
Under review as a conference paper at ICLR 2023

TEXTLESS PHRASE STRUCTURE INDUCTION
FROM VISUALLY-GROUNDED SPEECH

Anonymous authors
Paper under double-blind review

ABSTRACT

We study phrase structure induction from visually-grounded speech without in-
termediate text or text pre-trained models. The core idea is to first segment the
speech waveform into sequences of word segments, then induce phrase structure
based on the inferred segment-level continuous representations. To this end, we
present the Audio-Visual Neural Syntax Learner (AV-NSL) that learns non-trivial
phrase structure by listening to audio and looking at images, without ever read-
ing text. Experiments on SpokenCOCO, the spoken version of MSCOCO with
paired images and spoken captions, show that AV-NSL infers meaningful phrase
structures similar to those learned from naturally-supervised text parsing, quanti-
tatively and qualitatively. The findings in this paper extend prior work in unsu-
pervised language acquisition from speech and grounded grammar induction, and
manifest one possibility of bridging the gap between the two fields.

1 INTRODUCTION

Toddlers learn their first language through listening, talking, and interacting with the world through
multi-sensory inputs. Different levels of early language acquisition happen without supervisory
feedback (Dupoux, 2018): phonetics, phonology, morphology, syntax, semantics, pragmatics. It is
therefore crucial to think about learning language, from identifying lower-level phones or words to
inducing high-level linguistic structure like grammar, in natural settings.1 To this end, there have
been two ongoing efforts in parallel:
• Zero-resource speech processing, where speech models are constructed without any textual in-

termediates, with the goal of mimicking how children learn to speak before learning to read or
write. The modeling tasks are constrained to unsupervised learning of subphones, phones, and
words (Jansen et al., 2013).

• Grammar induction, which aims to learn latent syntactic structures, including constituency trees
and dependency trees, with no annotation of syntactic structures as supervision.

Notably in recent years, multi-modal induction has emerged as a promising and effective objective
for both efforts. In speech, Harwath (2018) proposed to leverage parallel image-speech data to
acquire associated words (Harwath & Glass, 2017) and phones (Harwath et al., 2020) from raw
waveforms. In syntax induction, Shi et al. (2019) proposed to induce phrase-structure grammar
from parallel image-text data. The above observations motivated us to build a computational model
that leverages the visual modality to acquire low-level words up to high-level phrase-structure from
raw speech waveforms, without any intermediate textual forms or any direct supervision.2

In this paper, we present the Audio-Visual Neural Syntax Learner (AV-NSL), an approach toward
learning phrase structure from raw speech waveforms without relying on any kind of intermediate
textual form or text pre-trained models (Figure 1). In a nutshell, AV-NSL trains a visually-grounded
syntax learner directly on a sequence of continuous speech representations given by an audio-visual
word segmentation model. We also introduce a self-training process and an unsupervised decoding
method to improve the final output of in AV-NSL. To measure the effectiveness of AV-NSL, we

1Natural settings here means situations that are similar to human language learning; that is, we are able to
access parallel data from different modalities, while the amount of data is limited.

2It is worth noting that human language acquisition in similar settings has also attracted the attention from
the developmental psychology community (Mason, 1980; Naigles, 1990; Dupoux, 2018, inter alia). For in-
stance, from Dupoux (2018): “Yet . . . there is still a large gap between models that learn from speech, which
are limited to the discovery of phonemes and word forms, and models that learn syntax and semantics, which
only work from textual input.”
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Figure 1: We study the pro-
cess of inducing phrase struc-
ture, in the form of con-
stituency parse tree, on un-
supervised inferred word seg-
ments from raw speech wave-
form. No intermediate text to-
kens or ASR is needed. For
illustration purpose, here we
show the gold parse tree from
the given text caption.

compare it to text-based syntax learner VG-NSL (Shi et al., 2019) and further introduce a novel
evaluation metric, SAIOU, that accounts for structure differences when the number of tree nodes
are mismatched. To validate our design choice of AV-NSL, we construct several baselines and
introduce alternative modeling choices, including acoustic compound-PCFG (Kim et al., 2019a).
Qualitatively, we provide constituency recall analyses and the visualizations of the inferred word
segmentation and tree structures.

In summary, we present the first study on inducing phrase structure from visually-grounded speech
without relying on text, introducing the AV-NSL model (§3) with comprehensive experiments (§4)
and analysis (§5). As a by product, we improve over the previous state of the art in unsupervised
word segmentation (§4.4).

2 RELATED WORK

2.1 UNSUPERVISED AND DISTANTLY SUPERVISED GRAMMAR INDUCTION

Much work has been proposed to induce grammar from different sources of distant supervision,
including language modeling (Shen et al., 2018; 2019; Kim et al., 2019a;b), masked language mod-
eling (Drozdov et al., 2019), natural language inference (Li et al., 2019), and, more recently, visual
grounding via image-caption matching (Shi et al., 2019; Zhao & Titov, 2020; Hong et al., 2021;
Wan et al., 2022, inter alia). There has also been extensive study directly targeting unsupervised
constituency parsing (Klein & Manning, 2002; 2004; Bod, 2006; Spitkovsky et al., 2013, inter alia).
To the best of our knowledge, existing work on grammar induction from distant supervision has
been based almost exclusively on text input. The most relevant work to ours is MMC-PCFG (Zhang
et al., 2021), where speech features are treated as an auxiliary input for video-text grammar in-
duction. However, text data and an off-the-shelf automatic speech recognition (ASR) model are
required. In contrast to them, AV-NSL induces constituency parse trees from raw speech bypassing
text, with distant supervision from parallel audio-visual data.

2.2 UNSUPERVISED LANGUAGE ACQUISITION FROM SPEECH

The earliest work (de Sa, 1994; De Marcken, 1996; Roy & Pentland, 2002) on language acquisition
from speech required phonetic lexicon/labels in the process. The idea of spoken term discovery, i.e.,
discovering repetitive patterns or keywords from unannotated speech, was first addressed by Park
& Glass (2007). Thereafter, subsequent work improved upon the original (Zhang & Glass, 2009;
Jansen & Van Durme, 2011; McInnes & Goldwater, 2011; Zhang, 2013, inter alia). Other related
work has considered tasks like unsupervised word segmentation and unsupervised ASR, sometimes
jointly with spoken term discovery (Lee & Glass, 2012; Lee et al., 2015; Kamper et al., 2015; 2017;
Kamper & van Niekerk, 2021; Chorowski et al., 2021; Bhati et al., 2021; Kamper, 2022; Algayres
et al., 2022) The discovery of lexical units was applied to text-free language modeling (Nguyen
et al., 2020; Peng & Harwath, 2022a) and speech generation (Lakhotia et al., 2021; Polyak et al.,
2021; Kharitonov et al., 2022). The ZeroSpeech challenges (Versteegh et al., 2015; Dunbar et al.,
2017; 2019; 2020; Nguyen et al., 2020) have been a major driving force in the field.

Harwath (2018) opened up a new direction in visually grounded language acquisition, showing
word-like (Harwath & Glass, 2017) and phone-like (Harwath et al., 2020) units are acquired from
speech by analyzing audio-visual retrieval models. Numerous works have studied the character-
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istics of the linguistic information acquired in visually grounded speech models (Havard et al.,
2019; Khorrami & Räsänen, 2021; Olaleye & Kamper, 2021; Wang & Hasegawa-Johnson, 2021;
Mitja Nikolaus, 2022). Peng & Harwath (2022b) shows that clear word segmentation and identifica-
tion naturally emerge from a visually grounded, self-supervised speech model named VG-HuBERT,
by analyzing the model’s self-attention heads. Unlike the above, AV-NSL acquires phrase structure,
in the form of constituency parsing on top of unsupervised word segments.

2.3 SPEECH PARSING AND ITS APPLICATIONS

Early work on speech parsing can be traced back to the SParseval toolkit (Roark et al., 2006), for
evaluating text parsers given (errorful) ASR output. Tran et al. (2018; 2019); Tran & Ostendorf
(2021) explored the use of acoustic-prosodic features for text parsing with auxiliary speech input.
Lou et al. (2019) trained a text parser (Kitaev & Klein, 2018) to detect speech disfluencies. In the
past, syntax has also been studied in the context of speech prosody (Wagner & Watson, 2010; Köhn
et al., 2018). The most relevant work to ours is Pupier et al. (2022), where a text dependency parser
is trained from speech jointly with an ASR model. Moreover, text syntax parsing has been applied
to prosody modeling in end-to-end text-to-speech (TTS; Guo et al., 2019; Tyagi et al., 2020; Kaiki
et al., 2021). This work builds on top of pre-existing text parsing algorithms or pre-existing phrase
structures from text, whereas we study phrase structure acquisition in the absence of text.

3 METHOD

is

A cat is on the ground

(A cat) on

is

the ground

(A cat) on  (the ground)

is(A cat) (on (the ground))

(is (on (the ground)))(A cat)

(A cat) (is (on (the ground)))

 imposter image

ResNet

pull

matching image

audio-visual word 
segmentation from speech

push

phrase-level audio-visual
embedding matching

phrase 
embeddingsTree sampling module: 

learn phrase structure on 
segment representation

segment representation 
via attention-pooling ResNet

continuous speech 
representations

   

tree sampling step

combine 
MLP

score 
MLP

(t-1)th step representations

score 
MLP

softmax

0.2 0.8

  

 

 

 

tth step representations

Figure 2: Illustration of AV-NSL, which extends VG-NSL (Shi et al., 2019) to audio-visual inputs.

Given a set of paired spoken captions and images, the Audio-Visual Neural Syntax Learner (AV-
NSL) infers phrase structures from subsequences of raw speech segments without relying on text.
The basis of AV-NSL is the Visually-Grounded Neural Syntax Learner (VG-NSL) (Shi et al., 2019).
VG-NSL learns constituency parse trees by guiding a sequential tree sampling process with text-
image matching. To extend VG-NSL to audio-visual inputs, the central challenge is extracting
semantically-meaningful word segments from unannotated speech. We break down the problem into
a two-step process: (1) obtaining sequences of word segments, and (2) extracting segment-level
self-supervised representations. With these simple modifications, AV-NSL learns non-trivial phrase
structure without ever reading text, instead by listening to speech and looking at images.

3.1 BACKGROUND: VISUALLY-GROUNDED NEURAL SYNTAX LEARNER

VG-NSL (Shi et al., 2019) is composed of a bottom-up text parser and a text-image embedding
matching module. The parser consists of an embedding similarity scoring function score and an
embedding combination function combine. Given a text caption, denoted by a sequence of word
embeddings W = {w0

i }Ni=1 of length N , the parser synthesizes a constituency parse tree by recur-
sively scoring and combining adjacent embeddings at each step. At step t, VG-NSL (1) evaluates all
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consecutive pairs of embeddings ⟨wt
i , w

t
i+1⟩ and assigns a scalar score to each with score, (2) selects

a pair ⟨wt
i′ , w

t
i′+1⟩ based on the corresponding scores,3 and (3) combines the selected pair of embed-

dings via combine to form a new phrase embedding for the next step, copying the remaining ones to
the next step. In VG-NSL, score is parameterized by a 2-layer ReLU-activated MLP, and combine is
defined by the L2-normalized sum of the input embeddings. The resulting tree is inherently binary
and there are N-1 combining steps in total, as the tree parser must combine two nodes in each step.

The text-image embedding matching module of VG-NSL is based on the standard hinge-based triplet
loss (Kiros et al., 2014), where the sentence-based loss is modified to a phrase-based one. Addition-
ally, the loss function is adapted to estimate the visual concreteness of a text span: intuitively, the
smaller the loss related to a candidate constituent c, the larger the concreteness of c, and vice versa.
The concreteness of a constituent c is defined as

concrete (c; i) =
∑
c′

[cos (i, c)− cos (i, c′)− δ]+ +
∑
i′

[cos (i′, c)− cos (i′, c)− δ]+ ,

where c is the vector representation of c; i is the corresponding vector of the parallel image of c; c′
is a candidate constituent from a sentence that is not in parallel with i; i′ is an image that is not in
parallel with c; δ is a constant margin. Here, [·]+ := max(·, 0). Finally, the estimated concreteness
scores are passed back to the parser as rewards to the constituents. VG-NSL jointly optimizes the
visual-semantic embedding loss, and trains the parser with REINFORCE (Williams, 1992).

3.2 AUDIO-VISUAL NEURAL SYNTAX LEARNER

+ +

Figure 3: Example of word segmentation from
VG-HuBERT (top). We use the midpoints of ad-
jacent attention boundaries (vertical blue dashed
lines) as the word boundaries. We observe that
function words are ignored by VG-HuBERT; to
account for this, we introduce segment inser-
tion (bottom): short segments are placed in long
enough gaps between existing segments, such that
function words are recovered. Inserted segments
are marked with “+”. Best viewed in color.

AV-NSL extends VG-NSL by: (1) incorporat-
ing an audio-visual word segmentation model
for obtaining sequences of word segments from
unannotated speech, (2) jointly optimizing
segment-level embeddings along with phrase
structure induction, and (3) employing deeper
score and combine function parameterization in
the parsing module. We empirically found (3)
necessary, mainly because speech embeddings
are inherently richer, less clean, and semanti-
cally more ambiguous than word embeddings.
In AV-NSL, score is parameterized by a 4-layer
MLP with GELU nonlinearities (Hendrycks &
Gimpel, 2016), and combine is a 5-layer MLP
with GELUs. On the other hand, such param-
eterization may cause the text-based sampling
procedure to favor sampling the visually-salient
words (Shi et al., 2019; Kojima et al., 2020).
We describe (1) and (2) in detail as follows.

Audio-visual word segmentation: AV-NSL leverages VG-HuBERT Peng & Harwath (2022b) for
word segmentation (Figure 2; bottom). VG-HuBERT is trained to associate spoken captions with
natural images via retrieval training, without any textual supervision. After training, spoken word
segmentation emerges via magnitude thresholding the self-attention heads of the model’s audio en-
coder: at layer l, we threshold each CLS token attention weights over each temporal speech frame
token to only show top p% of the magnitude. In Figure 3, we visualize the attention weights that
each speech frame receives from the CLS token. Weights from different attention heads are plotted
in different colors, and color transparency represents the magnitude of the attention weights.

However, an issue we observed with VG-HuBERT is that they tend to ignore function words such
as “a”, “the”, and “of”. While this is less of an issue for word segmentation and identification, it
is problematic for our purpose, as the function words are critical for phrase induction. Therefore,
we devise a simple heuristic to pick up function words’ segments – segment insertion. We insert
a short word segment whenever there is a sufficiently long enough gap of s seconds, and VG-
HuBERT fails to place an attention segment. See bottom of Figure 3. Since this could introduce

3In the training stage, the pair is sampled from a distribution where the probability of a pair is proportional
to exp(score); in the inference stage, the argmax is selected.
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false positives (inserting segments where there is no word spoken), we apply unsupervised voice
activity detection (Tan et al., 2020) to further restrict segment insertion only in voiced regions. The
length of the insertion gap s, the VG-HuBERT segmentation layer l, attention magnitude threshold
p%, and model training snapshots over different random seeds and training steps, are all determined
in an unsupervised fashion with minimal Bayes’ risk decoding, introduced in Section 3.4.

Speech segment representations: Given the word segments from the audio-visual segmentation
model, segment representations are extracted as inputs for the tree sampling module. Ideally, these
segments should be semantically-meaningful and mimic word embeddings W = {w0

i }Ni=1. A naive
method is speech discretization that converts the inputs into sequences of discrete tokens (Lakhotia
et al., 2021). Yet, we are targeting word-level phrase structures, while speech discretization, namely
acoustic unit discovery, are sub-phone level, which does not fit into our setup. Different from it, AV-
NSL is based on continuous segment-level self-supervised representations. Let’s denote the frame-
level representation sequence as R = {rj}Tj=1, where T is the speech sequence length. Audio-visual
word segmentation returns an alignment A(i) = rp:q that maps the ith word segment to the pth to
qth acoustic frames. The segment-level continuous representation for the ith word is simply,

w0
i =

∑
t∈A(i)

aitrit

where ait is the attention weights over the segments specified by A(i). By default in AV-NSL,
R is the layer representation from VG-HuBERT, and ait is the CLS token attention weights over
frames within each segment. In some cases, visual grounding is not available in AV-NSL’s word
segmentation, e.g. VG-HuBERT is not available. We instead take R as the layer representation
from a vanilla HuBERT (Hsu et al., 2021a), and ait is parameterized by a hidden layer that is jointly
optimized with the tree sampling module. Despite its simplicity, AV-NSL learns meaningful phrase
structures on these segment representation sequences.

3.3 SELF-TRAINING

A self-training procedure is introduced for AV-NSL to further improve its parsing capability. Previ-
ously, it has been shown that self-training consistently improves the performance of text-based un-
supervised constituency parsing. In Shi et al. (2020), the self-training model was based on Benepar
(Kitaev & Klein, 2018), a supervised neural constituency parser, which (1) takes a sentence as the
input, (2) maps it to word representations, and (3) predicts a score for any constituency parse tree. In
the inference stage, the model evaluates all possible tree structures and outputs the highest-scoring
one using the CKY algorithm (Kasami, 1966; Younger, 1967; Cocke, 1969).

In this work, we introduce s-Benepar, which is based on the original Benepar, except the model in-
put is the segment-level continuous HuBERT representations mean-pooled over unsupervised word
segmentation from VG-HuBERT with segment insertion, and model output is AV-NSL’s inferred
constituency parse from Section 3.2. We also removed part-of-speech tag prediction as in Benepar,
as there is no textual supervision in our setting. To summarize, with paired speech DA and image
DV data, the training scheme for AV-NSL with self-training is as follows:

1. Train an AV-NSL from audio-visual data (DA, DV ) and obtain the trained model Mav .
2. Generate parse tree T0 with Mav for DA. Obtain audio-tree pairs (DA, T0). Set T = T0.
3. Train an s-Benepar from (DA, T ) and obtain the trained model M i

s.
4. Generate parse tree Ti with M i

s for DA. Obtain audio-tree pairs (DA, Ti). Set T = Ti.
5. Go to Step 3 if we have not reached the desirable number of iterations; return T otherwise.

We find it helpful to iterate s-Benepar training twice (i = 2), but the results plateau afterwards.

3.4 UNSUPERVISED DECODING

One key ingredient of AV-NSL is applying minimum Bayes risk (MBR) decoding (Bickel &
Li, 1977) as the selection criterion for fully-unsupervised spoken word segmentation and phrase-
structure induction.4 Specifically, this is in contrast to all prior unsupervised word segmentation
work, in which ground truth word segments from a development set are required for decoding.

4MBR decoding is widely adopted in machine translation (Kumar & Byrne, 2004; Zhang & Gildea, 2008;
Shi et al., 2022, inter alia).
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At a high level, given a loss function ℓMBR(O1, O2) between two outputs O1 and O2, and a set of k
outputs O = {O1, . . . , Ok}, we select the optimal output

Ô = arg min
O′∈O

∑
O′′∈O

ℓMBR(O
′, O′′).

For word segmentation, we define the loss between two segmentation proposals S1 and S2 by
ℓMBR(S1,S2) = −MIOU(S1,S2), where MIOU(·, ·) denotes the mean intersection over union ra-
tio across all matched pairs of predicted word spans from S1 and S2. We match the predicted word
spans using the maximum weight matching algorithm (Galil, 1986), where word spans correspond
to vertices, and we define edge weights by the temporal overlap between the corresponding spans.

For phrase structure induction, we define the loss function between two parse trees T1 and T2 by
ℓMBR(T1, T2) = 1− F1(T1, T2), where F1(·, ·) denotes the F1 score between two trees.

4 EXPERIMENTS

4.1 SETTING

Dataset: All models are evaluated on SpokenCOCO, the spoken version of MSCOCO (Lin et al.,
2014) where the text captions are read out by MTurk users (Hsu et al., 2021b). It contains 83k/5k/5k
images for training, validation, and test: each image has 5 corresponding spoken captions. Spoken-
COCO totals 740h of read speech from 2.3k speakers, with an average utterance duration of about 4
seconds, covering 29K different word types.

Preprocessing: For oracle word segmentation, we ran an off-the-shelf English ASR from Montreal
Force Aligner (McAuliffe et al., 2017) that was pre-trained on Librispeech and adapted to Spoken-
COCO. We removed a few utterances that have mismatches in their ASR transcripts and their text
captions. Following Shi et al. (2019), we included trivial spans in tree evaluation. Additionally, we
ran an off-the-shelf English parser (Kitaev & Klein, 2018) on the ASR transcript (normalized text
with punctuation removed) to generate the oracle trees for SpokenCOCO.

4.2 BASELINES AND TOPLINES

AV-NSL segments speech waveforms into word segments, then learns phrase structures on top of the
learned segments. Both segmentation and structure induction are fully-unsupervised and visually-
grounded. To help us examine the role of each component in AV-NSL, we therefore further construct
the following baselines and toplines. Their full descriptions are in Appendix A.1.

Trivial tree structures: Following (Shi et al., 2019), we include baselines without linguistic infor-
mation: random binary trees, left-branching binary trees, and right-branching binary trees.

AV-cPCFG: We train compound probabilistic context free grammar (cPCFG) (Kim et al., 2019a) on
word-level discrete speech tokens. Similar to AV-NSL, word segments and segment representations
are based on VG-HuBERT. Different from AV-NSL, the segment representations are discretized via
kmeans to obtain word-level discrete indices. In short, AV-cPCFG leverages visual cues only for
segmentation and segment representations, but not for phrase structure induction.

DPDP-cPCFG: Instead of training cPCFG on audio-visual word segments and audio-visual seg-
ment representations, DPDP-cPCFG does not rely on any visual grounding throughout. Instead,
DPDP (Kamper, 2022) and vanilla HuBERT representations are used. As in AV-cPCFG, kmeans is
used for word-level discretization.

Oracle AV-NSL: To remove the uncertainty of unsupervised word segmentation, we directly train
AV-NSL on top of oracle word segmentation via force alignment.

4.3 EVALUATION METRIC

Word segmentation. We use the standard word boundary prediction metrics (precision, recall and
F1), which are calculated by comparing the temporal position between inferred word boundaries and
force aligned word boundaries. In particular, following Peng & Harwath (2022b), when an inferred
boundary is located within ±20ms of a force aligned boundary, we declare a successful prediction.
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Parsing. For parsing with oracle word segmentation, we use EVALB to calculate the F1 score
between the predicted and ground-truth parse trees.5 For parsing with inferred word segmentation,
due to the mismatch in the number of nodes between the predicted and ground-truth parse trees, we
introduce the structured average intersection-over-union ratio (SAIOU) as an additional metric.

SAIOU takes both word segmentation quality and temporal overlap between induced constituents
into consideration. Concretely, the input is two constituency parse trees over the same speech
utterance T1 = {c1,i = (ℓ1,i, r1,i)}n1

i=1 and T2 = {c2,j = (ℓ2,j , r2,j)}n2

j=1, represented by a set of
constituency temporal boundaries ℓ and r. We first compute the optimal valid alignment between
the constituents in T1 and T2, Â = argmaxvalid A

∑n1

i=1

∑n2

j=1 Ai,j IOU(c1,i, c2,j), where Ai,j = 1

denotes c1,i aligns with c2,j , and Ai,j = 0 otherwise; IOU(·, ·) denotes the intersection-over-union
ratio between two spans. A valid alignment A is one that satisfies the following conditions:

1. Any constituent may be aligned with up to 1 constituent in the other tree;

2. For any pair of i and j where Ai,j = 1,

• Any descendant of c1,i, c1,k, may either align to a descendant of c2,j or be left unaligned;
• Any ancestor of c1,i, c1,k′ , may either align to a ancestor of c2,j or be left unaligned;
• Any descendant of c2,j , c2,p, may either align to a descendant of c1,i or be left unaligned;
• Any ancestor of c2,j , c2,p′ , may either align to a ancestor of c1,i or be left unaligned.

Given the optimal alignment Â, we calculate the structured average IOU between T1 and T2 by

SAIOU(T1, T2) =
2

n1 + n2

 n1∑
i=1

n2∑
j=1

Âi,j IOU(c1,i, c2,j)

 .

4.4 UNSUPERVISED WORD SEGMENTATION

We validate our decision of adopting VG-HuBERT to extract word-like units from raw speech wave-
forms for later phrase structure parsing. In particular, we investigate two questions: (1) How does
segment insertion affect word segmentation performance? (2) how does MBR-based VG-HuBERT
compare to supervised selected VG-HuBERT?

In Table 1, in addition to VG-HuBERT, we also list a speech-only word segmentation algorithm
DPDP (Kamper, 2022). Note that audio-visual model VG-HuBERT significantly outperform DPDP.
For question (1), by comparing the third row and the fourth row, as expected we see that performing
segment insertion improves recall and hurts precision, and slightly improves F1. For question (2), by
comparing the fourth row and the fifth row (second to last row), we see that MBR selection actually
leads to better performance than supervised selection. The final MBR selection we adopted is based
on the last row, where we first performed MBR selection on SpokenCOCO val set on all 405 candi-
dates, and subsequently chose the 10 most selected combinations to perform another round of MBR
decoding. Getting the top 10 most selected combinations does not require knowing the performance
on segmentation, and therefore this process is still completely unsupervised. The reason for doing 2
iterations of MBR is because performing MBR on 405 candidates on SpokenCOCO training set is
estimated to take 2 months, and MBR on 10 candidates can be done in 5 days. Comparing the last
two rows, we observe that two iterations of MBR does not lead to worse results.

4.5 UNSUPERVISED PHRASE STRUCTURE INDUCTION

We quantitatively show that AV-NSL learns meaningful phrase structure given word segments.
First, Table 2 is the main result of the fully-unsupervised AV-NSL on SpokenCOCO, evaluated
with SAIOU. The best performing AV-NSL is based on our improved VG-HuBERT with MBR
top 10 selection for word segmentation, attention-weighted mean-pool over VG-HuBERT layers as
the segment representations, and another MBR decoding over all phrase structure induction hyper-
parameters. Comparing AV-NSL against AV-cPCFG and AV-cPCFG against DPDP-cPCFG, we
empirically show the necessity of training AV-NSL on continuous segment representation instead of
discretized speech tokens, and the effectiveness of visual-grounding in our overall model design.

5https://nlp.cs.nyu.edu/evalb/
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Method Insertion Out. Sel. #Sel. Cand. Precision Recall F1

DPDP (Kamper, 2022) supervised 17.37 9.00 11.85

VG-HuBERT (Peng & Harwath, 2022b) supervised 36.19 27.22 31.07

✓ supervised 34.34 29.85 31.94
✓ MBR 405 33.83 34.37 34.10Improved VG-HuBERT (Ours)
✓ MBR (2iter) 405 →10 33.31 34.90 34.09

Table 1: Word Segmentation Performance on SpokenCOCO validation set. Out. Sel. denotes output
selection methods, and #Sel. Cand. denotes the number of candidate models to be selected. MBR
(2iter) means we first run MBR on all 405 candidates, and then run MBR again on the 10 most
selected candidates. Our improved VG-HuBERT with MBR achieves the best boundary F1.

Model Output SAIOU
Syntax Induction Segmentation Seg. Representation (continuous/discrete) Selection

Right-Branching VG-HuBERT+MBR10 0.546
Right-Branching DPDP 0.478

AV-NSL VG-HuBERT+MBR10 VG-HuBERT10 (continuous) MBR 0.516
AV-NSL VG-HuBERT+MBR10 VG-HuBERT10,11,12 (continuous) MBR 0.521
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+4k km (discrete) last ckpt. 0.499
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+8k km (discrete) last ckpt. 0.481

DPDP-cPCFG DPDP HuBERT2+2k km (discrete) last ckpt. 0.465
DPDP-cPCFG DPDP HuBERT10+2k km (discrete) last ckpt. 0.426

Table 2: Fully-unsupervised phrase structure induction results on SpokenCOCO. The best overall
number and the best number produced by neural models are in boldface. Full table in Appendix 7.

Model Segmentation Seg. Representation tree target Output SAIOU
train val test Selection

s-Benepar VG-HuBERT+MBR10 HuBERT2 AV-NSL AV-NSL oracle last ckpt. 0.538
s-Benepar VG-HuBERT+MBR10 HuBERT6 AV-NSL AV-NSL oracle last ckpt. 0.538
s-Benepar VG-HuBERT+MBR10 HuBERT2,4,6,8,10,12 AV-NSL AV-NSL oracle MBR 0.536

Table 3: Single round self-training in Section 3.3 improves the best AV-NSL from Table 2. We train
s-Benepar on the trees from fully-unsupervised AV-NSL. Full table in Appendix 8.

Secondly, Table 3 shows that our proposed self-training with s-Benepar complements AV-NSL.
Generally, a single round of self-training improves the SAIOU, and our best s-Benepar improves
the best AV-NSL from 0.521 to 0.538. Thirdly, Table 4 isolates phrase structure induction from
word segmentation quality with oracle AV-NSL. Different from Table 2, since there is no mismatch
in the number of tree nodes, we can adopt F1 evaluation. With proper segment-level representations,
unsupervised oracle AV-NSL matches or out-performs text-based VG-NSL. Similar to Tabel 3, self-
training with s-Benepar on oracle AV-NSL trees further improves the syntax induction results, almost
matching that of right-branching tree. Last but not least, perhaps surprisingly, right-branching trees
(RBT) on the given word segmentation reach the best SAIOU and F1 scores. We note that the right-
branching approach highly aligns with the head-initial property of English (Baker, 2001), especially
in our setting where all punctuation marks were removed; thus, it is nontrivial for AV-NSL to reach
the performance on par with RBT without inductive biases favoring any specific type of trees.

5 ANALYSES

Unsupervised Constituent Recall: Following Shi et al. (2019), we show the recall of specific types
of constituents (Table 5). While VG-NSL benefits from the head-initial (HI) bias, where abstract
words are encouraged to appear in the beginning of a constituent, it is worth noting that AV-NSL
outperforms all variations of VG-NSL, without inductive biases favoring any specific types of trees.
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Model Output
F1

Syntax Induction Seg. Representation Selection

Random 32.77
Left-Branching 24.56
Right-Branching 57.39
VG-NSL word embeddings Supervised 53.11

oracle AV-NSL log-Mel spectrogram Supervised 42.01
oracle AV-NSL HuBERT2 Supervised 55.51

oracle AV-NSL HuBERT2 MBR 54.99

oracle AV-NSL HuBERT2,4,6,8,10,12,24 MBR 55.96
oracle AV-NSL → s-Benepar HuBERT2 MBR 57.24
oracle AV-NSL → s-Benepar HuBERT12 MBR 57.33

Table 4: Phrase structure induction with oracle segmentation given. Full table in Appendix 9.

Ablation Study: We present two ablations to examine the effectiveness of high-quality word seg-
mentation and visual representation (Table 6). We train AV-NSL with the following modifications:

1. Fix the visual representations, but replace oracle segmentation with naive uniform word segmen-
tation, where the number of words in each caption is given (uniform AV-NSL).

2. Fix the oracle word segmentation, but replace visual embeddings with random images, where
each pixel is independently sampled from a uniform distribution.

We observe that there are significant performance drops in both settings, comparing to the AV-NSL
trained with oracle segmentation and high-quality visual representation. This set of results comple-
ment Table 2, stressing that precise word segmentation and high-quality visual representations are
both necessary for phrase structure induction from speech. Furthermore, we provide tree structure
and word segmentation visualizations for qualitative analysis in the Appendix.

Table 5: Recall of specific typed phrases, includ-
ing noun phrases (NP), verb phrases (VP), preposi-
tional phrases (PP) and adjective phrases (ADJP),
and overall F1 score, evaluated on the Spoken-
COCO test split. The VG-NSL numbers are taken
from (Shi et al., 2019). AV-NSL here are trained
on oracle segmentation with vanilla HuBERT as the
layer representations.

Model F1
Constituent Recall

NP VP PP ADJP

VG-NSL (Shi et al., 2019) 50.4 79.6 26.2 42.0 22.0
VG-NSL + HI 53.3 74.6 32.5 66.5 21.7
VG-NSL + HI + FastText 54.4 78.8 24.4 65.6 22.0

oracle AV-NSL 55.6 55.5 68.1 66.6 22.1

Table 6: Top rows: performance of AV-NSL
with word segmentation in various quality
and high-quality visual embeddings. Bot-
tom rows: performance of AV-NSL with vi-
sual embeddings in various quality and high-
quality word segmentation. DINO: a self-
supervised model that produces high-quality
visual representations (Caron et al., 2021).

Model Visual F1

Syntax Induction Seg. Repre.

oracle AV-NSL HuBERT10 ResNet101 50.50
uniform AV-NSL HuBERT10 ResNet101 36.62

oracle AV-NSL HuBERT2 DINO 55.71
oracle AV-NSL HuBERT2 random 31.23

6 CONCLUSION

In recent years, there have been fruitful progresses in multi-modal induction for zero-resource speech
processing and grammar induction respectively. The idea of leveraging the visual modality to learn
language competence, either lexicon units from speech or syntactic structure from text, is an at-
tractive approach for modeling human language acquisition. Our study contributes to both lines of
research, by presenting an unifying framework that learns phrase structure from visually-grounded
speech, without any text. We show that our proposed model, AV-NSL, infers meaningful con-
stituency parse trees on top of continuous word segment representations, both quantitatively and
qualitatively. To justify our modeling design choices, we construct several baselines and introduce a
novel evaluation metric. We envision our research as the first of many in textless structure learning.
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ETHICS STATEMENT

This work is scientific at its core, as the goal is to study the process of grammar induction from
speech with visual grounding. The data used in this work is also publicly available. One potential
concern is that the data and experiments are based on English, which does not represent the global
human population. However, we believe that our proposed method is general enough to be applied
to other spoken languages when the data is available, because we do not use any language specific
speech processing techniques, and we do not have any built-in bias within the models.

REPRODUCIBILITY STATEMENT

AV-NSL code, s-Benepar code, and SAIOU evaluation code will be made publicly available. AV-
NSL code is based on the VG-NSL codebase. s-Benepar code is based on the Benepar codebase.
SpokenCOCO is publicly available to download. All models are trained on a single GPU. We also in-
cluded as many experimental details as we can in the main content of the paper and in Appendix A.2.
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dency parsing of spoken french. In Interspeech, 2022.

Brian Roark, Mary Harper, Eugene Charniak, Bonnie Dorr, Mark Johnson, Jeremy G Kahn, Yang
Liu, Mari Ostendorf, John Hale, Anna Krasnyanskaya, et al. Sparseval: Evaluation metrics for
parsing speech. LREC, 2006.

Deb K Roy and Alex P Pentland. Learning words from sights and sounds: A computational model.
Cognitive science, 26(1):113–146, 2002.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and Aaron Courville. Neural language modeling by
jointly learning syntax and lexicon. ICLR, 2018.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron Courville. Ordered neurons: Integrating
tree structures into recurrent neural networks. ICLR, 2019.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I Wang. Natural lan-
guage to code translation with execution. arXiv preprint arXiv:2204.11454, 2022.

Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen Livescu. Visually grounded neural syntax
acquisition. ACL, 2019.

Haoyue Shi, Karen Livescu, and Kevin Gimpel. On the role of supervision in unsupervised con-
stituency parsing. In EMNLP. Association for Computational Linguistics, 2020.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Breaking out of local optima with
count transforms and model recombination: A study in grammar induction. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, pp. 1983–1995, Seattle,
Washington, USA, October 2013. Association for Computational Linguistics. URL https:
//aclanthology.org/D13-1204.

Zheng-Hua Tan, Najim Dehak, et al. rvad: An unsupervised segment-based robust voice activity
detection method. Computer speech & language, 59:1–21, 2020.

13

https://aclanthology.org/D13-1204
https://aclanthology.org/D13-1204


Under review as a conference paper at ICLR 2023

Trang Tran and Mari Ostendorf. Assessing the use of prosody in constituency parsing of imperfect
transcripts. Interspeech, 2021.

Trang Tran, Shubham Toshniwal, Mohit Bansal, Kevin Gimpel, Karen Livescu, and Mari Osten-
dorf. Parsing speech: a neural approach to integrating lexical and acoustic-prosodic information.
NAACL-HLT, 2018.

Trang Tran, Jiahong Yuan, Yang Liu, and Mari Ostendorf. On the role of style in parsing speech
with neural models. Interspeech, 2019.

Shubhi Tyagi, Marco Nicolis, Jonas Rohnke, Thomas Drugman, and Jaime Lorenzo-Trueba. Dy-
namic prosody generation for speech synthesis using linguistics-driven acoustic embedding se-
lection. Interspeech, 2020.

Maarten Versteegh, Roland Thiolliere, Thomas Schatz, Xuan Nga Cao, Xavier Anguera, Aren
Jansen, and Emmanuel Dupoux. The zero resource speech challenge 2015. ISCA, 2015.

Michael Wagner and Duane G Watson. Experimental and theoretical advances in prosody: A review.
Language and cognitive processes, 25(7-9):905–945, 2010.

Bo Wan, Wenjuan Han, Zilong Zheng, and Tinne Tuytelaars. Unsupervised vision-language gram-
mar induction with shared structure modeling. ICLR, 2022.

Liming Wang and Mark Hasegawa-Johnson. A translation framework for visually grounded spoken
unit discovery. In ACSSC, 2021.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992. URL https://link.springer.com/
content/pdf/10.1007/BF00992696.pdf.

Daniel H Younger. Recognition and parsing of context-free languages in time n3. Information and
control, 10(2):189–208, 1967.

Hao Zhang and Daniel Gildea. Efficient multi-pass decoding for synchronous context free gram-
mars. In Proceedings of ACL-08: HLT, pp. 209–217, Columbus, Ohio, June 2008. Association
for Computational Linguistics. URL https://aclanthology.org/P08-1025.

Songyang Zhang, Linfeng Song, Lifeng Jin, Kun Xu, Dong Yu, and Jiebo Luo. Video-aided unsu-
pervised grammar induction. NAACL-HLT, 2021.

Yaodong Zhang. Unsupervised speech processing with applications to query-by-example spoken
term detection. PhD thesis, Massachusetts Institute of Technology, 2013.

Yaodong Zhang and James R Glass. Unsupervised spoken keyword spotting via segmental dtw on
gaussian posteriorgrams. ASRU, 2009.

Yanpeng Zhao and Ivan Titov. Visually grounded compound pcfgs. EMNLP, 2020.

14

https://link.springer.com/content/pdf/10.1007/BF00992696.pdf
https://link.springer.com/content/pdf/10.1007/BF00992696.pdf
https://aclanthology.org/P08-1025


Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 BASELINES

AV-cPCFG: We train compound probabilistic context free grammar (cPCFG) (Kim et al., 2019a)
on word-level discrete speech tokens. Similar to AV-NSL, word segments are obtained from VG-
HuBERT with segment insertion, and segment representations are extracted from VG-Hubert layer
10 with CLS attention weighted mean-pool. Different from AV-NSL, the segment representations
are discretized via kmeans to obtain word-level discrete indices. Because the discretization is word-
level instead of phone-level, we swept the number of kmeans cluster over {1k, 2k, 4k, 8k, 12k, 16k,
20k}, which corresponds to the dictionary size in cPCFG. In summary, AV-cPCFG leverages visual
cues only for segmentation and segment representations, but not for phrase structure induction.

DPDP-cPCFG: Instead of training cPCFG on audio-visual word segments and audio-visual seg-
ment representations, DPDP-cPCFG does not rely on any visual grounding throughout. Instead,
DPDP (Kamper, 2022), a recent speech-only word segmentation algorithm, and vanilla HuBERT
representations mean-pooled over DPDP segments are used. We swept through HuBERT layer {2,
4, 6, 8, 10, 12}. As in AV-cPCFG, kmeans is used for word-level discretization.

oracle AV-NSL: To remove the uncertainty of unsupervised word segmentation, we directly train
AV-NSL on top of oracle word segmentation via force alignment. The segment representations are
based on learnable attention pooling over vanilla HuBERT layer {2, 4, 6, 8, 10, 12} representations.
We also tried log Mel spectrograms and HuBERT-L 300M to examine the effectiveness of different
input representations. One note is that simpler score and combine parametrization suffices here6.

A.2 HYPERPARAMETERS

For VG-HuBERT, we run MBR selection on the combination of insertion gap {0.1,0.2,0.3} sec-
onds, segmentation layer {9,10,11}, attention magnitude threshold at top {30%,20%,10%}, three
training random seeds, and model snapshots at training step 20k, 30k, 40k, 50k, 60k. This gives 405
combinations in total.

A.3 FULL RESULTS TABLE

A.4 WORD SEGMENTATION VIZ

We show more examples of word segmentation generated by our improved VG-HuBERT in Figure 4.
Segments marked with “+” are inserted segments, and vertical blue dotted lines are inferred word
boundaries.

A.5 VISUALIZATION OF INDUCED TREES

We visualize the induced trees in Figure 5.

6We found that for oracle AV-NSL, the original score and combine parametrization in VG-NSL works better.
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Model Output SAIOU
Syntax Induction Segmentation Seg. Representation (continuous/discrete) Selection

Right-Branching VG-HuBERT+MBR10 0.546
Right-Branching DPDP 0.478

AV-NSL VG-HuBERT+MBR10 VG-HuBERT10 (continuous) MBR 0.516
AV-NSL VG-HuBERT+MBR10 VG-HuBERT11 (continuous) MBR 0.498
AV-NSL VG-HuBERT+MBR10 VG-HuBERT12 (continuous) MBR 0.492
AV-NSL VG-HuBERT+MBR10 VG-HuBERT10,11,12 (continuous) MBR 0.521
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+1k km (discrete) last ckpt. 0.454
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+2k km (discrete) last ckpt. 0.444
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+4k km (discrete) last ckpt. 0.499
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+8k km (discrete) last ckpt. 0.481
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+12k km (discrete) last ckpt. 0.473
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+16k km (discrete) last ckpt. 0.471
AV-cPCFG VG-HuBERT+MBR10 VG-HuBERT10+20k km (discrete) last ckpt. 0.454

DPDP-cPCFG DPDP HuBERT2+1k km (discrete) last ckpt. 0.434
DPDP-cPCFG DPDP HuBERT2+2k km (discrete) last ckpt. 0.465
DPDP-cPCFG DPDP HuBERT2+4k km (discrete) last ckpt. 0.444
DPDP-cPCFG DPDP HuBERT2+8k km (discrete) last ckpt. 0.387
DPDP-cPCFG DPDP HuBERT2+12k km (discrete) last ckpt. 0.447
DPDP-cPCFG DPDP HuBERT2+16k km (discrete) last ckpt. 0.360
DPDP-cPCFG DPDP HuBERT10+1k km (discrete) last ckpt. 0.403
DPDP-cPCFG DPDP HuBERT10+2k km (discrete) last ckpt. 0.426
DPDP-cPCFG DPDP HuBERT10+4k km (discrete) last ckpt. 0.415
DPDP-cPCFG DPDP HuBERT10+8k km (discrete) last ckpt. 0.367
DPDP-cPCFG DPDP HuBERT10+12k km (discrete) last ckpt. 0.415
DPDP-cPCFG DPDP HuBERT10+16k km (discrete) last ckpt. 0.414

Table 7: Fully-unsupervised phrase structure induction results evaluated with SAIOU.

Model Segmentation Seg. Representation tree target Output SAIOU
train val test Selection

s-Benepar VG-HuBERT+MBR10 HuBERT2 AV-NSL AV-NSL oracle last ckpt. 0.538
s-Benepar VG-HuBERT+MBR10 HuBERT4 AV-NSL AV-NSL oracle last ckpt. 0.536
s-Benepar VG-HuBERT+MBR10 HuBERT6 AV-NSL AV-NSL oracle last ckpt. 0.538
s-Benepar VG-HuBERT+MBR10 HuBERT8 AV-NSL AV-NSL oracle last ckpt. 0.532
s-Benepar VG-HuBERT+MBR10 HuBERT10 AV-NSL AV-NSL oracle last ckpt. 0.537
s-Benepar VG-HuBERT+MBR10 HuBERT12 AV-NSL AV-NSL oracle last ckpt. 0.536

s-Benepar VG-HuBERT+MBR10 HuBERT2,4,6,8,10,12 AV-NSL AV-NSL oracle MBR 0.536

Table 8: Self-training results evaluated with SAIOU.
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Model Output
F1

Syntax Induction Segmentation Seg. Representation Selection

Random oracle 32.77
Left-Branching oracle 24.56
Right-Branching oracle 57.39
VG-NSL word embeddings Supervised 53.11

AV-NSL oracle log-Mel spectrogram Supervised 42.01
AV-NSL oracle HuBERT2 Supervised 55.51
AV-NSL oracle HuBERT-L24 Supervised 54.63

AV-NSL oracle HuBERT2 MBR 54.99
AV-NSL oracle HuBERT4 MBR 53.25
AV-NSL oracle HuBERT6 MBR 53.46
AV-NSL oracle HuBERT8 MBR 53.14
AV-NSL oracle HuBERT10 MBR 36.67
AV-NSL oracle HuBERT12 MBR 48.51
AV-NSL oracle HuBERT-L24 MBR 54.39

AV-NSL oracle HuBERT2,4,6,8,10,12 MBR 55.56
AV-NSL oracle HuBERT2,4,6,8,10,12,24 MBR 55.96
AV-NSL → s-Benepar oracle HuBERT2 MBR 57.24
AV-NSL → s-Benepar oracle HuBERT4 MBR 57.08
AV-NSL → s-Benepar oracle HuBERT6 MBR 56.81
AV-NSL → s-Benepar oracle HuBERT8 MBR 56.94
AV-NSL → s-Benepar oracle HuBERT10 MBR 57.16
AV-NSL → s-Benepar oracle HuBERT12 MBR 57.33

Table 9: Phrase structure induction with oracle segmentation given results evaluated with F1.

Model F1
Constituent Recall

NP VP PP ADJP

VG-NSL (Shi et al., 2019) 50.4 79.6 26.2 42.0 22.0
VG-NSL + HI 53.3 74.6 32.5 66.5 21.7
VG-NSL + HI + FastText 54.4 78.8 24.4 65.6 22.0

AV-NSL (oracle seg. + HuBERT2) 55.6 55.5 68.1 66.6 22.1
AV-NSL (oracle seg. + HuBERT4) 53.7 57.4 56.8 61.3 21.3
AV-NSL (oracle seg. + HuBERT6) 53.9 59.4 55.4 59.3 21.2
AV-NSL (oracle seg. + HuBERT8) 53.9 56.0 58.0 64.9 22.5
AV-NSL (oracle seg. + HuBERT10) 50.6 55.8 48.1 57.0 20.5
AV-NSL (oracle seg. + HuBERT12) 49.0 62.5 34.4 45.0 17.4

Table 10: Recall of specific typed phrases, and overall F1 score, evaluated on the SpokenCOCO
test split. VG-NSL numbers are taken directly from (Shi et al., 2019). AV-NSL here are trained on
oracle segmentation with vanilla HuBERT as the layer representations.

Model Visual
F1

Syntax Induction Segmentation Seg. Representation Embedding

AV-NSL oracle HuBERT2 ResNet101 55.51
AV-NSL uniform HuBERT2 ResNet101 48.97
AV-NSL oracle HuBERT10 ResNet101 50.50
AV-NSL uniform HuBERT10 ResNet101 36.62

AV-NSL oracle HuBERT2 DINO 55.71
AV-NSL oracle HuBERT2 random 31.23

Table 11: Top rows: Impact of segmentation quality for AV-NSL with number of words segments
known in advance. Bottom rows: Impact of visual embedding for AV-NSL
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+ + +

(a) some giraffes are walking around in some dirt and grass.

+ + + +

(b) a classroom with laptop computers a projection screen and a basket of cookies

+ + + +

(c) the elephant with the herd is stretching its trunk upwards near a tree

+ + +

(d) the pantry door of the small kitchen is closed

+ +

(e) a zebra grazing on grass at an open zoo

+ +

(f) a motorcycle sits parked in palm tree lined driveway

+ +

(g) a girl smiles as she holds a kitty cat

+

(h) two dogs and a cat on a boat at edge of water

Figure 4: Examples of attention segments generated by VG-HuBERT. Inserted segments are marked
with “+”. Vertical blue dotted lines are inferred word boundaries.
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Figure 5: Visualization of an example produced by AV-NSL (best viewed in color). Top (red and
green): the ground-truth parse tree; bottom (blue and yellow): the generated parse tree. In each tree,
a parent segment adjacently covers its two children segments.
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