
Published in Transactions on Machine Learning Research (05/2025)

Towards Better Understanding of In-Context Learning Ability
from In-Context Uncertainty Quantification

Shang Liu s.liu21@imperial.ac.uk
Imperial College Business School
Imperial College London

Zhongze Cai z.cai22@imperial.ac.uk
Imperial College Business School
Imperial College London

Guanting Chen guanting@unc.edu
Department of Statistics and Operations Research
University of North Carolina

Xiaocheng Li xiaocheng.li@imperial.ac.uk
Imperial College Business School
Imperial College London

Reviewed on OpenReview: https: // openreview. net/ forum? id= Jwtpbhheoy

Abstract

Predicting simple function classes has been widely used as a testbed for developing theory and
understanding of the trained Transformer’s in-context learning (ICL) ability. In this paper,
we revisit the training of Transformers on linear regression tasks, and different from all the
existing literature, we consider a bi-objective prediction task of predicting both the conditional
expectation E[Y |X] and the conditional variance Var(Y |X). This additional uncertainty
quantification objective provides a handle to (i) better design out-of-distribution experiments
to distinguish ICL from in-weight learning (IWL) and (ii) make a better separation between
the algorithms with and without using the prior information of the training distribution.
Theoretically, we show that the trained Transformer reaches near Bayes optimum, suggesting
the usage of the information of the training distribution. Our method can be extended to
other cases. Specifically, with the Transformer’s context window S, we prove a generalization
bound of Õ(

√
min{S, T}/(nT)) on n tasks with sequences of length T , providing sharper

analysis compared to previous results of Õ(
√

1/n). Empirically, we illustrate that while
the trained Transformer behaves as the Bayes-optimal solution as a natural consequence of
supervised training in distribution, it does not necessarily perform a Bayesian inference when
facing task shifts, in contrast to the equivalence between these two proposed in many existing
literature. We also demonstrate the trained Transformer’s ICL ability over covariate shift
and prompt-length shift and interpret them as a generalization over a meta distribution.

1 Introduction

A particularly remarkable characteristic of Large Language Models (LLMs) is their ability to perform
in-context learning (ICL) (Brown et al., 2020). Once pretrained on a vast corpus of data, LLMs can solve
newly encountered tasks when provided with just a few training examples, without any updates to LLMs’
parameters. ICL has significantly advanced the technique known as prompt engineering (Ekin, 2023), which
has achieved widespread success in various aspects of daily life (Oppenlaender et al., 2023; Heston & Khun,
2023; Li et al., 2023a). Behind the empirical success of ICL, this method has captured the attention of the

1

https://openreview.net/forum?id=Jwtpbhheoy

Published in Transactions on Machine Learning Research (05/2025)

theoretical machine learning community, leading to considerable efforts into understanding ICL from different
theoretical perspectives (Xie et al., 2021; Akyürek et al., 2022; Von Oswald et al., 2023; Zhang et al., 2023a).

This work aims to enhance the theoretical understanding of ICL by examining the Transformer’s context
window and showing its effects on the approximation-estimation tradeoff. Although we obtain the results
for the case of uncertainty quantification where the model is asked to predict both the mean value and the
uncertainty of its prediction, our analysis is applicable across various ICL tasks and provides sharper bounds
compared to previous works. In addition to developing theories, we empirically demonstrate the effectiveness
of Transformers to in-context predicting the mean and quantifying the variance of regression tasks. We
design a series of out-of-distribution (OOD) experiments, which have generated significant interest within
the community (Garg et al. (2022); Raventós et al. (2024); Singh et al. (2024)). These experiments provide
insights in designing the pretraining process and understanding the ICL capabilities of transformers.

Our contributions are as follows:

- We theoretically analyze the problem of in-context uncertainty quantification. We consider the case when
Transformers can only process the contexts within a context window capacity S and derive a generalization
bound of Õ(

√
min{S, T}/nT) for pretraining over n tasks with sequences of length T (Theorem 3.2). Our

result can be easily extended to other cases under the assumption of almost surely bounded and Lipschitz
loss functions. As far as we know, our generalization bound is the first of its kind and provides a tighter
bound compared to the existing analyses (Li et al., 2023b; Zhang et al., 2023b) when S < T . In particular,
we use the context-window structure to establish a Markov chain over the prompt sequence and construct an
upper bound for its mixing time. We also examine the extra approximation error term due to a finite context
window S (Section B.2). Combining those discussions together, we quantify the convergence of the trained
Transformer’s risk to the Bayes-optimal risk. Moreover, we note that all the theoretical results only show that
the trained Transformer achieves a near-optimal in-distribution risk compared to that of the Bayes-optimal
predictor. It is incorrect to draw (from the theory or the in-distribution numerical results) either of the
conclusions that (i) the Transformer that achieves the near-optimal risk exhibits a similar structure as the
Bayes-optimal predictor by performing Bayesian inference (Zhang et al., 2023b; Panwar et al., 2023) or (ii)
the Transformer performs as the Bayes-optimal predictor for out-of-distribution tasks.

- Numerically, for the uncertainty quantification problem, we provide a comprehensive study of the in-context
learning ability of the trained Transformer under three scenarios of distribution shifts: task shift (Section 4.1),
covariate shift (Section 4.2), and prompt length shift (Section 4.3). We find that transformers are capable
of in-context learning of both mean and uncertainty predictions, even under a moderate amount of task
distribution shift, provided that the task diversity in the training data is relatively large. Additionally, we
find that increasing the task diversity with a meta-learning approach helps the transformer learn in-context
robustly under covariate shift. Lastly, we observe that removing positional encoding from the embedding
vector massively helps the generalization ability, enabling it to better learn tasks in-context with unseen
prompt length.

We defer more discussions on the related literature to Section A.

2 Problem Setup

Consider training a Transformer for some regression task f : X → Y from a function class F . The covariates
x ∈ X ⊂ Rd are generated from a distribution PX , and the output variable y = f(x) + σ · ϵ for some function
f ∈ F , noise level σ, and some random noise ϵ with E[ϵ] = 0 and Var(ϵ) = 1. The Transformer performs a
sequential prediction task over the following sequence

(x1, y1, ..., xT , yT)

where T is the total number of (in-context) samples. For a Transformer model with parameters θ ∈ Θ, we
denote it as TFθ. At each time t = 1, ..., T , the model TFθ observes Ht := (x1, y1, ..., xt−1, yt−1, xt) (which is
called history or prompt) and makes a bi-objective prediction of yt to both predict the mean with ŷθ(Ht)
and quantify the uncertainty of the prediction with σ̂θ(Ht). With a slight abuse of notations, we denote the

2

Published in Transactions on Machine Learning Research (05/2025)

output of the model by TFθ(Ht) := (ŷθ(Ht), σ̂θ(Ht)). The pretraining dataset consists of n sample sequences

D :=
{(

x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , ..., x

(i)
T , y

(i)
T

)}n

i=1
.

To generate each sample sequence in D, a function fi is sampled from a distribution PF supported on F
and a noise level σi is sampled from a distribution Pσ supported on [0, σ̄] ⊂ R. Then each x

(i)
t and y

(i)
t is

generated pairwise by
x

(i)
t

i.i.d.∼ PX , y
(i)
t = fi

(
x

(i)
t

)
+ σi · ϵ

(i)
t , ϵ

(i)
t

i.i.d.∼ Pϵ

where ϵ
(i)
t ’s are i.i.d. noise of mean zero and unit variance.

The Transformer is trained by minimizing the following empirical loss

θ̂ERM := arg min
θ∈Θ

1
nT

n∑
i=1

T∑
t=1

ℓ
(

TFθ

(
H

(i)
t

)
, y

(i)
t

)
(1)

where H
(i)
t = (x(i)

1 , y
(i)
1 , ..., x

(i)
t−1, y

(i)
t−1, x

(i)
t) and l((·, ·), ·) : (R × R+) × R → R denotes the loss function. We

use x
(i)
t , y

(i)
t , H

(i)
t to denote the samples in the training dataset and xt, yt, Ht to denote an arbitrary feature,

label, and history. Throughout this paper, we assume that each probability distribution is continuous and
has a probability density function (p.d.f.), and we also assume the conditional distribution of yt on observing
Ht exists almost surely.

The loss function is accordingly defined by

ℓ ((ŷ, σ̂), y) := log σ̂ + (y − ŷ)2

2σ̂2 .

Definition 2.1 (Bayes-optimal predictor). The Bayes-optimal predictor under the distributions PF , PX , Pσ

and Pϵ is defined by
(y∗

t (·), σ∗
t (·)) ∈ arg min

(y(·),σ(·))∈Gt×Gt

E
[
ℓ
((

y(Ht), σ(Ht)
)
, yt

)]
(2)

where Gt is the class of all measurable functions of Ht ∈ Ht. The expectation is taken with respect to the
following dynamics: xt ∼ PX , ϵt ∼ Pϵ, f ∼ PF , σ ∼ Pσ, yt = f(xt) + σ · ϵt and Ht = (x1, y1, . . . , xt).

The loss on the right-hand-side of equation 2 is the expectation of the empirical loss equation 1. With a rich
enough function class and an infinite amount of training samples, the trained Transformer TFθ̂ERM

converges
to (y∗

t , σ∗
t) as will be shown in Theorem 3.2.

2.1 Motivation for the uncertainty quantification objective

We first give a semi-formal definition for in-context learning and in-weight learning of the bi-objective linear
regression task considered in this paper.

In-context learning refers to that the Transformer gains the ability to learn from the in-context samples
(samples in Ht) and behave as an algorithm. For example, the Transformer exhibits in-context learning when
it behaves like a ridge regression model when performing the linear regression task. The in-context learning
ability should persist under the out-of-distribution setting such as shifting PX , PF , and Pσ.

In-weight learning, for the NLP tasks, generally refers to that the Transformer relies on the information
stored in its weights to make predictions, rather than the in-context samples. In this light, it memorizes the
training samples and uses the memorization to make predictions. This memorization mechanism is more
aligned with supervised learning setting; in particular, the mechanism is sensitive to distribution shifts and
thus is not considered a desirable outcome of training Transformers.

Then the question is when we train the Transformer according to the objective equation 1, does it exhibit
in-context learning or in-weight learning? For the classic single-objective linear regression task, we note two

3

Published in Transactions on Machine Learning Research (05/2025)

facts: (a) the trained Transformer is near the Bayes-optimal predictor (Xie et al., 2021; Zhang et al., 2023b;
Panwar et al., 2023); (b) under a Gaussian prior, the Bayes-optimal predictor is exactly a ridge regression
model (with proper choice of the regularization parameter, (Wu et al., 2023)). With these two facts, it is
tempting to draw the conclusion that the Transformer gains in-context learning ability and behaves as a
ridge regression model, but this has to be done with caution or may even lead to a wrong conclusion, given
that the trained Transformer does not exhibit out-of-distribution ability for full generality as noted in the
numerical experiments (Garg et al., 2022). This motivates us to consider the bi-objective tasks. First, for the
uncertainty quantification objective, when the number of in-context samples is fewer than the dimension
of xt’s, a near Bayes-optimal predictor must utilize the information in the training procedure, whereas
there is no algorithm that can optimally do this via only in-context samples. Thus it well distinguishes
the Bayes-optimal predictor from any possible algorithm and therefore gives a clearer picture of whether
the trained Transformer indeed behaves as an algorithm. Second, the uncertainty quantification objective
provides us an easy handle to designing numerical experiments, such as the flipped experiments (Wei et al.,
2023; Singh et al., 2024), to distinguish in-context learning from in-weight learning. Third, the uncertainty
quantification objective is of independent interest as it indicates whether the trained Transformer knows
its uncertainty or not. Furthermore, through this bi-objective task, we illustrate that while the trained
Transformer is near the Bayes-optimal predictor, it does not necessarily perform Bayesian inference when
making predictions, which contradicts the arguments in (Zhang et al., 2023b; Panwar et al., 2023; Jeon et al.,
2024).

3 In-Context Learning when In-Distribution

In this section, we focus on the in-distribution property of the trained Transformer. We provide a finite-sample
analysis of how trained Transformers reach near Bayes-optimum. While our analysis is made on the case of
uncertainty quantification, it can be easily adapted to other loss functions such as mean squared error. To
proceed, we first provide the exact form of the Bayes-optimal predictor defined in equation 2 for the mean
and uncertainty prediction.
Proposition 3.1 (Bayes-optimal predictor for mean and uncertainty prediction). The Bayes-optimal predictor
of the step-wise population risk defined in equation 2 is given by

y∗
t (Ht) = E[yt|Ht], σ∗2

t (Ht) = E[(yt − y∗
t (Ht))2|Ht] = E[(f(xt) − y∗

t (Ht))2|Ht] + E[σ2|Ht].

The optimal mean predictor shares the same form as the Bayes-optimal predictor for a single-objective mean
prediction task. The additional uncertainty prediction task does not change the nature of the mean prediction
part. The two terms in the optimal uncertainty predictor can be interpreted as follows. The first term is
epistemic uncertainty, which indicates the uncertainty (of identifying the f that governs the history Ht) due
to lack of information. The term decreases as the samples accumulate, i.e., as the number of in-context
samples t increases. The second term is aleatoric uncertainty also known as intrinsic uncertainty.

Recall that the empirical risk estimator is defined by equation 1. Now we define the population risk as

R(TFθ) := 1
T
EHt

[
T∑

t=1
ℓ
(
TFθ(Ht), yt

)]
,

where Ht is another sampled sequence that is independently and identically distributed as H
(i)
t ’s in the

training data. We denote the population risk minimizer as θ∗:

θ∗ ∈ arg min
θ∈Θ

R(TFθ). (3)

Now we present our main theoretical result.
Theorem 3.2. Let θ̂ERM denote the ERM estimator as defined in equation 1 over the function class of the
L-layer, M -heads Transformer models. Suppose that at each time t, the Transformer has a context window of
making predictions based on xt and previous S pairs of (xs, ys) for s = max{1, t − S}, . . . , t − 1. Then under

4

Published in Transactions on Machine Learning Research (05/2025)

(a) Mean prediction (b) Uncertainty prediction

Figure 1: Transformer behaves close to the Bayes-optimal predictor for in-distribution tasks. Details of the distributions
in data generation are given in Section G.1. The numbers 4096 and 65536 refer to the number of tasks (configurations
of (wi, σi)) used in the training, which is formally defined in Section G.2. The Bayes-optimal predictor is stated in
Proposition 3.1 and calculated analytically in Section G.3. For the left panel, the y-axis gives the mean squared
error in predicting yt. For the right panel, the y-axis gives the average of the predicted uncertainty over all the
test samples (average of σ̂(Ht) or σ∗(Ht) on test samples). In particular, we note that ridge regression and linear
regression (ordinary least squares) do not naturally produce a measurement of uncertainty, so we use the sum of
residuals on the in-context samples as their estimates of uncertainty. More visualizations are deferred to Section C.1.

some boundedness assumptions of the Transformer’s parameters (Assumption B.5 and B.6), we have with
probability at least 1 − δ,

R(TFθ̂ERM) − R(TFθ∗) ≤ Õ
(√

min{S, T}/(nT)
)

.

where Õ omits poly-logarithmic terms that depend on n, T, 1/δ and boundedness parameters.

Proof sketch. First, we prove that (a slightly redefined version of) the truncated history forms up a Markov
chain conditioned on observing the full hidden information f (i) and σ(i), and upper bound the mixing time
by min{S, T} to enable the concentration arguments. Second, we prove that the loss function is almost
surely bounded (Lemma E.3) in preparation for McDiarmid-type concentration inequalities (Lemma F.2,
(Paulin, 2015)). Third, we show that the loss is almost surely Lipschitz to control the difference between
loss functions with respect to the change of the parameter (Lemma E.7). Fourth, we prove that there exist
two distributions ρθ̂ERM and π over parameter space Θ, satisfying a number of properties as constructed in
Lemma E.11. Lastly, we use standard PAC-Bayes arguments over ρθ̂ERM and π and conclude the proof. The
detailed proofs are deferred to Section D.2.

Comparison with previous results. There are also other theoretical results that characterize the outcomes
of the (pre-)training on Transformer models (Zhang et al., 2023a; Wu et al., 2023; Xie et al., 2021; Li et al.,
2023b; Bai et al., 2024; Zhang et al., 2023b; Lin et al., 2023a). Our analysis differs from theirs in terms of
both the conclusion and the techniques. One stream of results examines the property of the gradient flow
(or gradient descent) over the loss function for linear regression problems. The exact quantification of the
gradient flow entails a simplification of the Transformer’s architecture to the case of a single-layer attention
mechanism under linear activation or even simpler settings (Zhang et al., 2023a; Wu et al., 2023). While their
analyses provide insights into the learning dynamics of Transformer models, the learning of the single-layer
attention Transformer can be very different from multiple-layer Transformers (Olsson et al., 2022; Reddy,
2023). Another major line of research uses statistical learning arguments (Xie et al., 2021; Li et al., 2023b;
Bai et al., 2024; Zhang et al., 2023b; Lin et al., 2023a) such as algorithm stability, chaining, or PAC-Bayes
arguments. Bai et al. (2024) focus on making predictions after observing a fixed length of variables under the
i.i.d. setting (which is more aligned with the standard supervised learning setting), which differs from the

5

Published in Transactions on Machine Learning Research (05/2025)

more practical setting of making predictions at every position as in Theorem 3.2. Xie et al. (2021) prove the
convergence between the Bayesian inference and the true underlying distribution rather than the trained
model and the Bayesian inference. Lin et al. (2023a) consider a sequential decision-making problem and use
covering arguments to derive generalization bounds, while their analysis does not adopt the concentration
arguments inside each sequence, resulting in an Õ(

√
1/n) upper bound for the average regret. The most

related works to ours are Li et al. (2023b); Zhang et al. (2023b). The major difference is that they all consider
the only case of S ≥ T . Li et al. (2023b) use the algorithm stability arguments to give a generalization bound
over |R − r| of order Õ(

√
1/(nT)). They prove the loss difference caused by perturbing one input pair over a

history of length t is controlled by O(1/t). Averaging those differences leads to a O(log(T)/T) = Õ(1/T)
inside each sequence (see their equation (15) in their Appendix C), which appears in the Azuma-Hoeffding
argument to prove that the loss per sequence is Õ(T −1/2)-sub-Gaussian. However, in the case of S ≪ T
(which is more often the case in practice), the algorithm stability term is of O(1/S). Averaging these terms
inside each sequence leads to a difference of order O(1/S). If we stick to the original Azuma-Hoeffding
arguments, the sum of squares of these terms is of O(T/S2), leading to a far worse sub-Gaussian norm of
O(T 1/2S−1), resulting in a final generalization bound of order Õ(T 1/2S−1n−1/2) that is clearly suboptimal
compared to our Õ(

√
S/(nT)). Besides, such a bound also grows with T , which is undesirable. Similar to

ours, Zhang et al. (2023b) also use a concentration argument for Markov chains. However, their Theorem
5.3 has two limitations: The first is that their result is of the order Õ(

√
τmin/(nT)) but they do not specify

τmin. Since they do not consider the truncated history but the full history, the Markov chain (which is not
verified by them) will never mix inside each task sequence (see our discussions in Section D.2). Thus, the
term τmin in their result is actually T , leading to an order of Õ(

√
1/n), which is suboptimal compared to

our Õ(
√

S/(nT)) when the context window S ≪ T . The second limitation is that their error decomposition
is not tight: their excessive risk bound (measured by the total variation distance between the distribution
induced by θ̂ and that by θ∗) has a term Dkl(Ptrue, Pθ∗) − TV(Ptrue, Pθ∗), which means their result has
an extra term of the approximation error since the Kullback-Leibler divergence is stronger than the total
variation distance (Polyanskiy & Wu, 2024). Our work is the first theoretical analysis showing the effects
of the context window S on the performance of the Transformer up to our knowledge. The construction of
the truncated history serves two-fold: not only does the truncation fit the practical model of finite context
window but it also gives an upper bound on the mixing time. Concentration inside each sequence makes it
possible to analyze the training dynamics broader than fixed-length sequences and prove the convergence to
near Bayes-optimum. The context window S also captures a novel dimension of the approximation-estimation
tradeoff in the Transformer model.

Extension of Theorem 3.2 to other problems. We remark that the result and its derivation do
not pertain to the uncertainty quantification setting, but hold for more general loss functions and are of
independent interests. In particular, our analysis still holds as long as the loss function is almost surely
bounded and Lipschitz with respect to the change of parameter θ, as we can see from the proof sketch.
We note here that to enable the Markov chain’s concentration arguments, the almost surely bounded loss
requirement cannot be relaxed to other tail properties such as sub-Gaussian (see the counter example in
Theorem 4 of Fan et al. (2021)).

We defer discussions on the approximation error to Section B.2.

4 In-Context Learning under Distribution Shifts

In Section 2, we describe in-context learning ability as algorithm-like that predicts based on the learning from
in-context samples, and such an ability should be generalizable to an out-of-distribution (OOD) environment.
In this section, we differentiate the OOD scenarios into task shift, covariate shift and length shift, and
examine the Transformer’s in-context learning ability in each scenario. As far as we know, we provide the
first comprehensive group of numerical experiments (for the linear regression task) that demonstrates the
Transformer’s ability to handle these three types of distribution shifts. We provide preliminary theoretical
discussions for such abilities and hope this points directions for future theoretical research.

6

Published in Transactions on Machine Learning Research (05/2025)

4.1 Task shift

When the trained Transformer performs well on the OOD data, it means that the Transformer gains an
algorithmic ability that learns to make predictions based on the in-context samples, because such an ability
is not restricted to the distribution of the inputs. Comparatively, the mere observation that the Transformer
works well on the in-distribution data does not demonstrate its in-context learning ability as a traditional
supervised learning model also has such ability and generalization performance over in-distribution data.

In the previous section, when we show the in-distribution performance of the Transformer, the variance
parameter σ2 is generated by the prior of the inverse-Gamma distribution σ2 ∼ Inv-Gamma(τ , τ̄) with
parameters τ and τ̄ . The details of the other generation distributions are deferred to Section G.1. For the
in-distribution setting, we set τ = τ̄ = 20 which leads to a prior mean around 1. Now we consider three
out-of-distribution (OOD) settings for the

• S-OOD (small OOD): τ = 80, τ̄ = 20. The prior mean of σ is around 0.5.

• M-OOD (medium OOD): τ = 100, τ̄ = 400. The prior mean of σ is around 2.

• L-OOD (large OOD): τ = 100, τ̄ = 1600. The prior mean of σ is around 4.

(a) Transformer trained w/ small pool size (b) Transformer trained w/ large pool size

Figure 2: OOD performances of Transformers and the Bayes-optimal predictor. The y-axis gives the average of
the predicted uncertainty over all the test samples (average of σ̂(Ht) or σ∗(Ht) on test samples), and ideally, they
should converge to the expected uncertainty level of 0.5 (S-OOD), 2 (M-OOD), and 4 (L-OOD) as in-context samples
increase. There are three OOD environments: small (S-OOD), medium (M-OOD), and large (L-OOD) that reflect the
intensity of the OOD. Two versions of the Transformer model are trained with a pool size of 4096 and 65536. The
Transformers and the Bayes-optimal predictor are the same as the ones in Figure 1. The only difference is that they
are evaluated on OOD data here.

We make following observations based on Figure 2: First, the Bayes-optimal predictor predicts well. We note
that the Bayes-optimal is computed based on the in-distribution prior distribution (with respect to σ2). Thus
when the Bayes-optimal predictor is tested under the OOD environment as in Figure 2, the prior used by the
Bayes-optimal predictor is wrong. But we note from Figure 2 that the Bayes-optimal predictor has the OOD
ability to correct the prior as the in-context samples accumulate (noting that the three Bayes-optimal curves
converging to the correct mean of 0.5, 2, and 4). This is also known as the washing out of priors in Bayesian
statistics. Second, Transformers deviate from the Bayes-optimal on these OOD tasks. For both plots in
Figure 2, we note that the predicted values from the Transformers deviate from those of the Bayes-optimal
predictor when the OOD intensity is large. This tells that the trained Transformer does not conduct Bayesian
inference under task shift. In other words, it is incorrect to conclude that the trained Transformer behaves
as the Bayes-optimal predictor just from the matching in-distribution loss (as Figure 1). Moreover, the

7

Published in Transactions on Machine Learning Research (05/2025)

Transformer achieves a near-optimal loss for in-distribution tasks (as Figure 1) but it does so via a different
avenue than the Bayes-optimal predictor (as Figure 2). This is in contrast with the findings/claims in the
previous papers (Zhang et al., 2023b; Panwar et al., 2023). Third, the deviation of the trained Transformer
from the Bayes-optimal is smaller when the task diversity is large or the OOD intensity is small. This is
aligned with the findings in (Raventós et al., 2024) for in-distribution performance, while the OOD setting is
not studied therein.

The theoretical evidence only states that the trained Transformer has a near-optimal in-distribution loss as
the Bayes-optimal predictor. But it does not give any evidence that these two have a structural similarity that
persists for OOD tasks. In particular, we note that the trained Transformer may take statistical shortcuts:
When evaluated under in-distribution tasks or some simple task shifts (e.g. scaling the weights vectors or
changing the signal-noise ratio), Zhang et al. (2023a); Wu et al. (2023) show that Transformer will construct
shortcuts using the statistical property of the training distribution. More specifically, Transformers (can,
and will) encode the information of the covariance matrix into their model parameters to reach near-optimal
in-distribution performance. Such statistical shortcuts are beneficial to the in-distribution performance but
can hurt its OOD ability. Increasing the training task diversity, such as a larger training pool size, may
remove some of these statistical shortcuts to obtain near-optimal empirical loss, and thus better enable its
in-context learning ability.

We defer more discussions and visualizations on this OOD experiment to Section C.2.

4.2 Covariate shift

For all the numerical experiments so far, the covariates are generated from N (0, Id). This follows the standard
setup of the existing literature (Akyürek et al., 2022; Von Oswald et al., 2023; Li et al., 2023b; Raventós
et al., 2024). It is also noted from the literature (Garg et al., 2022; Zhang et al., 2023a) that the trained
Transformer in this way lacks in-context learning ability under covariate shift. However, if the Transformers
trained on different tasks (different fi’s) can generalize to unseen tasks during the test phase, one may wonder
if the Transformers trained on different covariates (different distributions of xi’s) can also generalize. In this
subsection, we give a positive answer to that question by proposing a meta-training procedure that improves
the trained Transformer’s ability to handle covariate shifts. Specifically, we consider generating the covariates
in the training data as follows:

• For each training sequence (say, the i-th), we first sample a vector (λ1, ..., λd) where each λj is i.i.d.
Uniform[0, 2]. Then all the X

(i)
t ’s for t = 1, ..., T are sampled from N (0, diag((λ1, . . . , λd))). In this

sense, the covariance matrix of X
(i)
t ’s is also a random variable, and the X

(i)
t ’s can be viewed as

being sampled in a hierarchical manner from a meta-distribution.

We examine the performance of such a training procedure under four OOD test settings. In other words, the
X

(i)
t ’s in the test data is generated from the following four distributions where d = 8.

• Large covariance (L-cov): X
(i)
t ’s are sampled from N (0, 4Id).

• Decreasing diagonal (Dec.): X
(i)
t ’s are sampled from N (0, diag([d/i]di=1)).

• Shrinking diagonal (Shr.): X
(i)
t ’s are sampled from N (0, diag([d/i2]di=1)).

• Rotation (Rot.): X
(i)
t ’s are sampled from N (0, Uidiag([d/i]di=1)U⊤

i) where Ui is an orthogonal matrix
independently generated for each sequence.

Figure 3 gives the evaluation result under the 4 OOD settings. We note that the meta-distribution used is still
significantly different from the four OOD test environments. Thus the results show the effectiveness of the
meta-training approach. We evaluate the prediction error of models ordinarily trained, and models trained by
the meta-training process. For both mean and uncertainty, the models trained by the meta-training procedure
have a smaller prediction error.

8

Published in Transactions on Machine Learning Research (05/2025)

0 20 40 60 80 100
in-context samples

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Er
r.
M
ea

n
Pr
ed

ict
io
n

Deviation from Bayes Optimal μ

0 20 40 60 80 100
in-context samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

Deviation from Bayes Optimal σ
static_x_model_on_L-cov
meta_x_model_on_L-cov

0 20 40 60 80 100
in-context samples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Er
r.
M
ea

n
Pr
ed

ict
io
n

0 20 40 60 80 100
in-context samples

0.05

0.10

0.15

0.20

0.25

0.30

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

static_x_model_on_Dec.
meta_x_model_on_Dec.

0 20 40 60 80 100
in-context samples

0.2

0.4

0.6

0.8

1.0

1.2

Er
r.
M
ea

n
Pr
ed

ict
io
n

0 20 40 60 80 100
in-context samples

0.10

0.15

0.20

0.25

0.30

0.35

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

static_x_model_on_Shr.
meta_x_model_on_Shr.

0 20 40 60 80 100
in-context samples

0.2

0.4

0.6

0.8

1.0

1.2

Er
r.
M
ea

n
Pr
ed

ict
io
n

0 20 40 60 80 100
in-context samples

0.1

0.2

0.3

0.4

0.5

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

static_x_model_on_Rot.
meta_x_model_on_Rot.

Figure 3: The errors of the mean and uncertainty prediction where the error is measured by the absolute
difference against the Bayes-optimal predictor. The static_x_model corresponds to models trained with the
standard way in generating Xt’s, while the meta_x_model corresponds to the new approach of drawing Xt’s
from the meta-training procedure. In all 4 OOD settings, meta-trained models have better performance.

9

Published in Transactions on Machine Learning Research (05/2025)

4.3 Length shift and positional embedding

Existing work (Dai et al., 2019; Anil et al., 2022; Zhang et al., 2023a) have pointed out the failure of
Transformers to generalize to longer contexts than the ones they have seen during training. It is worth
mentioning that the code implementations of some previous works (Zhang et al., 2023a; Garg et al., 2022)
are based on the “transformers” package of Hugging Face. Although these works have not included positional
embedding explicitly, the GPT2 module imported from this package adds a built-in positional encoding
implicitly. We suspect that some unexpected behaviors (like the “unexpected spikes of prediction error”
mentioned in Zhang et al. (2023a)) are due to that the built-in positional encoding is not disabled. In this
subsection, we investigate the length generalization ability of the trained Transformer on the uncertainty
quantification task. Specifically, we control the prompt lengths that the model is trained on. Previous
experiments train the model on prompts with lengths (number of in-context samples) ranging from 1 to 100.
In this experiment, we control the training prompts such that the lengths are either shorter than 44 or longer
than 45 (the choice of 45 as the cutoff point is not essential). We specify these two configurations below.

• Trained on ≤ 44: the model is trained on prompts with length ranging from 1 to 44, and is evaluated
with prompt length from 1 to 100

• Trained on ≥ 45: the model is trained on prompts with length ranging from 45 to 100, and is
evaluated with prompt length from 1 to 100

We regard this difference in prompt length between training and testing as length shift. We evaluate the
effect of removing positional encoding under this prompt length generalization task. If positional encoding is
added to the embedding, samples at unseen positions will be associated with an unseen positional encoding
vector in the embedding space. This requires the model to handle not just an unseen number of in-context
samples, but also a possibly unseen embedding distribution, and generalization ability will likely deteriorate.
As mentioned previously, the built-in positional encoding of GPT2 model use a positional encoding which
is set to be (t, 0, · · · , 0)⊤ for the t-th token, and the encoding will then be concatenated to the embedding
vector. We validate the above intuitions with the following 4 training configurations.

• No positional encoding (w/o Pos.): the model is trained without positional encoding.

• Add positional encoding (w/ Pos.): the model is trained with GPT2’s built-in positional encodings.

• Add segment encoding (w/ S-Pos.): the positional encoding is added with a random amount offset.
For the i-th training sequence, a random offset ti is first uniformly sampled from {0, 1, . . . , 22}. Next,
for each token in this prompt at position t, the positional encoding is set to (t + ti, 0, . . . , 0)⊤.

• Add full range encoding (w/ F-Pos.): similar to the S-Pos. configuration, the positional encoding is
added with a random amount offset. But here the offset is uniformly sampled from {0, 1, . . . , 100}.

For the model trained with the “w/o Pos.” configuration, it is also tested without positional encodings. For
the models trained with the rest configurations, they are all tested with the “w/ Pos.” way of encoding.

The results are shown in Figure 4. The models in the left figure are trained on prompts shorter than 44, and
the models in the right figure are trained on prompts longer than 45. We make the following observations.
The pre-trained transformer in general can generalize to prompts with unseen length, under the condition
of using/removing the positional embedding properly. The “w/o Pos.” curve in the left figure shows that
even at positions larger than 44, the model can still produce predictions close to Bayes-optimal. Adding
positional encoding hurts the generalization ability. From the “w/ Pos.” curve in the left figure, we find
that the model’s performance drops significantly at positions larger than 44. The main cause of the failure
of length generalization is due to the distribution shift in the positional embedding space. As given in the
“w/ S-Pos.” and “w/ F-Pos.” curves in the left figure, if the model has seen the positional encodings for a
certain position during training, then its performance at this position is significantly improved, even if the
corresponding prompt length is never seen. The length generalization ability is not unrestrictively strong, and
such generalization ability for smaller lengths is generally weaker compared to that for larger lengths. The

10

Published in Transactions on Machine Learning Research (05/2025)

(a) Generalization from long to short (b) Generalization from short to long

Figure 4: The effect of removing positional encoding on prompt length generalization. The y-axis records the average
error of uncertainty prediction, which is the difference between the uncertainty predicted by the transformer and
the Bayes-optimal estimator. (a) For models trained with prompt lengths ≤ 44, the figure on the left shows that
positional encoding has the worst generalization capacity with a larger length, and removing positional encoding
could effectively enhance the length generalization power. (b) For models trained with prompt lengths ≥ 45, removing
positional encoding can help generalize to smaller lengths, although the generalization ability for smaller lengths is
generally weaker compared to that for larger lengths.

right figure shows that even for the “w/o Pos.” configuration, its performance still degrades when the prompt
length is shorter than 20.

Wu et al. (2023)’s Theorem 5.3 points out that under the case of the single-layer linear-attention-only
Transformer model on a linear regression task with Gaussian priors (without position encoding) if we train
the model to only predict one single label after observing T context exemplars, the optimally trained model
under T = T1 also performs well at the case T = T2 (compared to the Bayes-optimal predictor for T = T2) if
T1 and T2 are close. In particular, such a property holds because the single-layer linear-attention structure
constructs a “statistical shortcut” to achieve a near-optimal solution to the linear regression problem (of
which the Bayes optimal predictor is an optimally tuned ridge regression). The ridge regression’s regularizing
parameter is related to the sequence length and the signal-to-noise ratio (SNR). If SNR is fixed and T1 and
T2 are close, the Bayes-optimal predictors for T1 and T2 are close, implying that the “statistical shortcut”
learned at T1 still works in the case of T2. This result implies the possibility of context length generalization
by a simplified Transformer model due to shared structures in the attention matrices. The model of Wu et al.
(2023) is also a simplified Transformer that skipped the position encoding part. Another point is that our
empirical results also show that as the training and test context lengths get more different, the generalization
becomes worse, which is of the same spirit as Wu et al. (2023).

5 Conclusion and Limitations

In this paper, we study the in-context learning ability of the trained Transformer through the lens of
uncertainty quantification. In particular, we train the Transformer for a bi-objective task of mean prediction
and uncertainty prediction. We develop new results both theoretically and numerically. The takeaway messages
are: First, the Transformer can perform in-context uncertainty quantification. Second, the trained Transformer
is only guaranteed to achieve a near-optimal in-distribution risk against the Bayes-optimal predictor. This
does not imply that the Transformer behaves as the Bayes-optimal predictor either in-distribution or out-of-
distribution. Third, the major concern of restricting the window size has been computational due to the
quadratic growth of the computational consumption with respect to the context length, while our theory shows
that limiting context length/window sizes can also benefit the generalization when the data size is limited.

11

Published in Transactions on Machine Learning Research (05/2025)

Finally, the Transformer has the in-context ability for out-of-distribution tasks, but this in-context ability is
contingent on a proper training method, such as sufficient task diversity, meta-training for covariate shift, and
effective removal of the positional encoding. Two important future directions are as follows. First, we believe
our method for deriving the generalization bound has implications for a scope much larger than uncertainty
quantification and can be used to improve the existing bounds for various tasks using Transformers. Second,
all the numerical experiments in the paper are conducted for the linear functions fi’s. We believe the same
results still hold for nonlinear functions as well; and such results can further consolidate the in-context ability
for uncertainty quantification of the Transformer.

Our work also has limitations both theoretically and numerically. First, although Theorem 3.2 gives a tighter
generalization bound when the context window S is limited, it might not adapt to those LLMs that are of
very large window sizes nowadays. However, it might still be valuable for those situations where smaller
Transformers suffice. For example, for online decision-making problems where the action space and the
sequence length are much smaller than the natural language processing problems, smaller models such as
GPT-1 structure have been applied to construct Decision Transformer (Chen et al., 2021). Second, our
work criticizing the Bayesian explanation of ICL ability itself does not give a positive explanation of the
ICL dynamics; how ICL works remains unclear for future study. Finally, our discussions are limited to the
regression tasks, while whether and how Transformers perform ICL in other tasks is beyond this work’s scope.

References
Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh,

Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. Information fusion, 76:243–297,
2021.

Gustaf Ahdritz, Tian Qin, Nikhil Vyas, Boaz Barak, and Benjamin L Edelman. Distinguishing the knowable
from the unknowable with language models. arXiv preprint arXiv:2402.03563, 2024.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is
in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661, 2022.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose Slone,
Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization in large language
models. Advances in Neural Information Processing Systems, 35:38546–38556, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable
in-context learning with in-context algorithm selection. Advances in neural information processing systems,
36, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Michele Caprio, Souradeep Dutta, Kuk Jin Jang, Vivian Lin, Radoslav Ivanov, Oleg Sokolsky, and Insup Lee.
Credal bayesian deep learning. arXiv preprint arXiv:2302.09656, 2023.

Michele Caprio, Maryam Sultana, Eleni Elia, and Fabio Cuzzolin. Credal learning theory. arXiv preprint
arXiv:2402.00957, 2024.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside: Llms’
internal states retain the power of hallucination detection. arXiv preprint arXiv:2402.03744, 2024.

12

Published in Transactions on Machine Learning Research (05/2025)

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations.
The Annals of Mathematical Statistics, pp. 493–507, 1952.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov. Transformer-
xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process expectations
for large time. iv. Communications on pure and applied mathematics, 36(2):183–212, 1983.

Sabit Ekin. Prompt engineering for chatgpt: a quick guide to techniques, tips, and best practices. Authorea
Preprints, 2023.

Fabian Falck, Ziyu Wang, and Christopher C Holmes. Are large language models bayesian? a martingale
perspective on in-context learning. In ICLR 2024 Workshop on Secure and Trustworthy Large Language
Models, 2024.

Jianqing Fan, Bai Jiang, and Qiang Sun. Hoeffding’s inequality for general markov chains and its applications
to statistical learning. Journal of Machine Learning Research, 22(139):1–35, 2021.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context?
a case study of simple function classes. Advances in Neural Information Processing Systems, 35:30583–30598,
2022.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang
Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of uncertainty in deep
neural networks. Artificial Intelligence Review, 56(Suppl 1):1513–1589, 2023.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representations.
arXiv preprint arXiv:2310.10616, 2023.

Thomas F Heston and Charya Khun. Prompt engineering in medical education. International Medical
Education, 2(3):198–205, 2023.

Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin Van Roy. An information-theoretic analysis of in-context
learning. arXiv preprint arXiv:2401.15530, 2024.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty
estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language models for
supply chain optimization. arXiv preprint arXiv:2307.03875, 2023a.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as
algorithms: Generalization and stability in in-context learning. In International Conference on Machine
Learning, pp. 19565–19594. PMLR, 2023b.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforcement
learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023a.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantification for
black-box large language models. arXiv preprint arXiv:2305.19187, 2023b.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallucination
detection for generative large language models. arXiv preprint arXiv:2303.08896, 2023.

13

Published in Transactions on Machine Learning Research (05/2025)

Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):148–188,
1989.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. arXiv preprint
arXiv:2209.11895, 2022.

Jonas Oppenlaender, Rhema Linder, and Johanna Silvennoinen. Prompting ai art: An investigation into the
creative skill of prompt engineering. arXiv preprint arXiv:2303.13534, 2023.

Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism. In The
Twelfth International Conference on Learning Representations, 2023.

Daniel Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral methods.
Electronic Journal of Probability, 20(none):1 – 32, 2015. doi: 10.1214/EJP.v20-4039. URL https:
//doi.org/10.1214/EJP.v20-4039.

Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the emergence
of non-bayesian in-context learning for regression. Advances in Neural Information Processing Systems, 36,
2024.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context classification
task. arXiv preprint arXiv:2312.03002, 2023.

Yusuf Sale, Michele Caprio, and Eyke Höllermeier. Is the volume of a credal set a good measure for epistemic
uncertainty? In Uncertainty in Artificial Intelligence, pp. 1795–1804. PMLR, 2023.

Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The transient
nature of emergent in-context learning in transformers. Advances in Neural Information Processing Systems,
36, 2024.

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido Dagan, and Shauli Ravfogel. The curious case of
hallucinatory (un) answerability: Finding truths in the hidden states of over-confident large language
models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
3607–3625, 2023.

Ralph C Smith. Uncertainty quantification: theory, implementation, and applications. SIAM, 2013.

Timothy John Sullivan. Introduction to uncertainty quantification, volume 63. Springer, 2015.

Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. Journal of Machine Learning
Research, 24(123):1–76, 2023.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey
Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In International
Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv preprint
arXiv:2303.03846, 2023.

Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, and Eyke Hüllermeier. Quantifying aleatoric and
epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate
measures? In Uncertainty in artificial intelligence, pp. 2282–2292. PMLR, 2023.

14

https://doi.org/10.1214/EJP.v20-4039
https://doi.org/10.1214/EJP.v20-4039

Published in Transactions on Machine Learning Research (05/2025)

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett. How many
pretraining tasks are needed for in-context learning of linear regression? arXiv preprint arXiv:2310.08391,
2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning
as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Fengzhuo Zhang, Boyi Liu, Kaixin Wang, Vincent Tan, Zhuoran Yang, and Zhaoran Wang. Relational
reasoning via set transformers: Provable efficiency and applications to marl. Advances in Neural Information
Processing Systems, 35:35825–35838, 2022.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context. arXiv
preprint arXiv:2306.09927, 2023a.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context learning
learn? bayesian model averaging, parameterization, and generalization. arXiv preprint arXiv:2305.19420,
2023b.

A Related Works

Theoretical Understanding of In-Context Learning. There are two streams of research in the
theoretical understanding of ICL: the first tries to give sharp approximation error bounds on different
tasks, while the second focuses on how the trained Transformer approaches the potential optimum. For the
approximation error, following the pioneering empirical investigations on simple function classes (Garg et al.,
2022), Von Oswald et al. (2023); Akyürek et al. (2022) conjecture that the Transformer is doing ICL via
gradient descent, and verify it both empirically and theoretically. Based on the mechanism of layer-wise
gradient descent construction, Bai et al. (2024) show that Transformers are able to behave (approximately)
as well as some well-known algorithms on some statistical problems. Some following works generalize the
layer-wise gradient descent construction to other settings such as decision-making (Lin et al., 2023a) and
linear regression under representations (Guo et al., 2023). Apart from the layer-wise gradient descent, some
other works consider the one-step gradient descent reached by a single-layer linear-activated Transformer
(Zhang et al., 2023a; Wu et al., 2023) and curve the excessive population risk of the optimal model compared
to oracle or the Bayes-optimal predictor. Ahn et al. (2024) give a set of global optima for some specific
one-layer or two-layer attention-only models with linear or ReLU activation. Aside from characterizing
where the Transformer can reach, another group of works is making efforts towards understanding where the
Transformer will reach. One typical way is to study the simplified attention-only Transformers. Zhang et al.
(2023a) start the analysis of the training dynamics of the gradient flow over the population risk on the linear
regression task and show that a single-layer linear-attention-only model converges to some specific sets with
suitable initialization. Wu et al. (2023) keep the same spirit and give a sample complexity bound based on a
certain gradient descent scheme. For general Transformer models, technical tools from the statistical learning
theory are applied. As for the task of predicting the next token in natural language tasks, Xie et al. (2021)
provide a viewpoint from the Hidden Markov Model (HMM) and prove the asymptotic consistency under
the regularity condition. Bai et al. (2024); Lin et al. (2023a) use chaining arguments with covering numbers
for generalization, where Bai et al. (2024) consider the training under fixed length and Lin et al. (2023a)
consider the problem of sequential decision-making. Li et al. (2023b) adopt algorithm stability arguments
obtaining a bound of Õ(1/

√
nT). As is discussed in the main text (see discussions after Theorem 3.2), their

analysis will result in a suboptimal Õ(S/
√

nT) for the case S < T . Zhang et al. (2023b) adopt a similar
concentration inequality for Markov chains to get a bound of Õ(

√
τmix/(nT)). Since they do not consider

the limit of context window S, their derivation ends up with τmix ≥ T , which is suboptimal compared to our
case. In short, our paper is the first theoretical analysis on the limit of context window S and gets a tighter
generalization bound than previous works on the generalization bound when S < T .

Bayesian Behavior of In-context Learning. Due to the complex structure of transformers, showing the
theoretical properties of ICL without proper assumptions are challenging. There has been growing interest in

15

Published in Transactions on Machine Learning Research (05/2025)

developing experiments to test various properties of ICL, leading to new observations and insights. Some of
the earliest works that show transformers behave like Bayesian estimator can be found in Akyürek et al. (2022);
Garg et al. (2022), and this argument is supported in follow-up works including Li et al. (2023b); Wu et al.
(2023); Bai et al. (2024). However, there is also increasing empirical evidence demonstrating transformers’
non-Bayesian behavior. Singh et al. (2024) design flipped experiment and show transformers’ Bayesian
behavior could be transient. Raventós et al. (2024); Panwar et al. (2023) demonstrate that the Bayesian
behavior of transformers is dependent on the task diversity in the pretraining dataset, and transformers
could deviate from the Bayesian predictor if number of different training tasks is large. Falck et al. (2024)
design experiments based on the martingale property, a necessary condition of Bayesian behavior, and provide
evidence that transformers exhibit non-Bayesian behavior from a statistical perspective.

Transformers for Uncertainty Quantification. Uncertainty quantification has seen significant develop-
ment within the general machine learning and deep learning domains (Abdar et al. (2021); Gawlikowski et al.
(2023)), generating considerable interests within communities working on transformer-based large language
models (LLMs). See Kuhn et al. (2023); Manakul et al. (2023); Lin et al. (2023b) for uncertanty quantification
using black-box LLMs, and Slobodkin et al. (2023); Chen et al. (2024); Ahdritz et al. (2024) for that of
white-box LLMs. Most of these works focus on natural language processing tasks that have less statistical
properties. Indeed, uncertainty quantification has traditionally been developed from a more statistical and
probabilistic perspective (Smith (2013); Sullivan (2015)). By adopting transformer models to study more
statistics-related problems, our work aims to bridge and contribute to both fields.

We thank the reviewers for pointing out some literature for discussion. Although the problem setup seems
to be similar to domain generalization/adaptation or credal set learning theory (Caprio et al., 2024), the
main purpose of our work is different. The learner may face different types of distribution shifts between the
training data and the test data, and those works in the previously mentioned field are trying to curve the
learned results in those settings. However, our work aims to show that there is a gap between Bayes optimal
and Bayesian. When infinite training data is available and facing ID test data, the Bayesian learner can
behave as Bayes optimal. But the Bayes optimal may just be a result of ERM training as is shown in our
work. We test the Transformers on OOD data to see if they coincide with Bayesian predictions. The answer
is suspicious especially when the OOD issue becomes severe. Another line of research focus on quantifying the
uncertainty, especially factorizing the aleatoric uncertainty (AU) and the epistemic uncertainty (EU) (Sale
et al., 2023; Caprio et al., 2023; Wimmer et al., 2023). In this paper, our work differs from the aim of the
above-mentioned uncertainty quantification literature. We do not manage each term accordingly (the AU and
the EU). We are designing simple yet illustrative uncertainty quantification examples to test the ICL ability
of Transformers rather than proving Transformers should be (one of) the most appropriate approach(es) to
do uncertainty quantification.

B Transformer Model

Following Radford et al. (2019), we consider a decoder-only L-layer Transformer model that processes
the input sequence Ht by applying multi-head attention (MHA) of M heads and multi-layer perceptron
(MLP) layer-wise. Without loss of generality, we assume xt ∈ Rd for some d ≥ 2. We concatenate each yt

with d − 1 zeros so that it matches the format of each xt, while we still denote the concatenated vector
by yt with a slight abuse of notations. We denote Ht by a matrix in Rd×(2t−1) for t = 1, . . . , T , where
Ht = [x1, y1, · · · , xt]. We may also refer to xt by h2t−1 and yt by h2t. In practice, the attention mechanism
has a maximum dependence length, and therefore the Transformer model can only produce an output based
on the most recent tokens up to a context window size S. Hence we assume that at each time step t, the
Transformer model has a maximum capacity of making predictions based on xt and previous S pairs of
(xs, ys) observations for s = t − S, . . . , t − 1. In other words, the Transformer has a maximum capacity of
processing 2S + 1 tokens, and it is making predictions TFθ(Ht) = TFθ(HS

t) based on the truncated history
HS

t , where HS
t := (xmax{1,t−S}, ymax{1,t−S}, . . . , xt). In the following, we formally describe the architecture

of the Transformer used in this paper.

16

Published in Transactions on Machine Learning Research (05/2025)

Definition B.1 (Multi-Head Attention). A multi-head attention layer with M heads and activation function
act(·) can be defined as a function MHAW (·) for any sequence Zt ∈ Rd×(2t−1) and t = 1, . . . , S + 1,

MHAW (Zt) = Zt +
M∑

m=1
(W m

V Zt)act
(
(W m

K Zt)⊤(W m
Q Zt)

)
,

where W = {(W m
Q , W m

K , W m
V)}M

m=1 denotes all the parameters, W m
Q , W m

K ∈ Rdm×d, W m
V ∈ Rd×d for each

m = 1, . . . , M , and act : R(2t−1)×(2t−1) → R(2t−1)×(2t−1) is the activation function.

Here we merge the residual connection into the multi-head layer and skip the layer normalization to ease the
notations and simplify the analysis. The activation function is usually set to be columns-wise softmax in
practice: for each vector z ∈ R2t−1,

softmax(z) :=
(

exp(z1)∑2t−1
i=1 exp(zi)

, . . . ,
exp(z2t−1)∑2t−1
i=1 exp(zi)

)⊤

.

Some theoretical results also consider alternative choices for act. For example, Akyürek et al. (2022); Ahn
et al. (2024); Zhang et al. (2023a) consider the linear activation (that is, to entry-wise divide by the sequence
length 2t − 1). Bai et al. (2024); Guo et al. (2023) also examine the ReLU activation (that is, to entry-wise
apply a ReLU function ReLU(z) = max{0, z} and later divide by the sequence length 2t − 1).
Definition B.2 (Multi-Layer Perceptron). A multi-layer perceptron layer with hidden dimension dh can be
defined as a (token-wise) function MLPA(·) for any sequence Zt ∈ Rd×(2t−1) and t = 1, . . . , S + 1,

MLPA(Zt) = Zt + A2ReLU(A1Zt),

where A = (A1, A2) denotes all the parameters, A1 ∈ Rdh×d, A2 ∈ Rd×dh , and ReLU is the entry-wise ReLU
function.

We merge the residual connection into the multi-layer perceptron layer and omit the layer normalization to
simplify the theoretical development.
Definition B.3 (Transformer). A Transformer model with L layers can be defined as a function TFθ(·) for
any sequence Zt ∈ Rd×(2t−1) and t = 1, . . . , S + 1. For the l-th layer, the model receives Z

(l−1)
t as the input

and processes it by an MHA block and an MLP block, such that

Z
(l)
t = MLPA(l)(MHAW (l)(Zl−1

t)), ∀l = 1, . . . , L,

where Z
(0)
t = Zt. After the L-th layer, the model linearly maps the Z

(L)
t ∈ Rd×(2t−1) onto R2×(2t−1) via a

matrix P ∈ R2×d, and we process the second dimension by a softplus function to get the final prediction as

ŷθ(Zt) = (PZ
(L)
t)1,2t−1,

and
σ̂θ(Zt) = softplus

(
(PZ

(L)
t)2,2t−1

)
.

Here θ = ({(W (l), A(l))}L
l=1, P) encapsulates all the parameters and the function softplus(z) = log(1+exp(z))

is introduced to avoid negative output. The output is summarized as TFθ(Zt) := (ŷθ(Zt), σ̂θ(Zt)).
Remark B.4. To enable parallel training, the decoder-only Transformer receives a full sequence in the training
phase. The model has a masking component that prevents the model from seeing into the “future”. However,
such masking is unnecessary in our setting as the Transformer model receives exactly what it should “see” at
each time t, and the full dynamics are identical to those in the masked setting.

17

Published in Transactions on Machine Learning Research (05/2025)

Miscellaneous notations. Denote the set {1, . . . , K} by [K]. Denote the consecutive sequence {i, i +
1, . . . , j} by i : j. Denote the matrix A’s entry at the i-th row and the j-th column by Ai,j . Denote the
vector x’s i-th element by (x)i. Define the d-dimensional vector x’s p-norm as (

∑d
i=1(x)p

i)1/p for p ∈ [1, ∞],
where ∥x∥∞ = max1≤i≤d(x)i. Define the m × n-sized matrix A’s (p, q)-norm as (

∑n
j=1 ∥A:,j∥q

p)1/q. Denote
the d-dimensional diagonal matrix by diag{λ1, . . . , λd}. Denote the d-dimensional identity matrix by Id.
Denote the total variation distance between two probability distributions P and Q by TV(P, Q). Denote the
Kullback-Leibler divergence between two probability distributions such that P ≪ Q by Dkl(P∥Q). Denote
the product measure of P and Q by P × Q or P ⊗ Q. Denote the Cartesian product of two spaces X and Y
by X × Y . Denote the tensor-product σ-algebra of two σ-algebras Σ1 and Σ2 by Σ1 ⊗ Σ2. Denote the limiting
behavior of being upper (lower, both upper and lower, respectively) bounded by up to some constant(s) by O
(Ω, Θ, respectively). Denote Õ to be the O but omitting some poly-logarithmic terms.

B.1 Assumptions

Based on this setup of the Transformer model, we introduce the following bounded assumptions used for
Theorem 3.2. Such assumptions are common in the analyses of the Transformer model (Bai et al., 2024;
Zhang et al., 2023b) by either assuming an extra clipping operator or explicit upper bounds.
Assumption B.5. Assume Θ = B(0, BTF), where the norm is defined as

∥θ∥ := max{∥W (l)∥, ∥A(l)∥, ∥P∥ : l = 1, . . . , L}.

The corresponding norms are defined as

∥W∥ := max{∥W m
V ∥2,2, ∥W m

K ∥2,2, ∥W m
Q ∥2,2 : m = 1, . . . , M},

∥A∥ := max{∥A1∥2,2, ∥A2∥2,2}, ∥P∥ := ∥P ⊤∥2,∞,

where we omit some superscripts/subscripts of the layer number (l) for simplicity.
Assumption B.6. Assume ∥Ht∥2,∞ is bounded by BH almost surely. Such a regularization is equivalent to
assuming ∥xt∥2 ≤ BH and |yt| ≤ BH almost surely.

B.2 Approximation Error

In Section 3, we provide the generation bound in Theorem 3.2. Now we give an analysis for the approximation
error. We define the Bayes-optimal risk obtained by the Bayes-optimal predictor in Proposition 3.1: for each
t = 1, . . . , T ,

R∗
t := E

[
ℓ
((

y∗
t (Ht), σ∗

t (Ht)
)
, yt

)]
. (4)

However, Transformers only have access to the truncated history HS
t , which prevents them from reaching R∗

t .
By using Proposition 3.1 for the HS

t , we denote the truncated Bayes optimum for each t:

yS∗
t (HS

t) := E[yt|HS
t],

and (
σS∗

t (HS
t)
)2 := E[(f(xt) − yS∗

t (HS
t))2|HS

t] + E[σ2|HS
t].

We denote the truncated Bayes-optimal risk as

RS∗
t := E

[
ℓ
((

yS∗
t (HS

t), σS∗
t (HS

t)
)
, yt

)]
. (5)

It is straightforward to check that
RS∗

t = R∗
t , for any t ≤ S. (6)

However, the equality is generally not true for t > S. We give an example to illustrate the gap.

18

Published in Transactions on Machine Learning Research (05/2025)

Example B.7. Consider the case where one has oracle access to the noise level σ. Note that the oracle
knowledge only reduces the risk RS∗

t , since we use information that is not a measurable function of HS
t . The

problem is reduced to a regression problem.

Suppose the function f is linear and its weight vector has a prior distribution of N (0, σ2Id), and the noise
ϵ ∼ N (0, 1). Suppose xt ∼ N (0, Id). Then the optimal estimator is an optimally tuned Ridge regression.

Tsigler & Bartlett (2023) show that with high probability, the optimal Ridge regression estimator has an
average risk of 1

2 + Θ(1/S), where the term 1
2 is due to E[(y − f(x))2]/(2σ2). But as the length t approaches

infinity, the average risk of the optimal Ridge regression over the full sequence Ht will converge to 1
2 with high

probability, meaning that the estimated f̂ will converge to true f for every sequence. Hence one can always
construct an uncertainty estimation by averaging all the residuals, and such an estimation σ̂ will converge to
the true σ. Thus, we have R∗

t approaching 1
2 as t grows to infinity, leading to the conclusion that

RS∗
t − R∗

t ≥ Ω(1/S),

for sufficiently large t.

Example B.7, together with Theorem 3.2, shows the approximation-estimation tradeoff in selecting the context
window S of Transformer models. Previous works (Wu et al., 2023; Bai et al., 2024; Zhang et al., 2023b; Guo
et al., 2023) consider the case where t ≤ S, and establish the upper bounds for the approximation error. In
other words, these existing results are all made with respect to the gap between RS∗

t and R(TFθ∗). To our
knowledge, we are the first work to point out the extra term of approximation error due to truncation.

C More Numerical Results and Discussions

C.1 In-distribution performance

In Figure 1, we provide a comparison of the in-distribution performance of the trained Transformer v.s. the
Bayes-optimal predictor. A subtle point is that for the uncertainty prediction, we only plot the average
predicted uncertainty, this does not fully imply that the Transformer gives a similar prediction as the
Bayes-optimal predictor. To this end, Figure 5 plots the difference between each of the models and the
Bayes-optimal predictor in terms of uncertainty estimation.

C.2 Out-of-distribution perfomance

In Figure 2, we plot the Bayes-optimal predictor under three OOD settings, and we note that though the
Bayes-optimal predictor uses a wrong prior, it has the ability to work as an algorithm to correct the prediction
with the in-context samples. Now in Figure 6 (a), we compare the Bayes-optimal predictor that uses the
wrong prior with the Bayes-optimal predictor that uses the correct prior (which replaces the in-distribution
prior with the correct OOD prior of σ2). The figure is based on the large OOD setting. We observe that the
Bayes-optimal predictors with the ID prior or the OOD prior both converge to the true uncertainty level. For
Figure 6 (b), we plot the performances under the same large OOD setting. As a reference line, we copy and
paste the Bayes-optimal predictor’s curve in Figure 1 (b) here. We note this reference line is computed based
on the in-distribution (ID) data and is not comparable at all to the predicted uncertainty level on the OOD
data. Yet, we note that when the number of tasks is small when training the Transformer (say N = 4096), it
tends to make predictions on the OOD data by treating the OOD data just as ID data, and this means the
trained Transformer is doing in-weight learning and has no in-context learning ability. As the number of
tasks increases, the Transformer gradually gains the in-context ability and moves towards the Bayes-optimal
predictor on the OOD data.

C.3 Training dynamics and task shift OOD performance

Now we zoom into the training dynamics to further investigate the OOD performance under task shift. In the
following example, we derive a theoretical result based on Theorem 4.1 in Zhang et al. (2023a). Specifically,
R and R′ (following the notations therein) denote the in-distribution and out-of-distribution expected risk.

19

Published in Transactions on Machine Learning Research (05/2025)

Figure 5: In-distribution performance of the uncertainty prediction against the Bayes-optimal predictor. The y-axis
gives an estimate of E [− log |σ̂(Ht) − σ∗(Ht)|] where the expectation is taken with respect to Ht. Here σ̂(Ht) is the
uncertainty estimate produced by an algorithm (ridge regression, linear regression, or transformer), and σ∗(Ht) is the
Bayes-optimal predictor given in Proposition 3.1 and calculated by Section G.3. The figure shows that the Transformer
and the Bayes-optimal predictor produce similar uncertainty predictions. In addition, the Transformer trained on a
larger pool of tasks (larger N) produces a better approximation of the Bayes-optimal predictor.

(a) Bayes-optimal w/ ID or OOD prior (b) Moving from ID to OOD

Figure 6: Performance under L-OOD setting. For both (a) and (b), the y-axis gives the average of the predicted
uncertainty over all the test samples (average of σ̂(Ht) or σ∗(Ht) on test samples), and ideally the curves should
converge to the true uncertainty level of 4 as the number of in-context samples increases. In (a), we compare the
Bayes-optimal predictor that uses the wrong prior with the Bayes-optimal predictor that uses the correct prior (which
replaces the in-distribution prior with the correct OOD prior of σ2). Both work well in that the curves converge to
the true mean uncertainty level of around 4. The Transformers deviate from both Bayes-optimal predictors due to the
large OOD intensity. In (b), we observe that as the training task diversity increases. The transformer gradually moves
from the ID reference line to the Bayes-optimal predictor.

The result says that while the in-distribution risk continues decreasing over time, the out-of-distribution risk
may keep increasing or may first decrease and then increase. Importantly, the out-of-distribution risk may
depend on the initial point of the training procedure.

20

Published in Transactions on Machine Learning Research (05/2025)

Reaching the Bayes optimum requires prior knowledge of the underlying distribution. We provide a simple
example of where the Transformer stores its prior knowledge and how it hurts the OOD performance even
under a mild distribution shift.
Example C.1 (A corollary that can be derived based on Theorem 4.1 in Zhang et al. (2023a)). Consider
a one-layer attention-only Transformer model with linear activation and one attention head on the linear
regression task. We now concatenate each of the inputs to be [x⊤

t , yt]⊤ ∈ Rd+1. Suppose we focus on the linear
regression task on the (T + 1)-th sample after observing T context exemplars, where each w(i) ∼ N (0, Id), each
x

(i)
t ∼ N (0, Id), each ϵ

(i)
t ∼ N (0, 1), and y

(i)
t = w(i)⊤y

(i)
t + σ0 · ϵ

(i)
t . If we adopt the same training setup as

Zhang et al. (2023a) (with details referred to therein), then for any |σ′
0 − σ0| ≥ ∆ for some ∆ > 0, if we train

on the distribution w.r.t. σ0 but test on the distribution w.r.t. σ′
0 (denoted by R′), then for C = d/(16(2 + σ0))

and any sequence 0 < δ1 < δ2 < · · · < C∆, there exists a non-decreasing sequence 0 ≤ τ(δ1) ≤ τ(δ2) ≤ . . . ,
such that

R′(τ(δi)) − R′
θ∗′ ≥ δi, for each i = 1, 2, . . . ,

while the parameter (W ⊤
K WQ)1:d,1:d(WV)d+1,d+1 converges to 1/(1+(2+σ0)/T)·Id (which is the corresponding

part of some θ∗). Here θ∗ and θ∗′ minimize the population risk R and R′, accordingly.

We design an experiment to show that as training proceeds, the model’s OOD performance is improved
abruptly in the starting phase, but then degrades steadily after too many steps of training. We introduce the
experiment settings below. A visualization of the setup is given in Figure 7.

Figure 7: The settings of the OOD experiment. (Left) The in-distribution (ID) tasks are sampled from
regions denoted by the green blocks, and the OOD tasks are sampled from the red blocks. (Right) In the
starting phase, training improves both the ID and OOD performance. But if training for too many steps, the
ID performance is only marginally improved, while the OOD performance steadily degrades.

Each linear task in our uncertainty quantification setting is characterized by parameters (w, σ). We define
two regions for w, denoted by W1 and W2. And two regions for σ, denoted by G1 and G2. When w is sampled
from W1, w follows the following distribution

w = |β|, β ∼ N (0, I8).

When w is sampled from W2, w follows the following distribution

w = −|β|, β ∼ N (0, I8).

For σ, define G1 = [0.1, 0.3]∪[0.5, 0.7] and G2 = [0.3, 0.5]∪[0.7, 0.9]. Define G1 and G2 to be the “complementary”
group of each other. We sample σ independently from w, and we always sample σ uniformly from either group
G1 or G2. As marked in Figure 7, the “ID” tasks sample its parameters from (w, σ) ∈ W1 ⊗ G1

⋃
W2 ⊗ G2 and

the “OOD” tasks sample its parameters from (w, σ) ∈ W1 ⊗ G2
⋃

W2 ⊗ G1. The training is on “ID” tasks, and

21

Published in Transactions on Machine Learning Research (05/2025)

the trained model is tested on both “ID” tasks and “OOD” tasks. The metric we evaluate in this experiment
is the “prediction accuracy” of uncertainty. The accuracy denotes the probability that the model predicts the
σ into its “right” group. (for a prompt generated from (w, σ) with σ ∈ G, we say that the model makes a
“right” prediction if the predicted σ falls into G).

Figure 8 presents the experiment result. The prediction accuracy on the ID dataset peaks after 20k steps of
training. At the same time, the prediction accuracy on the OOD dataset also increases to 80%. After that,
the ID performance remains unchanged, but the OOD accuracy keeps dropping.

Figure 8: The accuracy denotes the probability that the model predicts the σ into the “right” group. For
example, if the sampled tasks take σ from group G1, then accuracy denotes the probability that the model
predicts σ into G1. The data is collected for the 100-th token in order to eliminate the epistemic uncertainty
due to insufficient in-context samples. The x-axis denotes the training steps. This figure shows that when
training too many steps (> 40k in this case), the generalization ability of the model steadily declines.

In order to verify that the degradation of OOD performance is due to the increasing confidence in the prior
information of the training data, we check for the OOD distribution whether the model has predicted σ
into the complementary group. The result is presented in Figure 9, which verifies that after training too
many steps, the model tends to predict σ following the training prior. A more concrete way to explain it:
consider an OOD sampled task (w, σ) where w > 0. According to the sampling rule of OOD tasks, it must
have σ ∈ G2. If the model has the OOD ability, it should predict σ ∈ G2. But if it has too much confidence
in its training prior, it will predict σ into G1, the complementary group of G2. Figure 9 shows that for the
misclassified OOD tasks, the model has predicted them into complementary groups.

22

Published in Transactions on Machine Learning Research (05/2025)

Figure 9: This figure validates that the decline of OOD ability is due to increasing confidence in the training
prior. The blue bars correspond to the OOD accuracy, and the red bars give the probability that the model
predicts uncertainty σ into the complementary group (i.e. the training distribution of σ). As the training
proceeds, most of the misclassified σ are predicted following the training prior.

D Proofs of the Results in the Main Paper

D.1 Proof of Proposition 3.1

Proof. Recall that the population risk is

L(ŷ, σ̂) := Ef,x[t],ϵ[t],σ

[
log σ̂(Ht) + (yt − ŷ(Ht))2

2σ̂2(Ht)

]
.

We first prove that for any σ̂(Ht), the choice of ŷt = y∗ = E[yt|Ht] minimizes the population risk. With any
fixed σ0 > 0, when σ̂t = σ0, then minimizing the population risk reduces to minimizing E[(yt − ŷ(Ht))2].
Using Fubini’s Theorem and the fact that the conditional distribution exists, we have

Ef,x[t],ϵ[t],σ

[
(yt − ŷ(Ht))2] = EHt

[
E
[
(yt − ŷ(Ht))2∣∣Ht

]]
= EHt

[
E
[
(f(xt) − ŷ(Ht))2∣∣Ht

]]
+ EHt

[
E[σ2|Ht]

]
, (7)

where the last equality follows from the fact that ϵt is independent of Ht and σ and is of zero mean and unit
variance. Since the second term on the right-hand-side of equation 7 does not depend on ŷ, we only need to
focus on the first term. For each realization of Ht, the prediction ŷ(Ht) is a single point; combining it with
the fact that the squared loss is minimized with respect to one single point prediction if and only if that
point is the expectation (in this case, the conditional expectation E[f(xt)|Ht]), we prove that for any σ0, the
population risk’s minimizer

y∗
t (σ0) = E[f(xt)|Ht] = E[f(xt) + σ · ϵt|Ht] = E[yt|Ht],

23

Published in Transactions on Machine Learning Research (05/2025)

where the second equality follows again from the fact that ϵt is independent of Ht and σ, and ϵt is of zero
mean. Since this equality holds for an arbitrary σ0, we can conclude that

y∗
t = E[yt|Ht].

Now we have confirmed the optimal choice of y∗
t regardless of whatever σ̂ is. We can thus find the optimal

choice of σ̂ by fixing ŷ = y∗
t and minimizing the population risk. Similarly, we can change the integration

order so that we only need to minimize E[log σ̂(Ht) + (yt−ŷ(Ht))2

2σ̂2(Ht) |Ht] for any realization of Ht. Calculations
show that

∂E
[
log σ̂(Ht) + (yt−ŷ(Ht))2

2σ̂2(Ht) | |Ht

]
∂σ̂(Ht)

=
∂
(

log σ̂(Ht) + E[(yt−ŷ(Ht))2|Ht]
2σ̂2(Ht)

)
∂σ̂(Ht)

= σ̂2(Ht) − E[(yt − ŷ(Ht))2|Ht]
σ̂3(Ht)

,

where the first equality follows from the fact that on observing Ht, σ̂(Ht) is a fixed value, and the second
equality from the calculus. Thus, the risk is minimized if and only if σ̂(Ht) = E[(yt − ŷ(Ht))2|Ht]. Substituting
ŷ for y∗

t , we have
σ∗2

t (Ht) = E[(yt − y∗
t (Ht))2|Ht] = E[(f(xt) − y∗

t (Ht))2|Ht] + E[σ2|Ht],
where the last equality follows again from the fact that ϵt is independent of Ht and is of zero mean and unit
variance.

D.2 Proof of Theorem 3.2

Proof. θ̂ERM Before we start the detailed proof, we define another flattened sequence (x̃k, ỹk) for k = 1, . . . , nT ,
where for k = iT + t we have (

x̃iT +t, ỹiT +t

)
:=
(
x

(i)
t , y

(i)
t

)
. (8)

Here, we merge all the sequences {(x(i)
t , y

(i)
t)}T

t=1 for i = 1, . . . , n into one sequence (x̃k, ỹk)nT
k=1. Similarly, we

can define a flattened truncated history H̃S
k as

H̃S
iT +t := (x(i)

max{t−S,1}, y
(i)
max{t−S,1}, . . . , x

(i)
t , y

(i)
t . (9)

Note that H̃S
k,k=iT +t = (HS(i)

t , y
(i)
t), since we have added the target label y

S(i)
t into the flattened truncated

history H̃S
k for notation simplicity. With a slight abuse of notations, we have

ℓθ(H̃S
k,k=iT +t) := ℓ(TFθ(HS

t), yt) = ℓ(TFθ(Ht), yt), (10)
where the equality holds since we are making predictions based on at most S pairs of (xt, yt). We can similarly
replace the ℓ function in the definition of empirical risk r and population risk R, obtaining

r(TF(θ)) = 1
nT

n∑
i=1

T∑
t=1

ℓ(TFθ(HS
t), yt)

= 1
nT

nT∑
k=1

ℓθ(H̃S
k), (11)

and

R(TF(θ)) = 1
T
EHt

[
T∑

t=1
ℓ
(
TF(θ)(Ht), yt

)]

= 1
T
EH̃S′

k

[
T∑

t=1
ℓθ(H̃S′

k,k=iT +t)
]

= EH̃S′
k

[
1

nT

nT∑
k=1

ℓθ(H̃S′
k)
]

, (12)

24

Published in Transactions on Machine Learning Research (05/2025)

where H̃S′
t is another flattened truncated history that is i.i.d. to H̃S

t . For notation simplicity, we define

H̃S := (H̃S
1 , . . . , H̃S

nT). (13)

Then we simplify the notations as
rθ

(
H̃S
)

:= r(TF(θ)), (14)
and

Rθ := EH̃S′

[
rθ

(
H̃S′)] = R(TF(θ)). (15)

To control the difference between Rθ and rθ(H̃S) for any θ (which could potentially depend on training data
D), we use PAC-Bayes arguments for simplicity.

All the following arguments are made with the conditional distribution on knowing each f (i) and σ(i), for
each i = 1, . . . , n. We omit the conditional dependencies in our notations only for simplicity.

By our definition of data generation, the flattened truncated history H̃S
k naturally forms up a Markov chain on

the space ⊗nT
k=1Ωk (verified in Lemma E.13), since the newly generated (xt, yt) are conditionally independent

of all previous observations. Here Ωk,k=iT +t := (X × Y)⊗ min{t,S}.

Fix a θ that does not depend on the training data D. We now bound the difference between Rθ and rθ(H̃S)
via concentration inequality for Markov chains. From Lemma F.2, we know that if the Markov chain’s mixing
time is small enough (which means it quickly converges to the stationary distribution), the concentration
properties over the Markov chain would be good enough to enable the standard PAC-Bayes arguments.
We also know from Lemma E.15 that the flattened truncated history has a mixing time no greater than
min{S, T}, since all the histories S pairs before the current time would be truncated from the input, and the
history HS

t restarts every time a sequence reaches length T . With these observations, we start our detailed
derivation.

Since the function ℓ is almost surely bounded by C2 as is shown in Lemma E.3, we have almost surely for
any H̃S and H̃S′,

rθ(H̃S) − rθ(H̃S′) ≤
nT∑
k=1

2C2

nT
· 1{H̃S

k ̸= H̃S′
k }. (16)

We can use McDiarmid type’s inequality for Markov chains (Lemma F.2, with the mixing time upper bound
no greater than min{S, T} (specified in Lemma E.15), such that for any λ ∈ R,

ED

[
exp

(
λ(rθ(H̃S) − Rθ(H̃S))

)]
≤ exp

(2λ2C2
2 min{S, T}

nT

)
. (17)

Set π to be the distribution over Θ defined in Lemma E.11. Since π is chosen independently from D, we can
integrate equation 17 with respect to θ ∼ π such that

Eθ∼π

[
ED

[
exp

(
λ(rθ(H̃S) − Rθ(H̃S)

)]]
≤ exp

(2λ2C2
2 min{S, T}

nT

)
. (18)

Using Fubini’s Theorem, we can exchange the order of integration, such that

ED

[
Eθ∼π

[
exp

(
λ(rθ(H̃S) − Rθ(H̃S)

)]]
≤ exp

(2λ2C2
2 min{S, T}

nT

)
. (19)

By applying Donsker-Varadhan’s formula (Lemma F.3), we derive from equation 19 that

ED

[
exp

(
sup

ρ∈P(Θ)

{
Eθ∼ρ

[
λ(rθ(H̃S) − Rθ(H̃S)

]
− Dkl(ρ∥π)

})]
≤ exp

(2λ2C2
2 min{S, T}

nT

)
.

Rearranging terms, we have

ED

[
exp

(
sup

ρ∈P(Θ)

{
Eθ∼ρ

[
λ(rθ(H̃S) − Rθ(H̃S)

]
− Dkl(ρ∥π)

}
− 2λ2C2

2 min{S, T}
nT

)]
≤ 1. (20)

25

Published in Transactions on Machine Learning Research (05/2025)

Using Chernoff’s bound (Lemma F.4) with probability δ/4, we have with probability at least 1 − δ
4 w.r.t. D,

sup
ρ∈P(Θ)

{
Eθ∼ρ

[
λ(rθ(H̃S) − Rθ(H̃S)

]
− Dkl(ρ∥π)

}
− 2λ2C2

2 min{S, S}
nT

≤ log(4/δ). (21)

Since this bound equation 21 holds for any distribution ρ over Θ, we can set ρ to be ρθ̂ERM as defined in
Lemma E.11, resulting in a high-probability bound

Eθ∼ρ
θ̂ERM

[
rθ(H̃S) − Rθ(H̃S

]
≤

Dkl(ρθ̂ERM∥π)
λ

+ 2λC2
2 min{S, T}

(nT) + log(4/δ) (rearranging terms)

≤ C2
√

min{S, T}/(nT) ·
(
Dkl(ρθ̂ERM∥π) + 2

)
+ log(4/δ) (by setting λ =

√
nT/ min{S, T} · (1/C2))

≤ Õ(
√

min{S, T}/(nT)). (by Lemma E.11) (22)

By Lemma E.12, the loss function is Lipschitz. Since for any θ ∈ supp(ρθ̂ERM), θ is up to O(1/(nT)) away
from θ̂ERM, we can control the difference between the risks of any θ ∈ supp(ρθ̂ERM) and θ̂ERM as∣∣rθ(H̃S) − rθ̂ERM(H̃S)

∣∣ ≤ Õ(1/(nT)), (23)∣∣Rθ − Rθ̂ERM

∣∣ ≤ Õ(1/(nT)). (24)
Thus, we have

rθ̂ERM(H̃S) − Rθ̂ERM ≤ Õ(
√

min{S, T}/(nT)). (25)
Applying the above arguments again for the negative of r, we have with probability at least 1 − δ/2,∣∣rθ̂ERM(H̃S) − Rθ̂ERM

∣∣ ≤ Õ(
√

min{S, T}/(nT)). (26)

For θ∗, we can repeat the above steps and get∣∣rθ∗(H̃S) − Rθ∗
∣∣ ≤ Õ(

√
min{S, T}/(nT)). (27)

The probability that all these bounds hold simultaneously is at least 1 − δ w.r.t. D.

Hence with probability at least 1 − δ,

R(TFθ̂ERM) − R(TFθ∗)
= Rθ̂ERM − Rθ∗ (by definition in equation 15)
≤ rθ̂ERM(H̃S) − rθ∗(H̃S) + Õ(

√
min{S, T}/(nT)) (by equation 26 and equation 27

= r(TFθ̂ERM) − r(TFθ∗) + Õ(
√

1/n +
√

S/T) (by definition in equation 14)
≤ Õ(

√
min{S, T}/(nT)) (by definition of ERM equation 1) (28)

We now take the expectation over each f (i) and σ(i) to conclude the proof.

Remark D.1 (Why truncation). Previous analysis (Zhang et al., 2023b) to derive a similar Bayes-optimal
argument does not truncate the history and treats the whole history as an inhomogeneous Markov chain.
Then they apply the concentration inequalities on Markov chains (for example, Lemma F.2) to control the
difference between R and r. However, their arguments have two limitations: the first one is that their model
is assumed to make decisions based on the full history, which clearly exceeds the Transformer’s model’s
capacity. The second limitation is that such a concentration argument for Markov chains often relies on upper
bounding the mixing time or lower bounding the spectral gap (for example, Fan et al. (2021)). But Zhang
et al. (2023b) do not specify this the mixing time. Furthermore, in each sampled task sequence (assume we
know the task f (i)), the mixing time of the (untruncated) history H̃t is infinity: if two sequences start with
different initial pairs of (x1, y1), then they will never become identical no longer what comes consecutively.
Thus, their mixing time will be T , leading to an Õ(1/

√
n) generalization, which is suboptimal if S ≪ T

compared to our result.

26

Published in Transactions on Machine Learning Research (05/2025)

E Proofs of Lemmas

In this section, we prove these lemmas based on the choice of the activation function act = softmax. Similar
results for other options act = ReLU can also be found in many existing literatures (for example, see Bai
et al. (2024)).

E.1 Boundedness of Transformers

Lemma E.1 (Layer-wise boundedness). Suppose at the l-th layer of the Transformer, we have ∥W
m,(l)
V ∥2,2 ≤

BV for any m = 1, . . . , M , ∥A
(l)
1 ∥2,2, ∥A

(l)
2 ∥2,2 ≤ BA. Then for any input H(l−1), we have

∥H(l)∥2,∞ ≤ (1 + B2
A)(1 + MBV)∥H(l−1)∥2,∞.

Proof of Lemma E.1. For notation simplicity, we denote softmax((W (l)
K H(l−1))⊤W

(l)
Q H(l−1)) as Sm. Note

that every column of Sm is of unit 1-norm. Denote each column of Sm by sm
t . For any input H, we have

∥MHAW (l)(H)∥2,∞

≤ ∥H∥2,∞ +
M∑

m=1
∥W

m,(l)
V HS∥2,∞ (by triangle inequality)

= ∥H∥2,∞ +
M∑

m=1
max

t
∥W

m,(l)
V Hsm

t ∥2 (by definition of ∥ · ∥2,∞)

≤ ∥H∥2,∞ +
M∑

m=1
max

t
∥W

m,(l)
V H∥2,∞∥sm

t ∥1 (by Lemma F.5)

= ∥H∥2,∞ +
M∑

m=1
∥W

m,(l)
V H∥2,∞ (since sm

t is of unit 1-norm)

≤ ∥H∥2,∞ +
M∑

m=1
∥W

m,(l)
V ∥2,2∥H∥2,∞ (by Lemma F.6)

≤ (1 + MBV)∥H∥2,∞. (by assumption of bounded norm) (29)

For any input H, we have

∥MLPA(l)(H)∥2,∞

≤ ∥H∥2,∞ + ∥A
(l)
2 ReLU(A(l)

1 H)∥2,∞ (by triangle inequality)

≤ ∥H∥2,∞ + ∥A
(l)
2 ∥2,2∥ReLU(A(l)

1 H)∥2,∞ (by Lemma F.6)

= ∥H∥2,∞ + ∥A
(l)
2 ∥2,2 max

t
∥ReLU(A(l)

1 H):,t∥2 (by definition of ∥ · ∥2,∞)

≤ ∥H∥2,∞ + ∥A
(l)
2 ∥2,2 max

t
∥(A(l)

1 H):,t∥2 (since |ReLU(z)| ≤ |z| for any z ∈ R)

= ∥H∥2,∞ + ∥A
(l)
2 ∥2,2∥A

(l)
1 H∥2,∞ (by definition of ∥ · ∥2,∞)

≤ ∥H∥2,∞ + ∥A
(l)
2 ∥2,2∥A

(l)
1 ∥2,2∥H∥2,∞ (by Lemma F.6)

≤ (1 + B2
A)∥H∥2,∞. (by assumption of bounded norm) (30)

Combining equation 29 and equation 30 yields the conclusion.

Lemma E.2 (Transformer’s boundedness). Suppose ∥W
m,(l)
V ∥2,2 ≤ BV for any m = 1, . . . , M ,

∥A
(l)
1 ∥2,2, ∥A

(l)
2 ∥2,2 ≤ BA for any l ∈ [L]. We further assume the projection matrix P is of bounded norm

∥P ⊤∥2,∞ ≤ BP . Then the Transformer’s outputs satisfy that

|ŷ(H)| ≤ C1∥H∥2,∞, and exp(−C1∥H∥2,∞) ≤ σ̂(H) ≤ 1 + C1∥H∥2,∞,

27

Published in Transactions on Machine Learning Research (05/2025)

where C1 := BP (1 + B2
A)L(1 + MBV)L is a specified constant.

Proof of Lemma E.2. By Lemma E.1 and a “peeling” argument, we can easily prove that

∥H(L)∥2,∞ ≤ (1 + B2
A)L(1 + MBV)L∥H(0)∥2,∞.

Thus,
∥H

(L)
:,t ∥2 ≤ ∥H(L)∥2,∞ ≤ (1 + B2

A)L(1 + MBV)L∥H(0)∥2,∞.

Denote P by P = [p1, p2]⊤, where p1 and p2 are vectors of dimension d. Then the first output

ŷ = p⊤
1 H

(L)
:,t ,

where we have (by Cauchy-Schwarz inequality),

|ŷ| ≤ ∥p1∥2∥H
(L)
:,t ∥2 ≤ BP (1 + B2

A)L(1 + MBV)L∥H(0)∥2,∞.

The other output σ̂ can be proved similarly as long as one notices

log(1 + exp(−x)) ≥ exp(−x), and log(1 + exp(x)) ≤ 1 + x,

for any x ≥ 0.

Lemma E.3 (Boundedness of loss). Under Assumption B.5 with ∥θ∥ ≤ BTF and Assumption B.6 with
∥H∥2,∞ ≤ BH almost surely, we have

|ℓ(TFθ(Ht), yt)| ≤ C2

almost surely, where C2 := (C1 + 1)2B2
H · exp(2C1BH) + max{C1BH , 1 + log(C1BH)} is a specified constant,

and C1 is a constant defined in Lemma E.2.

Proof of Lemma E.3. By Lemma E.2, we have

(yt − ŷ(Ht))2

2σ̂2(Ht)
≤ (yt − ŷt(Ht))2 · exp(2C1BH)

2
≤ (y2

t + ŷt(Ht)2) · exp(2C1BH)
≤ (C1 + 1)2B2

H · exp(2C1BH),

where the second inequality follows from Cauchy’s inequality. Combining with a triangle inequality, we have
the desired result.

E.2 Lipschitzness of Transformers

Lemma E.4 (Lipschitzness of multi-head attention). Suppose we define the output’s norm as ∥ · ∥2,∞, the
norm of W as

∥W∥ := max{∥W m
V ∥2,2, ∥W m

K ∥2,2, ∥W m
Q ∥2,2 : m = 1, . . . , M},

and the input H’s norm as ∥ · ∥2,∞. Suppose at the l-th layer of the Transformer, we have ∥W m,(l)∥ ≤ BW

for any m = 1, . . . , M , and ∥H(l−1)∥2,∞ ≤ B
(l−1)
H almost surely. Then MHAW (l)(H(l−1)) is C

(l)
3 -Lipschitz with

respect to W (l) and C4-Lipschitz with respect to H(l−1) almost surely. Here C
(l)
3 := 2B2

W (B(l−1)
H)3 + (B(l−1)

H)
and C4 := 1 + MBW are specified constants.

Proof of Lemma E.4. We first prove the Lipschitzness result for W . To ease the notations, we omit the
dependence on l and sometimes abbreviate W ⊤

K WQ as WKQ. For any W and W ′, using triangle inequality
twice, we have ∥∥MHAW (H) − MHAW ′(H)

∥∥
2,∞

28

Published in Transactions on Machine Learning Research (05/2025)

≤
M∑

m=1

∥∥W m
V Hsoftmax(H⊤W m

KQH) − W m′
V Hsoftmax(H⊤W m′

KQH)
∥∥

2,∞

≤
M∑

m=1

∥∥∥W m
V H

(
softmax(H⊤W m

KQH) − softmax(H⊤W m′
KQH)

)∥∥∥
2,∞

+
M∑

m=1

∥∥∥(W m
V − W m′

V

)
Hsoftmax(H⊤W m′

KQH)
∥∥∥

2,∞
. (31)

We now deal with two terms in equation 31 separately. Since our conclusion will be made for arbitrary
m ∈ [M], we omit the dependence on m for notation simplicity from now on.

For the first term, we have∥∥∥WV H
(
softmax(H⊤WKQH) − softmax(H⊤W ′

KQH)
)∥∥∥

2,∞

= max
t

∥∥WV H
(
softmax(H⊤WKQht) − softmax(H⊤W ′

KQht)
)∥∥

2 (by definition of ∥ · ∥2,∞)

≤ ∥WV H∥2,∞ · max
t

∥∥(softmax(H⊤WKQht) − softmax(H⊤W ′
KQht)

)∥∥
1 (by Lemma F.5)

≤ ∥WV ∥2,2∥H∥2,∞ · max
t

∥∥(softmax(H⊤WKQht) − softmax(H⊤W ′
KQht)

)∥∥
1 (by Lemma F.6)

≤ 2∥WV ∥2,2∥H∥2,∞ · max
t

∥∥H⊤WKQht − H⊤W ′
KQht

∥∥
∞ (by Lemma F.7)

≤ 2∥WV ∥2,2∥H∥2,∞ · max
t

∥H∥2,∞
∥∥WKQht − W ′

KQht

∥∥
2 (by Lemma F.5)

≤ 2∥WV ∥2,2∥H∥2
2,∞ · max

t

∥∥WKQ − W ′
KQ

∥∥
2,2∥ht∥2 (by Lemma F.5)

≤ 2∥WV ∥2,2∥H∥2
2,∞ ·

∥∥WKQ − W ′
KQ

∥∥
2,2∥Ht∥2,∞ ((by definition of ∥ · ∥2,∞)

≤ 2∥WV ∥2,2∥H∥3
2,∞ ·

(∥∥WKWQ − WKW ′
Q

∥∥
2,2 +

∥∥WKW ′
Q − W ′

KW ′
Q

∥∥
2,2

)
((by triangular inequality)

≤ 2∥WV ∥2,2∥H∥3
2,∞ ·

(
∥WK∥2,2∥WQ − W ′

Q∥2,2 + ∥WK − W ′
K∥2,2∥W ′

Q∥2,2
)
. ((by sub-multiplicativity of matrix norm)

≤ 2B2
W (B(l−1)

H)3 ·
(
∥WQ − W ′

Q∥2,2 + ∥WK − W ′
K∥2,2

)
. ((by bounded norm assumption)

(32)

For notation simplicity, we denote softmax(H⊤W m′
KQH) by S. Note that every column of S is of unit 1-norm.

Denote each column of S by st. For the second term, we have∥∥∥(WV − W ′
V

)
Hsoftmax(H⊤W m′

KQH)
∥∥∥

2,∞

= ∥(WV − W ′
V)HS∥2,∞ (by notation substitution)

= max
t

∥(WV − W ′
V)Hst∥2 (by definition of ∥ · ∥2,∞)

≤ max
t

∥(WV − W ′
V)H∥2,∞∥st∥1 (by Lemma F.5)

= ∥(WV − W ′
V)H∥2,∞ (since st is of unit 1-norm)

≤ ∥WV − W ′
V ∥2,2∥H∥2,∞ (by Lemma F.6)

≤ B
(l−1)
H ∥WV − W ′

V ∥2,2. (by assumption of bounded norm) (33)

Substituting equation 32 and equation 33 into equation 31, we can conclude that MHAW (l)(H(l−1)) is C
(l)
3 -

Lipschitz with respect to W (l) for C
(l)
3 := 2B2

W (B(l−1)
H)3 + (B(l−1)

H).

As for the second Lipschitzness conclusion (the one w.r.t. H), it is straightforward if one replaces H with
H − H ′ in the proof of equation 29.

Lemma E.5 (Lipschitzness of multi-layer perceptron). Suppose we define the output’s norm as ∥ · ∥2,∞, the
norm of W as

∥A∥ := max{∥A1∥2,2, ∥A2∥2,2},

29

Published in Transactions on Machine Learning Research (05/2025)

and the input H’s norm as ∥ · ∥2,∞. Suppose at the l-th layer of the Transformer, we have ∥A(l)∥ ≤ BA and
∥H∥2,∞ ≤ B

′(l−1)
H almost surely. Then MLPA(l)(H) is C

(l)
5 -Lipschitz with respect to A(l) and C6-Lipschitz with

respect to H almost surely. Here C
(l)
5 := BAB

′(l−1)
H and C6 := 1 + B2

A are specified constants.

Proof of Lemma E.5. We first prove the Lipschitzness result for A. To ease the notations, we omit the
dependence on l. For any A and A′, we have∥∥MLPA(H) − MLPA′(H)∥2,∞

≤
∥∥(A2 − A′

2)ReLU(A1H)
∥∥

2,∞ +
∥∥A′

2(ReLU(A1H) − ReLU(A′
1))
∥∥

2,∞ (by triangle inequality)

≤ ∥A2 − A′
2∥2,2

∥∥ReLU(A1H)
∥∥

2,∞

+ ∥A′
2∥2,2

∥∥ReLU(A1H) − ReLU(A′
1H)

∥∥
2,∞ (by Lemma F.6)

= ∥A2 − A′
2∥2,2 max

t
∥ReLU(A1H):,t∥2

+ ∥A′
2∥2,2 max

t
∥ReLU(A1H):,t − ReLU(A′

1H):,t∥2 (by definition of ∥ · ∥2,∞)

≤ ∥A2 − A′
2∥2,2 max

t
∥(A1H):,t∥2 + ∥A′

2∥2,2 max
t

∥(A1H):,t − (A′
1H):,t∥2

(since |ReLU(z1) − ReLU(z2)| ≤ |z1 − z2| for any z1, z2 ∈ R)
= ∥A2 − A′

2∥2,2∥A1H∥2,∞ + ∥A′
2∥2,2∥A1H − A′

1H∥2,∞ (by definition of ∥ · ∥2,∞)
≤ ∥A2 − A′

2∥2,2∥A1∥2,2∥H∥2,∞ + ∥A′
2∥2,2∥A1 − A′

1∥2,2∥H∥2,∞ (by Lemma F.6)

≤ BAB
′(l−1)
H

(
∥A1 − A′

1∥2,2 + ∥A2 − A′
2∥2,2

)
(by assumption of bounded norm)

(34)

As for the second Lipschitzness conclusion (the one w.r.t. H), it is straightforward if one replaces H with
H − H ′ in the proof of equation 30.

Lemma E.6 (Lipshitzness of Transformer). Suppose we define each output’s norm as | · | for ŷ and σ̂, the
norm of θ as

∥θ∥ := max{∥W∥, ∥A∥, ∥P∥},

where ∥W∥ is as defined in Lemma E.4, ∥A∥ is as defined in Lemma E.5, and ∥P∥ := ∥P ⊤∥2,∞, and the
input H’s norm as ∥ · ∥2,∞. Suppose we have ∥θ∥ ≤ BTF, and ∥H∥2,∞ ≤ BH almost surely. Then ŷθ(H) is
C7-Lipschitz with respect to θ, and σ̂θ(H) is C8-Lipschitz with respect to θ.

Proof of Lemma E.6. First we quantify the constants B
(l−1)
H in Lemma E.4 and the constants B

′(l−1)
H in

Lemma E.5 via Lemma E.1. As is shown in the proof of Lemma E.1, we can define

B
(l−1)
H := (1 + MBTF)l−1(1 + B2

TF)l−1, l = 1, . . . , L,

and
B

′(l−1)
H := (1 + MBTF)l(1 + B2

TF)l−1, l = 1, . . . , L,

such that all requirements in Lemma E.4 and Lemma E.5 are met almost surely. Thus, we bound the gap
between H(l) (the output of TFθ after l layers) and H ′(l) (the output of TFθ′ after l layers) by induction. We
claim that if H(0) = H ′(0), then there exists a constant C

(l)
9 for any l = 1, . . . , L that do not depend on θ or

H, such that
∥H(l) − H ′(l)∥2,∞ ≤ Cl

9∥θ − θ′∥.

We prove it by induction. For l = 1, the case can be verified by calculation: by Lemma E.4,

∥MHAW (1)(H(0)) − MHAW ′(1)(H(0))∥2,∞ ≤ C
(1)
3 ∥θ − θ′∥.

30

Published in Transactions on Machine Learning Research (05/2025)

Similarly, by Lemma E.5,

∥H(1) − H ′(1)∥2,∞ = ∥MLPA(1)(MHAW (1)(H(0))) − MLPA′(1)(MHAW ′(1)(H(0)))∥2,∞

≤ ∥MLPA(1)(MHAW (1)(H(0))) − MLPA(1)(MHAW ′(1)(H(0)))∥2,∞

+ ∥MLPA(1)(MHAW ′(1)(H(0))) − MLPA′(1)(MHAW ′(1)(H(0)))∥2,∞

≤ C6∥MHAW (1)(H(0)) − MHAW ′(1)(H(0))∥2,∞ + C
(1)
5 ∥θ − θ′∥

≤ (C6C
(1)
3 + C

(1)
5)∥θ − θ′∥, (35)

where we define C1
9 as C1

9 := C6C
(1)
3 + C

(1)
5 . Suppose our conclusion holds for any l ≤ l0 − 1. Then for l = l0,

we have

∥MHAW (l0)(H(l0−1)) − MHAW ′(l0)(H ′(l0−1))∥2,∞

≤ ∥MHAW (l0)(H(l0−1)) − MHAW (l0)(H ′(l0−1))∥2,∞ + ∥MHAW (l0)(H ′(l0−1)) − MHAW ′(l0)(H ′(l0−1))∥2,∞

≤ C4∥H(l0−1) − H ′(l0−1)∥2,∞ + C
(l0)
3 ∥θ − θ′∥

≤ (C4C
(l0−1)
9 + C

(l0−1)
3)∥θ − θ′∥,

by applying Lemma E.4. We can again compute the difference between H(l0) and H ′(l0) similar to what we
do in equation 35 as

∥H(l0) − H ′(l0)∥2,∞ ≤
(
C6(C4C

(l0−1)
9 + C

(l0−1)
3) + C

(l0)
5
)
∥θ − θ′∥.

Hence the induction holds if we define C
(l0)
9 := C6(C4C

(l0−1)
9 + C

(l0−1)
3) + C

(l0)
5 . Now we have proved

∥H(L) − H ′(L)∥2,∞ ≤ C
(L)
9 ∥θ − θ′∥.

We shall see from Cauchy-Schwarz inequality that

|ŷ − ŷ′| ≤ ∥p1 − p′
1∥2∥H(L)∥2,∞ − ∥p′

1∥2∥H(L) − H ′(L)∥2,∞

≤ ∥θ − θ′∥(1 + MBTF)L(1 + B2
TF)L + BTFC

(L)
9 ∥θ − θ′∥

=
(
(1 + MBTF)L(1 + B2

TF)L + BTFC
(L)
9
)
∥θ − θ′∥,

where the second inequality follows from the proof of Lemma E.6. We can now define

C7 := (1 + MBTF)L(1 + B2
TF)L + BTFC

(L)
9 ,

and conclude the proof for ŷ. As for θ̂, we can see from the fact log(1 + exp(·)) is 1-Lipschitz that the
Lipschitzness also holds for C8 := C7.

Lemma E.7 (Lipschitzness of loss). Suppose we have ∥θ∥ ≤ BTF and ∥H∥2,∞ ≤ BH almost surely, where
the norm of θ is the same as defined in Lemma E.6. Then ℓ(TFθ(H), y) is C10-Lipschitz with respect to θ
almost surely.

Proof of Lemma E.7. Based on the Lipschitzness of the Transformer w.r.t. θ (Lemma E.6), we only need to
prove that both partial derivatives ∂ℓ

∂ŷ and ∂ℓ
∂σ̂ are bounded. For the first partial derivative, we have∣∣∣∣ ∂ℓ

∂ŷ

∣∣∣∣ =
∣∣(y − ŷ)

∣∣ · 1
σ̂2

≤ (1 + C1)BH exp(2C1BH). (by Lemma E.2) (36)

For the second partial derivative, we have∣∣∣∣ ∂ℓ

∂σ̂

∣∣∣∣ =
∣∣− (y − ŷ)2 + σ2

∣∣
σ̂3

≤
(
(1 + C1)2B2

H + (1 + C1BH)2) · exp(3C1BH). (by Lemma E.2) (37)

31

Published in Transactions on Machine Learning Research (05/2025)

Combining inequalities equation 36 and equation 37 with the Lipschitzness of ŷ and σ̂ w.r.t. θ, we conclude
the result with

C10 := (1 + C1)BH exp(2C1BH)C7 +
(
(1 + C1)2B2

H + (1 + C1BH)2) exp(3C1BH)C8,

where C7 and C8 are constants that appear in Lemma E.6.

E.3 Constructing Distributions over Parameter Space

In this section, we formally define two distributions over the parameter space Θ. The first distribution ρθ̂

may depend on the empirical distribution, while the second distribution πθ should be independent of the
training dataset. We control the Kullback-Leibler divergence between ρθ̂ and πθ in Lemma E.11. For notation
simplicity, we may use some notations of different meanings from the main text.

For any dimension d, we denote the Lebesgue measure over Rd by λd(·). Then we have the following lemma.
Lemma E.8 (Upper bound for p.d.f.). Suppose ρ is the uniform distribution over B(x0, 3r) ∩ B(0, R) for
some x0 ∈ B(0, R) ⊂ Rd, where the Lebesgue measure is defined as λd(·), and R > 3r. Then the p.d.f. pρ(·)
exists and

pρ(x) ≤ 1
λd

(
B(0, r)

) .

Proof of Lemma E.8. Denote the set to be S := B(x0, 3r) ∩ B(0, R). Since ρ is the uniform distribution, we
just need to prove that

λd(S) ≥ λd

(
B(0, r)

)
.

This is true because there exists some x′ ∈ Rd s.t. B(x′, r) ⊂ S. In fact, we can construct the small ball as

B
(

x0 − x0

∥x0∥
· 1.5r, r

)
⊂ S.

Lemma E.9 (Upper bound for KL divergence). Suppose the probability space is defined on B(0, R). Suppose
ρ is the uniform distribution over B(x0, 3r)∩B(0, R) for some x0 ∈ B(0, R) ⊂ Rd, where the Lebesgue measure
is defined as λd(·), and R > 3r. Suppose π is the uniform distribution over B(0, R). Then

Dkl(ρ∥π) ≤ O(Cd · log(R/r)),

where Cd := log(λd(B(0, 1))) is some constant related to d.

Proof of Lemma E.9. Since ρ ≪ π, we can define the Radon-Nikodym derivative as dρ
dπ . By Lemma E.8, we

can upper bound the RN derivative by

dρ

dπ
(x) = 1/λd(B(x0, 3r) ∩ B(0, R))

1/λdB(0, R) ≤ O(Cd · log(R/r)).

Hence,

Dkl(ρ∥π) =
∫

x∈B(0,R)
log
(dρ

dπ
(x)
)

dρ(x)

≤
∫

x∈B(0,R)
O(Cd · log(R/r))dρ(x)

= O(Cd · log(R/r)).

Remark E.10. Note that Cd = π
n
2

Γ(n
2 +1) is uniformly upper bounded. Here π denotes the ratio of a circle’s

circumference to its diameter, and Γ is the Gamma-function.

32

Published in Transactions on Machine Learning Research (05/2025)

Lemma E.11 (Upper bound for Dkl(ρθ̂∥πθ)). Suppose we are considering probability measures over the
space specified by Assumption B.6 (that is, Θ = B(0, BTF)). For each layer l and each m, suppose we define
the norm over each WQ, WK ∈ Rdm×d, WV ∈ Rd×d, A1 ∈ Rdh×d, A2 ∈ Rd×dh to be the Frobenius norm (that
is, ∥ · ∥2,2). Suppose P = [p1, p2]⊤, and we define the norm over p1, p2 ∈ Rd to be the Euclidean norm. For
each layer l and each m, suppose we have the probability measures ρŴQ

, ρŴK
, ρŴV

, ρÂ1
, ρÂ2

as the uniform
distribution over B(0, 1/(nT)) ∩ B(0, BTF)), and the probability measures πWQ

, πWK
, πWV

, πA1 , πA2 as the
uniform distribution over B(0, BTF)). Suppose we have the probability measures ρp̂1 , ρp̂2 as the uniform
distribution over B(0, 1/(nT)) ∩ B(0, BTF)), and the probability measures πp1 , πp2 as the uniform distribution
over B(0, BTF)). Suppose we define

ρθ̂
:=
(⊗

m,l

ρ
Ŵ

m,(l)
Q

)
⊗
(⊗

m,l

ρ
Ŵ

m,(l)
K

)
⊗
(⊗

m,l

ρ
Ŵ

m,(l)
V

)
⊗
(⊗

l

ρ
Â

(l)
1

)
⊗
(⊗

l

ρ
Â

(l)
2

)
⊗ ρp̂1 ⊗ ρp̂2 , (38)

and

πθ :=
(⊗

m,l

π
W

m,(l)
Q

)
⊗
(⊗

m,l

π
W

m,(l)
K

)
⊗
(⊗

m,l

π
W

m,(l)
V

)
⊗
(⊗

l

π
A

(l)
1

)
⊗
(⊗

l

π
A

(l)
2

)
⊗ πp1 ⊗ πp2 , (39)

where ⊗ represents the product of measures. Then we have

Dkl(ρθ̂∥πθ) ≤ O
(
C11 log(nTBTF)

)
,

where C11 is some specified constant that depends polynomially on L, M, d, dm, dh.

Proof of Lemma E.11. By setting r = 1
3nT for Lemma E.9 and R = BTF, we have for each m = 1, . . . , M

and l = 1, . . . , L,

Dkl(ρŴ
m,(l)
Q

∥π
W

m,(l)
Q

) ≤ O
(
Cddm

log(nTBTF)
)
,

Dkl(ρŴ
m,(l)
K

∥π
W

m,(l)
K

) ≤ O
(
Cddm

log(nTBTF)
)
,

Dkl(ρŴ
m,(l)
V

∥π
W

m,(l)
V

) ≤ O
(
Cd2 log(nTBTF)

)
,

Dkl(ρÂ
(l)
1

∥π
A

(l)
1

) ≤ O
(
Cddh

log(nTBTF)
)
,

Dkl(ρÂ
(l)
2

∥π
A

(l)
2

) ≤ O
(
Cddh

log(nTBTF)
)
,

Dkl(ρp̂1∥πp1) ≤ O
(
Cd log(nTBTF)

)
,

Dkl(ρp̂2∥πp2) ≤ O
(
Cd log(nTBTF)

)
.

By Lemma F.8, we can sum up the above inequalities and get the final result.

Lemma E.12 (Bounded difference). For any θ̂ ∈ Θ, suppose we construct the distribution ρθ̂ as in equation 38.
Then for any θ ∈ supp(ρθ̂), under Assumption B.6 and Assumption B.5, we have∣∣∣ℓ(TFθ(H), y) − ℓ(TFθ̂(H), y)

∣∣∣ ≤ O
(
C10/(nT)

)
,

almost surely. Here C10 is the same as defined in Lemma E.7.

Proof of Lemma E.12. By construction shown in equation 38, we can see that for any θ ∈ supp(ρθ̂),

∥θ − θ̂∥ ≤ 1/(nT).

Then from the Lipschitzness of the loss function w.r.t. θ (Lemma E.7), we conclude the proof.

33

Published in Transactions on Machine Learning Research (05/2025)

E.4 Markov Chain’s Property

Lemma E.13 (H̃S is a Markov chain (conditioned on knowing f and σ)). Suppose we have H̃S defined as
equation 13. Then H̃S is a Markov chain conditioned on knowing each f (i) and σ(i) for each i = 1, . . . , n.

Proof of Lemma E.13. By definition, the state of H̃S will restart and does not depend on all previous histories
once H̃S

k ’s index k reaches the point of k = iT + 1. Therefore, we only need to verify that inside each task’s
sequence, the state H̃S

k is also Markovian.

Suppose k = iT + t for some i, and we considering k = iT + 1, . . . , iT + T for each t = 1, . . . , T . We write
H̃S

k and (xmax{1,t−S}, ymax{1,t−S}, . . . , xt, yt) interchangeably for notation simplicity.

Each pair of (xt, yt) is now independent conditioned on knowing the underlying f (i) and σ(i). We omit the
conditional dependencies on f (i) and σ(i) for notation simplicity. The p.d.f. of H̃S

k conditioned on observing
{H̃S

τ }iT +t
τ=iT +1 and knowing f (i) and σ(i) is

p(xmax{1,t−S}, ymax{1,t−S}, . . . , xt, yt|{H̃S
τ }iT +t

τ=iT +1 = {H̃S′
τ }iT +t

τ=iT +1, f = f (i), σ = σ(i))
= 1{xmax{1,t−S} = x′

max{1,t−S}, . . . , yt−1 = y′
t−1} · p(xt, yt|f = f (i), σ = σ(i))

(by conditional independence of each pair of (xτ , yτ))
= p(xmax{1,t−S}, ymax{1,t−S}, . . . , xt, yt|H̃S

t−1 = H̃S′
t−1, f = f (i), σ = σ(i))

Thus the Markovian property holds.

We present the definition of mixing time as used in Paulin (2015).
Definition E.14 (Mixing time for inhomogeneous Markov chains). Let X1, . . . , XN be a Markov chain with
Polish state space Ω1 × · · · × ΩN (that is, Xi ∈ Ωi). Let L(Xi+t|Xi = x) be the conditional distribution of
Xi+t given Xi = x. Let us denote the minimal t such that L(Xi+t|Xi = x) and L(Xi+t|Xi = y) are less than
ϵ away in total variational distance for every 1 ≤ i ≤ N − t and x, y ∈ Ωi by τ(ϵ), that is, for 0 < ϵ < 1, let

d̄(t) := max
1≤i≤N−t

sup
x,y∈Ωi

TV(L(Xi+t|Xi = x), L(Xi+t|Xi = y)),

τ(ϵ) := min{t ∈ N : d̄(t) ≤ ϵ}.

We now upper bound the mixing time of (HS
t , yt).

Lemma E.15 (Mixing time for truncated history). Suppose we are considering the conditional distribution
on knowing each f (i) and σ(i). Then for the Markov chain H̃S

k , we have

τ(ϵ) ≤ min{S, T},

for any ϵ ∈ [0, 1).

Proof of Lemma E.15. We first consider the case when S ≤ T . The mixing property inside each sequence
H̃S

k for k = iT + 1, . . . , iT + T . Since each (x, y) is i.i.d. distributed conditioned on knowing f (i) and σ(i), the
conditional distribution of the consecutive sequence (xt+1, yt+1), . . . , (xT , yT) is never affected by previous t
pairs (x1, y1), . . . , (xt, yt) for any 1 ≤ t ≤ T . We consider the conditional distribution on knowing f (i) and
σ(i) from now on and omit the dependencies for notation simplicity.

For any 1 ≤ t ≤ T − S, for any two points H̃S′
iT +t ̸= H̃S′′

iT +t, the distribution of H̃S
iT +t+S is independent of

previous t pairs of observed samples. In other words,

L(H̃S
iT +t+t′ |H̃S

iT +t = H̃S′
iT +t) = L(H̃S

iT +t+t′ |H̃S
iT +t = H̃S′′

iT +t),

for any t′ ≥ S. Hence,
d̄(t) = 0, for any t ≥ S.

34

Published in Transactions on Machine Learning Research (05/2025)

We have
τ(ϵ) ≤ S, for any ϵ ∈ [0, 1).

When S > T , note that the flattened (truncated) history H̃S
k restarts every time it meets the end of a

sequence generated by some f (i) and σ(i). Since the length of those sequences is T , we have

τ(ϵ) ≤ T, for any ϵ ∈ [0, 1).

F Technical Lemmas

In this section, we present some technical lemmas. Note that all the notations in this section are chosen for
simplicity and may have different meanings than those in other sections.
Lemma F.1 (McDiarmid’s inequality (McDiarmid et al., 1989)). Let X = (X1, . . . , XN) be a vector of
independent random variables taking values in a Polish space Λ = Λ1 × · · · × ΛN . Suppose that f : Λ → R
satisfies

f(x) − f(y) ≤
N∑

i=1
ci1{xi ̸= yi},

for any x, y ∈ Λ. Then for any λ ∈ R,

E
[

exp
(
λ(f(X) − E[f(X)])

)]
≤ λ2∥c∥2

2
2 .

Lemma F.2 (Corollary 2.11 in Paulin (2015)). Let X = (X1, . . . , XN) be a Markov chain taking values in a
Polish space Λ = Λ1 × · · · × ΛN , with mixing time τ(ϵ) for 0 ≤ ϵ < 1. Define

τmin := inf
ϵ∈[0,1)

τ(ϵ) ·
(2 − ϵ

1 − ϵ

)2
.

Suppose that f : Λ → R satisfies

f(x) − f(y) ≤
N∑

i=1
ci1{xi ̸= yi},

for any x, y ∈ Λ. Then for any λ ∈ R,

E
[

exp
(
λ(f(X) − E[f(X)])

)]
≤ λ2τmin∥c∥2

2
8 .

Lemma F.3 (Donsker-Varadhan variational formula (Donsker & Varadhan, 1983)). Let P and Q be two
probability distributions over (Θ, F). If Q ≪ P , then for any real-valued function h integrable w.r.t. P ,

logEP [exp h] = sup
Q≪P

{EQ[h] − Dkl(Q∥P)}.

Lemma F.4 (Chernoff’s bound (Chernoff, 1952)). For any random variable X, if E[exp(X)] ≤ 1, then for
any δ ∈ (0, 1),

P(X ≤ log(1/δ)) ≥ 1 − δ.

Lemma F.5 (Lemma M.7 in Zhang et al. (2022)). Given any two conjugate numbers p, q ∈ [1, ∞] s.t.
1/p + 1/q = 1, for any r ∈ [1, ∞], we have

∥Ax∥r ≤ ∥A∥r,p∥x∥q, and ∥Ax∥r ≤ ∥A⊤∥p,r∥x∥q

for any matrix A ∈ Rm×n and vector x ∈ Rn.

35

Published in Transactions on Machine Learning Research (05/2025)

Lemma F.6 (Lemma M.8 in Zhang et al. (2022)). Given any two conjugate numbers p, q ∈ [1, ∞] s.t.
1/p + 1/q = 1, we have

∥AB∥p,∞ ≤ ∥A∥p,q∥B∥p,∞

for any matrix A ∈ Rm×n and matrix B ∈ Rn×r.
Lemma F.7 (Lemma M.9 in Zhang et al. (2022)). Given any two vectors x, y ∈ Rd, we have

∥softmax(x) − softmax(y)∥1 ≤ 2∥x − y∥∞.

Lemma F.8 (Property of Kullback-Leibler divergence, Proposition 7.2 in Polyanskiy & Wu (2024)). Given
any two probability distributions µ1 and µ2 over (Ω, F) and any two distributions ν1 and ν1 over (Ω′, F ′), if
µ1 ≪ µ2 and ν1 ≪ ν2, then we have

Dkl(µ1 ⊗ ν1∥µ2 ⊗ ν2) = Dkl(µ1∥µ2) + Dkl(ν1∥ν2).

G Experiment Details

G.1 Training data generation

We first describe a basic setup of all our experiments. For some experiments, we change some part(s) in below
to design the corresponding “flipped” experiment or to examine the OOD ability of the trained transformer.
In particular, the i-th thread the training data(

x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , ..., x

(i)
T , y

(i)
T

)
is generated by the following distributions:

• PX : the feature vector x
(i)
t

i.i.d.∼ N (0, Id) where Id is d-dimensional identity matrix.

• Pϵ: the noise ϵ
(i)
t

i.i.d.∼ N (0, 1).

• Pσ: the noise intensity σi is sampled i.i.d. from

τi ∼ Gamma(τ , τ̄), σi = 1
√

τi

where the parameters τ = τ̄ = 20 for the basic setup of the experiment. We change these two
parameters for some OOD experiments.

• PF : The function fi(x) := w⊤
i x where wi is generated from

wi|σi ∼ N (w̄, σ2
i · Id)

where Id is the d-dimension identity matrix and w̄ is set to be an all-one vector of dimension d. The
covariance matrix of wi is related with the noise intensity σi to control the signal-to-noise ratio.

Finally, the target variable is calculated by

y
(i)
t = w⊤

i x
(i)
t + σiϵ

(i)
t .

Throughout the paper, we consider the dimension d = 8.

36

Published in Transactions on Machine Learning Research (05/2025)

G.2 Number of Tasks N and Training Procedure

In the previous Section G.1, we define how we generate the training data. As in the previous work, we
introduce the notion of task where each realization of (wi, σi) is referred to as one task. The rationale is that
each configuration of (wi, σi) corresponds to one pattern of the sequence (xt, yt)’s. While the distribution of
(wi, σi) corresponds to infinitely many possible task configurations, we use a finite pool of tasks for training
the Transformer. Specifically, we generate

T := {(wi, σi)}N
i=1

from the distributions discussed above. Throughout the paper, we use N to refer to the total number of tasks
or the pool size.

Training the Transformer for our setting is slightly different from the classic ML model’s training. We do not
use a fixed set of training data. Rather, we generate a new batch of training data freshly for each batch.

• The batch size b = 64. For each batch, we first sample with replacement b tasks from the task pool T .

And based on each sampled (wi, σi), we generate a training sequence
(

x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , ..., x

(i)
T , y

(i)
T

)
following the setting in the previous Section G.1.

• All the numerical experiments in our paper run for 200,000 batches.

The validation and testing sets are also randomly generated instead of fixed beforehand. But unlike the
training phase which draws the task configuration from the task pool T , the validation and test phase samples
(wi, σi) directly from the original distribution described in the previous Section G.1. This is aimed to validate
or test whether the trained model has learned the ability to solve a family of problems, or it only just
memorizes a fixed pool of tasks T .

G.3 Derivation of Bayes-optimal Predictor

In Proposition 3.1, we state the Bayes-optimal predictor in the form of a posterior expectation. Now we
calculate the Bayes-optimal predictor explicitly under the generation mechanism specified in Section G.1.
Conditional on history Ht = (x1, y1, . . . , xt), the posterior distribution of (w, σ) that governs the generation
of Ht can be calculated based on the Bayesian posterior as

P(τ |Ht) = Gamma(τ ; τ t, τ̄t), σ = 1√
τ

,

P(w|σ, Ht) = N (wt, σ2 · Σt),
where

Σt =
(

Id +
t−1∑
s=1

xsx⊤
s

)−1

, wt = Σt

(
w̄ +

t−1∑
s=1

xsys

)

τ t = τ + t

2 , τ̄t = τ̄ + 1
2

t−1∑
s=1

(
y2

s + w̄⊤w̄ − w⊤
s Σ−1

t ws

)
.

Accordingly, the Bayes-optimal predictor becomes

y∗
t (Ht) = E[yt|Ht] = w⊤

t xt,

and

σ∗2
t (Ht) = E[(yt − y∗

t (Ht))2|Ht] = E[(f(xt) − y∗
t (Ht))2|Ht] + E[σ2|Ht]

= τ̄t

τ t − 1 · (tr
(
xtx

⊤
t Σt

)
+ 1).

These formulas are used to generate the Bayes-optimal curves in the figures.

37

	Introduction
	Problem Setup
	Motivation for the uncertainty quantification objective

	In-Context Learning when In-Distribution
	In-Context Learning under Distribution Shifts
	Task shift
	Covariate shift
	Length shift and positional embedding

	Conclusion and Limitations
	Related Works
	Transformer Model
	Assumptions
	Approximation Error

	More Numerical Results and Discussions
	In-distribution performance
	Out-of-distribution perfomance
	Training dynamics and task shift OOD performance

	Proofs of the Results in the Main Paper
	Proof of Proposition 3.1
	Proof of Theorem 3.2

	Proofs of Lemmas
	Boundedness of Transformers
	Lipschitzness of Transformers
	Constructing Distributions over Parameter Space
	Markov Chain's Property

	Technical Lemmas
	Experiment Details
	Training data generation
	Number of Tasks N and Training Procedure
	Derivation of Bayes-optimal Predictor

