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Abstract—We investigate the L2-error of approximating func-
tions in the modulation spaces Ms

1,1(Rd), s ≥ 0, by linear
combinations of Wilson bases elements. We analyze a nonlinear
method for approximating functions in Ms

1,1(Rd) with N -terms
from a Wilson basis. Its L2-approximation error decays at a
rate of N− 1

2
− s

2d . We show that this rate is optimal by proving a
matching lower bound. Remarkably, these rates do not grow with
the input dimension d. Finally, we show that the best linear L2-
approximation error cannot decay faster than N− s

2d . This shows
that linear methods, contrary to the nonlinear ones, necessarily
suffer the curse of dimensionality in these spaces.

Index Terms—Wilson basis, curse of dimensionality, nonlinear
approximation, time–frequency analysis.

I. INTRODUCTION

The study of the simultaneous time–frequency content of
a function (or distribution) through the short-time Fourier
transform (STFT) is the main tenet of time–frequency analy-
sis [17]. The modulation spaces are a family of Banach spaces
that characterize the locality and regularity of a function (or
distribution) by its decay in the STFT domain. These are,
in some sense, the “right” spaces to study time–frequency
analysis.

The modulation spaces on Rd are, in particular, a three-
parameter family of smoothness spaces, denoted by Ms

p,q(Rd),
where s is the smoothness index and p and q are integra-
bility parameters. The most important modulation space is
M0

1,1(Rd) = S0(Rd), which is Feichtinger’s Segal algebra [11].
This family of spaces includes essentially all functions and
distributions of interest since the Schwartz space S(Rd)
and the tempered distributions S ′(Rd) are the projective
and inductive limits, respectively, of modulation spaces [17,
Proposition 11.3.1(d)]. More precisely, one has that

S(Rd) =
⋂
s≥0

Ms
1,1(Rd) (1)

and
S ′(Rd) =

⋃
s≥0

M−s
∞,∞(Rd). (2)

While there are many works that study properties of
the modulation spaces [11], [12], [13], [15] (see also the
survey [14] of Feichtinger and references therein), there are
few works that study these spaces from an approximation
theory perspective. Some notable works on the approximation
theory of modulation spaces include [3], [4], [18]. In this paper,

we provide new results regarding nonlinear approximations
in modulation spaces. In Theorems 1 and 3, we derive sharp
rates (upper and lower bounds) for nonlinear approximations
with Wilson bases [7] for functions in the modulation spaces
Ms

1,1(Rd). The rates are N− 1
2−

s
2d , where N is the number of

terms in the approximant. Remarkably, these rates do not grow
with the input dimension and, therefore, “break” the curse
of dimensionality. Furthermore, we prove in Theorem 4 that
linear approximation methods necessarily suffer the curse of
dimensionality and that the best N -term linear approximation
error cannot decay faster than N− s

2d .
These findings should be contrasted with usual results in

multivariate approximation theory which state that the best
N -term approximation error of a function from a d-variate
Sobolev or Besov space with smoothness index s decays as
N−s/d [9]. Thus the modulation spaces Ms

1,1(Rd) are mixed-
variation spaces in the sense of Donoho [10].

Mixed-variation spaces have received considerable interest
in the approximation theory community as a followup to [2],
where Barron showed that neural networks can approximate
functions that satisfy certain decay conditions on their Fourier
transforms at a rate that does not grow with the input dimension
d. The techniques used by Barron to prove this dimension-free
result were based on the foundational work of Maurey [29] and
Jones [21]. These spaces, now referred to as the spectral Barron
spaces, have led to a large body of works that study smoothness
spaces that are “immune” to the curse of dimensionality (see [1],
[27], [28], [30], [32], and references therein).

II. MODULATION SPACES

The Fourier transform of φ ∈ S(Rd) is defined as

F{φ}(ξ) =
∫
Rd

φ(x)e− j2πξTx dx, ξ ∈ Rd, (3)

where j2 = −1. Consequently, the inverse Fourier transform
of φ̂ ∈ S(Rd) is

F−1{φ̂}(x) =
∫
Rd

φ̂(ξ)e j2πξ
Tx dξ, x ∈ Rd. (4)

The translation and modulation operators acting on φ ∈ S(Rd)

are given by Tx{φ} = φ(· − x) and Mξ{φ} = e j2πξ
T(·)φ,

respectively. These operators are all extended by duality to act



on S ′(Rd). Finally, the STFT of f ∈ S ′(Rd) with respect to
the window g ∈ S(Rd) is

Vg{f}(x, ξ) = ⟨f,Mξ Tx g⟩ = F{f(·)g(· − x)}(ξ), (5)

where g(· − x) denotes the complex conjugate of g(· − x).
Here, the domain of the STFT, sometimes referred to as phase
space [16], is indexed by (x, ξ) ∈ Rd × Rd. We also note
that the STFT of any tempered distribution is necessarily a
continuous function [17, Theorem 11.2.3].

Given a fixed nonzero window g ∈ S(Rd), s ∈ R, and
1 ≤ p, q ≤ ∞, the modulation space Ms

p,q(Rd) is the Banach
space that consists of all tempered distributions f ∈ S ′(Rd)
such that the norm ∥f∥Ms

p,q
, given by the quantity(∫

Rd

(∫
Rd

|Vg{f}(x, ξ)|p(1 + ∥(x, ξ)∥2)sp dx
)q/p

dξ

)1/q

,

(6)
is finite, with appropriate modifications when p or q = ∞.
These spaces are independent of the (nonzero) window g ∈
S(Rd), in the sense that different windows result in equivalent
norms.

It turns out that these spaces can be studied through the
atomic decompositions of their members in Wilson bases. Fix a
univariate window g ∈Ms

1,1(R) such that ∥g∥L2 = 1, g(x) =
g(−x), and the system {Mm Tk/2 g}m,k∈Z forms a tight Gabor
frame of redundancy 2. Then, the system generated by

ψk,n = cn Tk/2

(
Mn +(−1)k+n M−n

)
g, (k, n) ∈ Z× N0,

(7)
with c0 = 1 and cn = 1/

√
2 if n ̸= 0, and ψ2k+1,0 ≡ 0

is referred to as a Wilson basis. The Wilson basis is an
orthonormal basis for L2(R) [17, Theorem 8.5.1]. Wilson bases
for L2(Rd) can be then be constructed via tensor products. Let
{ψk,n}k∈Zd,n∈Nd

0
denote such a Wilson basis.

Given s ∈ R and 1 ≤ p, q ≤ ∞, the sequence space ms
p,q

is the Banach space that consists of all sequences of complex
numbers c = (ck,n)k∈Zd,n∈Nd

0
such that the norm

∥c∥ms
p,q

:=

∑
n∈Nd

0

∑
k∈Zd

(1 + |(k,n)|)sp|ck,n|p
q/p


1/q

(8)
is finite, with appropriate modifications when p or q = ∞. Here,
we set the notation |(k,n)| := max{|k1|, . . . , |kd|, n1, . . . , nd}
for the vector (k,n) ∈ Zd × Nd

0 for convenience. We could
just as easily work with any other norm since all norms are
equivalent in finite dimensions. The analysis and synthesis
operators of a Wilson basis establish an isomorphism between
Ms

p,q(Rd) and ms
p,q (see [17, Chapter 12.3] and [15]).

III. NONLINEAR APPROXIMATION WITH WILSON BASES

In this section, we study the problem of approximating
functions from the modulation spaces Ms

1,1(Rd), s ≥ 0,
with Wilson bases. Since these spaces continuously embed
into L2(Rd), we derive upper and lower bounds for the

L2-approximation error rate. Remarkably, the rates are im-
mune to the curse of dimensionality. Given a Wilson basis
{ψk,n}k∈Zd,n∈Nd

0
for L2(Rd), let

ΣN,M =


∑

(k,n)∈I

ck,nψk,n :

I ⊂ Zd × Nd
0,

|I| ≤ N,

max
(k,n)∈I

|ck,n| < M

 (9)

denote the set of all linear combinations consisting of at
most N Wilson basis functions with bounded coefficients.
We note that the approximation of functions with ΣN,M is a
form of nonlinear approximation since ΣN,M is a nonlinear
space. In Theorem 1, we construct an approximant from ΣN,M

that achieves an approximation error rate that does not grow
with the input dimension. The techniques used to prove this
theorem are inspired by the work of DeVore and Temlyakov
on nonlinear approximation by trigonometric sums [8]. Then,
in Theorem 3, we show that, for s > 0, the exponent in the
rate cannot be improved. Finally, we show in Theorem 4 that
linear approximation methods necessarily suffer the curse of
dimensionality.

Theorem 1. Let s ≥ 0. There exists a constant M > 0 which
depends only on s and d such that, for all f ∈Ms

1,1(Rd) with
∥f∥Ms

1,1
≤ 1,

inf
fN∈ΣN,M

∥f − fN∥L2 ≤ C0MN− 1
2−

s
2d , (10)

where C0 is a constant which may depend on d.

Proof. The expansion of f in the Wilson basis yields

f =
∑
k∈Zd

n∈Nd
0

ck,nψk,n, (11)

where ck,n = ⟨f, ψk,n⟩. Since f ∈ Ms
1,1(Rd), the isomor-

phism between Ms
1,1(Rd) and ms

1,1 establishes that

(1 + |(k,n)|)sck,n ∈ ℓ1(Zd × Nd
0). (12)

Let (aN )N∈N be a non-increasing rearrangement of the se-
quence (|ck,n|)k∈Zd,n∈Nd

0
of coefficients. Since ∥f∥Ms

1,1
≤ 1,

there exists a constant M > 0 such that

aN ≤ M

N
. (13)

Next, for a fixed N ∈ N, define the index set ΛN as the set
of all (k,n) ∈ Zd × Nd

0 such that

(1 + |(k,n)|)s|ck,n| > MN−1 (14)

or
|(k,n)| < N

1
2d . (15)

From (13), we see that the number of coefficients that satisfy
(14) is at most N . Similarly, the number of coefficients that
satisfy (15) does not exceed C1N , for some constant C1.
Therefore, |ΛN | ≤ (1 + C1)N .



The approximant

fΛN
=

∑
(k,n)∈ΛN

ck,nψk,n (16)

has at most (1 + C1)N terms and fΛN
∈ ΣN,M , by design.

We have that

∥f − fΛN
∥2L2 =

∑
(k,n) ̸∈ΛN

|ck,n|2

=
∑

(k,n) ̸∈ΛN

(1 + |(k,n)|)2s

(1 + |(k,n)|)2s
|ck,n|2

≤
∑

(k,n) ̸∈ΛN

(1 + |(k,n)|)2s

|(k,n)|2s
|ck,n|2

≤ N− 2s
2d

∑
(k,n) ̸∈ΛN

(1 + |(k,n)|)2s|ck,n|2

≤ N− 2s
2d

∑
m≥N

M2m−2

≤ CM2N−1− 2s
2d , (17)

where C > 0 is a universal constant. Therefore,

∥f − fΛN
∥L2 ≤ C

1
2MN− 1

2−
s
2d , (18)

which proves the theorem.

Remark 2. Since the error in Theorem 1 is measured with
respect to the L2(Rd)-norm, we automatically have that the
same error rate holds with respect to the L2(Ω)-norm, for any
bounded domain Ω ⊂ Rd.

To prove the lower bound, we use a variant of Carl’s
inequality based on entropy numbers [5], [6], [32]. Given
a compact set K ⊂ L2(Rd), its covering number Nε(K)L2

is the smallest number of L2-balls of radius ε that cover K.
The notion of entropy of a compact set was introduced by
Kolmogorov [22] to quantify its compactness. The (dyadic)
entropy number of K is given by

εN (K)L2 = inf{ε > 0 : Nε(K)L2 ≤ 2N}. (19)

It indicates how precisely elements of K can be specified with
N bits of information.

The variant of Carl’s inequality from [32, Theorem 10]
states that, under a compactness assumption, the existence
of an upper bound on the nonlinear approximation rate with
bounded coefficients implies, up to logarithmic factors, the
same upper bound on the entropy number. By noting that
M0

2,2(Rd) = L2(Rd), a special case of [20, Theorem 3.2]
implies that Ms

1,1(Rd) compactly embeds into L2(Rd) if and
only if s > 0. This implies that the unit ball

BMs
1,1

= {f ∈Ms
1,1(Rd) : ∥f∥Ms

1,1
≤ 1} (20)

is compact in L2(Rd) if and only if s > 0. Thus, when
s > 0, we can use the variant of Carl’s inequality from [32,
Theorem 10] which states that, if

sup
f∈BMs

1,1

inf
fN∈ΣN,M

∥f − fN∥L2 ≲ N−α, (21)

then

εN logN (BMs
1,1

)L2 ≲ N−α. (22)

We also note that a corollary of [20, Theorem 4.4] implies that

εN (BMs
1,1

)L2 ≍ N− 1
2−

s
2d . (23)

With these results in hand, we can prove the lower bound for
the approximation rate.

Theorem 3. Let s > 0 and M > 0 be fixed and suppose that
α > 1

2 + s
2d . Then,

sup
N∈N

Nα

 sup
f∈BMs

1,1

inf
fN∈ΣN,M

∥f − fN∥L2

 = ∞. (24)

Proof. Suppose that the supremum in (24) was finite. This
would imply that

sup
f∈Ms

1,1(R
d)

∥f∥Ms
1,1≤1

inf
fN∈ΣN,M

∥f − fN∥L2 ≲ N−α. (25)

By Carl’s inequality, this would imply that

εN logN (BMs
1,1

)L2 ≲ N−α, (26)

which would contradict (23) since α > 1
2 + s

2d .

A. The Suboptimality of Linear Methods

To quantify the limits of linear approximations, we introduce
the linear N -width of a set K ⊂ L2(Rd). The linear N -width
is given by

δN (K)L2 = inf
AN

sup
f∈K

∥f −AN{f}∥L2 , (27)

where the infimum is taken over all linear operators of rank N .
When K is a compact, absolutely convex subset of L2(Rd), the
linear N -width coincides with the so-called N th-approximation
number of the associated embedding [19]. A special case of [20,
Proposition 4.8] shows that, if s > 0, the N th-approximation
number of the identity map from Ms

1,1(Rd) → L2(Rd) scales
as N− s

2d . Thus, since BMs
1,1

is a compact, absolutely convex
subset of L2(Rd) when s > 0, we immediately have the
following result.

Theorem 4. Let s > 0. Then,

δN (BMs
1,1

)L2 ≍ N− s
2d . (28)

The main takeaway from this theorem is that a linear
approximation method cannot achieve an approximation error
that decays faster than the rate in (28). Thus, linear methods
necessarily suffer the curse of dimensionality in the modulation
spaces Ms

1,1(Rd).



IV. DISCUSSION AND RELATED WORK

It follows from Section III that functions in Ms
1,1(Rd) can be

approximated at rates that do not grow with the input dimension
d. Another notable example of a class of functions which
have this property are functions in the spectral Barron spaces
Bs(Rd), s ≥ 0 [2]. These are Banach spaces of functions for
which the the norm

∥f∥Bs =

∫
Rd

(1 + ∥ξ∥2)s|F{f}(ξ)|dξ (29)

is finite. Let f ∈ Bs(Rd) be such that ∥f∥Bs ≤ 1. It was
proven in [31, Theorem 1] that there exists an approximant
fN that takes the form of a linear combination of at most N
complex exponentials such that

∥f − fN∥L2(Ω) ≲ N− 1
2−

s
d , (30)

where Ω ⊂ Rd is any bounded domain. Another notable
example of such a class of functions is the family of Radon-
domain BV spaces R BVk(Rd), k ∈ N [23], [25], [26]. These
are Banach spaces for which the seminorm

|f |R BVk = ∥∂kt KR f∥M (31)

is finite, where R is the Radon transform, K is the filtering
operator of computed tomography, ∂kt denotes k partial
derivatives with respect to the offset variable of the Radon
domain, and the M-norm is the total variation norm in the sense
of measures. Let f ∈ R BVk(Rd) be such that |f |R BVk ≤ 1.
It was proven in [28, Section IV] in the case k = 2 and in [24,
Theorem 4.8] for any k ∈ N, that there exists an approximant
fN that takes the form of a shallow neural network with at
most N neurons such that

∥f − fN∥L2(Ω) ≲ N− 1
2−

2k−1
2d , (32)

where Ω ⊂ Rd is any bounded domain.
The rate in Theorem 1 as well as the rates in (30) and (32)

all behave as N− 1
2−

α
d , where α is related to the smoothness

order of the space. Furthermore, Ms
1,1(Rd), Bs(Rd), and

R BVk(Rd) are all Banach spaces defined by a sparsity-type
(L1 or total variation) norm in a transform domain. Thus, it
appears as if appropriate notions of smoothness in a transform
domain seem to “break” the curse of dimensionality, although
this phenomenon is still not well understood.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the L2-error of the approxima-
tion of functions in the modulation spaces Ms

1,1(Rd), s ≥ 0,
by linear combinations of Wilson basis elements. We derived
sharp bounds on the (nonlinear) approximation error rates and
proved that they do not grow with the input dimension d. We
also showed that linear approximation methods necessarily
suffer the curse of dimensionality. In particular, the results of
this paper prove that the modulation spaces lie in certain L2-
approximation spaces of Wilson bases. One direction of future
work will be directed towards a complete characterization of
the approximation spaces induced by Wilson bases, which

currently does not exist. Another direction of future work is to
understand why and when the defining of smoothness spaces
in a transform domain “breaks” the curse of dimensionality.

ACKNOWLEDGEMENT

This work was supported by the Swiss National Science
Foundation under Grant 200020 184646 / 1.

REFERENCES

[1] F. Bach, “Breaking the curse of dimensionality with convex neural
networks,” Journal of Machine Learning Research, vol. 18, no. 1, pp.
629–681, 2017.

[2] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Transactions on Information Theory, vol. 39,
no. 3, pp. 930–945, 1993.

[3] L. Borup and M. Nielsen, “Nonlinear approximation in α-modulation
spaces,” Mathematische Nachrichten, vol. 279, no. 1-2, pp. 101–120,
2006.

[4] L. Borup and M. Nielsen, “Frame decomposition of decomposition
spaces,” Journal of Fourier Analysis and Applications, vol. 13, no. 1, pp.
39–70, 2007.

[5] B. Carl, “Entropy numbers, s-numbers, and eigenvalue problems,” Journal
of Functional Analysis, vol. 41, no. 3, pp. 290–306, 1981.

[6] A. Cohen, R. DeVore, G. Petrova, and P. Wojtaszczyk, “Optimal stable
nonlinear approximation,” Foundations of Computational Mathematics,
vol. 22, no. 3, pp. 607–648, 2022.

[7] I. Daubechies, S. Jaffard, and J.-L. Journé, “A simple Wilson orthonormal
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