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ABSTRACT

Graph neural networks (GNNs) with attention mechanisms, often referred to as
attentive GNNs, have emerged as a prominent paradigm in advanced GNN mod-
els in recent years. However, our understanding of the critical process of scoring
neighbor nodes remains limited, leading to the underperformance of many existing
attentive GNNs. In this paper, we unify the scoring functions of current attentive
GNNs and propose Kolmogorov-Arnold Attention (KAA), which integrates the
Kolmogorov-Arnold Network (KAN) architecture into the scoring process. KAA
enhances the performance of scoring functions across the board and can be applied
to nearly all existing attentive GNNs. To compare the expressive power of KAA
with other scoring functions, we introduce Maximum Ranking Distance (MRD) to
quantitatively estimate their upper bounds in ranking errors for node importance.
Our analysis reveals that, under limited parameters and constraints on width and
depth, both linear transformation-based and MLP-based scoring functions exhibit
finite expressive power. In contrast, our proposed KAA, even with a single-layer
KAN parameterized by zero-order B-spline functions, demonstrates nearly infi-
nite expressive power. Extensive experiments on both node-level and graph-level
tasks using various backbone models show that KAA-enhanced scoring functions
consistently outperform their original counterparts, achieving performance im-
provements of over 20% in some cases.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved great success in graph data mining (Kipf & Welling,
2017; Hamilton et al., 2017; Xu et al., 2019; Wu et al., 2019) and are widely applied to various
downstream tasks, such as node classification (Jiang et al., 2019a), link prediction (Kipf & Welling,
2016), vertex clustering (Ramaswamy et al., 2005), and recommendation systems (Ying et al., 2018).
To further enhance the expressive power of GNNs, attentive GNNs (Sun et al., 2023; Chen et al.,
2024) incorporate an attention mechanism (Vaswani et al., 2017) into GNN models, allowing them
to adaptively learn the aggregation coefficients between a central node and its neighbors (Gilmer
et al., 2017). This capability grants attentive GNNs greater expressive power and superior theoretical
performance in various downstream tasks.

Despite their theoretical advantages, the practical performance of existing attentive GNNs in real-
world tasks often falls short of expectations. Even with larger parameter sizes and more flexible
architectural designs, attentive GNNs sometimes underperform compared to classical GNNs on cer-
tain datasets. Previous studies (Qiu et al., 2018; Brody et al., 2021) suggest that this discrepancy
arises from the overly simplistic design of scoring functions in attentive GNNs, which introduces
substantial inductive bias and limits their expressive power. Specifically, Brody et al. (2021) ana-
lyzed the scoring function in GAT (Veličković et al., 2018) and discovered that all central nodes tend
to share the same highest-scoring neighbor, leading to subpar performance in certain scenarios. To
address this, they introduced the concepts of static and dynamic attention to assess the expressive
power of attentive GNN models. However, with the rapid evolution of attentive GNNs, we have
observed that these analyses are primarily applicable to models with simpler structures, and their
methods for evaluating the expressive power of scoring functions are too coarse, lacking the ability
to provide a more granular, quantitative comparison.
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Figure 1: The alignment of our proposed KAA and other applications of KAN. (a) Symbiotic re-
gression and PDE-solving tasks, where KAN achieves strong performance. (b) These tasks utilize
KAN to handle multi-dimensional inputs and one-dimensional outputs. (c) Since the score mapping
in attentive GNNs follows a similar form, we replace it with KAN.

To improve the effectiveness of attentive GNNs and deepen our understanding of them, two critical
issues need to be addressed: how to quantify the expressive power of attentive GNN models, and how
to universally enhance this expressive power. Tackling these challenges is far from straightforward.
First, attentive GNN models typically involve multiple coupled linear transformations and MLPs,
making it difficult to accurately quantify their theoretical expressive power. Second, the diversity in
existing attentive GNN architectures makes it challenging to find a unified solution.

In our paper, we tackle these two fundamental issues from a fresh perspective. To analyze existing
attentive GNN models, we first present a unified framework for their scoring functions, which con-
sists of a learnable score mapping and a non-learnable alignment function. The scoring functions of
nearly all attentive GNN models, including both GAT-based and Transformer-based approaches (Sun
et al., 2023), conform to this paradigm.

To address the first issue, we introduce Maximum Ranking Distance (MRD) to quantitatively evalu-
ate the expressive power of scoring functions. Specifically, MRD computes the upper bound of error
in ranking node importance, with smaller MRD values indicating stronger expressive power. Addi-
tionally, we observe that the expressive power of the MLP module within scoring functions is often
overestimated. Although the MLP possesses a universal approximation theorem (Cybenko, 1989;
Hornik, 1991), in practice, limitations in the number of layers and hidden units constrain its actual
expressive power. In such cases, the MRD of the scoring function with the MLP can be calculated
to quantify its expressive capability.

To address the second issue, we introduce Kolmogorov-Arnold Network (KAN) into the scoring
functions of existing attentive GNNs. KAN (Liu et al., 2024b;a) is an emerging network archi-
tecture that shows promise as an alternative to traditional MLPs. While existing MLP models op-
timize the summation coefficients between neurons during training, KAN focuses on optimizing
the mapping between neurons. This novel architecture has garnered significant interest among re-
searchers (Genet & Inzirillo, 2024; Abueidda et al., 2024; Bozorgasl & Chen, 2024; Bresson et al.,
2024). Inspired by the remarkable success of KAN in symbolic regression (Ranasinghe et al., 2024;
Seguel et al., 2024; Shi et al., 2024) and PDE solving (Wang et al., 2024; Rigas et al., 2024; Wu
et al., 2024a), we recognize its substantial potential for modeling mappings with multi-dimensional
inputs and one-dimensional outputs, as illustrated in Figure 1. Similarly, the scoring function of
attentive GNN models operates as a function with multi-dimensional inputs (representations) and a
one-dimensional output (score). Consequently, we propose Kolmogorov-Arnold Attention (KAA),
which replaces the score mapping in existing scoring functions with KAN. KAA can be adapted
to nearly all scoring functions of attentive GNNs. With a comparable number of parameters, KAA
achieves a lower Maximum Ranking Distance (MRD) compared to other linear transformation-based
and MLP-based scoring functions, indicating that KAA possesses stronger expressive power. When
the KAN utilized in KAA adheres to a specific structure, it can achieve almost any score distribution,
even with a very limited number of parameters, demonstrating that KAN is particularly well-suited
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for scoring functions. Furthermore, we validate the effectiveness of KAA across various attentive
GNN backbone models. The experimental results align with our theoretical findings, showing that
KAA-enhanced scoring functions consistently outperform the original scoring functions across all
tasks and backbone architectures.

Overall, the contributions of our work can be summarized as follows:

• We introduce a unified form for the scoring functions of attentive GNN models and propose
Maximum Ranking Distance (MRD) to quantitatively measure their expressive power.

• We propose Kolmogorov-Arnold Attention (KAA), applicable to nearly all attentive GNN
models. KAA integrates a KAN learner into the scoring function, significantly enhancing
its expressive power compared to linear transformation-based and MLP-based attention in
practical scenarios.

• We conduct extensive experiments to validate the effectiveness of KAA across various
backbone models and downstream tasks. The results demonstrate that KAA-enhanced
models consistently outperform their original counterparts across all node-level and graph-
level tasks, with performance improvements exceeding 20% in some cases.

2 RELATED WORK

2.1 ATTENTIVE GRAPH NEURAL NETWORKS

GNNs have garnered significant interest and been widely adopted over the past few years. How-
ever, most models (e.g., GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), and
GIN (Xu et al., 2019)) assign equal importance to each neighbor of the central node, which limits
their ability to capture the unique local structures of different nodes. In response to this limitation,
GAT (Veličković et al., 2018) was the first to introduce a simple layer with an attention mecha-
nism to compute a weighted average of neighbors’ representations. The strong performance of GAT
across various downstream tasks has sparked widespread interest among researchers in attentive
GNN models. Attentive GNNs can be broadly categorized into two main types: GAT-based mod-
els (Veličković et al., 2018; Kim & Oh, 2021) and Graph Transformers (Nguyen et al., 2022; Zhang
et al., 2020). GAT-based models assign varying weights to nodes during the feature aggregation
process based on their respective influences. Since the introduction of GAT, numerous variants have
emerged, such as C-GAT (Wang et al., 2019), GATv2 (Brody et al., 2021), and SuperGAT (Kim &
Oh, 2021). Additionally, many models (Jiang et al., 2019a; Cui et al., 2020; Yang et al., 2021; Lin
et al., 2022; Zhang & Gao, 2021) have modified how GAT combines node pair representations and
are also categorized as GAT-based models. Graph Transformers (Rong et al., 2020) are a class of
models based on Transformers (Vaswani et al., 2017), which can directly learn higher-order graph
representations. In recent years, Graph Transformers have rapidly advanced in the field of graph
deep learning. These models (Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Ying et al., 2021;
Xia et al., 2021; Shi et al., 2020) typically employ a query-key-value structure similar to that of
Transformers and demonstrate superior performance on graph-level tasks.

2.2 KOLMOGOROV–ARNOLD NETWORKS

Kolmogorov–Arnold Network (KAN) (Liu et al., 2024b;a) is a novel neural network architecture
inspired by the Kolmogorov-Arnold representation theorem (Kolmogorov, 1957; Braun & Griebel,
2009), designed as an alternative to MLP. Unlike MLP, KAN does not utilize linear weights. In-
stead, each weight parameter between neurons is replaced by a univariate function parameterized as
a spline. Compared to MLPs, KAN demonstrates enhanced generalization ability and interpretabil-
ity (Liu et al., 2024b). However, achieving good performance with KAN in practical applications can
be challenging (Altarabichi, 2024a; Le et al., 2024; Altarabichi, 2024b). Drawing inspiration from
KAN’s remarkable success in symbolic regression (Ranasinghe et al., 2024; Seguel et al., 2024; Shi
et al., 2024) and PDE solving (Wang et al., 2024; Rigas et al., 2024; Wu et al., 2024a), we recognize
KAN’s significant potential for fitting mappings with multi-dimensional inputs and one-dimensional
outputs. Our use of KAN in this work also reflects its empirical effectiveness in these contexts.
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3 PRELIMINARY

Graph Data and Graph Neural Networks. Let G = (V, E) ∈ G represents a graph, where
V = {v1, v2, . . . , vN}, E ⊆ V × V denote the node set and edge set respectively. The node features
can be denoted as a matrix X = {x1, x2, . . . , xN} ∈ RN×d, where xi ∈ Rd is the feature of
the node vi, and d is the dimensionality of original node features. A ∈ {0, 1}N×N denotes the
adjacency matrix, where Aij = 1 if (vi, vj) ∈ E . Given a GNN model f , the node representation
hi can be obtained layer by layer using the following expression:

h
(l+1)
i = UPDATE(l)(h

(l)
i ,AGG(l)

j∈N (i)(h
(l)
i , h

(l)
j )) (1)

where h
(l)
i denotes the representation of vi at the l-th layer, with h

(0)
i = xi. AGG(·) denotes an

aggregation function, such as sum (e.g., GCN) or mean (e.g., GraphSAGE) aggregation. On the
other hand, UPDATE(·) denotes a feature transformation function, such as a linear transformation
or an MLP.

Unified Scoring Functions in Attentive Graph Neural Networks. Attentive GNN models in-
troduce an attention mechanism in the aggregation function AGG(·) to adaptively assign different
weight coefficient αj to each neighboring node vj , which can be expressed as:

AGGj∈N (i)(hi, hj) =
∑

j∈N (i)

αjhj (2)

where αj is obtained by normalizing the result of the scoring function. Here, the scoring function
s(·) calculates the importance score of a neighboring node to the central node based on their respec-
tive representations. The scoring functions of existing attentive GNN models can be categorized
into two types (Sun et al., 2023): GAT-based and Transformer-based. Their representative forms of
scoring functions are as follows:

s(hi, hj) = LeakyReLU(a⊤ · [Whi∥Whj ]) (GAT-based) (3)

s(hi, hj) = (Wqhi)
⊤ ·Wkhj (Transformer-based) (4)

αj =
exp(s(hi, hj))∑

j′∈N (i) exp(s(hi, hj′))
(Normalization) (5)

For GAT-based scoring functions, many variants substitute the concatenation operation of the
two representations with alternative operations, such as vector addition or subtraction. In con-
trast, Transformer-based scoring functions often introduce additional scaling factors, such as√

dimQdimK. We find that both types of scoring functions can be unified into the following general
form:

s(hi, hj) = Ψ ◦ AF(hi, hj) (6)

where AF(·) : Rd × Rd → Rd′
is an alignment function without learnable parameters, such as

concatenation or dot product. Its purpose is to combine the representations of the central node and
the neighboring node. Additionally, Ψ : Rd′ → R is the score mapping with learnable parame-
ters, typically comprising several linear transformations and potentially some activation functions.
Specifically, for the scoring function in Formula 3, the alignment function AF(·) is concatenation,
while the score mapping Ψ consists of two consecutive linear transformations followed by an activa-
tion function. For the scoring function in Formula 4, the alignment function AF(·) can be expressed
as AF(hi, hj) = hj , and its score mapping is given by Ψ = (Wqhi)

⊤Wk.

Kolmogorov–Arnold Networks. The Kolmogorov-Arnold Representation theorem (Braun &
Griebel, 2009) states that, for a smooth function f : [0, 1]n → R:

f(x1, ..., xn) =

2n+1∑
q=1

Φq(

n∑
p=1

ϕq,p(xp)) (7)

where ϕq,p : [0, 1] → R, and Φq : R → R. This formulation illustrates that multivariate functions
can essentially be decomposed into a well-defined composition of univariate functions, where the
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combination involves only simple addition. Liu et al. (2024b) extended the above expression into
a single-layer KAN, enabling it to be stacked layer by layer like a regular neural network. For a
single-layer KAN Φ with an input dimension of nin and an output dimension of nout:

∀j ∈ [1, nout] : x
out
j =

nin∑
i=1

ϕi,j(x
in
i ) (8)

where xi is the value corresponding to the i-th dimension of x, and ϕi,j is a learnable nonlinear func-
tion, usually parameterized by B-spline functions (Liu et al., 2024b;a) or radial basis functions (Li,
2024). At this point, KAN is considered an alternative to MLPs and is applied to various tasks.

4 METHODOLOGY

4.1 KOLMOGOROV-ARNOLD ATTENTION

Inspired by the remarkable success of KAN in symbolic regression (Ranasinghe et al., 2024; Seguel
et al., 2024; Shi et al., 2024), which typically involves multi-dimensional inputs and one-dimensional
outputs, as well as in PDE solving (Wang et al., 2024; Rigas et al., 2024; Wu et al., 2024a), where
common PDEs such as the heat equation or wave equation also feature multi-dimensional inputs and
one-dimensional outputs, we find that KAN demonstrates significant potential for fitting mappings
of the form f : Rn → R with multi-dimensional inputs and one-dimensional outputs.

According to Formula 6, the score mapping Φ also conforms to this form. Therefore, we propose
Kolmogorov-Arnold Attention (KAA), which replaces Ψ in the original scoring function with KAN,
expressed as:

s(hi, hj) = KAN ◦ AF(hi, hj) (9)

After obtaining the scores for node pairs, we compute the specific weight coefficients according
to Formula 5 and perform the GNN aggregation as outlined in Formula 2. This design is highly
flexible, allowing KAA to be applied to nearly all existing attentive GNN models.

Building Multi-Head Attention. KAA can also be extended to multi-head attention (Vaswani
et al., 2017; Veličković et al., 2018), further enhancing its performance. When the number of heads
is K, we apply K independent KANs of the same scale {KAN1, ...,KANK} to obtain K differ-
ent weight coefficients according to Formula 9 and 5. The resulting K representations are then
concatenated to form the final representations.

4.2 COMPARISON OF EXPRESSIVE POWER

In this section, we analyze the expressive power of different scoring functions. The primary purpose
of designing the scoring function is to enable the model to adaptively assign varying aggregation
coefficients to different nodes. This means that the scoring function should be capable of ranking the
importance of neighboring nodes, allowing the central node to receive more valuable information.
According to the unified form of scoring functions presented in Formula 6, AF(hi, hj) is derived
from a predefined alignment function AF(·) and the inherent inputs (hi and hj), which cannot be
modified during training. Consequently, the expressive power of the scoring function hinges on
whether the learnable score mapping Ψ can effectively map the various AF(hi, hj) values to any
desired importance ranking. We conduct a quantitative analysis and comparison of the expressive
power of different forms of scoring functions. First, we examine the limitations of existing standards
used to evaluate the expressive power of score functions. Next, we introduce a more comprehensive
evaluation metric: Maximum Ranking Distance. Finally, we quantitatively compare the maximum
ranking distance of various scoring functions in practical scenarios. Through rigorous analysis, we
demonstrate that the application of KAA can significantly enhance the practical expressive power of
the scoring function.

4.2.1 LIMITATION OF EXISTING MEASUREMENT

Many existing works (Qiu et al., 2018; Brody et al., 2021) have explored the expressive power of
scoring functions in attentive GNNs. Brody et al. (2021) initiated this line of inquiry by analyzing
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the scoring function of GAT and proposed two standards for evaluating the expressive power of scor-
ing functions: static and dynamic attention. Specifically, if the scoring function assigns the highest
score to the same neighboring node (key) for all central nodes (queries), it is said to compute static
attention. On the other hand, if the scoring function can assign different neighboring nodes (keys)
the highest score for different central nodes (queries), it computes dynamic attention. More formal
and detailed definitions of these two attention types are provided in Appendix A.2. Clearly, scoring
functions that compute dynamic attention have stronger expressive power. However, applying this
standard to evaluate the scoring functions of various existing attentive GNNs presents several chal-
lenges. First, most existing scoring functions already compute dynamic attention, making it difficult
to differentiate their expressive power using this criterion. Second, scoring functions that compute
static attention can easily be adjusted to compute dynamic attention. For example, the GAT scoring
function in Formula 3 initially computes static attention, but by modifying it to the following form,
it can be converted to compute non-static attention:

s(hi, hj) = −LeakyReLU(Abs(a⊤ · [Whi∥Whj ])) (10)

where we only add a negative sign and an absolute value function Abs(·). These limitations make
the existing measurements for evaluating various scoring functions overly simplistic and imprecise.

4.2.2 DESIGNING COMPREHENSIVE MEASUREMENT

We observe that existing measurements are too coarse because they focus solely on the neighbor
node with the highest score. In reality, the scoring function assigns scores to all neighboring nodes,
forming an importance ranking of the neighbors, which we define as follows:
Definition 1 (Importance Ranking). Given a scoring function s(·), a central node with representa-
tion hi and all its neighbor nodes with representations {hj |j ∈ N (i)}, an importance ranking σ is
a permutation of |N (i)|, where σ is a bijective mapping σ : {1, ..., |N (i)|} → {1, ..., |N (i)|} that
satisfies:

s(hi, hσ(1)) ≤ s(hi, hσ(2)) ≤ s(hi, hσ(|N (i)|)) (11)

In contrast to static and dynamic attention, which only focus on identifying the most important
neighbor, importance ranking captures the relative importance of all neighboring nodes, offering a
more comprehensive evaluation. In practice, scoring functions may not always achieve the optimal
importance ranking under ideal conditions; instead, they approximate it as closely as possible. To
quantitatively assess the difference between two rankings, we define the ranking distance as follows:
Definition 2 (Ranking Distance). Given two rankings, σ1 and σ2, of N nodes, the ranking distance
RD between them can be calculated using the following formula:

RD(σ1, σ2) =

√√√√ N∑
i

(σ−1
1 (i)− σ−1

2 (i))2 (12)

where σ−1(i) indicates the concrete rank of node i.

In real-world scenarios, the optimal ranking can be any permutation of neighboring nodes. There-
fore, the expressive power of a scoring function lies in its ability to produce any possible ranking.
Building on this, we introduce the concept of maximum ranking distance, which quantitatively mea-
sures the expressive power of different scoring functions:
Definition 3 (Maximum Ranking Distance). Given a family of scoring functions S, a central node
with representation hi and neighbor nodes with representations {hj |j ∈ N (i)}, for any s ∈ S, we
denote the obtained importance ranking as σs. Meanwhile, the set of all permutations of |N (i)| is
denoted as Π = {π|π : {1, ..., |N (i)|} → {1, ..., |N (i)|};π is a bijection}. The maximum ranking
distance (MRD) is expressed as below:

MRD(S, hi, {hj |j ∈ N (i)}) = max
π′∈Π

min
s′∈S

RD(σs′ , π
′) (13)

A smaller MRD value suggests a reduction in the maximum error, thereby indicating a stronger
expressive power of the scoring function. This allows for a quantitative comparison of the expressive
power of different scoring functions by calculating their MRD in specific scenarios.
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4.2.3 THEORETICAL COMPARISON

In this section, we delve into the analysis of the MRD for various scoring functions, specifically ex-
amining three types: linear transformation-based attention, MLP-based attention, and our proposed
KAA. These correspond to cases where the score mapping in Formula 6 is a linear transformation,
MLP, and KAN, respectively. Without loss of generality, we assume that the selected central node is
connected to all other nodes in the graph (as many graph transformers do), and that AF(hi, hj) ∈ Rd.
We denote the alignment matrix of all AF(hi, hj) as P ∈ RN×d, where N is the number of nodes.
For analytical simplification, we assume P is derived from the first d columns of a full-rank circulant
matrix C ∈ RN×N , with N = d2 (i.e., N ≫ d). A more detailed and specific elaboration can be
found in Appendix A.4.

Linear Transformation-Based Attention. This type of scoring function is the most common,
and the majority of existing attentive GNNs (Sun et al., 2023) can be classified under this category.
Many practical implementations of scoring functions employ multiple consecutive learnable linear
transformations (as seen in Formulas 3 and 4), but in theory, this does not enhance the expressive
power compared to using a single fully learnable linear transformation, as multiple transformations
are equivalent to a single transformation equal to their product. Furthermore, scoring functions like
the one in Formula 3 often include a non-linear activation function. However, since most common
non-linear activation functions are monotonic (e.g., ReLU family and tanh), they do not alter the
ranking of the scores. Therefore, we calculate the MRD for a single linear transformation as:

Proposition 1 (MRD of Linear Transformation-Based Attention). Given the alignment matirx P ∈
RN×d, for a scoring function in the form of s(hi, hj) = W · AF(hi, hj), where W ∈ Rd×1, its
MRD satisfies the following inequality:

MRD(SLT,P) ≥
√

1

12
(N3 −N − d3 + 3d2 − 2d) (14)

where SLT is the set of all candidate linear transformation-based scoring functions.

We have established a lower bound for the MRD of the scoring function when the score mapping is
a linear transformation. A more detailed derivation can be found in Appendix A.5.

MLP-Based Attention. To address the limitations of linear transformations in scoring functions,
Brody et al. (2021) utilized a multi-layer perceptron (MLP) as the score mapping. While an MLP is
a universal approximator in ideal conditions (Cybenko, 1989; Hornik, 1991), its expressive power
is often constrained by its limited width and depth in practical applications. Increasing the width
and depth excessively can lead to challenges in model convergence and may result in significant
overfitting (Oyedotun et al., 2017). To ensure consistency with the MLP size used by Brody et al.
(2021), we calculate the MRD for the scoring function where the score mapping consists of a two-
layer equal-width MLP:

Proposition 2 (MRD of MLP-Based Attention). Given the alignment matirx P ∈ RN×d, for a
scoring function in the form of s(hi, hj) = W2 · (ReLU(W1 · AF(hi, hj))), where W1 ∈ Rd×d

and W2 ∈ Rd×1, its MRD satisfies the following inequality:√
1

12
(N3 −N − λ) ≥ MRD(SMLP,P) ≥

√
1

12
((N − d)3 − (N − d)− λ) (15)

where λ = d3 − 3d2 + 2d and SMLP is the set of all candidate MLP-based scoring functions.

For MLP-based scoring functions, we have established both upper and lower bounds for their MRD.
A more detailed derivation can be found in Appendix A.6.

Kolmogorov-Arnold Attention. Finally, we calculate the MRD of our proposed KAA. The score
mapping in KAA is KAN, which possesses a representation theorem similar to that of MLP. To
ensure a fair comparison, we utilize a single-layer KAN with a comparable number of parameters to
those in Proposition 2 as the score mapping:

Proposition 3 (MRD of Kolmogorov-Arnold Attention). Given the alignment matirx P ∈ RN×d,
for a scoring function in the form of s(hi, hj) =

∑d
k=1 ϕk(AF(hi, hj)k), where each ϕk is composed

7
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of d modified zero-order B-spline functions ϕk(x) =
∑d

l=1 ck,l · B∗
k,l(x), its MRD satisfies the

following inequality:

MRD(SKAA,P) ≤ δ , for ∀ δ > 0 (16)

where SKAA is the set of all candidate KAA scoring functions.

A more detailed derivation can be found in Appendix A.7. The single-layer KAN scoring function
contains d2 learnable parameters, which is slightly fewer than the (d2 + d) learnable parameters in
the MLP from Proposition 2. Despite having fewer parameters, KAA maintains nearly unlimited
ranking capability, establishing it as the most expressive scoring function paradigm.

Theorem 1. Under non-degenerate conditions, given the alignment matirx P ∈ RN×d, we have:

MRD(SKAA,P) ≤ MRD(SMLP,P) ≤ MRD(SLT,P) (17)

From Theorem 1, we can conclude that in practical scenarios with limited parameters, our proposed
KAA exhibits the strongest expressive power. In contrast, MLP-based attention also demonstrates a
notable improvement in expressive capability compared to linear transformation-based attention.

5 EXPERIMENT

In this section, we systematically evaluate the effectiveness of KAA across various tasks, including
node-level tasks such as node classification and link prediction, as well as graph-level tasks like
graph classification and graph regression.

5.1 EXPERIMENT SETUP

Backbone Models. Our proposed KAA can be applied to both GAT-based scoring functions, as
shown in Formula 3, and Transformer-based scoring functions, as shown in Formula 4. Conse-
quently, we select three classical GAT-based attentive GNN models with varying alignment func-
tions as our backbone models: GAT (Veličković et al., 2018), GLCN (Jiang et al., 2019b), and
CFGAT (Cui et al., 2020). Additionally, we choose two Transformer-based models with distinct
scoring functions as our backbone models: GT (Dwivedi & Bresson, 2020) and SAN (Kreuzer
et al., 2021). The specific forms of the scoring functions are detailed in Table 1.

Table 1: A summary of the original scoring functions for various attentive GNN models and their
KAA-enhanced counterparts. The central node representation is denoted as hi, while the neighbor
node representation is denoted as hj .

s(hi, hj) Original Version KAA Version

GAT LeakyReLU(a⊤ · [Whi∥Whj ]) KAN([hi∥hj ])
GLCN ReLU(a⊤ · |hi − hj |) KAN(|hi − hj |)
CFGAT LeakyReLU(cos(Whi,Whj)) cos(KAN(hi),KAN(hj))

GT 1√
d
(Wqhi)

⊤ ·Wkhj
1√
d

KAN(hi)
⊤ · hj

SAN 1√
d(γ+1)

(Wqhi)
⊤ ·Wkhj

1√
d(γ+1)

KAN(hi)
⊤ · hj

Implementations. For all models, we apply the dropout technique with dropout rates selected
from [0, 0.1, 0.3, 0.5, 0.8]. Additionally, we utilize the Adam optimizer, choosing learning rates
from [10−3, 5 × 10−3, 10−2] and weight decay values from [0, 5 × 10−4]. Regarding model ar-
chitecture, the number of GNN layers is selected from [2, 3, 4, 5], the hidden dimension from
[8, 16,32, 64, 128, 256], and the number of heads from [1, 2, 4, 8]. For the KAN and MLP modules,
we adopt an equal-width structure across all models, with the number of layers chosen from [2, 3, 4].
In the KAN modules, B-spline functions serve as the base functions, with the grid size selected from
[1, 2, 4, 8] and the spline order chosen from [1, 2, 3]. We conduct five rounds of experiments with
different random seeds for each setting and report the average results.
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Table 2: Results of node-level tasks on various datasets. (The optimal results are in bold. “\”
indicates out of memory limits, preventing full-batch training. “Avg Imp” calculates the average
relative improvement of all KAA-enhanced models compared to their original versions.)

Model
Task Node Classification (Accuracy %) Link Prediction (ROC-AUC %)

Cora CiteSeer PubMed ogbn-arxiv Computers Photo Cora CiteSeer PubMed

GCN 81.99
±0.70

71.36
±0.57

78.03
±0.21

68.80
±0.44

92.90
±0.12

89.45
±0.22

92.02
±0.73

91.00
±0.40

94.62
±0.06

GraphSAGE 81.48
±0.41

69.70
±0.63

77.50
±0.23

68.68
±0.63

93.26
±0.34

88.84
±0.15

91.28
±0.54

87.65
±0.35

91.62
±0.23

GIN 79.85
±0.70

69.60
±0.89

77.89
±0.39

66.04
±0.56

90.36
±0.18

85.34
±1.30

89.27
±1.34

85.84
±1.80

91.31
±1.09

GAT 83.07
±0.45

72.61
±0.53

79.04
±0.89

68.62
±0.68

92.89
±0.40

89.76
±0.13

91.48
±0.37

90.28
±0.41

94.03
±0.10

KAA-GAT 83.87
±0.66

73.53
±0.31

79.45
±0.72

69.02
±0.49

93.55
±0.27

90.36
±0.18

92.67
±0.35

91.48
±0.71

94.87
±0.19

GLCN 82.26
±0.89

71.76
±0.53

78.10
±0.14

68.37
±0.60

92.70
±0.13

88.98
±0.10

91.60
±0.17

90.36
±0.79

94.34
±0.19

KAA-GLCN 83.50
±0.70

72.78
±0.50

78.42
±0.16

68.80
±0.90

93.90
±0.17

89.44
±0.30

92.57
±0.20

91.93
±0.43

95.09
±0.17

CFGAT 81.42
±0.70

71.52
±0.76

78.94
±0.33

68.34
±0.75

93.12
±0.17

89.34
±0.32

91.85
±0.35

90.49
±0.37

94.06
±0.06

KAA-CFGAT 83.72
±0.61

72.66
±0.78

79.04
±0.32

69.59
±0.59

93.33
±0.18

89.71
±0.15

92.58
±0.40

91.45
±0.50

94.71
±0.08

GT 70.16
±1.80

58.12
±1.52

74.38
±1.23

89.65
±1.54

80.25
±3.93

86.37
±0.81

81.64
±0.99

84.63
±4.32

KAA-GT 71.86
±1.34

61.92
±1.55

75.16
±0.80

92.82
±0.22

89.05
±0.30

86.97
±0.87

82.35
±1.74

88.38
±1.32

SAN 71.72
±2.10

63.18
±1.60

72.44
±0.91

90.39
±0.48

84.50
±0.94

81.33
±2.29

84.22
±2.13

90.78
±0.45

KAA-SAN 72.98
±0.48

64.06
±0.86

73.24
±1.30

90.92
±0.86

85.42
±0.58

86.35
±1.15

84.23
±1.84

91.28
±0.33

Avg Imp ↑ (%) +1.95 +2.39 +0.82 +1.01 +1.25 +2.73 +2.00 +1.00 +1.47

5.2 PERFORMANCE ON NODE-LEVEL TASKS

Datasets Involved. We conduct node classification and link prediction tasks to validate the effec-
tiveness of KAA in node-level applications. For the node classification task, we select four citation
network datasets (Sen et al., 2008; Hu et al., 2020) of varying scales: Cora, CiteSeer, PubMed,
and ogbn-arxiv, along with two product network datasets (Shchur et al., 2018), Amazon-Computers
and Amazon-Photo. The objective for the citation networks is to determine the research area of the
papers, while the product networks involve categorizing products. For the link prediction task, we
select three citation network datasets: Cora, CiteSeer, and PubMed, to predict whether an edge exists
between pairs of nodes. More details and statistical information about these datasets can be found
in Appendix B.1. Additionally, for all tasks, we employ three classical GNN models: GCN (Kipf &
Welling, 2017), GraphSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2019), as baselines.

Experimental Results. The results of KAA on node-level tasks are presented in Table 2. The
experimental findings indicate that KAA-enhanced models achieve superior experimental results
compared to the original models across all datasets, with an average improvement of 1.63%. This
clearly demonstrates the enhancements that KAA provides to attentive GNN models in node-level
tasks. For GAT-based models, none of the original attentive models outperform all non-attention
models on any dataset or task. This phenomenon suggests that the additional parameters in the ex-
isting scoring functions do not effectively enhance performance. However, after applying KAA to
these models, their performance improves significantly. All KAA-enhanced GAT-based models out-
perform non-attention models across all tasks and datasets. In contrast, Transformer-based models
do not perform as well on the involved node-level tasks. In these cases, the benefits from KAA are
even more pronounced. Specifically, KAA-enhanced models demonstrate an average performance
improvement of 2.70% compared to the original models. Overall, KAA can universally enhance the
performance of attentive GNN models on node-level tasks, with improvements that can even bridge
the performance gap between different models.
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Table 3: Results of graph-level tasks on various datasets. (The optimal results are in bold. “Avg
Imp” calculates the average improvement of all KAA-enhanced models compared to original ones.)

Model
Task Graph Classification (Accuracy %) Graph Regression (MAE ↓)

PPI (F1) MUTAG ENZYMES PROTEINS ZINC QM9

GCN 60.48 ±0.79 95.78 ±5.15 29.33 ±5.58 71.71 ±1.67 0.6863 ±0.0011 0.2715 ±0.0080
GraphSAGE 77.95 ±0.25 94.73 ±5.76 24.67 ±2.79 70.09 ±2.44 0.6173 ±0.0162 0.2733 ±0.0030

GIN 70.29 ±2.78 96.84 ±4.21 33.34 ±2.90 71.53 ±2.64 0.4759 ±0.0172 0.2524 ±0.0035

GAT 83.84 ±2.09 94.73 ±4.70 29.23 ±5.29 70.09 ±2.50 0.6711 ±0.0111 0.4749 ±0.0158
KAA-GAT 86.62 ±1.11 97.89 ±2.57 34.46 ±1.08 72.43 ±1.67 0.5247 ±0.0145 0.2124 ±0.0085

GLCN 74.86 ±1.15 96.84 ±4.21 31.35 ±4.39 71.17 ±1.88 0.6716 ±0.0031 0.2716 ±0.0168
KAA-GLCN 94.96 ±0.26 98.94 ±2.10 33.67 ±2.03 72.25 ±1.05 0.6351 ±0.0202 0.2684 ±0.0205

CFGAT 75.90 ±0.87 95.78 ±3.93 28.33 ±3.37 70.27 ±1.70 0.6779 ±0.0031 0.2624 ±0.0082
KAA-CFGAT 77.70 ±0.57 98.94 ±2.11 37.00 ±3.58 72.79 ±0.88 0.6726 ±0.0045 0.2398 ±0.0012

GT 94.50 ±0.36 89.47 ±3.33 50.33 ±3.23 72.43 ±1.22 0.5084 ±0.0190 0.1067 ±0.0128
KAA-GT 97.93 ±0.17 91.58 ±4.21 51.00 ±5.73 72.75 ±1.17 0.5042 ±0.0240 0.1056 ±0.0144

SAN 94.47 ±0.21 90.53 ±6.99 45.50 ±5.06 71.89 ±2.64 0.4935 ±0.0252 0.1145 ±0.0119
KAA-SAN 97.84 ±0.14 90.79 ±6.84 49.00 ±7.86 72.07 ±2.05 0.4675 ±0.0434 0.1076 ±0.0049

Avg Imp ↑ (%) +7.94 +2.28 +12.98 +1.82 +6.82 +14.42

5.3 PERFORMANCE ON GRAPH-LEVEL TASKS

Datasets Involved. We conduct graph classification and graph regression tasks to validate the
effectiveness of KAA in graph-level applications. For the graph classification task, we select four
datasets (Ivanov et al., 2019; Zitnik & Leskovec, 2017) from bioinformatics and cheminformatics:
PPI, MUTAG, ENZYMES, and PROTEINS. The downstream tasks for these datasets involve predict-
ing the properties of proteins or molecules. For the graph regression tasks, we select two datasets:
ZINC (Gómez-Bombarelli et al., 2018) and QM9 (Wu et al., 2018). Both ZINC and QM9 are molec-
ular datasets. The task for ZINC is to predict the constrained solubility of molecules, while QM9
involves regression tasks for 19 different molecular properties. More details and statistical informa-
tion about these datasets can be found in Appendix B.1. We also employ GCN (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2019) as baseline models.

Experimental Results. The results of KAA on graph-level tasks are shown in Table 3. The exper-
imental findings indicate that KAA-enhanced models consistently outperform the original models
across all datasets. Notably, the performance improvement of KAA in graph-level tasks is more
pronounced than in node-level tasks. Specifically, KAA achieves an average performance enhance-
ment of 7.71% across all graph-level tasks, with over 10% improvement observed in one-third of
the tasks and more than 5% improvement in two-thirds of the tasks. This remarkable performance
underscores the effectiveness of KAA in graph-level tasks. For GAT-based models, we observe
substantial performance gains in certain datasets with KAA, such as the enhancement of GLCN
on the PPI dataset and GAT on the QM9 dataset. In these instances, KAA results in a qualitative
leap in the performance of attentive GNN models, achieving improvements exceeding 20%. For
Transformer-based models, which generally perform better on graph-level tasks, KAA still yields
an average performance improvement of 2.72%. Overall, the outstanding performance of KAA in
graph-level tasks further demonstrates the significant enhancement in model performance achieved
by incorporating KAN into the scoring function.

6 CONCLUSION AND OUTLOOK

In our paper, we introduce Kolmogorov-Arnold Attention (KAA), which integrates KAN into the
scoring functions of existing attentive GNN models. Through thorough theoretical and experimen-
tal validation, we demonstrate that KAN is highly effective for the scoring process, significantly
enhancing the performance of KAA. Furthermore, our successful implementation of KAN in atten-
tive GNNs may inspire advancements in KAN in other domains. Our comparative analysis of the
theoretical expressive power of KAN-based learners versus MLP-based learners under constrained
parameters offers valuable insights for future research.
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Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving graph attention networks
with large margin-based constraints. arXiv preprint arXiv:1910.11945, 2019.

Yizheng Wang, Jia Sun, Jinshuai Bai, Cosmin Anitescu, Mohammad Sadegh Eshaghi, Xiaoying
Zhuang, Timon Rabczuk, and Yinghua Liu. Kolmogorov arnold informed neural network: A
physics-informed deep learning framework for solving pdes based on kolmogorov arnold net-
works. arXiv preprint arXiv:2406.11045, 2024.

Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Region
optimized physics-informed neural networks. arXiv preprint arXiv:2405.14369, 2024a.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2024b.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32:4–24, 2019.

Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Xiyue Zhang, Hongsheng Yang, Jian Pei, and
Liefeng Bo. Knowledge-enhanced hierarchical graph transformer network for multi-behavior
recommendation. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 4486–4493, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ICLR, 2019.

Liang Yang, Mengzhe Li, Liyang Liu, Chuan Wang, Xiaochun Cao, Yuanfang Guo, et al. Diverse
message passing for attribute with heterophily. Advances in Neural Information Processing Sys-
tems, 34:4751–4763, 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In SIGKDD, pp. 974–
983, 2018.

Chengkun Zhang and Junbin Gao. Hype-han: Hyperbolic hierarchical attention network for seman-
tic embedding. In Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pp. 3990–3996, 2021.

Fan Zhang and Xin Zhang. Graphkan: Enhancing feature extraction with graph kolmogorov arnold
networks. arXiv preprint arXiv:2406.13597, 2024.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. Hyperbolic graph attention
network. IEEE Transactions on Big Data, 8(6):1690–1701, 2021.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXTRA MATERIALS FOR SECTION 4

A.1 CONNECTION BETWEEN KAA AND EXISTING ATTENTIVE TECHNIQUES

In fact, KAA is not at odds with advanced attentive GNN techniques and does not lose effectiveness
due to their strong performance. This is because existing methods focus more on determining what
constitutes important attention information, and advanced methods often excel at capturing such
crucial information through the attention mechanism. KAA, on the other hand, enhances the actual
construction process of the attention mechanism. This means that regardless of the type of attention
distribution being learned, KAA can improve the success rate of accurately modeling that distri-
bution. Therefore, despite the significant advancements in existing attentive GNNs, KAA can still
universally provide performance improvements, as it represents an enhancement from a different
perspective.

A.2 DETAILS OF EXISTING MEASUREMENT

A pioneering work (Brody et al., 2021) defines static and dynamic attention. Here, we excerpt their
formal definitions from the original text to understand the differences between static and dynamic
attention and our defined MRD.

(Static Attention) A (possibly infinite) family of scoring functions F ⊆
(
Rd × Rd → R

)
com-

putes static scoring for a given set of key vectors K= {k1, ...,kn}⊂Rd and query vectors Q=
{q1, ..., qm}⊂Rd, if for every f ∈ F there exists a “highest scoring” key jf ∈ [n] such that for
every query i ∈ [m] and key j ∈ [n] it holds that f

(
qi,kjf

)
≥ f (qi,kj). We say that a family of

attention functions computes static attention given K and Q, if its scoring function computes static
scoring, possibly followed by monotonic normalization such as softmax.

(Dynamic Attention) A (possibly infinite) family of scoring functions F ⊆
(
Rd × Rd → R

)
com-

putes dynamic scoring for a given set of key vectors K= {k1, ...,kn}⊂Rd and query vectors
Q= {q1, ..., qm}⊂Rd, if for any mapping φ: [m] → [n] there exists f ∈ F such that for any
query i ∈ [m] and any key j ̸=φ(i) ∈ [n]: f

(
qi,kφ(i)

)
> f (qi,kj). We say that a family of atten-

tion functions computes dynamic attention for K and Q, if its scoring function computes dynamic
scoring, possibly followed by monotonic normalization such as softmax.

A.3 TRANSFORMING GAT INTO NON-STATIC ATTENTION

According to Formula 10, we add a negative sign and an absolute value function to the original
scoring function of GAT, which can be expanded as follows:

s(hi, hj) = −LeakyReLU(Abs(a⊤ · [Whi∥Whj ])) (18)

= −LeakyReLU(|a⊤:d′ ·Whi + a⊤d′: ·Whj |) (19)

= −LeakyReLU(|b⊤1 · hi + b⊤2 · hj |) (20)

where W ∈ Rd′×d, a ∈ R2d′×1, and a:d′ represents the vector composed of the first d′ dimensions,
while ad′: represents the vector composed of the last d′ dimensions. In Formula 20, we have b⊤1 =
a⊤:d′ · W and b⊤2 = a⊤d′: · W. Here, we can consider b1, b2 ∈ Rd×1 as two free, learnable linear
transformations. For a specific central node hi, neighbor node hj with higher score needs to make
|b⊤1 ·hi+b⊤2 ·hj | as close to zero as possible, rather than maximizing it. Therefore, for different center
nodes (queries) hi, there theoretically exist different neighbor nodes (keys) hi that can achieve the
highest scores. It conflicts with the definition of static attention. Thus, the scoring function of the
form in Formula 10 belongs to non-static attention.

A.4 ASSUMPTIONS AND SETUP FOR THEORETICAL ANALYSIS

In this section, we elaborate on the theoretical setup and assumptions, as well as some simplifica-
tions. Without loss of generality, we assume that the selected central node is connected to all other
nodes in the graph (as most graph transformers compute the relationships between all nodes in this
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way). Additionally, for clarity in notation, we assume that AF(hi, hj) ∈ Rd, and denote the align-
ment matrix composed of all AF(hi, hj) ∈ Rd values as P ∈ RN×d, where N is the number of
involved nodes. In fact, the composition of the P matrix has a significant impact on subsequent anal-
ysis. For example, if P = 1N×d, then regardless of the form of the scoring function, all nodes will
receive the same score. We can see that if two nodes j1 and j2 have the same representations in P
(i.e., Pj1 = Pj2 ), they are bound to receive the same score. Therefore, the distinguishability of P is
crucial. To define a sufficiently distinguishable P, we first provide the circulant matrix C ∈ RN×N ,
which can be expressed as:

C =



1 2 3 · · · N − 1 N
2 3 4 · · · N 1
3 4 5 · · · 1 2
...

...
...

. . .
...

...
N − 1 N 1 · · · N − 3 N − 2
N 1 2 · · · N − 2 N − 1

 ∈ RN×N (21)

C is a circulant matrix, so C is full-rank (Kra & Simanca, 2012). Additionally, C is sufficiently
distinguishable. Specifically, the elements in each column of C are all different, and the arrangement
of the relationships between the elements in different columns is also unique. Ideally, if P = C,
the scoring function will have sufficient representations to generate a variety of rankings. In our
assumption, the width of P is d, which is much smaller than N . For analytical simplification, we
assume that P consists of the first d columns of C, and has the following form:

P =



1 2 3 · · · d− 1 d
2 3 4 · · · d d+ 1
3 4 5 · · · d+ 1 d+ 2
...

...
...

. . .
...

...
N − 1 N 1 · · · d− 3 d− 2
N 1 2 · · · d− 2 d− 1

 ∈ RN×d (22)

Such a P will serve as the input for the respective scoring functions discussed later. In addition, we
make an assumption regarding the magnitudes of N and d: N is much greater than d (N ≫ d), and
we assume N = d2. Finally, we assume that to obtain an importance ranking σ, the scoring function
s(·) must satisfy:

∀j ∈ [1, N ], s(Pj) = σ−1(j) (23)

Here, we use s(Pj) to replace s(hi, hj), as they convey the same meaning. Formula 23 establishes
the connection between the score and the ranking, which is natural and fair. Based on this require-
ment, the MRD in Formula 13 can be specifically calculated as follows:

MRD(S,P) = max
π′∈Π

min
s′∈S

√√√√ N∑
j

(s′(Pj)− π′−1(j))2 (24)

where S is the set of all candidate scoring functions, and Π is the set of all permutations of N . The
MRD of various scoring functions discussed later will all be calculated as Formula 24.

A.5 DETAILS FOR MRD OF LINEAR TRANSFORMATION-BASED ATTENTION

In this section, we provide a detailed proof of Proposition 1.

Proposition 1 (MRD of Linear Transformation-Based Attention). Given the alignment matirx P ∈
RN×d, for a scoring function in the form of s(hi, hj) = W · AF(hi, hj), where W ∈ Rd×1, its
MRD satisfies the following inequality:

MRD(SLT,P) ≥
√

1

12
(N3 −N − d3 + 3d2 − 2d)

where SLT is the set of all candidate linear transformation-based scoring functions.
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Proof. For linear transformation-based scoring functions, they can linearly combine the column
vectors of P in Formula 22 to obtain the final scores. Therefore, we need to consider the range
space of the linear combinations of P. In this case, a series of column operations on P will not
affect the final result. First, starting from the second column of P, we subtract the values of the
previous column from each column to obtain P′ as follows:

P′ =



1 1 1 · · · 1

2 1 1 · · ·
...

3 1 1 · · · 1−N
...

...
...

. . .
...

N − 1 1 1−N · · · 1
N 1−N 1 · · · 1


∈ RN×d (25)

In P′, except for the first column, which remains P′
:,1 = [1, 2, 3, ..., N ]⊤, the other column vectors

consist of (N−1) ones and an (1−N ) that gradually changes position. Then, starting from the third
column of P′, we again subtract the values of the previous column from each column and divide the
resulting vectors by N to obtain P∗ as follows:

P∗ =



1 1 0 0 · · · 0
2 1 0 0 · · · 0
3 1 0 0 · · · 0
4 1 0 0 · · · 0
...

...
...

...
. . .

...
N − 3 1 0 0 · · · −1
N − 2 1 0 −1 · · · 1

N − 1 1 −1 1 · · ·
...

N 1−N 1 0 · · · 0


∈ RN×d (26)

The elements in P∗ are composed in a regular pattern, allowing it to be divided into two parts. The
upper part consists of the first (N + 1− d) rows, denoted as P∗

:(N+1−d), as shown below:

P∗
:(N+1−d) =



1 1 0 0 · · · 0
2 1 0 0 · · · 0
3 1 0 0 · · · 0
4 1 0 0 · · · 0
...

...
...

...
. . .

...
N + 1− d 1 0 0 · · · 0

 ∈ R(N+1−d)×d (27)

The scores of the first (N + 1 − d) nodes will be formed by linear combinations of the column
vectors of P∗

:(N+1−d). The lower part of P∗ consists of the last (d−1) rows, denoted as P∗
(N+1−d):,

as shown below:

P∗
(N+1−d): =



N + 2− d 1 0 0 · · · −1
N + 3− d 1 0 0 · · · 1

...
...

...
...

. . .
...

N − 2 1 0 −1 · · · 0
N − 1 1 −1 1 · · · 0
N 1−N 1 0 · · · 0

 ∈ R(d−1)×d (28)

The scores of the last (d− 1) nodes will be formed by linear combinations of the column vectors of
P∗

(N+1−d):. According to Formula 24, the MRD can be split into two parts for calculation, as shown
below:

MRD(SLT,P) = max
π′∈Π

min
s′∈SLT

√√√√ N∑
j

(s′(Pj)− π′−1(j))2 (29)

= max
π′∈Π

min
s′∈SLT

√√√√N+1−d∑
i=1

(s′(Pi)− π′−1(i))2 +

N∑
j=N+2−d

(s′(Pj)− π′−1(j))2 (30)
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In Formula 30, the calculation of the entire MRD is divided into two parts. The first part includes
the scores of the first (N +1− d) nodes determined by P∗

:(N+1−d), and the second part includes the
scores of the last (d−1) nodes determined by P∗

(N+1−d):. According to Formula 27, the scores of the
first (N+1−d) nodes are composed of only two non-zero column vectors, [1, 2, 3, ..., N+1−d]⊤ ∈
R(N+1−d)×1 and 1 ∈ R(N+1−d)×1. Therefore, the score s(Pi) satisfies the following equation:

∀i ∈ [1, N + 1− d], s(Pi) = ai+ b (31)

where a, b ∈ R are two learnable parameters. According to Formula 28, the column rank of
P∗

(N+1−d): is (d−1), which means that P∗
(N+1−d): is a full column-rank matrix. Therefore, Formula

30 can be scaled as follows:

MRD(SLT,P) = max
π′∈Π

min
s′∈SLT

√√√√N+1−d∑
i=1

(s′(Pi)− π′−1(i))2 +

N∑
j=N+2−d

(s′(Pj)− π′−1(j))2 (32)

≥ min
s′∈SLT

√√√√max
π′∈Π

N+1−d∑
i=1

(s′(Pi)− π′−1(i))2 +

N∑
j=N+2−d

(s′(Pj)− π′−1(j))2 (33)

≥ min
s′∈SLT

√√√√max
π′∈Π

N+1−d∑
i=1

(s′(Pi)− π′−1(i))2 (34)

= min
a,b∈R

√√√√max
π′∈Π

N+1−d∑
i=1

(ai+ b− π′−1(i))2 (35)

To maximize the term under the square root in Formula 35, the first (N + 1 − d) elements of π′

should be uniformly distributed (i.e.,π′−1(1) = 1, π′−1(2) = N, π′−1(3) = 2, π′−1(4) = N −
1, ...) (Davis, 1979). In this case, the minimum value is obtained when a = 0 and b = N+1

2 .
Therefore, MRD(SLT,P) has the following lower bound:

MRD(SLT,P) ≥ min
a,b∈R

√√√√max
π′∈Π

N+1−d∑
i=1

(ai+ b− π′−1(i))2 (36)

=

√
2((N − N + 1

2
)2 + (N − 1− N + 1

2
)2 + ...+ (

d

2
)2) (37)

=

√
1

12
(N3 −N − d3 + 3d2 − 2d) (38)

Now, we have completed the derivation of Proposition 1.

A.6 DETAILS FOR MRD OF MLP-BASED ATTENTION

In this section, we provide a detailed proof of Proposition 2.

Proposition 2 (MRD of MLP-Based Attention). Given the alignment matirx P ∈ RN×d, for a
scoring function in the form of s(hi, hj) = W2 · (ReLU(W1 · AF(hi, hj))), where W1 ∈ Rd×d

and W2 ∈ Rd×1, its MRD satisfies the following inequality:√
1

12
(N3 −N − λ) ≥ MRD(SMLP,P) ≥

√
1

12
((N − d)3 − (N − d)− λ)

where λ = d3 − 3d2 + 2d and SMLP is the set of all candidate MLP-based scoring functions.

Proof. We decompose the scoring process of the two-layer MLP-based scoring function into three
parts: the first linear transformation W1, the nonlinear activation ReLU(·), and the second linear
transformation W2. First, the initial linear transformation W1 transform P. As in Appendix A.5,
we can also convert P from Formula 22 into the more analytically convenient form P∗ as Formula
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26. Additionally, P∗ can still be divided into the upper part P∗
:(N+1−d) as in Formula 27 and the

lower part P∗
(N+1−d): as in Formula 28. Next, we consider the impact of ReLU(·) on the obtained

scores. Specifically, ReLU(·) is defined as follows:

ReLU(x) = max(0, x) (39)

The linear transformation produces a linear combination of the original column vectors, but ReLU(·)
will generate a series of new column vectors. These newly generated column vectors serve as
the basis for the second linear transformation, which then performs another linear combination.
P∗

:(N+1−d) contains only two non-zero column vectors, and their linear combination, after applying
ReLU(·), results in the following set of column vectors c:

c =ReLU(a · [1, 2, 3, ..., N + 1− d]⊤ + b · 1) ∈ C (40)

C = {c| ∃ 1 ≤i ≤ N + 1− d, c = [a+ b, 2a+ b, ..., ia+ b, 0, ..., 0]⊤

or c =[0, ..., 0, ia+ b, (i+ 1)a+ b, ..., (N + 1− d)a+ b]⊤} (41)

Next, we analyze the column vectors of P∗
(N+1−d): after the linear transformation and ReLU(·).

Here, we focus on the last (d− 2) columns of P∗
(N+1−d):, which can be expressed as:

P∗
(N+1−d):,2: =



0 0 · · · −1
0 0 · · · 1
...

...
. . .

...
0 −1 · · · 0
−1 1 · · · 0
1 0 · · · 0

 ∈ R(d−1)×(d−2) (42)

By applying ReLU(·) and the linear transformation, we obtain the following matrix M:

M =[ReLU(P∗
(N+1−d):,2:)|ReLU(−P∗

(N+1−d):,d)] (43)

=



0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 0 · · · 0 0
0 1 · · · 0 0
1 0 · · · 0 0

 ∈ R(d−1)×(d−1) (44)

M has ones on one diagonal, while all other elements are zero. Clearly, M is of full rank. Next,
we will begin calculating the upper and lower bounds of MRD(SMLP,P). First, we consider its
upper bound. We assume that after the first linear transformation W1 and ReLU(·), we obtain the
following intermediate representations H:

H =

(
1 0

1−N M

)
∈ RN×d (45)

H is composed of the second column from P∗ and M, and it can be obtained through the linear
transformation and ReLU(·) according to Formula 43. Thus, MRD(SMLP,P) is transformed into
MRD(SLT,H), which can be calculated as follows:

MRD(SMLP,P) ≤MRD(SLT,H) (46)

=max
π′∈Π

min
s′∈SLT

√√√√N+1−d∑
i=1

(s′(Hi)− π′−1(i))2 +

N∑
j=N+2−d

(s′(Hj)− π′−1(j))2

(47)

=max
π′∈Π

min
a∈R

√√√√N+1−d∑
i=1

a− π′−1(i))2 (48)

In this case, the scores for the first (N + 1− d) nodes are all the same, while the scores for the last
(d − 1) nodes can take on any value due to the full rank of M. Therefore, to compute Formula 48,
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the first (N + 1 − d) elements of π′ should be uniformly distributed (i.e.,π′−1(1) = 1, π′−1(2) =
N, π′−1(3) = 2, π′−1(4) = N − 1, ...) (Davis, 1979). In that case, a should be n+1

2 . Thus, we can
obtain the upper bound of MRD(SMLP,P):

MRD(SMLP,P) ≤max
π′∈Π

min
a∈R

√√√√N+1−d∑
i=1

a− π′−1(i))2 (49)

=

√
2((N − N + 1

2
)2 + (N − 1− N + 1

2
)2 + ...+ (

d

2
)2) (50)

=

√
1

12
(N3 −N − d3 + 3d2 − 2d) (51)

Next, we calculate the lower bound of MRD(SMLP,P). Similar to Formula 30, we have:

MRD(SMLP,P) = max
π′∈Π

min
s′∈SMLP

√√√√ N∑
j

(s′(Pj)− π′−1(j))2 (52)

= max
π′∈Π

min
s′∈SMLP

√√√√N+1−d∑
i=1

(s′(Pi)− π′−1(i))2 +

N∑
j=N+2−d

(s′(Pj)− π′−1(j))2

(53)

≥ max
π′∈Π

min
s′∈SMLP

√√√√N+1−d∑
i=1

(s′(Pi)− π′−1(i))2 (54)

To compute the lower bound of Formula 54, the intermediate representations H′ should be entirely
composed of the column vectors from the set C in Formula 41. Since the intermediate layer dimen-
sion of the two-layer MLP is d, we can select at most d different column vectors to include in H′.
To obtain the lower bound of MRD(SMLP, we expand the intermediate representations H′ to retain
the original column vectors [1, 2, 3, ..., N + 1 − d]⊤ ∈ R(N+1−d)×1 and 1 ∈ R(N+1−d)×1 from
P∗

:(N+1−d), while additionally selecting d column vectors from C that have all their zero values at
the beginning. This simplification does not affect the results because the column vectors with zero
values at the end can be derived from [1, 2, 3, ..., N + 1 − d]⊤ by subtracting the vectors with zero
values at the beginning, thus not affecting the range space. We denote the expanded intermediate
representations as H∗ ∈ R(N+1−d)×(d+2), and denote its candidate set as H:

H∗ =


1 1
2 1
...

... c1 c2 · · · cd
N + 1− d 1

 ∈ H (55)

Thus, we can further expand Formula 54 as follows:

MRD(SMLP,P) ≥ max
π′∈Π

min
s′∈SMLP

√√√√N+1−d∑
i=1

(s′(Pi)− π′−1(i))2 (56)

≥ max
π′∈Π

min
s′∈SLT

min
H∗∈H

√√√√N+1−d∑
i=1

(s′(H∗
i )− π′−1(i))2 (57)

According to Formula 57, we have transformed the MRD of the MLP back into the MRD of a linear
transformation. To reach the extremum, the first (N+1−d) elements of π′ should also be uniformly
distributed (i.e.,π′−1(1) = 1, π′−1(2) = N, π′−1(3) = 2, π′−1(4) = N − 1, ...) (Davis, 1979). In
this case, any ci (including [1, 2, 3, ..., N+1−d]⊤) is less effective than simply retaining the column
vector zi with its first non-zero element:

ci = [0, ..., 0, ja+ b, (j + 1)a+ b, ..., (N + 1− d)a+ b]⊤, 1 ≤ j ≤ N + 1− d (58)

zi = [0, ..., 0, ja+ b, 0, ..., 0]⊤, 1 ≤ j ≤ N + 1− d (59)
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Therefore, by replacing all ci with zi (replacing [1, 2, 3, ..., N +1−d]⊤ with z0), we construct new
intermediate representations Z∗ ∈ R(N+1−d)×(d+2), and its candidate set is denoted as Z:

Z∗ =


1
1
... z0 z1 z2 · · · zd
1

 ∈ Z (60)

Then, we continue to calculate the lower bound of MRD(SMLP,P):

MRD(SMLP,P) ≥ max
π′∈Π

min
s′∈SLT

min
H∗∈H

√√√√N+1−d∑
i=1

(s′(H∗
i )− π′−1(i))2 (61)

= min
s′∈SLT

min
H∗∈H

√√√√N+1−d∑
i=1

(s′(H∗
i )− π′−1(i))2 (62)

≥ min
s′∈SLT

min
Z∗∈Z

√√√√N+1−d∑
i=1

(s′(Z∗
i )− π′−1(i))2 (63)

According to Formula 60, each zi can provide an accurate score for a certain node. The (d + 1)
column vectors from z0 to zd should eliminate errors for the (d+1) points that are farthest from the
mean, in order to achieve global optimality. Therefore, we have:

MRD(SMLP,P) ≥ min
s′∈SLT

min
Z∗∈Z

√√√√N+1−d∑
i=1

(s′(Z∗
i )− π′−1(i))2 (64)

≥ min
a∈R

√√√√√N+1−d− d+1
2∑

i=1+ d+1
2

(a− π′−1(i))2 (65)

=

√
1

12
((N − d)3 − (N − d)− d3 + 3d2 − 2d) (66)

Now, we have derived both the upper and lower bounds for MRD(SMLP,P) and completed the
derivation of Proposition 2.

A.7 DETAILS FOR MRD OF KOLMOGOROV-ARNOLD ATTENTION

In this section, we provide a detailed proof of Proposition 3.

Proposition 3 (MRD of Kolmogorov-Arnold Attention). Given the alignment matirx P ∈ RN×d,
for a scoring function in the form of s(hi, hj) =

∑d
k=1 ϕk(AF(hi, hj)k), where each ϕk is composed

of d modified zero-order B-spline functions ϕk(x) =
∑d

l=1 ck,l · B∗
k,l(x), its MRD satisfies the

following inequality:

MRD(SKAA,P) ≤ δ , for ∀ δ > 0 (67)

where SKAA is the set of all candidate KAA scoring functions.

First, we present the specific expression for the modified zero-order B-spline functions B∗(·) as
follows:

B∗
j (x) :=


0, tj < x ≤ tj+1 − 1

1, tj+1 − 1 < x ≤ tj+1

0, otherwise
(68)

The modified B∗(·) is not significantly different from the standard zero-order B-spline function,
except that it reduces the domain where the function takes non-zero values. For each non-linear
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mapping function ϕ(·), it consists of d modified B∗(·), as shown below:

ϕ(x) =

d∑
l=1

cl ·B∗
l (x) (69)

In our assumption, we have N = d2, and according to Formula 22, the elements in P take values
from [1, N ]. Therefore, the grid size of B∗(·) we used is also d, and its specific form is as follows:

∀ l ∈ [1, d], B∗
l (x) :=


0, (l − 1)d < x ≤ ld− 1

1, ld− 1 < x ≤ ld

0, otherwise
(70)

Then, we can express the scores of Pj ∈ R1×d in the form consisting of B∗(·) and learnable
parameters c as follows:

s(Pj) =

d∑
k=1

ϕk(Pj,k) (71)

=
d∑

k=1

d∑
l=1

ck,lB
∗
k,l(Pj,k) (72)

where Pj,k ∈ R is the k-th dimension value of Pj . According to Formula 70, we can observe that
B∗(·) only produces a non-zero value for integer input x ∈ N∗ when x is divisible by d. For any
Pj , its d-dimensional values are composed of d consecutive integers, so there exists exactly one
k ∈ [1, d] that satisfies d | Pj,k. Therefore, only one B∗

k(·) is activated. Specifically, we have:

∀j ∈ N∗, and 1 ≤ j ≤ N,

∃α, β ∈ N, 0 ≤α, β ≤ d− 1,

s.t. j = αd+ β + 1 (73)

By converting the row index j corresponding to Pj into the form in Formula 73, we can obtain the
value of s(Pj) as:

s(Pj) =

d∑
k=1

d∑
l=1

ck,lB
∗
k,l(Pj,k) (74)

= cd−β,α+1 (75)

Therefore, MRD(SKAA,P) can be calculated as follows:

MRD(SKAA,P) = max
π′∈Π

min
s′∈SKAA

√√√√ N∑
j

(s′(Pj)− π′−1(j))2 (76)

= max
π′∈Π

min
s′∈SKAA

√√√√d−1∑
α=0

d−1∑
β=0

(s′(Pαd+β+1)− π′−1(αd+ β + 1))2 (77)

= max
π′∈Π

min
s′∈SKAA

√√√√d−1∑
α=0

d−1∑
β=0

(cd−β,α+1 − π′−1(αd+ β + 1))2 (78)

According to Formula 78, for any permutation π ∈ Π, we can find a group of cd−β,α+1 = π′−1(αd+
β + 1) such that MRD(SKAA,P) can be made arbitrarily small. Thus, Proposition 3 is proven.

B MORE INFORMATION ON EXPERIMENTS

B.1 DETAILED DESCRIPTIONS OF DATASETS

Node-level datasets We employ 6 datasets for our node-level tasks, which includes 4 citation
network datasets Cora, CiteSeer, PubMed, ogbn-arxiv and 2 product network datasets Amazon-
Computers, Amazon-Photo. The statistics of above datasets are presented in Table 4.
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• Cora, CiteSeer, PubMed, ogbn-arxiv: These 4 widely used graph datasets (Sen et al.,
2008; Hu et al., 2020) represent the citation network, where nodes correspond to research
papers, and edges indicate citation relationships. The downstream tasks typically involve
classifying the research area of papers/researchers, and predicting the citation relationships.

• Amazon-Computers, Amazon-Photo: These are 2 product networks (Shchur et al., 2018)
from Amazon, where nodes represent goods and edges indicate that two goods are fre-
quently purchased together. The downstream task is to categorize goods to their corre-
sponding product category.

Table 4: Statistics of node-level datasets.
Dataset Nodes Edges Feature Classes Train/Val/Test

Cora 2708 5429 1433 7 140 / 500 / 1000
CiteSeer 3327 4732 3703 6 120 / 500 / 1000
PubMed 19717 44338 500 3 60 / 500 / 1000

ogbn-arxiv 169343 1166243 128 40 90941 / 29799 / 48603
Amazon-Computers 13752 491722 767 10 10% / 10% / 80%

Amazon-Photo 7650 238162 745 8 10% / 10% / 80%

Graph-level datasets We employ another 6 graph datasets for our graph-level tasks, which includes
1 biological network dataset PPI, 2 chemical compound graph datasets MUTAG, ZINC, 2 protein
structure datasets PROTEINS, ENZYMES, and 1 quantum chemistry dataset QM9. The statistics of
above datasets are presented in Table 5.

• PPI: This dataset (Zitnik & Leskovec, 2017) is a collection of biomedical system graphs,
where each node represents a protein, and each edge represents the protein-protein interac-
tion. The downstream tasks often involves graph classification on the protein’s properties.

• MUTAG, ZINC: These 2 datasets belong to chemical compound graphs, where nodes are
atoms and edges are chemical bonds. MUTAG (Ivanov et al., 2019) focuses on classifying
compounds as mutagenic or non-mutagenic, while ZINC (Gómez-Bombarelli et al., 2018)
focuses on predicting molecule properties related to drug discovery.

• PROTEINS, ENZYMES: These are 2 protein structure datasets (Ivanov et al., 2019). The
nodes here represent secondary structure elements in the protein and edges represent the
interaction between them. PROTEINS is used to classify proteins as enzymes or non-
enzymes, while ENZYMES categorizes the proteins into one of six enzyme types.

• QM9: This dataset (Wu et al., 2018) is a collection of small organic molecules. Nodes
in the graph represent atoms, and edges represent chemical bonds. The dataset is used for
predicting several quantum mechanical properties of a molecule.

Table 5: Statistics of graph-level datasets.
Dataset Graphs Nodes (avg) Edges (avg) Feature Classes Train/Val/Test

PPI 24 2414 33838 50 121 80% / 10% / 10%
MUTAG 188 17.93 19.76 7 2 80% / 10% / 10%

ENZYMES 600 32.82 62.60 3 6 80% / 10% / 10%
PROTEINS 1113 39.72 74.04 3 2 80% / 10% / 10%

ZINC 12000 23.15 24.91 1 1 10000 / 1000 / 1000
QM9 130831 18.03 18.66 11 12 80% / 10% / 10%

B.2 COMPARISON WITH MLP-BASED ATTENTION

In this section, we compare the performance between our proposed KAA and the MLP-based scoring
function. The MLP-based scoring function is formally defined and analyzed by Brody et al. (2021).
They proposed GATv2, which introduces an MLP into the scoring function based on GAT. We com-
pare the performance of GAT, GATv2, and KAA-GAT on four datasets: Cora, CiteSeer, PubMed,
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and ogbn-arxiv, with the results shown in Table 6. The experimental results show that KAA-GAT
achieves the best performance on all datasets. Furthermore, although GATv2 has a stronger theo-
retical expressive capability, it does not outperform GAT on half of the datasets. These results also
demonstrate that our proposed KAA not only possesses stronger theoretical expressiveness but also
exhibits better performance on downstream tasks.

Table 6: Results of accuracy (%) comparison between GAT, GATv2, and our proposed KAA-GAT.

Model
Dataset Cora CiteSeer PubMed ogbn-arxiv

GAT 82.76 ±0.74 72.34 ±0.44 77.50 ±0.75 68.62 ±0.68
GATv2 82.95 ±0.69 72.03 ±0.66 78.14 ±0.38 68.31 ±0.18

KAA-GAT 83.80 ±0.49 73.10 ±0.61 78.60 ±0.50 69.02 ±0.49

B.3 COMPARISON WITH OTHER KAN-GNN VARIANTS

With the advent of the KAN architecture, some pioneering works (Kiamari et al., 2024; Zhang &
Zhang, 2024; Bresson et al., 2024; De Carlo et al., 2024) have combined KAN with GNNs, leading
to the development of various KAN-GNN variants. These works adopt a similar approach by using
KAN as a feature transformation function within GNNs. The specific implementations and complete
experimental results of these works have generally not been made public by the authors. We gather
the existing experimental results to compare them with our proposed KAA, as shown in Table 7.
The experimental results indicate that our proposed KAA-GAT achieves the optimal performance
on these two node classification datasets Cora and CiteSeer. Additionally, KAA-GAT is the only
model among these KAN-GNN variants that consistently outperforms classic GNN models.

Table 7: Results of accuracy (%) comparison between existing KAN-GNN variants and our pro-
posed KAA-GAT.

Model
Dataset Cora CiteSeer

GCN 81.99 ±0.70 71.36 ±0.57
GraphSAGE 81.48 ±0.41 69.70 ±0.63

GIN 79.85 ±0.70 69.60 ±0.89

KAGIN 76.20 ±0.77 68.37 ±1.17
KAGCN 78.26 ±1.77 64.09 ±1.85
GKAN 81.20 69.40

KAA-GAT 83.80 ±0.49 73.10 ±0.61

B.4 TIME AND SPACE ANALYSES

Cora CiteSeer PubMed

n (k) t (ms) n (k) t (ms) n (k) t (ms)

GAT 92.3 677.1 237.5 684.9 32.3 683.6
KAA-GAT 92.8 682.0 238.0 690.3 32.8 692.0

Table 8: Statistics of time and space cost.

Unlike KAN-based methods in other domains, KAA introduces a relatively small-scale KAN only
in the scoring function part, which makes its time and space costs more manageable. In most cases
in our experiments, the KAN we used consists of a single layer, with the spline order of the B-spline
function set to 1 and a grid size of 1. This simple structure is sufficient to achieve satisfactory
downstream results. Specifically, we collect statistics on the number n of parameters and the time t
required for each training epoch for both GAT and KAA-GAT on the Cora, CiteSeer, and PubMed
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datasets. The results in Table 8 show that most of the parameters in GNNs are used for feature
transformation, allowing KAA to add less than 2% additional parameters. Moreover, the runtime
increase is also under 2%. This indicates that in scenarios where KAA is applied, both the time and
space costs are highly acceptable.

B.5 KAA ON ADVANCED ATTENTIVE GNNS

To verify whether KAA remains effective on SOTA attentive GNNs, we select two advanced GAT-
based models (SuperGAT (Kim & Oh, 2021) and HAT (Zhang et al., 2021)) and two advanced
Transformer-based models (NAGformer (Chen et al., 2022) and SGFormer (Wu et al., 2024b)).
These models integrate multiple techniques and feature relatively complex computation pipelines.
We evaluate the effectiveness of KAA on these advanced attentive GNNs and present a comparison
of the results between the original models and the KAA-enhanced models on node classification
tasks. From Table 9, we can observe that even for various high-performance attentive GNN models,
KAA still achieves significant performance improvements. KAA consistently delivers performance
gains across all scenarios and achieves remarkable results on certain datasets. For instance, KAA
enhances HAT’s performance on the ogbn-arxiv dataset by approximately 3%, which is quite impres-
sive. In many cases, the performance gains brought by KAA surpass the performance differences
between different models, highlighting the value of incorporating KAA.

Cora CiteSeer PubMed ogbn-arxiv Computers Photo

SuperGAT 84.27 ±0.53 72.71 ±0.65 81.63 ±0.55 71.55 ±0.43 94.05 ±0.49 91.77 ±0.32
KAA-SuperGAT 84.45 ±0.23 73.08 ±0.28 81.72 ±0.43 74.01 ±0.67 94.65 ±0.78 92.20 ±0.22

HAT 83.67 ±0.39 72.31 ±0.23 79.67 ±0.45 70.87 ±0.65 93.77 ±0.46 90.55 ±0.34
KAA-HAT 84.01 ±0.40 72.55 ±0.64 79.90 ±0.42 73.55 ±0.76 93.80 ±0.37 91.65 ±0.40

NAGphormer 74.22 ±0.89 63.68 ±0.85 76.34 ±0.76 91.23 ±0.78 90.04 ±0.22
KAA-NAGphormer 77.01 ±0.91 64.04 ±0.67 78.30 ±0.55 91.42 ±0.81 91.00 ±0.45

SGFormer 75.46 ±0.78 67.79 ±0.26 79.89 ±0.64 92.97 ±0.44 91.06 ±0.54
KAA-SGFormer 77.45 ±0.80 68.08 ±0.77 80.03 ±0.97 93.08 ±0.79 91.33 ±0.59

Table 9: Accuracy (%) of KAA cooperated with advanced attentive GNNs on node classification.
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