corpus contains approximately 60k prompts. For
the Pick-a-Pic v2 test split, we keep 500 prompts for evaluations. As our approach does not require
SFT, only the prompt text is needed, making the data curation process text-only and considerably
simpler than collecting paired text–image data.

To validate universal applicability of our method, we experiment on four families of large lan-
guage models: Llama (3.3-70B-Instruct, 3.1-8B-Instruct, 3.2-3B-Instruct) (Dubey et al., 2024),
DeepSeek-R1-Distill (70B/32B/8B) (Guo et al., 2025a), Qwen3 (32B/14B/7B) (Yang et al., 2025),
and Qwen2.5 (72B/32B/14B) (Team, 2024), as well as four representative text-to-image generation
backbones: Flux.1-Schnell and Flux.1-Dev (Labs, 2024), Stable Diffusion 3.5 Medium (Esser et al.,
2024b), and JanusPro (Chen et al., 2025b).

C.2 EVALUATION METRICS AND BENCHMARKS

We employ both standard benchmarks and multimodal LLM-based judgment. Image quality is as-
sessed using the Fréchet Inception Distance (FID) on MS-COCO-30K (Lin et al., 2014), following
the protocol of Pavlov et al. (2023). Text–image alignment is evaluated on GenEval (Ghosh et al.,
2023), the T2I-CompBench++ (Huang et al., 2025) test split, and the TIFA Benchmark (Hu et al.,
2023). Aesthetics is measured with a LAION-based predictor (Schuhmann et al., 2022). To comple-
ment these automated metrics, we further employ GPT-4o as a multimodal LLM-as-a-judge on the
Pick-a-Pic v2 (Kirstain et al., 2023) test split and PartiPrompts (Yu et al., 2022), where it provides
pairwise ratings for image quality, text–image alignment, and aesthetics.

C.3 SETTINGS AND HYPERPARAMETERS

The models were trained on 64 NVIDIA H100-SXM GPUs, with the training parameters summa-
rized in Table 6. For image generation with T2I models, a resolution of 1024×1024 was used for
FLUX.1-schnell, FLUX.1-dev, and SD-3.5-medium, while a resolution of 384×384 was used for
the JanusPro experiments. The default generation parameters for T2I were applied.

C.4 BASELINES

We compare our method with multiple baselines:

• In-context learning (ICL): We prompt the model with a set of curated examples and de-
tailed prompts to rewrite the model.

• Idea2Img (Yang et al., 2023) employs GPT-4V to iteratively refine prompts through feed-
back, memory, and draft image selection, thereby enhancing automatic image design.

• PARM (Guo et al., 2025b) performs adaptive step-wise evaluation. It introduces three
tasks: (1) clarity judgment to skip blurry early steps, (2) potential assessment to prune
low-potential paths once images are sufficiently clear, and (3) best-of-N selection across
high-potential candidates

• PARM++ (Guo et al., 2025b) extends PARM with a reflection mechanism. After candi-
date selection, it performs reflection evaluation to check for image-text misalignments. If
discrepancies are detected (e.g., wrong objects, colors, or positions), PARM++ generates
explicit reasons and instructs the generative model to iteratively self-correct its outputs until
alignment is achieved.

• Reprompt (Wu et al., 2025b) trains a language model to produce structured, reasoning-
driven prompts via GRPO. We discuss the detailed differences between Reprompt and our
work in Sec. D.
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Table 6: Training parameters in our experiments.

Parameter Name Value

Prompt Rewriter temperature 1.5
DPO β 0.1
maximum iterative DPO round 6
samples-per-round m 10000
candidates-per-prompt n 5
epochs per DPO round 5
lora rank 64
DPO batch size 256
learning rate 5.0e-6
lr scheduler cosine
warmup ratio 0.1
optimizer AdamW
AdamW β (0.9, 0.999)
AdamW ϵ 1e-8
AdamW weight decay 0.01

D DIFFERENCES WITH REPROMPT

In this section, we provide a detailed comparison between our method and the concurrent work
Reprompt (Wu et al., 2025b).

From the algorithmic perspective, our approach does not include an SFT stage. Our preliminary
experiments revealed that SFT constrains the exploration ability of LLMs, leading to overfitting on
the SFT training data. Moreover, collecting diverse, high-quality, and unbiased training data tailored
to each T2I model is both challenging and costly. By directly applying RL for training, our method
only requires raw user prompts as inputs, without the need for model-specific datasets.

Another key distinction lies in the optimization paradigm. Reprompt adopts GRPO, whereas we
employ DPO. We argue that reward estimation for generated images is inherently difficult under
GRPO, while the construction of chosen and rejected prompt pairs is relatively easy. This enables
more reliable reward guidance in DPO. Consistent with our findings, Tong et al. (2025) also report
that DPO achieves superior in-domain performance compared to GRPO.

In terms of reward design, Reprompt primarily focuses on text–image alignment and only reports
results on GenEval and T2I-Compbench, both of which emphasize alignment evaluation. However,
no results are provided for image quality or aesthetics. In contrast, our framework evaluates these
additional dimensions by reporting image quality and aesthetics metrics on Pick-a-Pic v2 and Par-
tiPrompts, as well as FID scores on MS COCO 30k. Our experiments further reveal a clear trade-off
among alignment, quality, and aesthetics, highlighting the necessity of improving alignment without
compromising other aspects.

From the experimental perspective, we comprehensively evaluated the scalability and transferabil-
ity. Whereas Reprompt is limited to Qwen2.5-3B, we incorporate a broader range of LLMs and
T2I model backbones, and also conduct large-scale experiments with 70B-parameter LLMs. These
experiments demonstrate both data scalability and model scalability: as illustrated in Figure 4, per-
formance improves with larger training datasets, and as shown in Table 5, larger LLMs further
enhance results.

Finally, our method consistently outperforms Reprompt on GenEval and T2I-Compbench, while
simultaneously advancing performance on image quality and aesthetics benchmarks.
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E ADDITIONAL EXPERIMENTS

E.1 PARTIPROMPTS

We present additional results on PartiPrompts in Table 7. The reported win rates demonstrate that
our method consistently enhances image quality, text–image alignment, and aesthetics.

Table 7: PartiPrompts (Yu et al., 2022) results. Values are GPT-4o–judged win rates (higher is better)
of our rewritten prompts vs. the original prompts. Our method consistently improves image quality,
alignment, and aesthetics.

Image
Quality

Image
Aesthetics

Image-Text
Alignment Average

FLUX.1-schnell 0.524 0.583 0.592 0.566
FLUX.1-dev 0.510 0.584 0.625 0.573
SD-3.5-medium 0.599 0.743 0.542 0.628
JanusPro 0.616 0.674 0.687 0.659

E.2 TRANSFERABILITY

We further evaluate the transferability on the GenEval datasets in Table 8. The results show that,
even when the training and testing T2I backbones differ, our method still achieves good performance,
demonstrating robust transferability.

E.3 PERFORMANCE OF JANUSPRO ON GENEVAL

We report counterintuitive results for JanusPro on GenEval in Table 9, where both ICL and our
method fail to yield improvements. In contrast, our approach achieves performance gains for Janus-
Pro on T2I-CompBench++ and TIFA-Benchmark. Interestingly, JanusPro outperforms the other
three diffusion-based models on GenEval, yet performs consistently worse on T2I-CompBench++
and TIFA-Benchmark. We hypothesize that this discrepancy arises from JanusPro potentially over-
fitting to the GenEval benchmark.

Table 8: Transferability results evaluated on GenEval. We train rewriters on different T2I backbones
and evaluate on fixed target backbones (FLUX.1-schnell and SD-3.5-medium). The results demon-
strate that, even when the training and testing backbones differ, our method still achieves significant
performance improvements. “()” shows what T2I model is used during training.

Model Single
object

Two
object Counting Colors Position Color

attribution Overall

FLUX.1-schnell w/ orig. prompt 0.99 0.87 0.61 0.79 0.35 0.43 0.67
w/ rewriter (FLUX.1-schnell) 0.99 0.91 0.65 0.77 0.64 0.57 0.75
w/ rewriter (FLUX.1-dev) 0.99 0.93 0.66 0.86 0.55 0.57 0.76
w/ rewriter (SD-3.5-medium) 1.00 0.95 0.72 0.81 0.61 0.66 0.79
w/ rewriter (JanusPro) 0.99 0.87 0.63 0.81 0.56 0.57 0.74

SD-3.5-medium w/ orig. prompt 1.00 0.84 0.68 0.85 0.24 0.61 0.70
w/ rewriter (FLUX.1-schnell) 1.00 0.92 0.69 0.83 0.58 0.69 0.78
w/ rewriter (FLUX.1-dev) 1.00 0.92 0.68 0.88 0.51 0.60 0.76
w/ rewriter (SD-3.5-medium) 1.00 0.92 0.68 0.85 0.57 0.56 0.76
w/ rewriter (JanusPro) 1.00 0.88 0.70 0.86 0.54 0.54 0.75

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: GenEval results for JanusPro, where both ICL and our method do not yield performance
improvements.

Model Single
object

Two
object Counting Colors Position Color

attribution Overall

JanusPro 1.00 0.86 0.59 0.89 0.73 0.65 0.79
+ ICL 1.00 0.93 0.39 0.86 0.43 0.48 0.68
+ Ours 1.00 0.81 0.38 0.86 0.60 0.43 0.68

Table 10: Reward ablation results for the prompt rewriter. Removing any individual reward leads to
a decline in its associated metric. Incorporating the aesthetics reward improves aesthetic preference
but decreases alignment, thereby revealing an inherent trade-off.

Rewriter Type Image
Quality

Image
Aesthetics

Image-Text
Alignment Average

FLUX.1-schnell - 0.469 0.314 0.419 0.401
+ ICL - 0.475 0.307 0.422 0.401
+ Zero Shot - 0.431 0.263 0.417 0.370
+ Ours General Rewriter, w/o quality reward 0.364 0.461 0.563 0.463
+ Ours General Rewriter, w/o general alignment reward 0.523 0.470 0.521 0.505
+ Ours General Rewriter, w/o physical alignment reward 0.533 0.448 0.504 0.495
+ Ours General Rewriter 0.494 0.476 0.561 0.510
+ Ours Aesthetics Rewriter 0.495 0.818 0.424 0.579

F ABLATION STUDY

F.1 REWARD TYPE

Table 10 presents an ablation study of the reward terms. Removing the quality reward substantially
decreases the image–quality win rate, from 0.494 to 0.364. Excluding either the general or physical
alignment rewards reduces alignment, from 0.561 to 0.521 and to 0.504 respectively, confirming
that each reward effectively drives its intended objective. Incorporating the aesthetics reward yields
a pronounced improvement in aesthetics, increasing from 0.476 to 0.818, but simultaneously reduces
alignment from 0.561 to 0.424, highlighting a trade-off. Qualitative analysis in Table 16 suggests
that the aesthetics reward often enriches scenes by introducing additional objects or ornamentation,
which can dilute the main subject and thereby weaken alignment. To accommodate different objec-
tives, we report two variants: a general rewriter optimized for faithfulness and overall quality, and
an aesthetics rewriter tailored to visual appeal.

F.2 PERFORMANCE FOR EACH ROUND
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(b) Llama3.1-8B-Instruct
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(c) Llama3.3-70B-Instruct

Figure 4: Win rate for different base models in different rounds. The prompt rewriters are evaluated
on Pick-a-pic v2 with GPT-4o.

We report the win rates of different base models across DPO training rounds in Table 4. During
the first six rounds, all metrics exhibit steady improvement. Beyond round six, however, image
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Figure 5: Average length of rewritten prompts across different DPO training rounds, computed on
the Pick-a-Pic v2 dataset.
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Figure 6: Full finetune vs. LoRA. Win rates against DALL-E 3. Evaluated on the Pick-a-pic v2
datasets with GPT-4o judge.

quality and aesthetics begin to decline, while text–image alignment continues to improve, reflecting
an inherent trade-off. Consequently, the average win rate decreases, indicating that this trade-off
becomes more pronounced after six rounds. It should also be noted that our training dataset contains
approximately 60k samples, with 10k used per round; thus, the first six rounds effectively cover the
entire dataset once. This observation suggests that expanding the dataset could yield further gains,
and that a single iteration over the training data is sufficient, whereas additional iterations may lead
to overfitting and degraded performance.

F.3 REWRITTEN PROMPT LENGTH

Figure 5 illustrates a steady increase in the average token length of rewritten prompts over train-
ing. The rewriter progressively incorporates additional specificity, such as attributes, relations, and
constraints, and this increase in length correlates with higher win rates.

F.4 FULL FINETUNE VS. LORA

We conduct a controlled comparison between LoRA and full-model finetuning under identical exper-
imental conditions, as shown in Figure 6. Full-model finetuning does not yield consistent improve-
ments, whereas LoRA attains comparable performance while requiring substantially less memory
and computation. These results suggest that LoRA constitutes a strong and practical choice for
prompt-rewriter training.

G CASE STUDY

G.1 GENERAL REWRITER

We provide five illustrative examples for the general rewriter in Tables 11, 12, 13, 14, and 15. In
these examples, we employ Llama3-70B-Instruct as the prompt rewriter and FLUX.1-schnell as the
backbone T2I model. To highlight the training dynamics, we present the rewritten prompts together
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with their corresponding generated images across successive DPO training rounds, where round 0
corresponds to the original user-provided prompt. As training progresses, the rewritten prompts
become increasingly detailed and precise, resulting in improvements in image quality, text–image
alignment, and aesthetics.

G.2 AESTHETICS REWRITER

We also observe that the aesthetics rewriter can, in some cases, compromise image–text alignment
relative to the general rewriter, as illustrated by the examples in Table 16.

H DETAILED REWARD DESIGN

In this section, we present the prompts employed for reward evaluation, corresponding to Fig-
ures 7, 8, 9, 10, and 11.
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Table 11: Case study example 1.

Round Prompt Image

0 city skyline in visual novel

1 A vibrant cityscape serves as the backdrop in this
visual novel, with a sprawling metropolis skyline
featuring towering skyscrapers and bustling streets.

2
A vibrant cityscape serves as the backdrop for a
dramatic scene in a visual novel, with towering
skyscrapers and neon lights illuminating the
night sky.

3
A futuristic cityscape serves as the backdrop for a
dramatic scene in a visual novel, with sleek
skyscrapers and neon lights illuminating the night
sky as characters’ dialogue and choices hang in the
balance.

4
A futuristic cityscape at dusk, with sleek skyscrapers
and neon lights illuminating the horizon, serves as
the backdrop for a dramatic scene in a Japanese-style
visual novel, complete with dialogue bubbles and
character sprites.

5
A futuristic cityscape at dusk serves as the backdrop
for a visual novel scene, with sleek skyscrapers
and neon-lit billboards towering above, as characters
in the foreground engage in a dramatic
conversation amidst the bustling metropolis.

6
A futuristic cityscape at dusk serves as the backdrop
for a visual novel interface, featuring a ornate user
interface with anime-style characters and dialogue
boxes amidst a sprawling metropolis with neon-lit
skyscrapers, bustling streets, and a vibrant night sky.
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Table 12: Case study example 2.

Round Prompt Image

0 Movie poster artwork of a four-armed cyborg alien.

1 Vibrant movie poster featuring a futuristic,
four-armed cyborg with an otherworldly alien physique.

2 Vibrant movie poster featuring a futuristic cyborg
alien with four powerful arms, blending human and
extraterrestrial elements in a stunning sci-fi design.

3 A futuristic movie poster featuring a powerful cyborg
alien with four arms, surrounded by a vibrant,
otherworldly landscape and explosive action elements.

4
A futuristic movie poster featuring a menacing
four-armed cyborg alien with a metallic exoskeleton
and glowing blue circuits, standing amidst a backdrop
of exploding spaceships and a war-torn planetary
landscape.

5
A sci-fi movie poster featuring a futuristic cyborg
alien with four arms, surrounded by a cosmic
landscape and advanced technology, with the
title and credits of the film emblazoned in
bold, neon-lit letters.

6
A sci-fi movie poster featuring a futuristic cyborg
alien with four arms, adorned in metallic armor
and surrounded by a cosmic landscape, with
the title and credits of the film emblazoned
in bold, neon-lit letters.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 13: Case study example 3.

Round Prompt Image

0 full body, a slender anime girl with long cyan hair, powerful arcane wizard, beautiful white
outfit, extremely detailed, realistic shading

1 A stunning, slender anime girl with flowing cyan locks stands tall, radiating magical
prowess as a powerful arcane wizard. She wears a breathtakingly beautiful white outfit,
showcased in exquisite detail with remarkably realistic shading.

2
A stunning, slender anime girl stands tall, her lengthy cyan locks cascading down her back
as she embodies the essence of a powerful arcane wizard. Adorned in a breathtakingly
beautiful, intricately designed white outfit, she exudes magic and sophistication. The artwork
boasts extremely detailed textures and realistic shading, bringing this enchanting scene to life.

3
A stunning anime sorceress stands tall, clad in an exquisite white ensemble, as her slender
figure is surrounded by an aura of mystical energy. Her lengthy cyan locks cascade down
her back like a river of ice, contrasting beautifully with the intricate, ornate details of
her attire. With a commanding presence, she wields her magical prowess, as the atmosphere is
electrified by her arcane abilities. The artwork boasts extremely realistic shading, bringing
every facet of this enchanting scene to life with breathtaking precision.

4

A majestic, slender anime sorceress stands tall, adorned in a exquisite, intricately designed
white attire, surrounded by a halo of mystical energy. Her long, flowing cyan hair cascades
down her back like a river of celestial magic. With an ornate staff in hand, she channels
powerful arcane forces, as evidenced by the swirling, ethereal auras and glowing runes
that dance around her. The entire scene is rendered in breathtakingly detailed,
hyper-realistic art, with masterful shading that imbues the image with depth, dimension,
and an aura of wonder.

5

A majestic, slender anime sorceress stands tall, adorned in an exquisite, intricately
designed white attire, surrounded by a halo of mystical energy. Her long, flowing cyan hair
cascades down her back like a river of night sky, as she wields a ornate staff crackling
with arcane power. Every aspect of her regal presence is rendered in breathtaking,
hyper-realistic detail, from the delicate folds of her garments to the subtle, luminous
glow of her magical aura, all set against a backdrop of subtle, gradient shading that
imbues the entire scene with an aura of wonder and enchantment.

6

A majestic, slender anime sorceress stands amidst a mystical aura, adorned in an exquisite,
intricately designed white attire adorned with golden accents and ornate gemstones,
as she summons a vortex of magical energy with her staff. Her lengthy, vibrant cyan hair
cascades down her back like a waterfall, with strands flowing upwards, surrounded by
a halo of radiant, swirling runes. She poses amidst a lavish, ornate backdrop of ancient
tomes, mystical artifacts, and celestial bodies, surrounded by a kaleidoscope of magical
orbs, stars, and glittering, ethereal particles. The atmosphere is alive with dynamic,
shimmering lights and intense, realistic shading, accentuating the intricate details of
her elaborate costume, the ornate environment, and the fantastical, dreamlike scenery.
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Table 14: Case study example 4.

Round Prompt Image

0 An stylized entrance to a rocky cave

1 A whimsical, artistic gateway to a rugged, rocky cavern.

2 A fantastical, ornate gateway leads to a mystical rocky cave,
surrounded by ancient stones and lush greenery.

3 A fantastical, ornate gateway leading to a mystical rocky cave,
surrounded by lush greenery and vines, with ancient ruins
and mysterious artifacts scattered throughout the entrance.

4
A fantastical, ornate gateway adorned with mystical symbols
and vines, leading to a majestic, ancient rocky cave surrounded
by lush greenery and towering trees, with a warm, golden
light emanating from within.

5
A fantastical, ornate gateway adorned with ancient carvings
and mystical symbols, leading to a majestic, torch-lit rocky
cave surrounded by towering stalactites and stalagmites,
with a hint of misty aura and a starry night sky visible
in the background.

6
A ornate, fantastical entrance adorned with ancient carvings
and mystical symbols, leading to a majestic rocky cave
surrounded by lush greenery and towering mountains in
the background, with a warm glow emanating from within.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 15: Case study example 5.

Round Prompt Image

0 an anime girl in a kimono

1
A young woman with Japanese-inspired features
and styling wears a traditional kimono, adorned
with intricate designs and patterns, in a vibrant
anime art style.

2 A beautiful anime girl adorned in a vibrant
traditional Japanese kimono, surrounded by
a serene atmosphere.

3
A beautiful anime girl adorned in a traditional
Japanese kimono, surrounded by a serene
atmosphere, with intricate designs and patterns
on her garment, and a gentle smile on her face.

4 A beautiful anime girl adorned in a traditional
Japanese kimono, surrounded by cherry
blossoms, standing in a serene garden setting.

5
A beautiful anime girl adorned in a traditional
Japanese kimono, surrounded by cherry
blossoms, standing in a serene garden with
a tranquil waterfall in the background.

6
A beautiful anime girl adorned in a traditional
Japanese kimono, surrounded by cherry
blossoms, posing elegantly in a serene
Japanese garden.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 16: Case study for the aesthetic rewriter. While it often enhances visual appeal, it can some-
times lead to prompt misalignment. For example, in Image 1, the result is more visually pleasing but
rendered brighter, contradicting the user’s low-light requirement. In Image 2, the rewriter overlooks
the instruction to depict a fat man, producing a misaligned outcome.

No Rewriter General Rewriter Aesthetics Rewriter

Prompt1 a low light photo of a city at night

A moody nighttime cityscape photograph
captured in low light, depicting a
bustling metropolis adorned with twinkling
skyscrapers, neon signs, and streets aglow
with vehicle headlights, set against a
dark starry sky.

A breathtaking cityscape at dusk surrounded
by a kaleidoscope of twinkling lights,
majestic skyscrapers, and bustling streets,
set against a backdrop of a vibrant purple
and blue night sky filled with stars, captured in
a stunning low-light photograph.

Image1

Prompt2
Fat black man in suit watching iguanas
in a petting zoo realistic hyper realistic
photorealistic

A photorealistic image depicting a obese
African American man dressed in a
formal business suit, standing in a lush
petting zoo surrounded by various tropical
plants and trees, intently observing a
group of iguanas roaming freely around
him, with some of the reptiles climbing
on his legs and arms, as he gently offers
them leaves to eat, amidst a backdrop of
a sunny day with a clear blue sky.

A lavishly dressed black man surrounded by
opulent decorations and lush greenery, sits
in a luxurious golden chair, observing in
wonder as a group of vibrant iguanas roam
and play in a majestic petting zoo filled with
exotic flowers, sparkling fountains, and
intricate stone statues, surrounded by a
backdrop of majestic waterfalls and a
breathtaking sunset, amidst a scene of
unparalleled realism, surrounded by intricate
details and majestic architecture, adorned
with gold ornaments and precious gems,
surrounded by a warm and vibrant ambiance,
illuminated by the golden light of the setting
sun, in an incredibly detailed and intricate
hyper-realistic artwork.

Image2
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You are an expert in analyzing images and observing any implausibilitys in the image. You will be provided with
two images and you are tasked to compare them and decide which one is more plausible.
Here is a text caption for the two images, just for you to better understand the context: "{caption}". 
Consider the following factors during your evaluation:

1. Human and Animal Body Parts:
-- Faces: Look for anomalies in facial features such as asymmetry, unnatural expressions, or distorted features.
-- Eyes and Gaze: Check for unnatural eye shapes, inconsistent gaze direction, or mismatched eye colors.
-- Teeth: Observe if the teeth appear odd, asymmetric, or have unnatural shapes and counts.
-- Ears and Earrings: Inspect for discrepancies in ear size, placement, or mismatched earrings.
-- Hands and Fingers: Count the fingers and examine the hands for unnatural poses or distortions.
-- Hair and Skin: Look for unrealistic hair strands, halos around the hair, or skin textures that lack pores and fine
lines.

2. Geometry:
-- Straight Lines and Edges: Identify any wavy or misaligned lines that should be straight.
-- Perspective: Assess if the object's sizes and placements make sense within the scene.
-- Symmetry: Check for inconsistencies in symmetrical objects or features.
-- Relative Size: Ensure that objects are proportionally sized relative to each other.

3. Physics:
-- Reflections: Verify if reflections in mirrors, glasses, or water obey the laws of physics.
-- Shadows: Look for the presence and consistency of shadows based on the light source.
-- Objects Without Support: Identify any objects that appear to float without logical support.

4. Semantics and Logic:
-- Spatial Reasoning: Examine if objects are placed in a way that makes sense spatially.
-- Context and Scene Composition: Determine if the scene's elements logically fit together.
-- Other Semantic Issues: Look for impossible scenarios or illogical object interactions.

5. Text, Noise, and Details:
-- Text: Check for legible and correctly spelled text within the image.
-- Noise and Artifacts: Observe any unnatural noise patterns or color artifacts.
-- Fine-grained Details: Look for errors in detailed objects like clocks, keyboards, or fabrics.

6. Also, check for other kinds of implausibility not listed above.

You should analyze each image from the perspectives listed above, and make your output strictly adhere to the
following format:
(Replace the <...> parts with your results. For parts outside the <> bracket, keep the exact words as they are
part of the format. Note that: Images that look more plausible with little or no flaws are better. Images that
contain more implausibilities are worse.)

Image Descriptions:

Image 1: <brief description>
Image 2: <brief description>

Image Quality Evaluation:

Image 1: <evaluation of image quality>
Image 2: <evaluation of image quality>
Image Quality Comparison: <A detailed description of your thorough analysis and reasoning for comparing
Image 1 and Image 2 in image quality>

Final Image Quality Comparison Result: <One of the three outputs: Image 1 is better. Image 2 is better. It's a
tie.>

Quality Reward

Figure 7: Prompt for quality reward rQuality.
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You are an expert in understanding an image's caption, and asking comprehensive questions about the image to check if it
aligns with the caption.
You will be provided with a caption. Try your best to come up with questions about the image such that by answering all the
questions, one can determine whether the image depicts everything mentioned in the caption accurately.
Your output should only contain questions about the image based on the caption, and no other information. The questions
should be listed line by line with bullet point symbols like "-". Here are some examples:

<Example Caption 1>: 
"a zebra below a computer keyboard"

<Example Questions 1>:
- Does the image contain a zebra?
- Is there a computer keyboard in the image?
- Is the zebra positioned below the computer keyboard?
- Are both the zebra and the keyboard clearly visible and identifiable?
- Are the zebra and the keyboard the main focus of the image?

<Example Caption 2>:
"element"

<Example Questions 2>:
- "element" is a broad and abstract concept. Try to think of the many possible manifestations of "element". Does the image
depict any angles of "element
- When looking at the image, does it remind you of the concept "element"?

<Example Caption 3>:
"David Bowie, very complex closeup macro portrait very complex hyper-maximalist overdetailed cinematic tribal fantasy closeup,
shot in the photo studio, professional studio lighting, backlit, rim lighting, Deviant-art, hyper detailed illustration, 8k, symbolism
Diesel punk, mist, ambient occlusion, volumetric lighting, Lord of the rings, BioShock, glamorous, emotional, tattoos,shot in the
photo studio, professional studio lighting, backlit, rim lighting, Deviant-art, hyper detailed illustration, 8k"

<Example Questions 3>:
- Does the image feature David Bowie as the main subject?
- Is it a very complex close-up macro portrait of David Bowie?
- Does the portrait exhibit a hyper-maximalist and over-detailed style?
- Is there a cinematic and tribal fantasy theme present in the image?
- Was the portrait shot in a photo studio setting?
- Does the image utilize professional studio lighting techniques?
- Are there backlit and rim lighting effects applied?
- Is the style reminiscent of DeviantArt hyper-detailed illustrations?
- Is the image rendered in 8k resolution quality?
- Are elements of symbolism incorporated into the portrait?
- Does the image include Diesel punk aesthetics?
- Is there mist depicted within the scene?
- Are ambient occlusion and volumetric lighting techniques used?
- Does the image incorporate themes from "Lord of the Rings"?
- Are there visual influences from the game "BioShock"?
- Is the overall portrayal glamorous and emotional?
- Does David Bowie have tattoos in the image?
- Are the tattoos detailed and significant to the overall theme?
- Are all the stylistic elements cohesively integrated in the image?
- Is the composition focused on a hyper-detailed, cinematic presentation?

Now based on the examples, generate the questions for the target caption:

<Target Caption>:
"{caption}"

Your output should only contain questions about the image based on the caption, and no other information. The questions
should be listed line by line with bullet point symbols like "-".

General Alignement Questions

Figure 8: Prompt for general alignment questions.
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You are an expert in Visual Question Answering and checking the image's alignment with the caption. You will be provided with
two images and a set of questions about the image. You are tasked to answer the questions for the two images and use that to
guide your final assessment of the alignment of the given images with the caption.
You should: 
1) Briefly describe the images.
2) Answer the given list of questions for each image. The answer to each question can be "Yes", "Partially", or "No", then
followed by an brief explanation (if needed).
3) Based on the answers to the questions, draw a conclusion about how the image aligns with the caption, and provide a
comparison of the two images on which one is better. 

Note that: if the image depicts stuff that is not mentioned in the caption, it should NOT be considered as misalignment unless the
additional stuff overwhelms the main focus.

As a context, the caption used to describe the image is: "{caption}"

The list of questions are: 
{question}

Your output should be in this format:

==== Description of the image:
Image 1: <brief description of image 1>
Image 2: <brief description of image 2>

==== Answers to the questions:
Image 1: <answers to the questions for image 1>
Image 2: <answers to the questions for image 2>

==== Image-Text Alignment
Image 1: <evaluation of image-text alignment for image 1>
Image 2: <evaluation of image-text alignment for image 2>
Image-Text Alignment Comparison: <A detailed description of your thorough analysis and reasoning for comparing Image 1 and
Image 2 in image-text alignment>

Final Image-Text Alignment Comparison Result: <One of the three outputs: Image 1 is better. Image 2 is better. It's a tie.>

General Alignement Reward

Figure 9: Prompt for general alignment reward rGeneral-Alignment.
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You are an expert in checking if an image matches the provided text caption.
Carefully evaluate the caption and the two corresponding images based on image-text alignment. Text caption to be used for
image-text alignment evaluation: "{caption}"
You should first briefly describe what are in the images. Then begin your assessment with a brief explanation that addresses the
key factors listed. Following your explanation, provide a comparison of the two images on which one is better. 

* Image-text alignment: note that for this criterion, you need to carefully review the image and the provided text caption, and
check if the image depicts what the text caption describes. Better alignments corresponds to higher image-text alignment
scores. The alignment can be further broken down into several aspects below:
1. Correct object generated and the number generated is correct. Pay attention to numbers in the text caption.
2. Good spatial relationship. Are objects generated with correct spatial relations? Pay attention to the caption's indication of
spatial relation, such as key words like left, right, over, under, etc.
3. Correct attribute and attribute bindings. Are objects generated with the correct colors, shapes, and textures? Are the right
attributes bound to the right objects?
4. Good world knowledge of history, geography, etc. Pay attention to names and check if image generated the right person or
place, etc.
5. In general, is the image displaying good reasoning skill based on the text caption?

Note that: if the image depicts stuff that is not mentioned in the caption, it should NOT be considered as misalignment unless the
additional stuff overwhelms the main focus.

Your output should strictly adhere to this format:
(Replace the <...> parts with your results. For parts outside the <> bracket, keep the exact words as they are part of the format.)

Image Descriptions:

Image 1: <brief description>
Image 2: <brief description>

Image-Text Alignment Evaluation:

Image 1: <evaluation of image-text alignment>
Image 2: <evaluation of image-text alignment>
Image-Text Alignment Comparison: <A detailed description of your thorough analysis and reasoning for comparing Image 1 and
Image 2 in image-text alignment>

Final Image-Text Alignment Comparison Result: <One of the three outputs: Image 1 is better. Image 2 is better. It's a tie.>

Physical Alignement Reward

Figure 10: Prompt for physical alignment reward rPhysical-Alignment
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You are an expert in evaluating aesthetics of images.
Carefully evaluate the caption and the two corresponding images based on aesthetics. Here is the text caption for the two
images, just for you to better understand the context: "{caption}".

You should first briefly describe what are in the images. Then begin your assessment with a brief explanation that addresses the
key factors listed. Following your explanation, provide a comparison of the two images on which one is better.

* Aesthetics: basically you just tell me whether the image looks beautiful and pleasing. Does it look like a piece of art?

Your output should strictly adhere to the following format:
(Replace the <...> parts with your results. For parts outside the <> bracket, keep the exact words as they are part of the format.)

Image Descriptions:

Image 1: <brief description>
Image 2: <brief description>

Aesthetics Evaluation:

Image 1: <evaluation of aesthetics>
Image 2: <evaluation of aesthetics>
Aesthetics Comparison: <A detailed description of your thorough analysis and reasoning for comparing Image 1 and Image 2 in
aesthetics>

Final Aesthetics Comparison Result: <One of the three outputs: Image 1 is better. Image 2 is better. It's a tie.>

Aesthetics Reward

Figure 11: Prompt for aesthetics reward rAesthetics
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