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Abstract001

Large vision-language models (LVLMs) have002
achieved remarkable performance on multi-003
modal tasks such as visual question answering004
(VQA) and image captioning. However, they005
still suffer from hallucinations, generating text006
inconsistent with visual input, posing signifi-007
cant risks in real-world applications. Existing008
approaches to address this issue focus on in-009
corporating external knowledge bases, align-010
ment training, or decoding strategies, all of011
which require substantial computational cost012
and time. Recent works try to explore more ef-013
ficient alternatives by adjusting LVLMs’ inter-014
nal representations. Although promising, these015
methods may cause hallucinations to be insuf-016
ficiently suppressed or lead to excessive inter-017
ventions that negatively affect normal seman-018
tics. In this work, we leverage sparse autoen-019
coders (SAEs) to identify semantic directions020
closely associated with either hallucinations021
or actuality, realizing more precise and direct022
hallucination-related representations. Our anal-023
ysis demonstrates that interventions along the024
faithful direction we identified can mitigate hal-025
lucinations, while those along the hallucinatory026
direction can exacerbate them. Building on027
these insights, we propose Steering LVLMs via028
SAE Latent Directions (SSL), a training-free029
method based on SAE-derived latent directions030
to mitigate hallucinations in LVLMs. Extensive031
experiments demonstrate that SSL significantly032
outperforms existing decoding approaches in033
mitigating hallucinations, while maintaining034
transferability across different model architec-035
tures with negligible additional time overhead.036

1 Introduction037

LVLMs (Liu et al., 2023; Dai et al., 2023b; Liu038

et al., 2024b) have demonstrated impressive ca-039

pabilities in jointly processing visual and textual040

modalities, achieving strong performance on tasks041

such as VQA (Antol et al., 2015) and image cap-042

In front of the sofa with wooden legs, a wooden coffee table 
waits patiently. On it, two remotes lie side by side, perhaps 
indicating a recent use of the television or a hint. The walls of 
the room are painted white. A window, although not visible in the 
image, is suggested by the presence of a window sill. 

In front of the sofa, a brown coffee 
table sits, its surface hosting a 
remote control and a TV guide. The 
relative positions of these objects 
create a harmonious balance in the 
room, with the sofa and coffee table. 

Please describe this 
image in detail.
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Figure 1: The figure shows, from top to bottom, the orig-
inal response from the LLaVA-Next-8b, the response
after intervention along the hallucinatory direction, and
the response after intervention along the faithful direc-
tion. These results demonstrate that targeted interven-
tions along faithful directions suppress hallucinatory
generations, while perturbations along hallucinatory di-
rections tend to elicit more factually incorrect content.

tioning (Li et al., 2022). However, LVLMs still suf- 043

fer from hallucination (Yin et al., 2011), where the 044

generated text does not align with the visual con- 045

tent. This limitation poses significant challenges to 046

their deployment in critical applications, including 047

medical diagnosis(Gu et al., 2024) and autonomous 048

driving(You et al., 2024), where factual consistency 049

and reliability are essential. 050

To mitigate hallucination in LVLMs, researchers 051

explore various strategies, including refining de- 052

coding algorithms (Leng et al., 2024; Huang et al., 053

2024; Kim et al., 2024), incorporating external 054

knowledge bases (Qu et al., 2024), and leverag- 055

ing additional annotated data for model fine-tuning 056

(Park et al., 2024). While promising, these ap- 057
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proaches often incur substantial computational cost058

and time. Recent works (Liu et al., 2025; Jiang059

et al., 2024; Li et al., 2025) try to explore more060

efficient alternatives by adjusting LVLMs’ inter-061

nal representations. However, these methods may062

cause hallucinations to be insufficiently suppressed063

or lead to excessive interventions that negatively064

affect normal semantics. Therefore, extracting fine-065

grained and reliable representations related to hal-066

lucinations remains a key challenge in advancing067

the reliability of LVLMs.068

We note the success of SAEs in extracting069

fine-grained semantic representations—specifically070

capturing whether the model knows certain enti-071

ties—of abstract concepts in the field of large lan-072

guage models (LLMs) (Ferrando et al., 2025). In-073

spired by this work, we extend the application of074

SAE-based analysis from LLMs to LVLMs, aim-075

ing to understand and mitigate hallucinations more076

precisely and directly by identifying and steering077

the internal semantic directions associated with078

hallucinatory and faithful content. Notably, SAEs079

builds on the Linear Representation Hypothesis080

(Park et al., 2023), which posits that internal model081

representations can be expressed as sparse combi-082

nations of interpretable semantic directions (Tigges083

et al., 2024; Li et al., 2023a). Specifically, we lever-084

age the SAE provided by Zhang et al. (2024a) to085

identify latent directions that closely correlate with086

hallucinatory semantics as well as those aligned087

with faithful content. As illustrated in Figure 1,088

targeted interventions along faithful directions sup-089

press hallucinatory generations, while perturba-090

tions along hallucinatory directions tend to elicit091

more factually incorrect content.092

Building on this insight, we propose Steering093

LVLMs via SAE Latent Directions (SSL), a094

training-free approach based on SAE-derived la-095

tent directions to mitigate hallucinations in LVLMs.096

During the visual feature merging stage, we inject097

faithful semantic directions to amplify grounded098

semantic features and improve image–text consis-099

tency. In the subsequent language generation stage,100

we reduce projection onto hallucinatory semantic101

directions, thereby reducing the risk of generat-102

ing factually incorrect content. Remarkably, al-103

though the SAE was trained on the LLaVA-Next-104

8b model, the extracted hallucination and factuality105

directions generalize seamlessly to other architec-106

tures (e.g., LLaVA1.5-7b model (Liu et al., 2024c)107

and InstructBLIP-7b model (Dai et al., 2023a)).108

Experimental evaluation on established LVLM hal-109

lucination benchmarks shows that SSL outperforms 110

existing decoding approaches, confirming its effec- 111

tiveness and efficiency in hallucination reduction. 112

Our main contributions are as follows: 113

• We leverage SAEs to identify semantic direc- 114

tions that are highly correlated with hallucina- 115

tory and faithful object words in the represen- 116

tation space of LVLMs. 117

• We propose SSL, a training-free method that 118

injects factuality semantic directions during 119

visual feature fusion to reinforce grounded 120

content and suppresses hallucination direc- 121

tions during language generation to proac- 122

tively mitigate hallucinatory outputs. 123

• Extensive experiments demonstrate that SSL 124

outperforms existing decoding approaches on 125

widely used hallucination benchmarks with 126

negligible time overhead, exhibiting transfer- 127

ability across different architectures. 128

2 Preliminary 129

LVLM generation. LVLMs take both image and 130

text as input and encode them into a sequence of to- 131

kens. During autoregressive generation, the model 132

first concatenates the system tokens Xs, prompt to- 133

kens Xt, and visual tokens Xv in a predefined order 134

to form the initial input. At the first generating step 135

t = 1, the model predicts the output token based on 136

this initial context. At each subsequent step t > 1, 137

the previously generated tokens X<t
o are appended 138

to the end of the initial input, resulting in the cur- 139

rent sequence
[
Xs, Xt, Xv, X

<t
o

]
. The model then 140

generates the next token autoregressively according 141

to the conditional probability distribution, continu- 142

ing until an end-of-sequence token is produced or 143

a maximum sequence length is reached: 144

yt = argmax pθ(yt | Xs, Xt, Xv, X
<t
o ), (1) 145

where yt is the token generated at time step t. 146

Sparse autoencoders. SAEs have been proven 147

to be effective for separating overlapping features 148

(Bricken et al., 2023; Ferrando et al., 2025). In this 149

work, we use the SAE provided by Zhang et al. 150

(2024a), which operates on the residual stream 151

hl ∈ Rd from the l-th layer of LVLMs. The 152

SAE projects these representations into a higher- 153

dimensional latent space z(x) ∈ RdSAE and applies 154

a ReLU activation: 155

z(x) = ReLU(Wencx+ benc), (2) 156
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Figure 2: KDE plots of the selected latent activations for
test samples labeled as hallucination and faithfulness.
The overlaid plots visualize the distributional differ-
ences, with annotated t-statistic, p-value, and Cohen’s d
effect size indicating the statistical separation between
the two groups.

where Wenc and benc denote the encoder’s weight157

matrix and bias, respectively. To enforce sparsity, a158

top-k operation retains only the k largest activations159

in z(x), zeroing out the rest to obtain the sparse160

latent vector zk(x) = TopK(z, k). The decoder161

then reconstructs the original representation via a162

linear combination of the active components:163

SAE(x) = W T
deczk(x) + bdec, (3)164

where Wdec and bdec denote the decoder’s weight165

matrix and bias. During training, the loss function166

combines the reconstruction error with an auxil-167

iary loss proposed by Gao et al. (2025), aiming to168

encourage the utilization of meaningful features169

in the latent representation zk(x) and to prevent170

feature inactivity, thereby enhancing the overall ex-171

pressiveness of the sparse encoding. We refer to172

each component of zk(x) as a latent activation, and173

each row vector of Wdec as a latent direction.174

Steering with SAE Latents. The SAE recon-175

structs model representations as a linear combi-176

nation of latent directions and a bias, effectively177

approximating the original input. Each latent ac-178

tivation zj(x) corresponds to a specific decoder179

direction dj = Wdec [j, :], enabling targeted ad-180

justment of the representation through activation181

steering (Turner et al., 2023). This technique al-182

lows us to steer the residual stream by modifying183

the representation as follows:184

xsteer ← x+ αdj , (4)185

where α is a tunable parameter that determines the186

strength of the intervention.187

3 Method 188

In this work, we introduce SSL, a training-free 189

method for steering LVLMs. Our method consists 190

of two principal components: semantic directions 191

identification and steering LVLMs via SAE latents. 192

3.1 Semantic Directions Identification 193

Residual Stream Dataset Construction for Hal- 194

lucinations and Faithfulness. To investigate 195

whether there exist directions in LVLMs that are 196

highly correlated with hallucinatory and faithful 197

semantics, we randomly sampled 4, 000 image- 198

text pairs from the MSCOCO dataset (Lin et al., 199

2014). Using the LLaVA-Next-8b model (Liu et al., 200

2024d) for the image captioning task, we extract 201

the residual stream representations from the 25th 202

layer when the model generated object tokens clas- 203

sified as either hallucinatory or faithful. 204

Given that a small proportion of object words 205

are tokenized into multiple subword units, we ex- 206

clude these cases to simplify the analysis. Further- 207

more, because each sample exhibited an imbalance 208

between the counts of hallucinatory and faithful 209

object terms, we enforce class balance by sampling 210

an equal number of residual vectors from each cat- 211

egory per image–text pair. See Appendix A for a 212

description of the process. Finally, we construct 213

a balanced dataset containing 1, 784 samples and 214

divide it into a training set and a test set in a 9 : 1 ra- 215

tio, for direction mining and direction effectiveness 216

validation, respectively. 217

Semantically Hallucinatory and Faithful Direc- 218

tion Identification via SAE. Inspired by Meng 219

et al. (2022); Ferrando et al. (2025), we leverage 220

SAE to identify latent directions aligned with hallu- 221

cinatory and faithful semantics. Specifically, each 222

residual stream sample from the training set is 223

passed through the SAE, and we record the ac- 224

tivation frequency of each latent activation across 225

hallucinatory samples Xhall and faithful samples 226

Xfaithful. For a given latent activation j, its activa- 227

tion frequencies on hallucinatory samples fhall
j and 228

faithful samples f faithful
j are computed as: 229

fhall
j =

1

Nhall

∑
x∈Xhall

I (zj(x) > 0) ,

f faithful
j =

1

Nfaithful

∑
x∈Xfaithful

I (zj(x) > 0) ,

(5) 230

where Nhall and Nfaithful represent the number of 231

hallucinatory and faithful samples, respectively. To 232
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Figure 3: Overview of the proposed SSL approach leveraging SAE to identify semantically aligned directions and
mitigate hallucination in LVLMs. We use SAE to identify latent directions within the internal representation space
of LVLMs that are associated with hallucinatory and faithful semantics, denoted as dhall and dfaithful, respectively.
These semantic directions are then used to modulate the residual stream at the l-th layer, steering the generation
process toward greater factual consistency.

quantify the semantic relevance of each latent ac-233

tivation, we compute the difference in activation234

frequencies as follows:235

shall
j = fhall

j − f faithful
j ,

sfaithful
j = f faithful

j − fhall
j .

(6)236

These values reflect the relevance of latent dimen-237

sion j to hallucinatory and faithful semantics, re-238

spectively. Finally, we identify the latent activation239

with the highest shall
j as the hallucination semantic240

direction (hereafter referred to as the hall latent),241

and the one with the highest sfaithful
j as the faith-242

ful semantic direction (hereafter referred to as the243

faithful latent).244

Validation of the Effectiveness of Semantic Di-245

rections. We begin by analyzing the distribu-246

tional differences of the hallucinatory latent and247

faithful latent activations across both sample types248

in the test set. These distributions are visualized us-249

ing kernel density estimation (KDE) plots as shown250

in Figure 2. We further quantify the separation us-251

ing independent two-sample t-tests and compute252

Cohen’s d to assess effect sizes. Both latent activa-253

tions exhibit statistically significant distributional254

shifts, with substantial effect sizes, confirming their255

discriminative power.256

To probe the semantic alignment of the activa-257

tions, we further conduct Spearman rank corre-258

lation analysis between the activation values of 259

hallucinatory samples and their associated halluci- 260

natory object terms. The hallucinatory latent corre- 261

lates positively with hallucinatory objects (Spear- 262

man’s ρ = 0.42, p = 9.95 × 10−9), whereas the 263

faithful latent correlates negatively (ρ = −0.44, 264

p = 9.85 × 10−10). Given the binary nature of 265

the labels and the symmetry of rank correlation, 266

we infer a positive correlation between the faithful 267

latent and samples. 268

Finally, to quantitatively evaluate the predictive 269

power of SAE-derived directions in distinguishing 270

hallucinatory from faithful samples, we design a set 271

of classification experiments based on logistic re- 272

gression. The model takes the latent activation val- 273

ues—either individually or in combination—as in- 274

put features for a binary hallucination classification 275

task. As illustrated in Figure 4, the results demon- 276

strate that the latent semantic directions extracted 277

by the SAE are discriminative (see Appendix B 278

for more experimental details). Furthermore, com- 279

bining the hall latent and faithful latent as input 280

features yields further performance improvements. 281

3.2 Steering LVLMs via SAE Latents 282

Steering Strategy. A core architectural mecha- 283

nism involves multi-layer residual connections that 284

progressively model input information. At each 285

layer, semantic representations are passed through 286
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Figure 4: Comparison of classification accuracy using
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correspond to the identified hallucinatory and faithful la-
tent activations, respectively. Random1 denotes a single
latent activation randomly selected from the SAE latent
space, while Random2 represents a feature combination
of two randomly selected latent activations. The dashed
line indicates the baseline accuracy of 0.5.

residual flows, which can be divided according to287

the input sequence into four main components: sys-288

tem token, prompt tokens, visual tokens, and output289

tokens. Among these, visual tokens interact with290

language tokens to guide the model’s understand-291

ing of image content. Injecting faithful direction at292

this position enables the model to increase visual293

faithfulness. Output tokens represent the model’s294

autoregressive language generations, influenced by295

both prompts and visual inputs, thereby reflecting296

the model’s semantic behavior. Suppressing hallu-297

cinatory directions during this stage helps reduce298

hallucination tendencies and enhances factual con-299

sistency in language generation.300

Following the method described in Section 2, we301

identify two semantic direction vectors: the hallu-302

cinatory direction dhall and the faithful direction303

dfaithful. During the visual feature fusion stage, we304

incorporate dfaithful to improve the faithfulness of305

visual understanding. In the subsequent language306

generation stage, we suppress activations along307

dhall to reduce the risk of hallucinatory outputs. Se-308

mantic steering at layer l is defined as follows:309

Xl,v ← Xl,v + α · dfaithful,

X<t
l,o ← X<t

l,o − α · dhall,
(7)310

where α is a tunable hyperparameter controlling311

the strength of semantic steering.312

Adaptive Steering Parameters (ASP). The set-313

ting of the steering strength α plays a crucial role in314

determining the effectiveness of semantic interven-315

tion. Traditional steering approaches often rely on316

a fixed hyperparameter α to linearly combine the317

Algorithm 1: SSL
Input: Scaling factor γ; steering layer ls;

semantic directions dhall, dfaithful;
residual stream at layer ls:
[Xls,s, Xls,t, Xls,v, X

<t
ls,o

]

1 if L = ls then
2 for token x in residual stream do
3 if x ∈ Xls,v then
4 x← x+ γ · ∥x∥

∥dfaithful∥+ϵ · dfaithful

5 else if x ∈ X<t
ls,o

then
6 x← x− γ · ∥x∥

∥dhall∥+ϵ · dhall

7 else
// System and prompt

tokens remain unchanged

steering vector with the residual representations. 318

However, this fixed strategy can result in unsta- 319

ble or suboptimal performance, as the magnitude 320

of residual vectors can vary across model layers 321

and token positions. In such cases, a change that 322

is too small may fail to induce meaningful guid- 323

ance, while an excessively large change may cause 324

semantic distortion or instability. 325

To address this limitation, we propose an adap- 326

tive feature steering mechanism, which dynami- 327

cally adjusts the steering strength based on the 328

norm of the residual vector at each token at a 329

given layer. This approach ensures more stable and 330

context-aware intervention across varying model 331

states. Specifically, the adaptive steering strength 332

α is computed as: 333

α = γ · ∥xresidual∥
∥dsteer∥+ ϵ

, (8) 334

where γ is a scaling factor, xresidual denotes the 335

residual vector, dsteer is the steering direction, and 336

ϵ is a small constant to avoid numerical instability. 337

An overview of the proposed SSL method is pre- 338

sented in Figure 3. The complete procedure of SSL 339

is provided in Algorithm 1. 340

4 Experiments 341

4.1 LVLMs 342

We conduct experiments on three representative 343

LVLMs: LLaVA-NeXT-8b (Liu et al., 2024d), 344

LLaVA-1.5-7b (Liu et al., 2024c) and InstructBLIP- 345

7b (Dai et al., 2023a). These models share a modu- 346

lar structure comprising an image encoder, a pro- 347
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LLaVA-NeXT-8b LLaVA-1.5-7b InstructBLIP-7b
CHAIRS ↓ CHAIRI ↓ Avg.Len CHAIRS ↓ CHAIRI ↓ Avg.Len CHAIRS ↓ CHAIRI ↓ Avg.Len

Greedy 29.60±0.89 8.03±0.41 165.61 49.44±1.57 14.19±0.76 82.97 45.44±2.43 13.07±0.71 92.11
Beam 27.20±1.19 7.20±0.39 174.17 53.60±2.39 15.47±0.45 87.38 48.68±1.65 13.59±0.43 95.92
DoLa 29.04±1.08 7.86±0.24 166.14 50.64±2.33 14.51±0.88 82.32 46.12±1.85 13.09±0.90 91.80
VCD 31.36±1.99 8.40±0.79 165.43 51.68±1.85 15.29±0.83 83.03 50.84±2.41 14.51±0.97 91.44

OPERA - - - 44.04±0.94 13.23±0.46 75.79 45.88±2.31 13.15±0.87 93.51
CODE 30.76±0.92 8.09±0.42 158.07 47.72±0.79 14.13±0.56 78.43 50.88±2.05 14.21±0.92 89.62

SSL 25.20±1.49 6.46±0.67 162.93 41.08±2.11 12.02±0.85 82.30 38.52±4.24 11.45±0.96 102.62

Table 1: CHAIR results on MSCOCO dataset averaged over 5 random seeds. The best and second-best results are
indicated in bold and underlined, respectively. Avg.Len represents the average length of the generated descriptions.

jection module, and a language model. LLaVA-1.5348

and LLaVA-NeXT use an MLP to project all image349

tokens into the LLM’s input space, while Instruct-350

BLIP employs a Q-Former to select a compact set351

of informative visual tokens, reducing redundancy.352

Compared to LLaVA-1.5, LLaVA-NeXT upgrades353

the LLM from 7b to 8b parameters and supports354

higher-resolution inputs for visual understanding.355

4.2 Benchmarks356

CHAIR. We evaluate object hallucination using357

the Caption Hallucination Assessment with Image358

Relevance (CHAIR) metric (Rohrbach et al., 2018),359

which compares generated image captions against360

ground-truth annotations to detect hallucinatory ob-361

jects mentioned in the captions but absent from the362

image. CHAIR includes two metrics at both cap-363

tions level (CHAIRS) and object level (CHAIRI ):364

CHAIRS =
|{captions w/ hallucinatory objects}|

|{total captions}|
,

CHAIRI =
|{hallucinatory objects}|
|{total mentioned objects}|

.

(9)365

We randomly sample 500 images from the COCO366

2014 validation set (Lin et al., 2014) and conduct367

five runs with different random seeds. For all368

LVLMs, captions are generated using the prompt369

“Please describe this image in detail.” We report370

the mean and standard deviation for each metric.371

POPE. We further evaluate object hallucination372

using the POPE benchmark (Li et al., 2023b), a373

question-answering dataset designed to assess the374

factual consistency of generated image descriptions.375

POPE contains 500 images from the MSCOCO376

dataset (Lin et al., 2014), each paired with bi-377

nary questions of the form: “Is there a <object>378

in the image?” The dataset comprises three sub-379

sets—random, popular, and adversarial—which380

differ in their object sampling strategies. Model381

performance is measured using standard classifica- 382

tion metrics: Accuracy, Precision, Recall, and F1 383

score. To provide an overall assessment, we report 384

the average results across all three subsets. 385

LLaVA-Bench. We evaluate LVLM performance 386

using the LLaVA-Bench (In-the-Wild) benchmark 387

(Liu et al., 2024c), a comprehensive set designed to 388

assess models across diverse and challenging visual 389

scenarios. The benchmark includes 24 images from 390

varied real-world contexts, such as indoor scenes, 391

outdoor environments, and internet memes, paired 392

with 60 carefully curated questions spanning open- 393

ended QA, fine-grained descriptions, and complex 394

reasoning. We prompt the GPT-4o model to eval- 395

uate the LVLMs’ outputs along two dimensions: 396

factual accuracy and response detail. 397

4.3 Baselines 398

We compare the performance of base LVLMs using 399

greedy decoding and beam search decoding. Ad- 400

ditionally, we also conduct a comparison between 401

SSL and the popular training-free approaches that 402

require neither external data nor auxiliary models. 403

Specifically, DoLa (Chuang et al., 2024) derives 404

the next-token distribution by contrasting logits 405

from later and earlier layers; VCD (Leng et al., 406

2024) employs contrastive learning by comparing 407

the output distributions generated from original and 408

perturbed images; OPERA (Huang et al., 2024) 409

enhances generation quality by alleviating exces- 410

sive reliance on previously generated tokens dur- 411

ing beam search; and CODE (Kim et al., 2024) 412

enhances vision-language alignment by using self- 413

generated captions as internal references. 414

4.4 Implementation Details 415

We set γ to 0.6, 0.8, and 0.2 for LLaVA-NeXT, 416

LLaVA-1.5, and InstructBLIP, respectively, to bal- 417

ance effective mitigation of hallucination with min- 418

imizing the invasiveness of state interventions. SSL 419
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LLaVA-NeXT-8b LLaVA-1.5-7b InstructBLIP-7b
F1 score ↑ F1 score ↑ F1 score ↑

Greedy 89.10 84.99 85.37
Beam 89.30 85.31 84.41
DoLa 89.49 85.08 85.22
VCD 88.91 84.42 84.68

OPERA - 85.46 84.42
CODE 88.93 84.64 84.81

SSL 89.66 85.44 85.16

Table 2: POPE results averaged over popular, adversar-
ial, and random splits. The best and second-best results
are indicated in bold and underlined, respectively.

is applied at 16th layer for LLaVA-NeXT, 31th layer420

for LLaVA-1.5 and 8th layer for InstructBLIP. We421

faithfully replicate all baseline methods, imple-422

menting them based on their open-source code-423

bases and configuring them according to the hy-424

perparameters reported in the original papers. All425

experimental results are obtained under consistent426

base model, prompt, and generation parameter set-427

tings to ensure a fair comparison. For all methods428

involving beam search, we set the max_new_token429

to 512 and the beam size to 5.430

5 Results431

CHAIR. Table 1 reports the performance of SSL432

on the CHAIR benchmark compared to all baseline433

approaches. Due to excessive memory require-434

ments, OPERA fails to produce results on LLaVA-435

NeXT-8b. Notably, although the SAE from Zhang436

et al. (2024a) were trained on LLaVA-NeXT-8b,437

the identified semantic directions generalize well438

across different model architectures. SSL consis-439

tently outperforms all baselines across all three440

LVLMs, while only incurring a marginal trade-off441

in caption length or descriptive richness.442

POPE. As shown in Table 2, applying SSL to443

LVLMs with different architectures consistently im-444

proves performance on the POPE benchmark. This445

demonstrates the robustness of SSL in enhancing446

models across a spectrum of capabilities and fur-447

ther validates the generalizability of the semantic448

directions captured by our approach.449

LLaVA-Bench. Table 3 presents the evaluation450

results on LLaVA-Bench using GPT-4o. The re-451

sults highlight the effectiveness of SSL in enhanc-452

ing model accuracy across highly diverse and chal-453

lenging tasks.454

5.1 Ablation Study455

Effectiveness of ASP. To validate the necessity456

of adaptively adjusting the steering strength, we457

Accuracy ↑ Detailedness ↑

LLaVA-NeXT 6.2891 6.0278
LLaVA-NeXT w/ SSL 6.3671 5.2667

LLaVA-1.5 5.3333 4.7000
LLaVA-1.5 w/ SSL 4.7167 4.5667

InstructBLIP 5.5056 4.1111
InstructBLIP w/ SSL 5.5722 4.2611

Table 3: Evaluation results on the LLaVA-Bench (In-
the-Wild) benchmark based on prompting GPT-4o.
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Figure 5: Results of SSL applied across different layers.

conduct an ablation study by replacing ASP with 458

a fixed α steering parameter as shown in Equa- 459

tion 4 equal to the γ value. As shown in Table 4, 460

removing the adaptive strategy ASP results in con- 461

sistent performance drops across all three model 462

architectures, highlighting the importance of ASP 463

in effectively mitigating hallucinations. 464

Layer Selection Ablation. We conduct an ab- 465

lation study on LLaVA-NeXT-8b to examine the 466

impact of applying guidance at different layers. 467

Figure 5 shows that the choice of guidance layer 468

significantly affects model performance, setting 469

γ to 0.8. For LLaVA-NeXT-8b, applying SSL at 470

middle layers yields more effective mitigation of 471

hallucinations, with layer 15 achieving the best per- 472

formance. For further analysis on steering layer 473

selection and scaling factor γ settings across dif- 474

ferent models, please refer to Appendix C and D. 475

476

5.2 Further Analysis 477

Analysis of Reverse-SSL for Inducing Halluci- 478

nations in LVLMs. To further validate the ef- 479

fectiveness of the semantic directions we identi- 480

fied, we compare the CHAIR benchmark across 481

three model architectures under three settings: orig- 482

inal model state, SSL, and Reverse-SSL (see Ap- 483

pendix E for details on Reverse-SSL). As shown in 484

Figure 6, across all three model architectures, ap- 485

plying Reverse-SSL significantly increases halluci- 486

nations, while standard SSL guidance consistently 487

reduces hallucinations. To further clearly illustrate 488

7



CHAIRS ↓ CHAIRI ↓

LLaVA-NeXT w/ ASP 25.20 6.46
LLaVA-NeXT w/ fixed α 28.40 7.79

LLaVA-1.5 w/ ASP 41.08 12.02
LLaVA-1.5 w/ fixed α 47.21 13.12

InstructBLIP w/ ASP 38.52 11.45
InstructBLIP w/ fixed α 45.40 12.70

Table 4: Ablation study on the necessity of adaptively
adjusting the steering parameters.
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Figure 6: CHAIR evaluation across three multi-
modal models—InstructBLIP-7b, LLaVA-NeXT-8b,
and LLaVA-1.5-7b—under three generation settings:
original, SSL, and Reverse-SSL.

the effectiveness of SSL, we present several quali-489

tative examples in Appendix F.490

Additional Time Analysis. During each gener-491

ation step, SSL dynamically adjusts the steering492

strength through a single scaling and weighting op-493

eration, introducing negligible computational over-494

head. Compared to the overall generation process,495

the additional latency introduced by SSL is mini-496

mal. A comparison of inference time between SSL497

and other baselines is shown in Figure 7.498

6 Related Works499

LVLMs refer to the phenomenon where the gener-500

ated textual content is inconsistent with the visual501

input. This issue arises from various factors, such502

as dataset bias, insufficient visual perception by the503

encoder, and misalignment across modalities (Liu504

et al., 2024a). While prior studies have proposed505

diverse strategies to mitigate hallucination, the in-506

ternal mechanisms within LVLMs that give rise to507

such inconsistencies remain largely underexplored.508

Liu et al. (2025) enhance the stability of vi-509

sual representations by steering latent features dur-510

ing generation, preventing premature degradation.511

Jiang et al. (2024) remove hallucination-related fea-512

ture components through linear orthogonalization513
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Figure 7: Comparison of inference time for different
methods measured using identical hardware.

by projecting the internal image representations of 514

vision models into the language space, thereby pu- 515

rifying the input and reducing hallucinations. Li 516

et al. (2025) uncover phenomena such as early acti- 517

vation and progressive loss of visual information in 518

LVLMs, and propose injecting continuous visual 519

streams during inference to compensate for these 520

effects, significantly reducing hallucinations. 521

Unlike previous methods, our work directly iden- 522

tifies hallucinatory and faithful semantic directions 523

using SAEs. We then dynamically adjust these 524

directions during visual-linguistic fusion and gen- 525

eration to proactively reduce hallucination outputs. 526

Furthermore, our approach contributes to the 527

practical interpretability of SAEs in LVLMs, 528

demonstrating their potential for understanding and 529

controlling internal semantic representations. 530

7 Conclusion 531

This work explores the relationship between the 532

hallucination in LVLMs and their internal latent 533

representations. We construct a residual stream 534

dataset for hallucinatory and faithful object tokens, 535

and use SAE to extract the semantic directions cor- 536

responding to hallucination and Factuality. Based 537

on this insight, we propose SSL, a training-free 538

method that amplifies true semantics while sup- 539

pressing potential hallucinations. Extensive exper- 540

iments demonstrate that SSL outperforms exist- 541

ing methods. Furthermore, although the SAE was 542

trained on LLaVA-Next, the semantic directions 543

it extracted generalize well across different model 544

architectures, further showcasing the potential of 545

SAE in understanding and controlling the internal 546

semantic representations of models. 547
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Limitations548

Currently, the only fully open-source multi-modal549

SAE is provided by LLM-Labs, trained on the 25th550

layer of the LLaVA-Next 8b model. As a result,551

our study does not include a comparison of SAEs552

trained on other model architectures across differ-553

ent multi-modal models. Future work can focus on554

training multi-modal SAEs on various architectures555

to investigate whether the findings from this study556

generalize across different models.557

Ethical Consideration558

In our proposed SSL method, positive steering sig-559

nificantly reduces hallucinations in LVLMs, while560

negative steering increases them. Positive steer-561

ing not only improves model performance but also562

aligns with ethical principles such as safety and563

reliability. In contrast, negative guidance may lead564

to more hallucinations and generate false informa-565

tion. Therefore, such mechanisms should be ap-566

plied with caution, supported by thorough valida-567

tion and human oversight.568
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A Construction of Residual Stream763

Dataset for Hallucinatory and764

Non-hallucinatory Object Words765

Figure 8 illustrates the construction process of766

the residual stream dataset. We begin by ran-767

domly sampling 4,000 image-text pairs from the768

MSCOCO dataset and extracting residual stream769

vectors from the 25th layer of the LLaVA-Next-770

8b model corresponding to object words identified771

as either hallucinatory or faithful during inference.772

It is worth noting that some object words are tok-773

enized into multiple subword tokens by the model’s774

tokenizer. Given the relatively low frequency of775

such cases and to facilitate consistent statistical776

analysis, we exclude these incomplete subword in-777

stances from our dataset. For example, the word778

“backpack” may be split into two tokens—"back"779

and "pack"—by the tokenizer. Since these sub-780

tokens do not independently convey the complete781

semantic meaning of the original word, they are782

omitted from further analysis.783

To ensure class balance, we extract an equal784

number of residual stream vectors for hallucinatory785

and faithful object words from each sample. This786

process results in a balanced dataset comprising787

1,784 instances, with a 1:1 ratio of positive (hal-788

lucinatory) and negative (faithful) samples. We789

further divide the dataset into training and test sets790

using a 9:1 split while maintaining the class distri-791

bution in both subsets. The training set is used to792

identify semantic directions closely associated with793

hallucination, and the test set is employed to eval-794

uate the generalizability and discriminative power795

of the extracted semantic features. Using sparse796

autoencoder analysis, we find that the direction797

corresponding to latent activation index 36992 is798

highly correlated with hallucination, whereas index799

47230 aligns closely with faithful outputs.800

B A Set of Classification Experiments801

Based on Logistic Regression802

To quantitatively evaluate the discriminative power803

of the latent activation directions extracted by the804

SAE in distinguishing hallucinatory from faithful805

samples, we conduct a series of classification exper-806

iments based on logistic regression. Specifically,807

for the i-th sample, let z(xi) ∈ RdSAE denote the808

SAE latent representation. From a total of N sam-809

ples, we extract individual latent dimensions in-810

dexed by j, denoted as zj(xi), and construct five811

types of input features:812

Hall latent: The dimension hall with the highest 813

correlation to hallucinated object words is selected, 814

forming a one-dimensional feature: 815

Xhall = [zhall(x1), . . . , zhall(xN )]T ∈ RN×1.
(10) 816

Faithful latent: The dimension faithful most 817

correlated with faithful object words is selected, 818

forming: 819

Xfaithful

= [zfaithful(x1), . . . , zfaithful(xN )]T ∈ RN×1.
(11) 820

Random 1: A single latent dimension r1 ∼ 821

U{0, . . . , dSAE − 1} is randomly sampled to form 822

a one-dimensional baseline feature Xr1 = RN×1. 823

Random 2: Two latent dimensions (r1, r2) are 824

randomly sampled to construct a two-dimensional 825

feature Xr2 ∈ RN×2. 826

The corresponding label vector is y = 827[
y(1), y(2), . . . , y(N)

]T
, where y(i) ∈ {0, 1}, with 828

1 indicating a hallucinatory sample and 0 a faithful 829

sample. All input features are standardized before 830

being fed into the logistic regression model. The 831

model is trained on the training set and evaluated 832

on the held-out test set using classification accuracy 833

and confusion matrices as evaluation metrics. 834

As shown in Figure 9, the confusion matrices 835

for the three main feature groups (Hall latent, Non- 836

hall latent, Both). The results show that the model 837

achieves balanced performance across both posi- 838

tive and negative classes, with no noticeable predic- 839

tion bias. Figure 4, the performance of Random1 840

and Random2 approximates the random baseline 841

(≈ 0.5), while using Hall latent and faithful la- 842

tent individually yields classification accuracies of 843

66.67% and 69.54%, respectively. Combining the 844

two features (Both) further improves performance 845

to 72.99%. 846

These findings suggest that the latent repre- 847

sentations extracted by the SAE encode seman- 848

tically discriminative signals for hallucination de- 849

tection. Furthermore, combining hallucination and 850

factuality-related latent directions provides comple- 851

mentary information that enhances classification 852

performance. 853

C Choice of Steering Layer 854

Figures 10, 11 and 12 present the results of ab- 855

lation studies investigating the effect of introduc- 856

ing SSL at individual layers of the LLaVA-Next 857

(γ = 0.6), LLaVA-1.5 (γ = 0.8) and InstructBLIP 858
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Image:

Please describe this image in 
detail. Prompt:

Residual Stream Dataset

Hallucinatory 
object tokens

Faithful 
object 
tokens

The image captures a charming 
scene of a vintage kitchen …… a 
white refrigerator and a white 
sink …… perhaps waiting to be used 
for a warm cup of tea …… a white 
chair  …… It's  a  snapshot  of  a 
moment frozen in time, a glimpse 
into a simpler era.

LVLM
 Layer 0

LVLM
 Layer 24

hidden state

LVLM
 Layer 25

... ... ...

LLaVA-Next-8B

Generating

Figure 8: The process of construction of residual stream dataset for hallucinatory and faithful object words.
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Figure 9: The confusion matrices for three main feature groups.

CHAIRS ↓ CHAIRI ↓ Avg.Len

LLaVA-NeXT 29.60 8.03 165.61
w/ SSL γ = 0.2 28.36 7.38 163.20
w/ SSL γ = 0.4 27.92 6.69 158.01
w/ SSL γ = 0.6 25.20 6.46 162.93
w/ SSL γ = 0.8 22.28 5.14 185.80
w/ SSL γ = 1.0 13.28 4.06 163.62
w/ SSL γ = 1.5 2.56 0.59 53.80

Table 5: Ablation study on the scaling factor of LLaVA-
Next.

(γ = 0.2) models, respectively. For LLaVA-Next,859

we observe that applying SSL at the middle lay-860

ers more effectively mitigates hallucinations, con-861

sistent with the results shown in Figure 5. For862

LLaVA-1.5, we observe that applying SSL at either863

the layer1 or deeper layers consistently mitigates864

hallucination. This observation aligns closely with865

findings reported by Zhang et al. (2024b), He et al.866

(2024) and Chen et al. (2025), who also found that867

layer1 or deeper layers interventions can signifi- 868

cantly reduce hallucination in LLaVA-1.5. In con- 869

trast, for InstructBLIP, introducing SSL at shallow 870

layers yields more substantial improvements, while 871

deeper layer interventions contribute less notice- 872

ably to performance. We hypothesize that this is 873

attributable to architectural and training differences 874

in InstructBLIP, specifically, its shallow layers may 875

already perform substantial cross-modal alignment 876

early in the pipeline, making early-stage seman- 877

tic guidance more impactful on overall generation 878

quality. A deeper analysis of the layer-specific 879

mechanisms in different multimodal architectures 880

is left for future work. 881

D Choice of Scaling Factor 882

Tables 5, 6, and7 report the ablation results on 883

the effect of the scaling factor γ in the SSL. For 884

the LLaVA series of models, setting γ to 0.6 or 885

0.8 effectively reduces hallucinations, indicating 886

12



20

30

40
CHAIRs Baseline CHAIRi Baseline CHAIRs CHAIRi

Layer

2

4

6

8

10

CH
AI

R

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L26 L27 L28 L29 L30 L31

Figure 10: Ablation study on steering a specific layer of LLaVA-Next.
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Figure 11: Ablation study on steering a specific layer of LLaVA-1.5.

Algorithm 2: Reverse-SSL
Input: Scaling factor γ; steering layer ls;

semantic directions dhall, dfaithful;
residual stream at layer ls:
[Xls,s, Xls,t, Xls,v, X

<t
ls,o

]

1 if L = ls then
2 for token x in residual stream do
3 if x ∈ Xls,v then
4 x← x− γ · ∥x∥

∥dfaithful∥+ϵ · dfaithful

5 else if x ∈ X<t
ls,o

then
6 x← x+ γ · ∥x∥

∥dhall∥+ϵ · dhall

7 else
// System and prompt

tokens remain unchanged

that moderate levels of semantic intervention are887

beneficial. However, when γ > 1.0, the super-888

vision becomes overly aggressive, disrupting the889

model’s behavior and leading to abnormal halluci-890

nation metrics. In contrast, for InstructBLIP, the891

best performance is observed at γ = 0.2, while892

CHAIRS ↓ CHAIRI ↓ Avg.Len

LLaVA-1.5 49.44 14.19 82.97
w/ SSL γ = 0.2 48.16 14.10 83.45
w/ SSL γ = 0.4 47.16 14.04 83.24
w/ SSL γ = 0.6 45.96 13.36 83.63
w/ SSL γ = 0.8 41.08 12.02 82.30
w/ SSL γ = 1.0 33.80 10.18 86.02
w/ SSL γ = 1.5 17.16 7.66 275.16

Table 6: Ablation study on the scaling factor of LLaVA-
1.5.

larger values similarly result in performance degra- 893

dation. These findings highlight the importance 894

of carefully calibrating the intensity of semantic 895

guidance to balance model control and generation 896

quality across different architectures. 897

E Reverse-SSL Approach 898

To further validate the efficacy of the identified se- 899

mantic directions, we extend the standard SSL by 900

introducing Reverse Steering LVLMs via SAEs La- 901

tents (Reverse-SSL), an approach that deliberately 902

induces the model to generate more hallucinations. 903

Specifically, at each residual flow layer, we divide 904
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Figure 12: Ablation study on steering a specific layer of InstructBLIP.

CHAIRS ↓ CHAIRI ↓ Avg.Len

InstructBLIP 45.44 13.07 92.11
w/ SSL γ = 0.2 38.52 11.45 102.62
w/ SSL γ = 0.4 10.16 7.90 64.04
w/ SSL γ = 0.6 0.76 21.99 349.86

Table 7: Ablation study on the scaling factor of Instruct-
BLIP.

the input sequence into four contiguous segments:905

system tokens, prompt tokens, visual tokens, and906

output tokens. During the visual-token stage, we907

inject a specific reverse-direction vector that delib-908

erately shifts the visual features away from the true909

image semantics. At the onset of autoregressive910

language generation, we inject the specific reverse-911

direction to amplify the previously distorted visual912

signal, thereby biasing subsequent text outputs to-913

ward content that is either factually incorrect or914

substantially divergent from the original prompt.915

The complete algorithmic procedure for Reverse-916

SSL is presented in Algorithm 2.917

F More Qualitative Results918

Figures 13, 14, and 15 present additional qualita-919

tive examples on the LLaVA-Next, LLaVA-1.5, and920

InstructBLIP models, respectively, to demonstrate921

the effectiveness of our proposed SSL approach in922

mitigating hallucinated objects. With the integra-923

tion of SSL, the generated descriptions by LVLMs924

exhibit improved fidelity to the visual content while925

maintaining the richness and informativeness of the926

language output.927

G Details on the GPT-4o Evaluation928

To evaluate the performance of LVLMs on the929

LLaVA-Bench benchmark, we adopt GPT-4o as930

the reference evaluator. Following the template 931

provided in Table 8 of Gong et al. (2024), each 932

evaluation instance includes the original image, the 933

base output of the LVLM, and its SSL-enhanced 934

counterpart. The evaluation focuses on both the 935

accuracy and fineness of the generated responses. 936

To mitigate potential biases caused by output order, 937

we randomly swap the positions of the two outputs 938

with a probability of 0.5 before each evaluation. 939

Each sample is evaluated four times to compute 940

an average score. Figures 16, 17, and 18 illus- 941

trate representative evaluation examples based on 942

three model architectures: LLaVA-Next, LLaVA- 943

1.5, and InstructBLIP, respectively. 944

H License 945

The open-source data utilized in this work was em- 946

ployed exclusively for academic research, consis- 947

tent with the original intended usage. All the used 948

intellectual artifacts’ license allows for academic 949

usage. 950

14



GPT-4o Prompt

You are required to score the performance of two AI assistants in describing a given image. You
should pay extra attention to the hallucination, which refers to the part of descriptions that are
inconsistent with the image content, such as claiming the existence of something not present in the
image or describing incorrectly in terms of the counts, positions, or colors of objects in the image.
Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better
performance, according to the following criteria:
1. Accuracy: whether the response is accurate with respect to the image content. Responses with
fewer hallucinations should be given higher scores.
2. Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count as necessary details.

Please output the scores for each criterion, containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores, please
provide an explanation of your evaluation, avoiding any potential bias and ensuring that the order in
which the responses were presented does not affect your judgment.
[Assistant 1]
{}
[End of Assistant 1]

[Assistant 2]
{}
[End of Assistant 2]

Output format:
Accuracy:
Reason:
Detailedness:
Reason:

Table 8: The prompt used for GPT-4o evaluation.
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Please describe this image in detail.

Human

In the heart of a cozy room, a black and gray cat 
has found a comfortable spot on a wooden floor. 
The cat, with its fur as dark as night and patches 
as light as the moon, is facing away from us. To 
the left of the feline, a blue bicycle leans casually 
against a white wall. The bicycle, with its vibrant 
blue frame and black seat, adds a touch of color to 
the otherwise monochrome setting. The white wall 
behind it contrasts beautifully with the blue of 
the bicycle. The wooden floor beneath these 
objects adds warmth to the image, grounding the 
scene in a sense of homeliness. 

In the image, a black and gray cat is the main 
subject, standing on a wooden floor. The cat is 
positioned in front of a bicycle wheel, which is 
leaning against a white wall. The bicycle wheel is 
black with a red brake, and it has a black tire. The 
cat is facing the wall, and its tail is raised, 
indicating that it might be curious or alert. The 
image also contains a text that reads Trackstar, 
which could be related to the bicycle or the cat. 
The overall scene suggests a domestic setting, 
possibly a home or a garage.

LLaVA-Next

LLaVA-Next
w/ SSL

Please describe this 
image in detail.

Human

The image captures a serene and modern bathroom 
bathed in soft light. Dominating the scene is a 
white toilet, its lid closed, standing next to a 
shower enclosure. The shower, with its clear glass 
door, is adorned with a wooden shelf that holds a 
single red bottle. Next to the shower, there is a 
wooden cabinet with a mirror. The dark brown 
cabinet contrasts with the white countertop, 
which has a sink and a silver faucet. The floor has 
light beige tiles, and the walls are painted light 
gray. The layout is neat and makes the bathroom 
feel calm and modern.

The image captures a modern bathroom bathed in a 
soothing beige color scheme. The bathroom is well-
equipped with a white toilet, a white sink, and a 
white shower. The shower is equipped with a 
wooden cabinet, providing storage space for 
toiletries. The sink is accompanied by a wooden 
cabinet, offering additional storage space. The 
bathroom is illuminated by a light fixture, casting a 
warm glow on the beige tiles that cover the floor 
and walls. The overall layout of the bathroom 
suggests a well-organized and functional space.

LLaVA-Next

LLaVA-Next
w/ SSL

Figure 13: More examples of SSL in reducing hallucinated content in LLaVA-Next.

Please describe this image in detail.

Human

The image features a large brown dog sitting on the 
floor in front of a flat-screen TV. The dog appears 
to be watching the TV, which is mounted on the wall 
above the dog. The TV is displaying a scene with a 
dog, likely capturing the dog's attention. In the 
room, there are two potted plants, one on the left 
side and the other on the right side. A remote 
control can be seen on the floor, close to the dog. 
Additionally, there is a book placed on the floor, 
slightly to the right of the dog.

The image features a large brown dog sitting on a 
carpeted floor in front of a flat screen TV. The dog 
appears to be watching something on the TV screen, 
likely a program or a movie. The TV is positioned on 
the left side of the room. Profiling the dog's 
position, there are two potted plants in the room, 
one on the right side and the other on the left side. 
The overall scene depicts a cozy and comfortable 
environment for the dog.

LLaVA-1.5

LLaVA-1.5
w/ SSL

Please describe this image in detail.

Human

The image features a bathroom with a toilet 
situated on the left side of the room. A sink is 
located on the right side of the bathroom, and a 
mirror is mounted above it. The bathroom also has a 
large bowl-shaped sink, which is a unique and eye-
catching design element. There are several 
toiletries placed around the bathroom, including a 
toilet paper roll, a toothbrush, and a cup. The toilet 
paper roll is positioned near the toilet, while the 
toothbrush and cup are placed on the sink counter. 
The overall atmosphere of the bathroom is clean 
and well-organized.

The image depicts a bathroom with a large sink 
positioned under a mirror. The sink is made of a 
dark wood material, adding a touch of elegance to 
the space. The bathroom also features a toilet on 
the left side of the room. There are several towels 
in the bathroom, with one placed on the sink and 
two others positioned on the floor. Additionally, 
there is a roll of toilet paper on the sink, ensuring 
that the bathroom is well-stocked for its users.

LLaVA-1.5

LLaVA-1.5
w/ SSL

Figure 14: More examples of SSL in reducing hallucinated content in LLaVA-1.5.
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Please describe this image in detail.

Human

The image features a wooden pizza paddle on a 
table, with a partially prepared pizza dough on top 
of it. The pizza dough is topped with various 
ingredients, including tomatoes, shrimp, and other 
vegetables. The paddle is positioned in the center 
of the table, with the pizza dough spread out on top 
of it. There are several cups placed around the 
table, including one on the left side and another on 
the right side. A bowl is also visible on the table, 
likely containing additional ingredients for the pizza. 
A spoon can be seen on the table, possibly used for 
mixing or preparing the pizza dough. <s>

The image features a pizza on a wooden paddle, 
which is placed on a table with a white cloth. The 
pizza is partially covered with various toppings, 
including shrimp, tomatoes, and other ingredients. 
The pizza is placed on the table, with the paddle 
being used to hold it in place. The pizza is large, 
with a significant portion of it visible on the table. 
The table is covered with a white cloth, providing a 
clean and elegant setting for the pizza. <s>

Please describe this image in detail.

Human

The image features a park with a bench placed near 
a bush. The bench is situated on the side of a path, 
with a tree growing next to it. There are several 
benches in the park, with one located closer to the 
bush and another further away. The park is well-lit, 
with streetlights illuminating the area. The bench 
near the bush is positioned in the foreground, while 
the other benches are placed in the background. 
The scene is peaceful and inviting, with the bench 
providing a comfortable spot for visitors to rest 
and enjoy the park's beauty. <s>

The image features a park with a bench placed next 
to a bushy shrubbery, which is positioned in the 
middle of the scene. The bench is placed on the side 
of the bush, with a few other benches placed 
around the area. There are two benches on the left 
side of the image, while another bench is located on 
the right side. The benches are placed at different 
heights, with one bench being slightly higher than 
the others. The bushy shrubbery provides a natural 
touch to the scene, adding a bit of greenery to the 
otherwise concrete-like environment. <s>

InstructBLIP

InstructBLIP
w/ SSL

InstructBLIP

InstructBLIP
w/ SSL

Figure 15: More examples of SSL in reducing hallucinated content in InstructBLIP.
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The image is a digital artwork that features a dog dressed in a style 
reminiscent of the Mona Lisa. The dog is depicted with a brown coat and 
a black face, with a large, expressive nose and eyes. It is wearing a 
brown headband and a dark brown shawl with a pattern that resembles 
the folds of the Mona Lisa's dress. The dog's arms are crossed, and it is 
looking directly at the viewer with a calm and serene expression. The 
background of the image is a landscape with a mountainous terrain, 
featuring a river winding through the mountains. The sky is filled with 
clouds, and the overall color palette is dominated by earth tones, with a 
focus on browns and grays. The painting style is reminiscent of the 
impressionist style, with loose brushstrokes and a focus on the interplay 
of light and shadow. The image is a playful and creative blend of the 
famous painting with the subject of a dog, combining elements of art 
history with a modern twist.

[Input Image]

[Input Instruction] Describe this photo in detail.

[Model Outputs]

The image is a digital artwork that pays homage to the famous painting 
\"Mona Lisa\" by Leonardo da Vinci. The central figure in the artwork is a 
dog, specifically a Chihuahua, dressed in a black dress with a white collar. 
The dog is wearing a brown headscarf and is seated against a backdrop of 
a landscape. The landscape features a river, mountains, and a castle. The 
dog's expression is neutral, and it is looking directly at the viewer. The 
artwork is a playful and creative take on the original painting, replacing 
the human subject with a dog.

LLaVA-Next

LLaVA-Next
w/ SSL

GPT-4o 
Evaluation

Accuracy: 4.0 9.0
Reason: Assistant 1 inaccurately identifies the dog as a Chihuahua and 
mentions a black dress with a white collar, as well as a castle, none of 
which are present in the image. Assistant 2 accurately describes the 
dog in the style of the Mona Lisa, mentioning the correct attire and 
general description, with only minor inaccuracies like referring to the 
face as black instead of brown. 
Detailedness: 5.0 9.0
Reason: Assistant 1 gives less accurate details and misses several 
aspects of the image, resulting in less informative content. Assistant 2 
provides a detailed description of the image, including the style, attire, 
and background elements. It accurately conveys the artistic style and 
elements borrowed from the Mona Lisa. 

Figure 16: The performance of SSL on reducing hallucinations on LLaVA-Next-8b.
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The creature appears to be made of a combination of materials, including 
a red or orange substance that resembles a horse or a camel, and a pair 
of eyeglasses. The overall appearance suggests that the substance is 
likely a combination of clay or a similar material, along with the 
eyeglasses, which add a creative and playful touch to the overall design.

[Input Image]

[Input Instruction]

[Model Outputs]

The creature appears to be made of a combination of plastic and glass.
LLaVA-1.5

LLaVA-1.5
w/ SSL

GPT-4o 
Evaluation

Accuracy: 3.0 5.0
Reason: Assistant 1 accurately identifies the materials as plastic and 
glass, which may relate to the eyeglasses, but it doesn't address the 
fiery aspects or colors. Assistant 2 accurately describes the creature 
as having a red or orange appearance and mentions eyeglasses. However, 
the description of the material as clay is speculative and doesn't fully 
align with the molten, fiery appearance. 
Detailedness: 2.0 6.0
Reason: Assistant 1 gives minimal description and lacks detail, primarily 
naming materials without describing the creature's form or distinctive 
features. Assistant 2 provides more details about the creature's 
appearance, color, and shape, mentioning both a horse or camel likeness 
and speculating on the material, despite some inaccuracies. 

What material appears to make up the creature?

Figure 17: The performance of SSL on reducing hallucinations on LLaVA-1.5-7b.
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The image shows a man in a yellow shirt standing on the back of a yellow 
SUV, ironing clothes on the roof of the vehicle. He is surrounded by 
various items, including a suitcase, a backpack, and a purse. The scene 
takes place on a busy city street, with multiple cars and a traffic light 
visible in the background. The man's presence on the roof of the SUV is 
a unique and creative way to iron clothes, making it a memorable and 
attention-grabbing image. <s>

[Input Image]

[Input Instruction]

[Model Outputs]

In the image, a man is standing on the back of a yellow car, ironing clothes 
on the roof. He is positioned on the right side of the car, with the laundry 
basket placed on the roof rack. The car is parked on a busy street, with 
several other vehicles and a truck in the background. The scene is set in a 
bustling city, with people walking around and cars passing by. The man's 
actions are likely to draw attention from the pedestrians, as he is ironing 
clothes on the roof of the car. <s>

InstructBLIP

InstructBLIP
w/ SSL

GPT-4o 
Evaluation

Accuracy: 6.0 7.0
Reason: Both assistants correctly describe a man ironing on the back of 
a yellow vehicle. However, Assistant 1 inaccurately mentions the man 
standing on the roof and the presence of additional items such as a 
suitcase, a backpack, and a purse, which are not visible. Assistant 2 
incorrectly mentions ironing on the roof, but doesn't add non-existent 
items, therefore has a slightly more accurate description..
Detailedness: 5.0 6.0
Reason: Assistant 1 provides some details, despite the inaccuracies, 
such as the mention of the city street and multiple cars, but includes 
incorrect additional items. Assistant 2 offers a more accurate context 
of the scene, noting the bustling city and people, though details about 
specific objects are still inaccurate. Both descriptions lack accuracy in 
detailedness, but Assistant 2 is slightly more coherent.

Describe this photo in detail.

Figure 18: The performance of SSL on reducing hallucinations on InstructBLIP-7b.
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