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Abstract

Large vision-language models (LVLMs) have
achieved remarkable performance on multi-
modal tasks such as visual question answering
(VQA) and image captioning. However, they
still suffer from hallucinations, generating text
inconsistent with visual input, posing signifi-
cant risks in real-world applications. Existing
approaches to address this issue focus on in-
corporating external knowledge bases, align-
ment training, or decoding strategies, all of
which require substantial computational cost
and time. Recent works try to explore more ef-
ficient alternatives by adjusting LVLMSs’ inter-
nal representations. Although promising, these
methods may cause hallucinations to be insuf-
ficiently suppressed or lead to excessive inter-
ventions that negatively affect normal seman-
tics. In this work, we leverage sparse autoen-
coders (SAEs) to identify semantic directions
closely associated with either hallucinations
or actuality, realizing more precise and direct
hallucination-related representations. Our anal-
ysis demonstrates that interventions along the
faithful direction we identified can mitigate hal-
lucinations, while those along the hallucinatory
direction can exacerbate them. Building on
these insights, we propose Steering LVLMs via
SAE Latent Directions (SSL), a training-free
method based on SAE-derived latent directions
to mitigate hallucinations in LVLMs. Extensive
experiments demonstrate that SSL significantly
outperforms existing decoding approaches in
mitigating hallucinations, while maintaining
transferability across different model architec-
tures with negligible additional time overhead.

1 Introduction

LVLMs (Liu et al., 2023; Dai et al., 2023b; Liu
et al., 2024b) have demonstrated impressive ca-
pabilities in jointly processing visual and textual
modalities, achieving strong performance on tasks
such as VQA (Antol et al., 2015) and image cap-
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Figure 1: The figure shows, from top to bottom, the orig-
inal response from the LLaVA-Next-8b, the response
after intervention along the hallucinatory direction, and
the response after intervention along the faithful direc-
tion. These results demonstrate that targeted interven-
tions along faithful directions suppress hallucinatory
generations, while perturbations along hallucinatory di-
rections tend to elicit more factually incorrect content.

tioning (Li et al., 2022). However, LVLMs still suf-
fer from hallucination (Yin et al., 2011), where the
generated text does not align with the visual con-
tent. This limitation poses significant challenges to
their deployment in critical applications, including
medical diagnosis(Gu et al., 2024) and autonomous
driving(You et al., 2024), where factual consistency
and reliability are essential.

To mitigate hallucination in LVLMs, researchers
explore various strategies, including refining de-
coding algorithms (Leng et al., 2024; Huang et al.,
2024; Kim et al., 2024), incorporating external
knowledge bases (Qu et al., 2024), and leverag-
ing additional annotated data for model fine-tuning
(Park et al., 2024). While promising, these ap-



proaches often incur substantial computational cost
and time. Recent works (Liu et al., 2025; Jiang
et al., 2024; Li et al., 2025) try to explore more
efficient alternatives by adjusting LVLMs’ inter-
nal representations. However, these methods may
cause hallucinations to be insufficiently suppressed
or lead to excessive interventions that negatively
affect normal semantics. Therefore, extracting fine-
grained and reliable representations related to hal-
lucinations remains a key challenge in advancing
the reliability of LVLMs.

We note the success of SAEs in extracting
fine-grained semantic representations—specifically
capturing whether the model knows certain enti-
ties—of abstract concepts in the field of large lan-
guage models (LLMs) (Ferrando et al., 2025). In-
spired by this work, we extend the application of
SAE-based analysis from LLMs to LVLMs, aim-
ing to understand and mitigate hallucinations more
precisely and directly by identifying and steering
the internal semantic directions associated with
hallucinatory and faithful content. Notably, SAEs
builds on the Linear Representation Hypothesis
(Park et al., 2023), which posits that internal model
representations can be expressed as sparse combi-
nations of interpretable semantic directions (Tigges
etal., 2024; Li et al., 2023a). Specifically, we lever-
age the SAE provided by Zhang et al. (2024a) to
identify latent directions that closely correlate with
hallucinatory semantics as well as those aligned
with faithful content. As illustrated in Figure 1,
targeted interventions along faithful directions sup-
press hallucinatory generations, while perturba-
tions along hallucinatory directions tend to elicit
more factually incorrect content.

Building on this insight, we propose Steering
LVLMs via SAE Latent Directions (SSL), a
training-free approach based on SAE-derived la-
tent directions to mitigate hallucinations in LVLM:s.
During the visual feature merging stage, we inject
faithful semantic directions to amplify grounded
semantic features and improve image—text consis-
tency. In the subsequent language generation stage,
we reduce projection onto hallucinatory semantic
directions, thereby reducing the risk of generat-
ing factually incorrect content. Remarkably, al-
though the SAE was trained on the LLaVA-Next-
8b model, the extracted hallucination and factuality
directions generalize seamlessly to other architec-
tures (e.g., LLaVA1.5-7b model (Liu et al., 2024c)
and InstructBLIP-7b model (Dai et al., 2023a)).
Experimental evaluation on established LVLM hal-

lucination benchmarks shows that SSL outperforms

existing decoding approaches, confirming its effec-

tiveness and efficiency in hallucination reduction.
Our main contributions are as follows:

* We leverage SAEs to identify semantic direc-
tions that are highly correlated with hallucina-
tory and faithful object words in the represen-
tation space of LVLMs.

* We propose SSL, a training-free method that
injects factuality semantic directions during
visual feature fusion to reinforce grounded
content and suppresses hallucination direc-
tions during language generation to proac-
tively mitigate hallucinatory outputs.

» Extensive experiments demonstrate that SSL.
outperforms existing decoding approaches on
widely used hallucination benchmarks with
negligible time overhead, exhibiting transfer-
ability across different architectures.

2 Preliminary

LVLM generation. LVLMs take both image and
text as input and encode them into a sequence of to-
kens. During autoregressive generation, the model
first concatenates the system tokens X, prompt to-
kens X}, and visual tokens X, in a predefined order
to form the initial input. At the first generating step
t = 1, the model predicts the output token based on
this initial context. At each subsequent step ¢t > 1,
the previously generated tokens X ¢ are appended
to the end of the initial input, resulting in the cur-
rent sequence [ X, X;, Xy, X;*]. The model then
generates the next token autoregressively according
to the conditional probability distribution, continu-
ing until an end-of-sequence token is produced or
a maximum sequence length is reached:

ye = argmaxpo(y; | Xs, Xp, Xo, X5, (1)
where ; is the token generated at time step ¢.

Sparse autoencoders. SAEs have been proven
to be effective for separating overlapping features
(Bricken et al., 2023; Ferrando et al., 2025). In this
work, we use the SAE provided by Zhang et al.
(2024a), which operates on the residual stream
h; € R? from the [-th layer of LVLMs. The
SAE projects these representations into a higher-
dimensional latent space z(z) € R%AE and applies
a ReLU activation:

z(x) = ReLU(Wepe + bene ), )
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Figure 2: KDE plots of the selected latent activations for
test samples labeled as hallucination and faithfulness.
The overlaid plots visualize the distributional differ-
ences, with annotated ¢-statistic, p-value, and Cohen’s d
effect size indicating the statistical separation between
the two groups.

where We,. and be,. denote the encoder’s weight
matrix and bias, respectively. To enforce sparsity, a
top-k operation retains only the k largest activations
in z(x), zeroing out the rest to obtain the sparse
latent vector zi(x) = TopK(z, k). The decoder
then reconstructs the original representation via a
linear combination of the active components:

SAE(z) = Wi .2z,() + baec, 3)

where Wye. and bge. denote the decoder’s weight
matrix and bias. During training, the loss function
combines the reconstruction error with an auxil-
iary loss proposed by Gao et al. (2025), aiming to
encourage the utilization of meaningful features
in the latent representation zj(z) and to prevent
feature inactivity, thereby enhancing the overall ex-
pressiveness of the sparse encoding. We refer to
each component of zj () as a latent activation, and
each row vector of Wy, as a latent direction.

Steering with SAE Latents. The SAE recon-
structs model representations as a linear combi-
nation of latent directions and a bias, effectively
approximating the original input. Each latent ac-
tivation z;(x) corresponds to a specific decoder
direction d; = Weec [j,:], enabling targeted ad-
justment of the representation through activation
steering (Turner et al., 2023). This technique al-
lows us to steer the residual stream by modifying
the representation as follows:

Tsteer < T + Oédj, 4)

where « is a tunable parameter that determines the
strength of the intervention.

3 Method

In this work, we introduce SSL, a training-free
method for steering LVLMs. Our method consists
of two principal components: semantic directions
identification and steering LVLMs via SAE latents.

3.1 Semantic Directions Identification

Residual Stream Dataset Construction for Hal-
lucinations and Faithfulness. To investigate
whether there exist directions in LVLMs that are
highly correlated with hallucinatory and faithful
semantics, we randomly sampled 4,000 image-
text pairs from the MSCOCO dataset (Lin et al.,
2014). Using the LLaVA-Next-8b model (Liu et al.,
2024d) for the image captioning task, we extract
the residual stream representations from the 25
layer when the model generated object tokens clas-
sified as either hallucinatory or faithful.

Given that a small proportion of object words
are tokenized into multiple subword units, we ex-
clude these cases to simplify the analysis. Further-
more, because each sample exhibited an imbalance
between the counts of hallucinatory and faithful
object terms, we enforce class balance by sampling
an equal number of residual vectors from each cat-
egory per image—text pair. See Appendix A for a
description of the process. Finally, we construct
a balanced dataset containing 1, 784 samples and
divide it into a training set and a test setina 9 : 1 ra-
tio, for direction mining and direction effectiveness
validation, respectively.

Semantically Hallucinatory and Faithful Direc-
tion Identification via SAE. Inspired by Meng
et al. (2022); Ferrando et al. (2025), we leverage
SAE to identify latent directions aligned with hallu-
cinatory and faithful semantics. Specifically, each
residual stream sample from the training set is
passed through the SAE, and we record the ac-
tivation frequency of each latent activation across
hallucinatory samples &, and faithful samples
Nraitnrur. For a given latent activation j, its activa-
tion frequencies on hallucinatory samples f]l-’a” and
faithful samples f]f'“‘i‘hf“1 are computed as:

1
LS w50,
hatl | 5 )
. 1
faithful
t [ — I[(zi(x)>0),
J; Ntaithful xe;hfl (=i(2) )

where Npa and Npajhey represent the number of
hallucinatory and faithful samples, respectively. To
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Figure 3: Overview of the proposed SSL approach leveraging SAE to identify semantically aligned directions and
mitigate hallucination in LVLMs. We use SAE to identify latent directions within the internal representation space
of LVLMs that are associated with hallucinatory and faithful semantics, denoted as dy,y and dgyime, respectively.
These semantic directions are then used to modulate the residual stream at the [-th layer, steering the generation

process toward greater factual consistency.

quantify the semantic relevance of each latent ac-
tivation, we compute the difference in activation
frequencies as follows:

Shall _ hall _ faithful

J -4y J ’
faithful __ pfaithful hall (6)
sj =L =

These values reflect the relevance of latent dimen-
sion j to hallucinatory and faithful semantics, re-
spectively. Finally, we identify the latent activation
with the highest sl;a” as the hallucination semantic
direction (hereafter referred to as the hall latent),
and the one with the highest sg-aithful as the faith-
ful semantic direction (hereafter referred to as the
faithful latent).

Validation of the Effectiveness of Semantic Di-
rections. We begin by analyzing the distribu-
tional differences of the hallucinatory latent and
faithful latent activations across both sample types
in the test set. These distributions are visualized us-
ing kernel density estimation (KDE) plots as shown
in Figure 2. We further quantify the separation us-
ing independent two-sample ¢-tests and compute
Cohen’s d to assess effect sizes. Both latent activa-
tions exhibit statistically significant distributional
shifts, with substantial effect sizes, confirming their
discriminative power.

To probe the semantic alignment of the activa-
tions, we further conduct Spearman rank corre-

lation analysis between the activation values of
hallucinatory samples and their associated halluci-
natory object terms. The hallucinatory latent corre-
lates positively with hallucinatory objects (Spear-
man’s p = 0.42, p = 9.95 x 1079), whereas the
faithful latent correlates negatively (p = —0.44,
p = 9.85 x 10719). Given the binary nature of
the labels and the symmetry of rank correlation,
we infer a positive correlation between the faithful
latent and samples.

Finally, to quantitatively evaluate the predictive
power of SAE-derived directions in distinguishing
hallucinatory from faithful samples, we design a set
of classification experiments based on logistic re-
gression. The model takes the latent activation val-
ues—either individually or in combination—as in-
put features for a binary hallucination classification
task. As illustrated in Figure 4, the results demon-
strate that the latent semantic directions extracted
by the SAE are discriminative (see Appendix B
for more experimental details). Furthermore, com-
bining the hall latent and faithful latent as input
features yields further performance improvements.

3.2 Steering LVLMs via SAE Latents

Steering Strategy. A core architectural mecha-
nism involves multi-layer residual connections that
progressively model input information. At each
layer, semantic representations are passed through



=)
S

Baseline 0.5

0.7299

e
]
[

0.6667 06954

0.5230 0.5057

Accuracy
(=]
4
[=)

Hall latent Faithful latent Randoml  Random?2 Both

Figure 4: Comparison of classification accuracy using
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tent activations, respectively. Random1 denotes a single
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line indicates the baseline accuracy of 0.5.

residual flows, which can be divided according to
the input sequence into four main components: sys-
tem token, prompt tokens, visual tokens, and output
tokens. Among these, visual tokens interact with
language tokens to guide the model’s understand-
ing of image content. Injecting faithful direction at
this position enables the model to increase visual
faithfulness. Output tokens represent the model’s
autoregressive language generations, influenced by
both prompts and visual inputs, thereby reflecting
the model’s semantic behavior. Suppressing hallu-
cinatory directions during this stage helps reduce
hallucination tendencies and enhances factual con-
sistency in language generation.

Following the method described in Section 2, we
identify two semantic direction vectors: the hallu-
cinatory direction dp,; and the faithful direction
daithful- During the visual feature fusion stage, we
incorporate d,ihfy to improve the faithfulness of
visual understanding. In the subsequent language
generation stage, we suppress activations along
dpan to reduce the risk of hallucinatory outputs. Se-
mantic steering at layer [ is defined as follows:

Xy« Xy + - diinfals
<t <t
Xl,o — Xl,o — Q- dhalb

(7
where « is a tunable hyperparameter controlling
the strength of semantic steering.

Adaptive Steering Parameters (ASP). The set-
ting of the steering strength « plays a crucial role in
determining the effectiveness of semantic interven-
tion. Traditional steering approaches often rely on
a fixed hyperparameter « to linearly combine the

Algorithm 1: SSL
Input: Scaling factor y; steering layer [;
semantic directions dpan, Afaithful;
residual stream at layer [:
(X1, X1 ts Xt 00 X2
1 if L = [, then

2 for token x in residual stream do
3 ifx € X;_ , then
‘ TT+y- 7||dfal‘hﬂ|||+e - daithful
5 elseif v € X zfto then
x
6 ‘ rTerema 4||dh‘iu ||||Te " dhat
7 else
// System and prompt
tokens remain unchanged

steering vector with the residual representations.
However, this fixed strategy can result in unsta-
ble or suboptimal performance, as the magnitude
of residual vectors can vary across model layers
and token positions. In such cases, a change that
is too small may fail to induce meaningful guid-
ance, while an excessively large change may cause
semantic distortion or instability.

To address this limitation, we propose an adap-
tive feature steering mechanism, which dynami-
cally adjusts the steering strength based on the
norm of the residual vector at each token at a
given layer. This approach ensures more stable and
context-aware intervention across varying model
states. Specifically, the adaptive steering strength
« is computed as:

||-Tresidua1 ”
=75 (3
7 HdsteerH +e€

where 7 is a scaling factor, Zresiguai denotes the
residual vector, dgec is the steering direction, and
e is a small constant to avoid numerical instability.
An overview of the proposed SSL method is pre-
sented in Figure 3. The complete procedure of SSL
is provided in Algorithm 1.

4 Experiments

4.1 LVLMs

We conduct experiments on three representative
LVLMs: LLaVA-NeXT-8b (Liu et al., 2024d),
LLaVA-1.5-7b (Liu et al., 2024¢) and InstructBLIP-
7b (Dai et al., 2023a). These models share a modu-
lar structure comprising an image encoder, a pro-



LLaVA-NeXT-8b LLaVA-1.5-7b InstructBLIP-7b
CHAIRs | CHAIR;|] AvglLen | CHAIRs | CHAIR;] AvgLen | CHAIRs| CHAIR;] AvgLen
Greedy | 29.6040.80  8.0310.41 165.61 | 49441157 14.1940.76 82.97 45441243 13.0740.71 92.11
Beam 27.20i1‘19 7.20i0,39 174.17 53.60i2,39 15.47io‘45 87.38 48.68i1,65 13.59i0,43 95.92
DoLa 29.044+1.08  7.8640.24 166.14 | 50.64+233 14.5140.88 82.32 46.124185 13.09+0.90 91.80
VCD 31.36+1.99  8.40+0.79 16543 | 51.68+185 15.2940.83 83.03 50.8442.41 14514097 91.44
OPERA - - - 44.0410.04 13.2310.46 75.79 45884231  13.1540.87 93.51
CODE | 30.76+0.92  8.0910.42 158.07 | 47.72+0.79 14.1340.56 78.43 50.8842.05 14.2140.02 89.62
SSL \ 25204149  6.4640.67 162.93 \ 41.08+1211  12.02.0.35 82.30 \ 38524424 114540906  102.62

Table 1: CHAIR results on MSCOCO dataset averaged over 5 random seeds. The best and second-best results are
indicated in bold and underlined, respectively. Avg.Len represents the average length of the generated descriptions.

jection module, and a language model. LLaVA-1.5
and LLaVA-NeXT use an MLP to project all image
tokens into the LLM’s input space, while Instruct-
BLIP employs a Q-Former to select a compact set
of informative visual tokens, reducing redundancy.
Compared to LLaVA-1.5, LLaVA-NeXT upgrades
the LLM from 7b to 8b parameters and supports
higher-resolution inputs for visual understanding.

4.2 Benchmarks

CHAIR. We evaluate object hallucination using
the Caption Hallucination Assessment with Image
Relevance (CHAIR) metric (Rohrbach et al., 2018),
which compares generated image captions against
ground-truth annotations to detect hallucinatory ob-
jects mentioned in the captions but absent from the
image. CHAIR includes two metrics at both cap-
tions level (CHAIR ) and object level (CHAIR):

|{captions w/ hallucinatory objects}|
|{total captions}|
|{hallucinatory objects}|
|{ total mentioned objects}|”

CHAIRg =

9

CHAIR; =

©))
We randomly sample 500 images from the COCO
2014 validation set (Lin et al., 2014) and conduct
five runs with different random seeds. For all
LVLMs, captions are generated using the prompt
“Please describe this image in detail.” We report
the mean and standard deviation for each metric.

POPE. We further evaluate object hallucination
using the POPE benchmark (Li et al., 2023b), a
question-answering dataset designed to assess the
factual consistency of generated image descriptions.
POPE contains 500 images from the MSCOCO
dataset (Lin et al., 2014), each paired with bi-
nary questions of the form: “Is there a <object>
in the image?” The dataset comprises three sub-
sets—random, popular, and adversarial—which
differ in their object sampling strategies. Model

performance is measured using standard classifica-
tion metrics: Accuracy, Precision, Recall, and F1
score. To provide an overall assessment, we report
the average results across all three subsets.

LLaVA-Bench. We evaluate LVLM performance
using the LLaVA-Bench (In-the-Wild) benchmark
(Liu et al., 2024c¢), a comprehensive set designed to
assess models across diverse and challenging visual
scenarios. The benchmark includes 24 images from
varied real-world contexts, such as indoor scenes,
outdoor environments, and internet memes, paired
with 60 carefully curated questions spanning open-
ended QA, fine-grained descriptions, and complex
reasoning. We prompt the GPT-40 model to eval-
uate the LVLMSs’ outputs along two dimensions:
factual accuracy and response detail.

4.3 Baselines

We compare the performance of base LVLMs using
greedy decoding and beam search decoding. Ad-
ditionally, we also conduct a comparison between
SSL and the popular training-free approaches that
require neither external data nor auxiliary models.
Specifically, DoLa (Chuang et al., 2024) derives
the next-token distribution by contrasting logits
from later and earlier layers; VCD (Leng et al.,
2024) employs contrastive learning by comparing
the output distributions generated from original and
perturbed images; OPERA (Huang et al., 2024)
enhances generation quality by alleviating exces-
sive reliance on previously generated tokens dur-
ing beam search; and CODE (Kim et al., 2024)
enhances vision-language alignment by using self-
generated captions as internal references.

4.4 Implementation Details

We set v to 0.6, 0.8, and 0.2 for LLaVA-NeXT,
LLaVA-1.5, and InstructBLIP, respectively, to bal-
ance effective mitigation of hallucination with min-
imizing the invasiveness of state interventions. SSL



LLaVA-NeXT-8b | LLaVA-1.5-7b | InstructBLIP-7b
F1 score T F1 score T F1 score T
Greedy 89.10 84.99 85.37
Beam 89.30 85.31 84.41
DoLa 89.49 85.08 85.22
VCD 88.91 84.42 84.68
OPERA - 85.46 84.42
CODE 88.93 84.64 84.81
SSL | 89.66 | 85.44 | 85.16

Table 2: POPE results averaged over popular, adversar-
ial, and random splits. The best and second-best results
are indicated in bold and underlined, respectively.

is applied at 16" layer for LLaVA-NeXT, 31" layer
for LLaVA-1.5 and 8™ layer for InstructBLIP. We
faithfully replicate all baseline methods, imple-
menting them based on their open-source code-
bases and configuring them according to the hy-
perparameters reported in the original papers. All
experimental results are obtained under consistent
base model, prompt, and generation parameter set-
tings to ensure a fair comparison. For all methods
involving beam search, we set the max_new_token
to 512 and the beam size to 5.

5 Results

CHAIR. Table 1 reports the performance of SSL
on the CHAIR benchmark compared to all baseline
approaches. Due to excessive memory require-
ments, OPERA fails to produce results on LLaVA-
NeXT-8b. Notably, although the SAE from Zhang
et al. (2024a) were trained on LLaVA-NeXT-8b,
the identified semantic directions generalize well
across different model architectures. SSL consis-
tently outperforms all baselines across all three
LVLMs, while only incurring a marginal trade-off
in caption length or descriptive richness.

POPE. As shown in Table 2, applying SSL to
LVLMs with different architectures consistently im-
proves performance on the POPE benchmark. This
demonstrates the robustness of SSL in enhancing
models across a spectrum of capabilities and fur-
ther validates the generalizability of the semantic
directions captured by our approach.

LLaVA-Bench. Table 3 presents the evaluation
results on LLaVA-Bench using GPT-40. The re-
sults highlight the effectiveness of SSL in enhanc-
ing model accuracy across highly diverse and chal-
lenging tasks.

5.1 Ablation Study

Effectiveness of ASP. To validate the necessity
of adaptively adjusting the steering strength, we

| Accuracy 1 | Detailedness 1

LLaVA-NeXT 6.2891 6.0278
LLaVA-NeXT w/ SSL 6.3671 5.2667
LLaVA-1.5 5.3333 4.7000
LLaVA-1.5 w/ SSL 4.7167 4.5667
InstructBLIP 5.5056 4.1111
InstructBLIP w/ SSL 5.5722 4.2611

Table 3: Evaluation results on the LLaVA-Bench (In-
the-Wild) benchmark based on prompting GPT-4o0.
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Figure 5: Results of SSL applied across different layers.
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conduct an ablation study by replacing ASP with
a fixed « steering parameter as shown in Equa-
tion 4 equal to the «y value. As shown in Table 4,
removing the adaptive strategy ASP results in con-
sistent performance drops across all three model
architectures, highlighting the importance of ASP
in effectively mitigating hallucinations.

Layer Selection Ablation. We conduct an ab-
lation study on LLaVA-NeXT-8b to examine the
impact of applying guidance at different layers.
Figure 5 shows that the choice of guidance layer
significantly affects model performance, setting
~ to 0.8. For LLaVA-NeXT-8b, applying SSL at
middle layers yields more effective mitigation of
hallucinations, with layer 15 achieving the best per-
formance. For further analysis on steering layer
selection and scaling factor  settings across dif-
ferent models, please refer to Appendix C and D.

5.2 Further Analysis

Analysis of Reverse-SSL for Inducing Halluci-
nations in LVLMs. To further validate the ef-
fectiveness of the semantic directions we identi-
fied, we compare the CHAIR benchmark across
three model architectures under three settings: orig-
inal model state, SSL, and Reverse-SSL (see Ap-
pendix E for details on Reverse-SSL). As shown in
Figure 6, across all three model architectures, ap-
plying Reverse-SSL significantly increases halluci-
nations, while standard SSL guidance consistently
reduces hallucinations. To further clearly illustrate



| CHAIRs | | CHAIR; |

LLaVA-NeXT w/ ASP 25.20 6.46
LLaVA-NeXT w/ fixed o 28.40 7.79
LLaVA-1.5 w/ ASP 41.08 12.02
LLaVA-1.5 w/ fixed « 47.21 13.12
InstructBLIP w/ ASP 38.52 11.45
InstructBLIP w/ fixed o 45.40 12.70

Table 4: Ablation study on the necessity of adaptively
adjusting the steering parameters.

InstructBLIP
LLaVA-Next
LLaVA-1.5 16

InstructBLIP
LLaVA-Next
LLaVA-1.5

Original SSL Reverse-SSL Original SSL Reverse-SSL

(a) CHAIRg across models (b) CHAIR; across models

Figure 6: CHAIR evaluation across three multi-
modal models—InstructBLIP-7b, LLaVA-NeXT-8b,
and LLaVA-1.5-7b—under three generation settings:
original, SSL, and Reverse-SSL.

the effectiveness of SSL, we present several quali-
tative examples in Appendix F.

Additional Time Analysis. During each gener-
ation step, SSL dynamically adjusts the steering
strength through a single scaling and weighting op-
eration, introducing negligible computational over-
head. Compared to the overall generation process,
the additional latency introduced by SSL is mini-
mal. A comparison of inference time between SSL
and other baselines is shown in Figure 7.

6 Related Works

LVLMs refer to the phenomenon where the gener-
ated textual content is inconsistent with the visual
input. This issue arises from various factors, such
as dataset bias, insufficient visual perception by the
encoder, and misalignment across modalities (Liu
et al., 2024a). While prior studies have proposed
diverse strategies to mitigate hallucination, the in-
ternal mechanisms within LVL.Ms that give rise to
such inconsistencies remain largely underexplored.

Liu et al. (2025) enhance the stability of vi-
sual representations by steering latent features dur-
ing generation, preventing premature degradation.
Jiang et al. (2024) remove hallucination-related fea-
ture components through linear orthogonalization

\l

Inference Time (sec/sample)

T ] d i i i ]
Greedy Beam DolLa VvCD OPERA CODE SSL
Method

Figure 7: Comparison of inference time for different
methods measured using identical hardware.

by projecting the internal image representations of
vision models into the language space, thereby pu-
rifying the input and reducing hallucinations. Li
et al. (2025) uncover phenomena such as early acti-
vation and progressive loss of visual information in
LVLMs, and propose injecting continuous visual
streams during inference to compensate for these
effects, significantly reducing hallucinations.

Unlike previous methods, our work directly iden-
tifies hallucinatory and faithful semantic directions
using SAEs. We then dynamically adjust these
directions during visual-linguistic fusion and gen-
eration to proactively reduce hallucination outputs.

Furthermore, our approach contributes to the
practical interpretability of SAEs in LVLMs,
demonstrating their potential for understanding and
controlling internal semantic representations.

7 Conclusion

This work explores the relationship between the
hallucination in LVLMs and their internal latent
representations. We construct a residual stream
dataset for hallucinatory and faithful object tokens,
and use SAE to extract the semantic directions cor-
responding to hallucination and Factuality. Based
on this insight, we propose SSL, a training-free
method that amplifies true semantics while sup-
pressing potential hallucinations. Extensive exper-
iments demonstrate that SSL outperforms exist-
ing methods. Furthermore, although the SAE was
trained on LLaVA-Next, the semantic directions
it extracted generalize well across different model
architectures, further showcasing the potential of
SAE in understanding and controlling the internal
semantic representations of models.



Limitations

Currently, the only fully open-source multi-modal
SAE is provided by LLM-Labs, trained on the 25"
layer of the LLaVA-Next 8b model. As a result,
our study does not include a comparison of SAEs
trained on other model architectures across differ-
ent multi-modal models. Future work can focus on
training multi-modal SAEs on various architectures
to investigate whether the findings from this study
generalize across different models.

Ethical Consideration

In our proposed SSL method, positive steering sig-
nificantly reduces hallucinations in LVLMs, while
negative steering increases them. Positive steer-
ing not only improves model performance but also
aligns with ethical principles such as safety and
reliability. In contrast, negative guidance may lead
to more hallucinations and generate false informa-
tion. Therefore, such mechanisms should be ap-
plied with caution, supported by thorough valida-
tion and human oversight.
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A Construction of Residual Stream
Dataset for Hallucinatory and
Non-hallucinatory Object Words

Figure 8 illustrates the construction process of
the residual stream dataset. We begin by ran-
domly sampling 4,000 image-text pairs from the
MSCOCO dataset and extracting residual stream
vectors from the 25th layer of the LLaVA-Next-
8b model corresponding to object words identified
as either hallucinatory or faithful during inference.
It is worth noting that some object words are tok-
enized into multiple subword tokens by the model’s
tokenizer. Given the relatively low frequency of
such cases and to facilitate consistent statistical
analysis, we exclude these incomplete subword in-
stances from our dataset. For example, the word
“backpack” may be split into two tokens—"back"
and "pack"—by the tokenizer. Since these sub-
tokens do not independently convey the complete
semantic meaning of the original word, they are
omitted from further analysis.

To ensure class balance, we extract an equal
number of residual stream vectors for hallucinatory
and faithful object words from each sample. This
process results in a balanced dataset comprising
1,784 instances, with a 1:1 ratio of positive (hal-
lucinatory) and negative (faithful) samples. We
further divide the dataset into training and test sets
using a 9:1 split while maintaining the class distri-
bution in both subsets. The training set is used to
identify semantic directions closely associated with
hallucination, and the test set is employed to eval-
uate the generalizability and discriminative power
of the extracted semantic features. Using sparse
autoencoder analysis, we find that the direction
corresponding to latent activation index 36992 is
highly correlated with hallucination, whereas index
47230 aligns closely with faithful outputs.

B A Set of Classification Experiments
Based on Logistic Regression

To quantitatively evaluate the discriminative power
of the latent activation directions extracted by the
SAE in distinguishing hallucinatory from faithful
samples, we conduct a series of classification exper-
iments based on logistic regression. Specifically,
for the i-th sample, let z(x;) € R%4% denote the
SAE latent representation. From a total of [NV sam-
ples, we extract individual latent dimensions in-
dexed by j, denoted as z;(x;), and construct five
types of input features:
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Hall latent: The dimension hall with the highest
correlation to hallucinated object words is selected,
forming a one-dimensional feature:

T c RNX 1 .
(10)
Faithful latent: The dimension faith ful most

correlated with faithful object words is selected,
forming:

Xhatt = [Zhat(x1), - - - Zhan(zN)]

Xfaithful

= [2paithful(21); - - -, Zfaithpur ()] € RV,
(1D

Random 1: A single latent dimension r; ~
U{0,...,dsag — 1} is randomly sampled to form
a one-dimensional baseline feature X, = RV*1,

Random 2: Two latent dimensions (r1,79) are
randomly sampled to construct a two-dimensional
feature X, € RV*2,

The corresponding label vector is y
[y(l),y(2), e ,y(N)]T, where () € {0, 1}, with
1 indicating a hallucinatory sample and O a faithful
sample. All input features are standardized before
being fed into the logistic regression model. The
model is trained on the training set and evaluated
on the held-out test set using classification accuracy
and confusion matrices as evaluation metrics.

As shown in Figure 9, the confusion matrices
for the three main feature groups (Hall latent, Non-
hall latent, Both). The results show that the model
achieves balanced performance across both posi-
tive and negative classes, with no noticeable predic-
tion bias. Figure 4, the performance of Random1
and Random?2 approximates the random baseline
(= 0.5), while using Hall latent and faithful la-
tent individually yields classification accuracies of
66.67% and 69.54%, respectively. Combining the
two features (Both) further improves performance
to 72.99%.

These findings suggest that the latent repre-
sentations extracted by the SAE encode seman-
tically discriminative signals for hallucination de-
tection. Furthermore, combining hallucination and
factuality-related latent directions provides comple-
mentary information that enhances classification
performance.

C Choice of Steering Layer

Figures 10, 11 and 12 present the results of ab-
lation studies investigating the effect of introduc-
ing SSL at individual layers of the LLaVA-Next
(v = 0.6), LLaVA-1.5 (v = 0.8) and InstructBLIP
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| CHAIRs | | CHAIR; | | Avg.Len layer1 or deeper layers interventions can signifi-
LLaVA-NeXT 29.60 3.03 165.61 cantly reduce hallucination in LLaVA-1.5. In con-
w/ SSL vy = 0.2 28.36 7.38 163.20 trast, for InstructBLIP, introducing SSL at shallow
W; gglﬂ v = 8;1 gg% ggg }ggg; layers yields more substantial improvements, while
\W% v=0. . . . . . . o
w/SSLy = 0.8 7208 514 185.80 deeper layer interventions contrlbu'te less noFlcF:
w/ SSLy = 1.0 13.28 4.06 163.62 ably to performance. We hypothesize that this is
w/SSL v = 1.5 2.56 0.59 53.80 attributable to architectural and training differences

Table 5: Ablation study on the scaling factor of LLaVA-
Next.

(v = 0.2) models, respectively. For LLaVA-Next,
we observe that applying SSL at the middle lay-
ers more effectively mitigates hallucinations, con-
sistent with the results shown in Figure 5. For
LLaVA-1.5, we observe that applying SSL at either
the layerl or deeper layers consistently mitigates
hallucination. This observation aligns closely with
findings reported by Zhang et al. (2024b), He et al.
(2024) and Chen et al. (2025), who also found that
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in InstructBLIP, specifically, its shallow layers may
already perform substantial cross-modal alignment
early in the pipeline, making early-stage seman-
tic guidance more impactful on overall generation
quality. A deeper analysis of the layer-specific
mechanisms in different multimodal architectures
is left for future work.

D Choice of Scaling Factor

Tables 5, 6, and7 report the ablation results on
the effect of the scaling factor v in the SSL. For
the LLaVA series of models, setting v to 0.6 or
0.8 effectively reduces hallucinations, indicating
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Figure 10: Ablation study on steering a specific layer of LLaVA-Next.
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Figure 11: Ablation study on steering a specific layer of LLaVA-1.5.

Algorithm 2: Reverse-SSL

| CHAIRs | | CHAIR; | | Avg.Len

Input: Scaling factor y; steering layer [; LLaVA-1.5 49.44 14.19 82.97
semantic directions dya, deitheat: w/SSLy =02 | 48.16 14.10 83.45
residual stream at laver L.: w/SSL~v=0.4 47.16 14.04 83.24
Y<t S w/ SSL v = 0.6 45.96 13.36 83.63
(X5, X1, X1y, X5 w/SSLy =08 | 41.08 12.02 82.30
1 if L — I, then w/SSLy=1.0 | 33.80 10.18 86.02
. . SSL vy =1. 17.16 7.66 275.16
2 for token x in residual stream do il i b
3 ifz € X;_, then el Table 6: Ablation study on the scaling factor of LLaVA-
! ‘ T = TdrallFe draitorul LS.
5 else if z € X~ then
p T a ey Izl 4 o .
Mdhan]|+¢ = “hall larger values similarly result in performance degra-
7 else dation. These findings highlight the importance
// System and prompt of carefully calibrating the intensity of semantic
tokens remain unchanged guidance to balance model control and generation
L - quality across different architectures.

that moderate levels of semantic intervention are
beneficial. However, when v > 1.0, the super-
vision becomes overly aggressive, disrupting the
model’s behavior and leading to abnormal halluci-
nation metrics. In contrast, for InstructBLIP, the
best performance is observed at v = 0.2, while

13

E Reverse-SSL Approach

To further validate the efficacy of the identified se-
mantic directions, we extend the standard SSL by
introducing Reverse Steering LVLMs via SAEs La-
tents (Reverse-SSL), an approach that deliberately
induces the model to generate more hallucinations.
Specifically, at each residual flow layer, we divide
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Figure 12: Ablation study on steering a specific layer of InstructBLIP.
| CHAIRs | | CHAIR; | | Avg.Len  the reference evaluator. Following the template
InstructBLIP 45.44 13.07 9211 provided in Table 8 of Gong et al. (2024), each
w/ SSL v = 0.2 38.52 11.45 102.62 evaluation instance includes the original image, the
w/ SSL vy = 0.4 10.16 7.90 64.04 base output of the LVLM, and its SSL-enhanced
w/SSL~v = 0.6 0.76 21.99 349.86

Table 7: Ablation study on the scaling factor of Instruct-
BLIP.

the input sequence into four contiguous segments:
system tokens, prompt tokens, visual tokens, and
output tokens. During the visual-token stage, we
inject a specific reverse-direction vector that delib-
erately shifts the visual features away from the true
image semantics. At the onset of autoregressive
language generation, we inject the specific reverse-
direction to amplify the previously distorted visual
signal, thereby biasing subsequent text outputs to-
ward content that is either factually incorrect or
substantially divergent from the original prompt.
The complete algorithmic procedure for Reverse-
SSL is presented in Algorithm 2.

F More Qualitative Results

Figures 13, 14, and 15 present additional qualita-
tive examples on the LLaVA-Next, LLaVA-1.5, and
InstructBLIP models, respectively, to demonstrate
the effectiveness of our proposed SSL approach in
mitigating hallucinated objects. With the integra-
tion of SSL, the generated descriptions by LVLMs
exhibit improved fidelity to the visual content while
maintaining the richness and informativeness of the
language output.

G Details on the GPT-40 Evaluation

To evaluate the performance of LVLMs on the
LLaVA-Bench benchmark, we adopt GPT-40 as

14

counterpart. The evaluation focuses on both the
accuracy and fineness of the generated responses.
To mitigate potential biases caused by output order,
we randomly swap the positions of the two outputs
with a probability of 0.5 before each evaluation.
Each sample is evaluated four times to compute
an average score. Figures 16, 17, and 18 illus-
trate representative evaluation examples based on
three model architectures: LLaVA-Next, LLaVA-
1.5, and InstructBLIP, respectively.

H License

The open-source data utilized in this work was em-
ployed exclusively for academic research, consis-
tent with the original intended usage. All the used
intellectual artifacts’ license allows for academic
usage.



GPT-40 Prompt

You are required to score the performance of two Al assistants in describing a given image. You
should pay extra attention to the hallucination, which refers to the part of descriptions that are
inconsistent with the image content, such as claiming the existence of something not present in the
image or describing incorrectly in terms of the counts, positions, or colors of objects in the image.
Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better
performance, according to the following criteria:

1. Accuracy: whether the response is accurate with respect to the image content. Responses with
fewer hallucinations should be given higher scores.

2. Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count as necessary details.

Please output the scores for each criterion, containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores, please
provide an explanation of your evaluation, avoiding any potential bias and ensuring that the order in
which the responses were presented does not affect your judgment.

[Assistant 1]

{}
[End of Assistant 1]

[Assistant 2]

{}
[End of Assistant 2]

Output format:
Accuracy:
Reason:
Detailedness:
Reason:

Table 8: The prompt used for GPT-40 evaluation.
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r:‘

Human

Please describe this image in detail. 3

l

In the heart of a cozy room, a black and gray cat @
has found a comfortable spot on a wooden floor. =
The cat, with its fur as dark as night and patches LLaVA-Next
as light as the moon, is facing away from us. To

the left of the feline, a blue bicycle leans casually
against a white wall. The bicycle, with its vibrant

blue frame and black seat, adds a touch of color to

the otherwise monochrome setting. The white wall
behind it contrasts beautifully with the blue of

the bicycle. The wooden floor beneath these
objects adds warmth to the image, grounding the

scene in a sense of homeliness.

G

LLaVA-Next
w/ SSL

In the image, a black and gray cat is the main oo
subject, standing on a wooden floor. The cat is
positioned in front of a bicycle wheel, which is
leaning against a white wall. The bicycle wheel is
black with a red brake, and it has a black tire. The
cat is facing the wall, and its tail is raised,
indicating that it might be curious or alert. The
image also contains a text that reads Trackstar,
which could be related to the bicycle or the cat.
The overall scene suggests a domestic setting,
possibly a home or a garage.

Ay

Human

"
-

Please describe this
image in detail.

The image captures a serene and modern bathroom
bathed in soft light. Dominating the scene is a
white toilet, its lid closed, standing next o a
shower enclosure. The shower, with its clear glass
door, is adorned with a wooden shelf that holds a
single red bottle. Next to the shower, there is a
wooden cabinet with a mirror. The dark brown
cabinet contrasts with the white countertop,
which has a sink and a silver faucet. The floor has
light beige tiles, and the walls are painted light
gray. The layout is neat and makes the bathroom
feel calm and modern.

=

LLaVA-Next

—:@z
&
LLaVA-Next
w/ SSL

The image captures a modern bathroom bathed in a
soothing beige color scheme. The bathroom is well-
equipped with a white toilet, a white sink, and a
white shower. The shower is equipped with a
wooden cabinet, providing storage space for
toiletries. The sink is accompanied by a wooden
cabinet, offering additional storage space. The
bathroom is illuminated by a light fixture, casting a
warm glow on the beige tiles that cover the floor
and walls. The overall layout of the bathroom
suggests a well-organized and functional space.

Figure 13: More examples of SSL in reducing hallucinated content in LLaVA-Next.

The image features a large brown dog sitting on the [@

floor in front of a flat-screen TV. The dog appears LLaVA-15
to be watching the TV, which is mounted on the wall

above the dog. The TV is displaying a scene with a

dog, likely capturing the dog's attention. In the

room, there are two potted plants, one on the left

side and the other on the right side. A remote

control can be seen on the floor, close to the dog.
Additionally, there is a book placed on the floor,

slightly to the right of the dog.

z@:—
The image features a large brown dog sitting on a d@b

carpeted floor in front of a flat screen TV. The dog LLaVA-15
appears to be watching something on the TV screen, w/ SSL
likely a program or a movie. The TV is positioned on
the left side of the room. Profiling the dog's
position, there are two potted plants in the room,
one on the right side and the other on the left side.
The overall scene depicts a cozy and comfortable
environment for the dog.

hecd

Human

Please describe this image in detail.

e

The image features a bathroom with a toilet
situated on the left side of the room. A sink is
located on the right side of the bathroom, and a
mirror is mounted above it. The bathroom also has a
large bowl-shaped sink, which is a unique and eye-
catching design element. There are several
toiletries placed around the bathroom, including a
toilet paper roll, a toothbrush, and a cup. The toilet
paper roll is positioned near the toilet, while the
toothbrush and cup are placed on the sink counter.
The overall atmosphere of the bathroom is clean
and well-organized.

@

LLaVA-15

@

LLaVA-15

The image depicts a bathroom with a large sink ~
w/ SSL

positioned under a mirror. The sink is made of a
dark wood material, adding a touch of elegance to
the space. The bathroom also features a toilet on
the left side of the room. There are several towels
in the bathroom, with one placed on the sink and
two others positioned on the floor. Additionally,
there is a roll of toilet paper on the sink, ensuring
that the bathroom is well-stocked for its users.

Figure 14: More examples of SSL in reducing hallucinated content in LLaVA-1.5.
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The image features a wooden pizza paddle on a
table, with a partially prepared pizza dough on top
of it. The pizza dough is topped with various
ingredients, including fomatoes, shrimp, and other
vegetables. The paddle is positioned in the center
of the table, with the pizza dough spread out on top
of it. There are several cups placed around the
table, including one on the left side and another on
the right side. A bowl is also visible on the table,
likely containing additional ingredients for the pizza.
A spoon can be seen on the table, possibly used for
mixing or preparing the pizza dough. <s>

The image features a pizza on a wooden paddle,

@

@

@

InstructBLIP

which is placed on a table with a white cloth. The TpstructBLIP

pizza is partially covered with various toppings,
including shrimp, fomatoes, and other ingredients.
The pizza is placed on the table, with the paddle
being used to hold it in place. The pizza is large,
with a significant portion of it visible on the table.
The table is covered with a white cloth, providing a
clean and elegant setting for the pizza. <s>

w/ SSL

Please describe this image in detail.

The image features a park with a bench placed near [‘@b

a 'bush. The benc.h is sn'rua'refj on the side of a path, TnstructBLIP
with a tree growing next to it. There are several

benches in the park, with one located closer to the

bush and another further away. The park is well-lit,

with streetlights illuminating the area. The bench

near the bush is positioned in the foreground, while

the other benches are placed in the background.

The scene is peaceful and inviting, with the bench

providing a comfortable spot for visitors to rest

and enjoy the park's beauty. <s>

The image features a park with a bench placed next [l@[]

to a bushy shrubbery, which is positioned in the

middle of the scene. The bench is placed on the side InstructBLIP
of the bush, with a few other benches placed w/ SSL
around the area. There are two benches on the left

side of the image, while another bench is located on

the right side. The benches are placed at different

heights, with one bench being slightly higher than

the others. The bushy shrubbery provides a natural

touch to the scene, adding a bit of greenery fo the

otherwise concrete-like environment. <s>

Figure 15: More examples of SSL in reducing hallucinated content in InstructBLIP.
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[Input Image]

[Input Instruction] Describe this photo in detail.

[Model Outputs]

o o
~

LLaVA-Next

;@:—

o o
~

LLaVA-Next
w/ SSL

©

GPT-40
Evaluation

The image is a digital artwork that pays homage to the famous painting
\"Mona Lisa\" by Leonardo da Vinci. The central figure in the artwork is a
dog, specifically a Chihuahua, dressed in a black dress with a white collar.
The dog is wearing a brown headscarf and is seated against a backdrop of
a landscape. The landscape features a river, mountains, and a castle. The
dog's expression is neutral, and it is looking directly at the viewer. The
artwork is a playful and creative take on the original painting, replacing
the human subject with a dog.

The image is a digital artwork that features a dog dressed in a style
reminiscent of the Mona Lisa. The dog is depicted with a brown coat and
a black face, with a large, expressive nose and eyes. It is wearing a
brown headband and a dark brown shaw! with a pattern that resembles
the folds of the Mona Lisa's dress. The dog's arms are crossed, and it is
looking directly at the viewer with a calm and serene expression. The
background of the image is a landscape with a mountainous terrain,
featuring a river winding through the mountains. The sky is filled with
clouds, and the overall color palette is dominated by earth tones, with a
focus on browns and grays. The painting style is reminiscent of the
impressionist style, with loose brushstrokes and a focus on the interplay
of light and shadow. The image is a playful and creative blend of the
famous painting with the subject of a dog, combining elements of art
history with a modern twist.

Accuracy: 4.0 9.0

Reason: Assistant 1 inaccurately identifies the dog as a Chihuahua and
mentions a black dress with a white collar, as well as a castle, none of
which are present in the image. Assistant 2 accurately describes the
dog in the style of the Mona Lisa, mentioning the correct attire and
general description, with only minor inaccuracies like referring to the
face as black instead of brown.

Detailedness: 5.0 9.0

Reason: Assistant 1 gives less accurate details and misses several
aspects of the image, resulting in less informative content. Assistant 2
provides a detailed description of the image, including the style, attire,
and background elements. It accurately conveys the artistic style and
elements borrowed from the Mona Lisa.

Figure 16: The performance of SSL on reducing hallucinations on LLaVA-Next-8b.
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[Input Image]

[Input Instruction] What material appears to make up the creature?

[Model Outputs]

o o
~

LLaVA-15

-:@:—

o o
~

LLaVA-15
w/ SSL

©

GPT-40
Evaluation

The creature appears to be made of a combination of plastic and glass.

The creature appears to be made of a combination of materials, including
a red or orange substance that resembles a horse or a camel, and a pair
of eyeglasses. The overall appearance suggests that the substance is
likely a combination of clay or a similar material, along with the
eyeglasses, which add a creative and playful touch to the overall design.

Accuracy: 3.0 5.0

Reason: Assistant 1 accurately identifies the materials as plastic and
glass, which may relate to the eyeglasses, but it doesn't address the
fiery aspects or colors. Assistant 2 accurately describes the creature
as having a red or orange appearance and mentions eyeglasses. However,
the description of the material as clay is speculative and doesn't fully
align with the molten, fiery appearance.

Detailedness: 2.0 6.0

Reason: Assistant 1 gives minimal description and lacks detail, primarily
naming materials without describing the creature's form or distinctive
features. Assistant 2 provides more details about the creature's
appearance, color, and shape, mentioning both a horse or camel likeness
and speculating on the material, despite some inaccuracies.

Figure 17: The performance of SSL on reducing hallucinations on LLaVA-1.5-7b.
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[Input Image]

[Input Instruction] Describe this photo in detail.

[Model Outputs]

In the image, a man is standing on the back of a yellow car, ironing clothes
on the roof. He is positioned on the right side of the car, with the laundry
o o basket placed on the roof rack. The car is parked on a busy street, with
= several other vehicles and a truck in the background. The scene is set in a
InstructBLIP bustling city, with people walking around and cars passing by. The man's
actions are likely to draw attention from the pedestrians, as he is ironing
clothes on the roof of the car. <s>

o~ The image shows a man in a yellow shirt standing on the back of a yellow
:(@/: SUV, ironing clothes on the roof of the vehicle. He is surrounded by
5 o various items, including a suitcase, a backpack, and a purse. The scene
= takes place on a busy city street, with multiple cars and a traffic light
InstructBLIP visible in the background. The man's presence on the roof of the SUV is
i BEL a unique and creative way to iron clothes, making it a memorable and
attention-grabbing image. <s>

Accuracy: 6.0 7.0
Reason: Both assistants correctly describe a man ironing on the back of
a yellow vehicle. However, Assistant 1 inaccurately mentions the man
standing on the roof and the presence of additional items such as a
suitcase, a backpack, and a purse, which are not visible. Assistant 2

@ incorrectly mentions ironing on the roof, but doesn't add non-existent
items, therefore has a slightly more accurate description..

GPT-40 Detailedness: 5.0 6.0

Evaluation  Reason: Assistant 1 provides some details, despite the inaccuracies,

such as the mention of the city street and multiple cars, but includes
incorrect additional items. Assistant 2 offers a more accurate context
of the scene, noting the bustling city and people, though details about
specific objects are still inaccurate. Both descriptions lack accuracy in
detailedness, but Assistant 2 is slightly more coherent.

Figure 18: The performance of SSL on reducing hallucinations on InstructBLIP-7b.
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