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ABSTRACT

Recently, there has been an increased interest in accelerating drug design with
machine learning (ML). Active ML-guided design of biological sequences with
favorable properties involves multiple design cycles in which (1) candidate se-
quences are proposed, (2) a subset of the candidates is selected using ML surrogate
models trained to predict target properties of interest, and (3) sequences are ex-
perimentally validated. The returned experimental results from one cycle provide
valuable feedback for the next one, but the modifications they inspire in the candi-
date proposals or experimental protocol can lead to distribution shifts that impair
the performance of surrogate models in the upcoming cycle. For the surrogate
models to achieve consistent performance across cycles, we must explicitly ac-
count for the distribution shifts in their training. We apply domain generalization
(DG) methods to develop robust classifiers for predicting properties of therapeutic
antibodies. We adapt a recent benchmark of DG algorithms, “DomainBed,” to de-
ploy DG algorithms across 5 domains, or design cycles. Our results suggest that
foundational models and ensembling (in both output and weight space) lead to
better predictive performance on out-of-distribution domains. We publicly release
our codebase and the associated dataset of antibody-antigen binding that emulates
distribution shifts across design cycles.

1 INTRODUCTION

Figure 1: Prediction task: antibody-
antigen binding. Antibody Onar-
tuzumab 1 (pink) binds to MET (green
and blue), a lung cancer antigen tar-
get, on the cell surface. The strength
of the binding is determined by the
binding site of the antibody interact-
ing with the antigen, boxed in white.

A model trained to minimize training error is incentivized
to absorb all the correlations found in the training data. In
many cases, however, the training data are not sampled in-
dependently from the same distribution as the test data and
such a model may produce catastrophic failures outside the
training domain (Torralba & Efros, 2011; Zech et al., 2018;
Beery et al., 2019; Koh et al., 2021b; Neuhaus et al., 2022).
The literature on domain generalization (DG) aims to build
a robust predictor that will generalize to an unseen test do-
main. A popular approach in DG extracts a notion of do-
main invariance from datasets spanning multiple training
domains (Blanchard et al., 2011; Muandet et al., 2013; Ar-
jovsky et al., 2019). This substantial body of work inspired
by causality views the problem of DG as isolating the causal
factors of variation, stable across domains, from spurious
ones, which may change from training to test domains (Ar-
jovsky et al., 2019; Ahuja et al., 2021; Rame et al., 2022a).

Benchmarking efforts for DG algorithms, to date, have been
largely limited to image classification tasks (e.g., Gulrajani
& Lopez-Paz, 2020; Lynch et al., 2023). To prepare these
algorithms for critical applications such as healthcare and
medicine, we must validate and stress-test them on a wide
variety of real-world datasets carrying selection biases, confounding factors, and other domain-
specific idiosyncrasies. In this paper, we apply for the first time, DG algorithms to the problem of
active drug design, a setting riddled with complex distribution shifts.
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Figure 2: Active ML-guided design of antibodies effective against given antigens of interest typically
proceeds by (1) developing multiple generative models that produce novel antibody designs given
some starting seed antibody, (2) selecting the most promising designs using predictive models, and
(3) experimentally validating the selected designs in the wet lab, and (4) updating the computational
models with the measurements for the next cycle. In each cycle, the makeup of the targets, generative
models, and/or experimental assays may vary.

The specific application we consider is that of characterizing the binding affinity of therapeutic
antibodies. Antibodies are proteins used by the immune system to recognize harmful foreign sub-
stances (antigens) such as bacteria and viruses (Singh et al., 2018). They bind, or attach, to antigens
in order to mediate an immune response against them. The strength of binding is determined by the
binding site of the antibody (paratope) interacting with the antigen epitope (Figure 1). Antibodies
that bind tightly to a given target antigen are highly desirable as therapeutic candidates.

The wet-lab experiments that measure the binding affinity of antibodies are costly and time-
consuming. In active antibody design, we thus assign a surrogate ML model to predict binding
and select the most promising candidates for wet-lab evaluation based on the predictions. Develop-
ing an accurate surrogate model is a challenging task in itself, because, as explained in more detail
in section 2, the model may latch onto non-mechanistic factors of variation in the data that do not
cause binding: identity of the target antigen, assay used to measure binding, distinguishing fea-
tures of the generative models (either human experts or ML) that proposed the antibody, and “batch
effects” that create heteroscedastic measurement errors.

We approach active drug design from the DG perspective. Active drug design, executed in multiple
design cycles, informs the DG algorithm development, as it abounds in distribution shifts previ-
ously underexplored in the DG literature. Conversely, it benefits from a robust (surrogate) binding
predictor. To summarize, this joint venture enables (1) impactful real-world benchmarking of DG al-
gorithms and (2) development of robust predictors to serve active antibody design. Our contributions
are the following:

• We open source a new antibody dataset for active drug design.
• We review and evaluate the latest DG algorithms in the context of drug design. Our work

is the first large-scale benchmark study on large molecules, to our knowledge.
• We present some guidelines for best practices and highlight open questions for the field.

2 ACCELERATING ANTIBODY DESIGN WITH ML

Problem formulation Antibody design typically focuses on designing the variable region of an
antibody, which consists of two chains of amino acids, called heavy and light chains. Each chain can
be represented as a sequence of characters from an alphabet of 20 characters (for 20 possible amino
acids). The heavy and light chains combined span L ∼ 290 amino acids on average. We denote
the sequences as x = (a1, . . . , aL), where al ∈ {1, . . . , 20} corresponds to the amino acid type at
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position l ∈ [L]. We experimentally measure the binding affinity z ∈ R from each sequence. For
simplicity, we create a classification task by creating a binary label y ∈ {0, 1} from z. We set y = 1
if z exceeds a chosen minimum affinity value that would qualify as binding and y = 0 otherwise.
Each antibody xi, indexed i, carries a label yi in one of the design rounds r, where r ∈ {0, . . . , 4}.
The labeled dataset for a round r is a set of nr ordered pairs: Dr = {(xr

i , y
r
i )}

nr
i=1.

Lab in the loop Our antibody binding dataset is generated from an active ML-guided design pro-
cess involving multiple design cycles, or rounds. As illustrated in Figure 2, each round consists of the
following steps: 1. Millions of candidate sequences are sampled from a suite of generative models,
including variational autoencoders (Gligorijević et al., 2021; Berenberg et al., 2022), energy-based
models (Tagasovska et al., 2022; Frey et al., 2023a) and diffusion models (Gruver et al., 2023; Frey
et al., 2023b). 2. A small subset of several hundred promising candidates is selected based on bind-
ing predictions from a surrogate binding classifier (Park et al., 2022). 3. The wet lab experimentally
measures binding. 4. All models (generative and discriminative) are updated with new measure-
ments. In Step 4, both the generative model and the surrogate classifier f̂θ are updated. Beyond
being refit on the new data returned from the lab, the generative models may undergo more funda-
mental modifications in their architectures, pretrained weights, and training/regularization schemes.

A standard approach to supervised learning tasks is empirical risk minimization (ERM) (Vapnik,
1992). Let us first define the risk in each round r as

Rr(θ) = E(Xr,Y r)∼Drj
ℓ
(
f̂θ(X

r), Y r
)
, (1)

where ℓ is the loss function. ERM simply minimizes the training error, i.e., the average risk across
all the training examples from all the rounds.

RERM(θ) = E(Xr,Y r)∼
⋃

j∈[5]Drj
ℓ
(
f̂θ(X

r), Y r
)
= Er∼ptrain(r)R

r(θ), (2)

where ptrain(r) denotes distribution of the rounds in the training set. When we trained our surrogate
classifier by ERM, it did not improve significantly even as the training set size increased over design
rounds. In each subsequent round, representing the test domain, we observed that the classifier
performance was close to random.

3 DOMAIN GENERALIZATION

The new measurements from the wet lab inspire modifications in the candidate proposals or exper-
imental protocol, which lead to (feedback) covariate shift. DG has recently gained traction in the
ML community as concerns about productionalizing ML models in unseen test environments have
emerged (Rosenfeld et al., 2021). The interest in achieving out-of-distribution (OOD) generaliza-
tion has spawned a large body of work in DG, which can be organized into the following families of
approaches:

DG by invariance This paradigm has mainly been motivated by learning “causal representations.”
Invariant causal prediction (Peters et al., 2016) frames prediction in the language of causality, as-
suming that the data are generated according to a structural equation model (SEM) relating variables
in a dataset to their parents by a set of mechanisms, or structural equations. The major assumption
of ICP is the partitioning of the data into environments e ∈ E such that each environment corre-
sponds to interventions on the SEM, but importantly, the mechanism by which the target variable is
generated via its direct parents is unaffected (Pearl, 2009). This means that the true causal mecha-
nism of the target variable is fixed, while other features of the generative distribution can vary. This
motivates the objective of learning mechanisms that are stable (invariant) across environments with
the hope that they would generalize under unseen, valid 2 interventions.

The ultimate goal of these frameworks is to learn an “optimal invariant predictor” which uses
only the invariant features of the SEM. We assume that high-dimensional observations take lower-
dimensional representations governed by a generative model. In the invariant learning paradigm, it
is common to define the task as learning invariant representations of the data, rather than seeking

2Interventions are considered valid if they do not change the structural equation of Y .
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invariant features in the observation space. This problem setup has inspired a plethora of algorithms,
starting with IRM (Arjovsky et al., 2019)

RIRM = min
Φ:X→H;
w:H→Y

∑
e∈Etr

Re(w · Φ) s.t. w ∈ argmin
w̄:H→Y

Re(w̄ · Φ) ∀e ∈ E.

IRM assumes invariance of E[y|Φ(x)]—that is, invariance of the feature-conditioned label distribu-
tion. Follow-up studies make a stronger assumption on invariance based on higher-order conditional
moments (Krueger et al., 2021; Xie et al., 2020). Though this perspective has gained traction in the
last few years, it is somewhat similar to methods from domain adaptation, such as DANN (Ganin
et al., 2016) and CORAL (Sun & Saenko, 2016), which minimize domain shift by aligning the
source and target feature distributions. Another line of work considers learning shared mechanisms
by imposing invariance of the gradients distributions across domains. In our setup the gradients per
environment are:

ge = E(Xe,Y e)∼De
∇θℓ

(
f̂θ(X

e), Y e
)
,

Parascandolo et al. (2020) initiated such approaches, aiming to learn invariant explanations by re-
placing the arithmetic mean in gradient descent with a geometric one, hence promoting agreements
of the gradients across domains. Other popular gradient based approaches include Fish (Shi et al.,
2021) which match the first moments of the gradient distributions, and Fishr (Rame et al., 2022a)
which similarly to CORAL matches the variance in gradient space.

DG by ensembling We consider two types of ensembling strategies that do not use domain in-
formation (i.e., environment labels). First, output-space ensembles combine multiple independently
trained models for an input x as follows:

argmax
k

Softmax

(
1

M

M∑
m=1

f(x; θm)

)
k

where M is the total number of models in the ensemble, θm are the parameters of the m-th model,
and the sub-script (·)k denotes the k-th element of the multiclass vector argument. A standard
ensembling approach, deep ensemble, combines models trained with different initializations and
was shown to achieve strong robustness to OOD data (Lakshminarayanan et al., 2017).

Second, weight-space ensembles. Given M individual member weights {θm}Mm=1 corresponding to
individual models, Weight averaging (WA), is defined as:

fWA = f(·, θWA),where θWA =
1

M

M∑
m=1

θm

A combination of different weight averaging and fine tuning resulted in different methods e.g.
Stochastic Weight Average (Izmailov et al., 2018), Simple Moving Average (Arpit et al., 2022),
Diverse Weight Averaging a.k.a model soup (Wortsman et al., 2022; Rame et al., 2022b). These
models usually leverage pre-trained foundational models (Bommasani et al., 2021).

3.1 HYPOTHESIS - INVARIANT FEATURE REPRESENTATIONS OF ANTIBODIES

Our lab-in-the-loop (section 2) offers a unique testbed for DG algorithms. In particular, we attempt
to answer the question:

Can DG algorithms help in developing robust predictors for antibody design? Do learnt invariant
representations align with the physics-based features causing binding properties?

We propose to consider the design rounds r ∈ {0, . . . , 4} as environments e, since rounds do cor-
respond to valid interventions — our design cycles should not impact the true causal mechanism
governing binding affinity. There are two types of features that a binding classifier can learn:

• Invariant (causal) features: various physico-chemical and geometric properties at the in-
terface of antibody-antigen binding (Figure 1) and

• Spurious correlations: Other round-specific features that are byproducts of different folding
algorithms, generative models, measurement assay types, antigen targets, etc.

We expect DG algorithms to be able to distinguish between the two, and only make use of the
features invariant across rounds in their predictions.
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4 RELATED WORK

Existing benchmarks for investigating OOD generalization are mostly image-based (e.g., Gulrajani
& Lopez-Paz, 2020; Koh et al., 2021a). Yet it is unclear if the conclusions for these results transfer
to other real-world applications. Our benchmark aims at answering this question, focusing on the
topic of drug discovery.

In the drug discovery setting, some benchmarks have been proposed, however, they are restricted to
small molecules, or compounds comprised of 20-100 atoms and typically weighing less than 1,000
daltons. Ji et al. (2023) explores shifts due to assay types, scaffolds, and molecular sizes. Tossou
et al. (2023) studies data splitting strategies in two deployment settings: virtual screening and de
novo generation.

We propose a benchmark for therapeutic proteins including distribution shifts likely to occur in ac-
tive ML-guided design. Proteins fall under large molecules, made of thousands of atoms. Being
much larger than small molecules, they are arguably more complex and more challenging to char-
acterize. In particular, the three-dimensional folded structure of the protein is highly indicative of
its function. When predicting functional properties of proteins, working with structure-aware rep-
resentations is key. Proteins present unique modeling challenges and, to our knowledge, this is the
first large-scale OOD benchmark on large molecules.

5 ANTIBODY DOMAINBED

5.1 THERAPEUTIC PROTEIN DATASET

The main objective of this benchmark is to emulate, with high-fidelity, a real-world active drug de-
sign setup. To create a realistic, publicly accessible dataset, we propose the following procedure:
(1) Collection of open data antibody-antigen complex structures, antibody wild types (seeds), and
corresponding mutants; (2) Training generative models and sampling candidates with different prop-
erties (edit distances from training data, targets of interest, different initial complex structures); (3)
Computing a proxy for binding from physics-based models for all designs from Step 2; and (4)
Splitting the labeled dataset into a number of meaningful environments.

Step 1: Data curation. We rely on the latest version (at the time of writing of this manuscipt) of
the popular Structural Antibody Database, SAbDab Dunbar et al. (2014); Raybould et al. (2020);
Schneider et al. (2022) which catalogs 7,689 PDB structures, and a recent derivative Graphinity,
Hummer et al. (2023) which extends SAbDab to a synthetic dataset of a much larger scale (nearly
1M) by introducing systematic point mutations in the CDR3 loops of the antibodies in the original
SAbDab complexes. In this benchmark, we select the antibody wild types and mutants related to
three popular antigens - HIV1 3, SARS-CoV-24 and HER2 5.

Step 2: Sampling antibody candidates. To emulate the active drug discovery pipeline, we need
a suite of generative models for sampling new candidate designs for therapeutic antibodies. We run
the Walk Jump Sampler (WJS; Frey et al., 2023b), a method building on the neural empirical Bayes
framework (Saremi & Hyvarinen, 2019). WJS separately trains score- and energy-based models to
learn noisy data distributions and sample discrete data. The energy-based model is trained on noisy
samples, which means that by training with different noise levels σ, we obtain different generative
models. Higher σ corresponds to greater diversity in the samples and higher distances from the
starting seed. We used four values for the noise parameter, namely σ ∈ [0.5, 1.0, 1.5, 2.0].

Step 3: Labeling candidates. Since wet-lab assays to experimentally measure binding affin-
ity are prohibitively expensive, we use computational frameworks which, by modeling changes

3The most common type of Human Immunodeficiency Virus that can lead to AIDS. HIV attacks the body’s
immune system by destroying CD4 cells, which help your body fight infections

4Severe acute respiratory syndrome coronavirus 2, is a strain of coronavirus that causes COVID-19, the
respiratory illness responsible for the COVID-19 pandemic.

5Human epidermal growth factor receptor 2 is a gene that makes a protein found on the surface of all breast
cells. Breast cancer cells with higher than normal levels of HER2 are called HER2-positive which signals breast
cancer may grow quickly and possibly come back.
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Table 1: Dataset overview. Number of samples in parentheses.

Environment Antigens Generative Model Annotation Description - emulating env with:

env 0 HIV1 (186)
SARS-CoV-2 (1117) WJS σ ∈ [0.5] ∆∆G computed with pyRosetta distribution shifts due to generative model (covariate shift)

env 1 HIV1 (780)
SARS-CoV-2 (3096) WJS σ ∈ [1.0, 1.5] ∆∆G computed with pyRosetta distribution shifts due to generative model (covariate shift)

env 2 HIV1 (275)
SARS-CoV-2 (1469) WJS σ ∈ [2.0] ∆∆G computed with pyRosetta distribution shifts due to generative model (covariate shift)

env 3 HIV1 (552)
SARS-CoV-2 (3142) WJS σ ∈ [0.5, 1.0, 1.5, 2.0] ∆∆G computed with pyRosetta distribution shifts due to generative model (covariate shift)

env 4* HER2 (2471) point mutations in CDR3 ∆∆G computed with FoldX (i) zero-shot generalization to new target (de novo design) (ii) concept drift

env 5* HER2 (226) internally generated Kd experimentally measured with SPR verifying generalizability to Kd measurements.

Figure 3: Antibody Domainbed environments. Left - edit distance a.k.a sequence similarity between
designs and seeds. Right - binding properties per generative model.

in binding free energies upon mutation (interface ∆∆G = ∆Gwild type − ∆Gmutant), al-
low for large-scale prediction and perturbation of protein–protein interactions Barlow et al.
(2018). We use the pyrosetta (pyR) Chaudhury et al. (2010) implementation of the
InterfaceAnalyzerMover, namely the scoring function ref2015 , to compute the dif-

ference in energy prior and after mutations in a given antibody-antigen complex. After removing
highly uncertain labels between -0.1 and 0.1 kcal/mol (Sirin et al., 2016; Hummer et al., 2023), we
attach binary labels to each candidate of the generative models: label 1 if ∆∆G < −0.1 (stabilizing)
and label 0 if ∆∆G > 0.1 (destabilizing). While the computed ∆∆G represent weak proxies of
binding free energy, they have been shown to be predictive of experimental binding (Mahajan et al.,
2022; Hummer et al., 2023). See B.1 for details.

Step 4: Splitting into environments. To emulate the active drug design setup where new sources
of distribution shift might appear (e.g., new generative models, antigen targets, experimental assays)
at each iteration, we split the overall dataset into five cycles. Each cycle corresponds to a different
domain or environment in the language of domain generalization algorithms. In Table 1 we sum-
marize how the overall data pool was split into environments, as well as some summary statistics
of each environment. This dataset split mimics sub-population shifts due to the generative model,
which produces antibody sequences with different edit distances from the seed sequences. The WJS
model with σ=0.5 (σ=2.0) produces antibody designs close to (far from) the seed. Environment 4
has been partially included in the experiments because it introduces severe distribution shift in the
form of concept drift and label shift, as it represents a completely new target and a different labeling
mechanism than the rest. We report some preliminary results in this extreme setup in subsection A.3.

5.2 PROTEIN SEQUENCE ARCHITECTURES

Different DG solutions assume different types of invariance, and propose algorithms to estimate
them from data. DomainBed (Gulrajani & Lopez-Paz, 2020) is a benchmark suite that contains
the majority of DG algorithms developed in the past two years and a benchmark environment that
compares them across multiple natural image datasets.

To adapt DomainBed our antibody design context, we modify its featurizer to accept biological
sequences as input. We do so by (i) implementing a preprocessing module to align the antibody
sequences (using the AHo numbering scheme suitable for antibody variable domains; Honegger &
PluÈckthun, 2001) and (ii) replacing the default ResNet (He et al., 2016) with one of the following
more suitable architectures:

SeqCNN: Our SeqCNN model consists of an embedding layer with output dimension 64, and two
consecutive convolutional layers with kernel sizes 10 and 5 respectively, stride of 2 followed by
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Env 0 Env 1 Env 2 Env 3

Env 0

Env 1

Env 2

Env 3
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Figure 4: MMD in the learned features of ESM between every pair of environments. DG algorithms
result in features that are significantly more uniform across environments.

ReLU nonlinearities. The CNN output is pooled with a mixing layer of size 256. This identical
architecture is applied for both the antibody and the antigen sequence before concatenating them
and passing them to the classification head.

Finetuned ESM2: We finetune the 8M-parameter ESM2 Lin et al. (2023), a protein language model
pretrained on experimental and high-quality predicted structures of general proteins. For speed,
we used a single ESM2 model for the two antibody chains as well as the antigen. One potential
challenge with fine-tuning a single ESM2 model on three protein chains is that they are OOD for
ESM2, which was pretrained on single chains. To address this, we follow the tricks used in ESMFold
(Lin et al., 2023): (1) adding a 25-residue poly-glycine linker between the heavy and light antibody
chains and between the antibody and antigen and (2) implementing a jump in residue index into the
positional embeddings at the start of each new chain. The tricks significantly boosted the classifier
performance, signaling that the structure information in the ESM embeddings was important.

GearNet (Zhang et al., 2022): We finetune GearNet-Edge MVC , a general-purpose structure-
based protein encoder pre-trained with a contrastive learning objective on AlphaFold2 predictions.
Notably, the pre-training dataset does not include complexes or significant antibody structures. As
a result, the Antibody DomainBed environments are OOD for GearNet-ESM. We make no adjust-
ments, using the default structure graph construction and featurisation.

Additionally, we extend DomainBed to include the moving average ensembling as in (Arpit et al.,
2022) as well as functional ensembling, or stochastic weight averaging (Izmailov et al., 2018) for all
DG baselines in the repository. We denote the averaged solutions with -ENS suffix.

Open source We open-source our efforts so that other researchers can continue further evalua-
tions on similar biological datasets. With this paper, we make publicly available the “Antibody
DomainBed,” a codebase aligned with the DomainBed suite, here. We also release a public bench-
mark antibody dataset available here.

6 BENCHMARKING RESULTS AND ANALYSIS

Models We tested vanilla ERM against three classes of DG methods. These are methods that
leverage the domain information to enforce invariance on representations (CORAL; Sun & Saenko,
2016), on the predictor (IRM; Arjovsky et al., 2019), or on gradients (Fish; Shi et al., 2021). We
additionally test ensembling techniques, namely deep ensembles, (simple moving average or SMA;
Arpit et al., 2022), that do not exploit domain information but combine different models to reduce
the effect of covariate shift (Rame et al., 2022b). The last class of models has achieved state-of-
the-art results on image datasets (Cha et al., 2021; Arpit et al., 2022; Rame et al., 2022b). We
perform early stopping for the members of the deep ensembles in the training-domain validation
setting as in Arpit et al. (2022). The best model is ensembled based on validation performance
over each trial. From the available DG algorithms in DomainBed, this corresponds to 6 algorithm
baselines with 5 hyperparameter configurations (with varying batch size, weight decay, and learning
rate) for ESM-based architectures and 20 for SeqCNN-based architectures. As we perform 3 seed
repetitions for each configuration, we have a total of 1,890 experiments. We report the results
from model selection method: training domain validation set, which is a leave-one-environment-
out model selection strategy. We (1) split the data into train and test environments, (2) pool the
validation sets of each training domain to create an overall validation set, and (3) choose the model
maximizing the accuracy (minimizing the negative log-likelihood) on the pooled validation set.
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Metrics and evaluation We evaluate the performance in terms of accuracy. As Gulrajani &
Lopez-Paz (2020), we test two types of validation: training-domain and test-domain in subsec-
tion 6.1. Then, we evaluate the saliency maps produced by representative domain-invariant and
ensembling models. In Appendix, we repeat the analysis for a second version (a new split) of the
dataset containing an environment with antibody designs of a new antigen.

6.1 DISCUSSION

Based on the results in Table 2 and Table 3 we observe that, among the different DG
paradigms, ensembling-based models work the best and functional ensembles improve all
base algorithms. Additionally, as the model size increases (from SeqCNN to ESM2),
the improvement is more pronounced. When the validation set is not aligned with
the test set, there is no significant difference between models in terms of performance.

Figure 5: Segments of a single antibody
chain (heavy or light). “FW” denotes
“framework.”

The only class of models robust to such a setup is again,
functional ensembles; they seem to work well even if the
validation set is not aligned to the test set.

SMA is the only DG model that has advantage over ERM
across all domains. From the MMD plots in Figure 4, we
do notice that the invariance based models indeed learn
more uniform representations across domains. It seems,
however, that invariant representations do not necessary translate to better predictive performance.

(a) ERM

(b) SMA

(c) IRM

Figure 6: Saliency visualizations on the antibody amino-acid positions for heavy and light chains,
after aligning to uniform lengths as in (Honegger & PluÈckthun, 2001). x-axis represents the 298
positions after alignment. Colors of bars represent functional segments. Relative to ERM-SMA and
IRM, ERM displays muted behavior in the regions known to interact with the antigen paratope.

Figure 6 shows the gradient sensitivity (Baehrens et al., 2010; Simonyan et al., 2013) with respect
to the antibody residue positions. The different colors represent functional segments, illustrated in
Figure 5. Details on the organisation and role of the different segments in an Antibody is included
in Appendix C. Spikes can be interpreted as positions that strongly affected the prediction. Whereas
ERM saliency is muted in the right edges of framework 3b (yellow) in the heavy chain and in CDR
3 (gray) in the light chain, ERM-SMA and IRM is activated in these positions. Heavy framework
3b, adjacent to heavy CDR 3, is heavily implicated in antigen binding (Morea et al., 1998). Light
CDR 3 displays high diversity, though to a lesser extent than the heavy counterpart. Light CDR 3 is
known to assume one of the few canonical structures that determines antigen recognition (Teplyakov
& Gilliland, 2014), which may explain the models’ sensitivity to this segment.Our main takeaways
for robust prediction in therapeutic protein design are as follows:
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Table 2: Model selection: training-domain validation set

Algorithm Env 0 Env 1 Env 2 Env 3 Avg

random 50.5 ± 0.0 52.4 ± 5.2 38.8 ± 0.0 49.1 ± 1.1 47.7

ESM

ERM 58.7 ± 0.7 66.8 ± 0.4 69.0 ± 0.5 65.9 ± 0.2 65.1
ERM-ENS 62.9 69.7 71.6 67.9 68.0
SMA 59.6 ± 1.1 66.7 ± 0.0 70.1 ± 0.1 66.2 ± 0.3 65.7
SMA-ENS 61.5 68.1 73.4 67.7 67.7
IRM 60.0 ± 0.9 64.4 ± 0.2 69.6 ± 0.9 63.5 ± 0.6 64.4
IRM-ENS 62.7 69.1 71.3 67.0 67.5
CORAL 60.0 ± 0.4 66.9 ± 0.2 69.6 ± 0.5 65.7 ± 0.4 65.5
CORAL-ENS 62.6 69.4 71.7 68.1 68.0
VREx 58.7 ± 0.6 66.1 ± 0.9 69.0 ± 0.6 65.7 ± 0.1 64.9
VREx-ENS 61.1 67.2 71.9 67.9 67.0
Fish 59.3 ± 1.2 66.2 ± 0.7 69.5 ± 0.1 66.4 ± 0.4 65.3

SeqCNN

ERM 63.2 ± 1.0 66.2 ± 0.9 66.2 ± 0.8 64.9 ± 0.1 65.1
ERM-ENS 62.3 66.1 69.7 65.9 66.0
SMA 61.8 ± 0.9 66.5 ± 0.3 66.1 ± 0.2 64.9 ± 0.3 64.9
SMA ENS 58.6 66.9 68.8 66.1 65.0
IRM 60.0 ± 0.9 64.4 ± 0.2 69.6 ± 0.9 63.5 ± 0.6 64.4
IRM-ENS 62.4 66.5 73.2 65.1 66.8
CORAL 62.0 ± 1.5 66.2 ± 0.3 66.1 ± 0.8 64.0 ± 0.5 64.6
CORAL-ENS 60.9 67.1 68.9 65.2 65.5
VREx 60.1 ± 1.6 65.7 ± 1.0 66.3 ± 0.6 64.9 ± 0.4 64.2
VREx-ENS 61.5 66.9 68.2 66.1 65.7
Fish 62.0 ± 0.9 66.9 ± 0.8 68.6 ± 0.6 65.8 ± 0.3 65.8

GearNet

ERM 60.4 ± 0.6 79.2 ± 0.3 85.3 ± 0.5 75.1 ± 1.1 75.0
ERM-ENS 64.9 82.0 88.0 78.4 78.3
VREx 58.3 ± 0.4 73.1 ± 0.5 82.1 ± 1.3 71.1 ± 1.3 71.2
VREx-ENS 59.5 77.6 86.4 73.3 74.2

• Leveraging foundational models help performance across all DG models.
• Choosing a good validation set is important.
• Ensembling helps all baseline models.
• Leveraging ∆∆G predictions is beneficial for better performance on binding prediction.
• Ensembled DG models provide robust predictions on unseen antigen targets, essential for

(de-novo) drug discovery.

7 CONCLUSION

We publicly release the codebase of our Antibody DomainBed pipeline as well as the associated
antibody dataset representing the first large-molecule OOD benchmark of its kind. Our experiments
suggest that DG methods have the capacity to significantly aid protein property prediction in the
presence of complex distribution shifts. Antibody DomainBed enables the exploration of key the-
oretical questions that, when addressed, would maximize the impact of DG methods on biological
problems. One question is: how can we generate diverse environments that would lead to optimal
performance at test time? Related to this is the question of how to choose the different configura-
tions governing each environment in a manner that would maximize learning for each DG algorithm.
Finally, the ultimate OOD quest in the context of antibody design would be to produce accurate pre-
dictions for a completely new antigen. This will require the DG models to pick up on truly causal,
or mechanistic, features governing the binding interaction. By open-sourcing our code as well as
the data, we hope to motivate other ML researchers to aim at addressing impactful real-world appli-
cations close to the production setting.
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A ADDITIONAL RESULTS FROM EXPERIMENTS

A.1 MODEL SELECTION: TEST-DOMAIN VALIDATION SET

Table 3: Model selection: test-domain validation set, corresponding to the training domain valida-
tion set in the main text.

Algorithm Env 0 Env 1 Env 2 Env 3 Avg
random 50.5 ± 0.0 52.4 ± 5.2 38.8 ± 0.0 49.1 ± 1.1 47.7

ESM
ERM 60.5 ± 0.9 67.6 ± 0.6 69.3 ± 0.5 66.1 ± 0.5 65.9
ERM-ENS 62.1 69.1 73.2 69.2 68.4
SMA 62.9 ± 0.8 68.3 ± 0.4 70.7 ± 0.5 66.7 ± 0.4 67.1
SMA-ENS 63.8 70.0 72.8 68.3 68.7
IRM 59.2 ± 0.5 65.5 ± 1.8 68.6 ± 0.3 63.6 ± 1.1 64.2
IRM-ENS 62.3 68.9 70.4 66.9 67.1
CORAL 60.7 ± 0.1 67.5 ± 0.1 68.4 ± 0.2 66.8 ± 0.3 65.8
CORAL-ENS 62.6 70.5 71.9 67.7 68.2
VREx 60.4 ± 1.1 65.4 ± 0.9 69.6 ± 0.5 65.9 ± 0.2 65.3
VREx-ENS 62.4 68.3 73.0 68.1 68.0
Fish 61.0 ± 1.6 65.9 ± 0.5 70.6 ± 1.3 66.3 ± 0.3 66.2

SeqCNN
ERM 61.4 ± 1.4 64.4 ± 0.1 66.5 ± 0.6 63.8 ± 0.5 64.0
ERM-ENS 62.6 66.2 68.0 66.5 65.8
SMA 57.0 ± 0.4 65.9 ± 0.3 65.8 ± 0.2 64.5 ± 0.4 63.3
SMA-ENS 61.2 67.0 67.1 66.2 65.4
IRM 61.7 ± 1.4 65.8 ± 0.5 68.6 ± 1.6 63.7 ± 0.8 64.9
IRM-ENS 62.70 64.34 63.51 71.56 65.5
CORAL 58.3 ± 1.5 65.3 ± 0.5 65.9 ± 0.9 63.2 ± 0.8 63.2
CORAL-ENS 62.0 67.4 68.4 65.4 65.8
VREx 58.4 ± 1.4 65.3 ± 0.3 65.1 ± 0.3 63.8 ± 0.4 63.2
VREx-ENS 60.9 66.8 67.83 66.73 65.6
Fish 59.9 ± 2.6 67.0 ± 0.1 69.4 ± 0.4 65.3 ± 0.4 65.4

GearNet
ERM 62.7 ± 1.6 79.7 ± 0.4 85.9 ± 1.2 76.0 ± 0.5 76.1
ERM-ENS 64.3 81.7 88.6 78.1 78.2
VREx 58.0 ± 0.1 73.8 ± 1.0 82.3 ± 1.5 72.5 ± 0.3 71.6
VREx-ENS 62.2 77.3 86.9 74.6 75.3

A.2 IRM V1 PENALTY

The IRM v1 is a relaxation of IRM originally proposed by Arjovsky et al. (2019), where the classifier
w is fixed to a scalar 1. The loss function includes a penalty term ||∇w|w=1Re(w · Φ)||2. Theorem
4 of Arjovsky et al. (2019) is used to justify the use of this term as the invariance penalty for all
differentiable loss functions, such as the cross-entropy loss function used in this paper. Figure 7
plots this invariance penalty for various algorithms across the four environments. IRM carries the
least IRM v1 penalty overall, as expected. Other invariance-based algorithms also carry low penalty
values, while ERM and ERM-SMA have high penalty values, particularly in Env 0. The high relative
penalty value in Env 0 is consistent with the accuracy for Env 0 being the lowest (see Table 2,
Table 3).

A.2.1 PLATFORM SPECIFICATIONS

All experiments have been executed on NVIDIA A100 Tensor Core GPU.
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Figure 7: ERM has the highest IRM v1 penalty across all environments. The highest penalty value
for ERM in Env 0 is consistent with the accuracy for Env 0 being the lowest (see Table 2, Table 3).

A.3 GENERALIZING TO NEW ANTIGEN TARGETS

One challenging yet practical scenario is being able to predict a property of interest for a new antigen
that has not been seen during training. We were thus motivated to evaluate the DG algorithms to an
unseen target, HER2. The data in this new domain, consisting only of HER2 designs, was obtained
from Graphinity (Hummer et al., 2023), which significantly differs from the WJS generative model
in the distribution of antibody sequences. Graphinity it is a brute-force method that starting from a
seed sequence, applies all possible point mutations at each of the positions in the CDR3 loop of an
antibody. Which means that this method produces antibodies with edit distance of only 1 (one amino
acid different from the starting seed). This difference in sequence distance amounts to a change in
covariate and sub-population shift, compared to the other environments with WJS designs. Addi-
tionally, since these designs were scored using a different ∆∆G model, FoldX, this environment
also includes label shift. With so much distribution shift compared to the rest of the data, it is ex-
pected that models trained on the other targets (HIV and SARS-Cov-2) will not generalize to HER2
designs. However, we wanted to investigate if the DG algorithms will have some advantage over
vanilla ERM.

The table below summarizes the results where environments consist of the data curated as described
in section section 5. The results unfortunately are not in favour of any of the DG algorithms. There
is an advantage of the SeqCNN framework achieving higher accuracy on environment 4, however,
those number are still around 50% and hence we can not consider them useful since we could not
use such model in practice.

We are further investigating if including a new target but without label shift (i.e. using the pyRosetta
scores) may deliver better results. As previously mentioned, having a model that can reliably pre-
dict binding or other molecular properties while being antigen agnostic is of crucial importance in
accelerating drug discovery and design.

B DATASET PROPERTIES

In this section we evaluate the validity of the antibodies in our synthetic library. We do so, to ensure
quality and reliability of the proposed benchmark. We evaluate the following properties:

1. naturalness - measures the similarity of the antibody sequences in Antibody Domainbed
to antibodies in OAS (Olsen et al., 2022), the largest publicly available database of natural
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antibodies. These scores come from the perplexity of a language model trained on the OAS
database (Melnyk et al., 2023). Higher is better.

2. OASis -Percentile/Identity/Germline Content we include three scores computed with the
recent publicly available humanness evaluation platform BioPhi (Prihoda et al., 2022). We
used the default setup in relaxed mode. Briefly, OASis identity score for an input sequence
is calculated as the fraction of peptides with prevalence in therapeutic antibodies curated
from OAS (Olsen et al., 2022). OASis Percentile converts the identity score to 0-100 range
based on therapeutic antibodies such that 0% OASis percentile score corresponds to the
least human and the 100% OASis percentile score corresponds to the most human antibody
in the clinic. Germline content is yet another humanness score, which represents the per-
cent sequence identity with a concatenation of the nearest human V and J gene (percent
sequence identity with nearest human germline) with regards to IMGT Gene-DB (Giudi-
celli et al., 2005).

3. bio-informatics properties hydrophobicity - a measure of the degree of affinity between
water and a side chain of an amino acid; pi charge - the pH at which the antibody has no
net electrical charge, this value depends on the charged amino acids the antibody contains;
and aromaticity - binding of the two complementary surfaces is mostly driven by aromatic
residues. For these three properties we use the corresponding bioPython implementations,
and we compare the range of values to in-vitro functional antibodies (env 5).

4. diamond we use this score to explore closeness of the proposed designs to the OAS
database, by fast sequence alignment inspired by (Buchfink et al., 2021). Higher scores
are preffered.

Figure 8: OASis properties for Antibody domainbed computed using BioPhi (Prihoda et al., 2022).
Note that env 5 was omitted due to proprietary reasons.

Our results are presented in Figure 9 and Figure 8. In Figure 9, first row, naturalness and diamond
score, we confirm that WJS generated antibodies (env 0-3) have properties close to observed anti-
bodies, and even more so, they achieve better scores than the single point mutations in Graphinity
(env4) and the human-expert designs from internal in-vitro experiments (env5). Next, in the sec-
ond row of Figure 9, we notice that the ranges of values for hydrophobicity, charge and aromaticity
mostly overlap between WJS antibodies and in-vitro functional measurements (env5). These results
reconfirm what was already included in the original WJS publication Frey et al. (2023a). In Figure 8
we investigate the humanness of the proposed antibodies. Note that since this platform requires up-
loading of sequences, we were not in position to score our internal experimental sequences. Hence,
we provide the results only for env 0-3. These results confirm that the WJS antibodies provide
a well-balanced mix of antibodies both close and far to the therapeutic human reference dataset
(cf. Figure 3 in (Prihoda et al., 2022)), as expected within a drug design pipeline which leverages
immunization campaigns (lead molecules from animal germlines) and ML generative models.

With this analysis in place, we are confident that our antibody benchmark is indeed representative
of what we can expect in a real-world drug design framework.

B.1 ∆∆G LABELS AS PROXY FOR AFFINITY MEASUREMENTS

The change in Gibbs free energy, ∆G, and the dissociation constant, KD, can be shown to be
theoretically equivalent up to a proportionality; we have ∆G = RT lnKD, where R is the gas
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Table 4: Model selection: train-domain validation set when HER2 is included.

Algorithm env-0 env-1 env-2 env-3 env-4 Avg
SeqCNN

ERM 63.2 ± 1.0 66.2 ± 0.9 66.2 ± 0.8 64.9 ± 0.1 46.6 +/- 3.5 61.42
ERM-ENS 62.3 66.1 69.7 65.9 51.93 63.18
SMA 61.8 ± 0.9 66.5 ± 0.3 66.1 ± 0.2 64.9 ± 0.3 51.9 +/- 1.5 62.24
SMA -ENS 58.6 66.9 68.8 66.1 55.71 63.22
IRM 60.0 ± 0.9 64.4 ± 0.2 69.6 ± 0.9 63.5 ± 0.6 39.1 +/- 4.4 59.32
IRM-ENS 62.4 66.5 73.2 65.1 43.06 59.32
VREx 60.1 ± 1.6 65.7 ± 1.0 66.3 ± 0.6 64.9 ± 0.4 49.7 +/- 1.8 61.34
VREx -ENS 61.5 66.9 68.2 66.1 48.85 62.31
Fish 58.2 ± 1.3 66.0 ± 0.2 68.2 ± 0.6 65.8 ± 0.3 51.5 ± 2.2 61.94

Table 5: Model selection: test-domain validation set (oracle) when HER2 is included.

Algorithm env-0 env-1 env-2 env-3 env-4 Avg
SeqCNN

ERM 61.4 ± 1.4 64.4 ± 0.1 66.5 ± 0.6 63.8 ± 0.5 54.5 +/- 1.1 62.12
ERM-ENS 62.6 66.2 68.0 65.9 38.41 60.22
SMA 57.0 ± 0.4 65.9 ± 0.3 65.8 ± 0.2 64.5 ± 0.4 50.7 +/- 1.7 60.78
SMA-ENS 61.2 67.0 67.1 66.2 45.07 61.34
IRM 61.7 ± 1.4 65.8 ± 0.5 68.6 ± 1.6 63.7 ± 0.8 58.9 +/- 2.3 63.74
IRM-ENS 62.70 64.34 63.51 71.56 59.53 64.32
VREx 58.4 ± 1.4 65.3 ± 0.3 65.1 ± 0.3 63.8 ± 0.4 53.6 +/- 0.1 61.24
VREx-ENS 60.9 66.8 67.83 66.73 40.47 60.54
Fish 59.9 ± 2.6 67.0 ± 0.1 69.4 ± 0.4 65.3 ± 0.4 52.0 +/- 1.2 62.72

Figure 9: Various properties for evaluating quality of synthetic antibodies. Please see text for details.
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constant, 1.98722cal/K · mol, and T is the absolute temperature (Jorgensen & Thomas, 2008).
Binding free energies have been applied to identify mutant antibodies with high affinity (Clark et al.,
2017; 2019; Zhu et al., 2022), supporting the use of ∆∆G as a synthetic proxy for KD.

That said, free energy is not exactly computable and we have used Rosetta and FoldX scores as
weak approximations. The distribution of Rosetta-computed ∆∆G is still well-separated for binders
and non-binders from fluorescence-activated cell sorting (FACS) and the separation signal is even
stronger for binders from surface plasmon resonance (SPR) (Mason et al., 2021; Mahajan et al.,
2022). (FACS is a higher-throughput but noisier method of identifying binders compared to SPR.)

In the case of environments 0 - 3, there is significant noise in the computed ∆∆G between -1 and
1 kcal/mol, because Rosetta and FoldX are less accurate at predicting ∆∆G for mutations with
only a small effect on binding (Sirin et al., 2016; Hummer et al., 2023). We therefore remove
highly uncertain labels between -0.1 and 0.1 kcal/mol before attaching binary labels: label 1 if
∆∆G < −0.1 (stabilizing) and label 0 if ∆∆G > 0.1 (destabilizing). We follow the following sign
convention:

∆∆G = ∆Gwild type −∆Gmutant, (3)

such that negative ∆∆G is stabilizing. Note that this represents a sign flip relative to the convention
followed by Hummer et al. (2023).

To validate the benefit of ∆∆G labels for predicting experimental binding measurements, we in-
troduce environment 5, with details and description in Table 1. This environment consists solely of
antibodies targeting a variant of the HER2 antigen. Binding labels were obtained from internally
conducted surface plasmon resonance (SPR) experiments.

These variants overlap partially with antigen sequences in environment 4 (overlap between 30 -
70%); environment 4 is a subset of Graphinity (Hummer et al., 2023) and consists of synthetic
single point designs aimed at HER2. The antibody sequences did not overlap with environment 4.

We report two baselines for evaluating the usefulness of training on ∆∆G labels:

• a random classifier.
• a binding affinity classifier, trained on 5K pairs of antibodies and binding measurements

for 4 internal targets (none of them HER2). This baseline mimicks the vanilla setup in
drug discovery, where predictive models are confronted to a zero-shot setting where they
are evaluated on new targets that differ from previous in-vitro experiments. This binding
affinity classifier has accuracy of 0.64, precision 0.49 and recall 0.5.

We then run Antibody Domain bed as previously, training on env 0-4 but now evaluating on env 5.
Our results are included in Table 6 and 7. We highlight two main results:

• All algorithms, including ERM achieve better results than the two baselines (binding clas-
sifier and random). This reconfirms the benefit of ∆∆G labels.

• CORAL, and CORAL-ENS achieve highest ac curacy, confirming the benefit of leveraging
the DG algorithms and our Antibody Domainbed benchmark.

B.2 SEQUENCE DISTANCE ACROSS ENVIRONMENTS IN ANTIBODY DOMAINBED

In what follows we compare the different environments in terms of sequence similarity. A common
unit for comparison in the antibody design space is the edits, or sequence distance which is a discrete
value representing number of positions with different amino-acids between two or more antibody
(protein) sequences.

As we tried to separate the effect of the different generative models, by placing their corresponding
designs into different environments, such split also amounts to gradually increasing the sequence
distance to the seeds as the environment number progresses. From Figure 11 we notice that highest
sigma environment (env 2, WJS σ = 2) include the smaller sequence distance environments (env 0
and 1, WJS σ ∈ {0.5, 1, 1.5}.

Intuitively, smaller distances between sequences should amount to similar properties, however such
intuition has never been confirmed fully as there is always a counter example where even a single
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Table 6: Model selection: Train-domain validation set for env 5, Kd measurements prediction.

SeqCNN Accuracy Precision Recall
random classifier 70.0 84.0 50.1

binding affinity classifier 64.0 49.0 50.0

ERM 76.0 ± 5.7 99.7 ± 0.3 81.4 ± 6.4
ERM-ENS 72.6 98.31 91.37
SMA 61.7 ± 8.6 99.2 ± 0.0 85.0 ± 7.5
SMA-ENS 76.92 98.49 76.86
VREx 68.3 ± 5.8 98.9 ± 0.2 72.6 ± 12.4
VREx-ENS 60.00 99.28 54.12
CORAL 81.1 ± 8.0 99.4 ± 0.0 76.2 ± 10.2
CORAL-ENS 88.08 98.71 89.80

Table 7: Model selection: test-domain validation set for env 5, Kd measurements prediction.

SeqCNN Accuracy Precision Recall
random classifier 70.0 84.0 50.1

binding affinity classifier 64.0 49.0 50.0

ERM 88.1 ± 1.8 98.0 ± 0.5 88.9 ± 1.8
ERM-ENS 94.23 98.22 86.67
SMA 88.0 ± 1.6 99.1 ± 0.4 89.4 ± 1.5
SMA-ENS 94.23 98.35 93.33
VREx 89.1 ± 2.6 97.7 ± 0.7 90.2 ± 2.4
VREx-ENS 93.85 98.73 91.76
CORAL 91.0 ± 3.5 97.7 ± 1.0 89.7 ± 2.1
CORAL-ENS 82.69 98.66 86.67

point mutation may destroy some property of the antibody, depending on where its positioning in
the sequence as well as its interaction with other atoms in the molecule or its’ surroundings. We
also notice this paradox in our results, the smallest distance environments usually being the most
challenging one for all DG models, regardless of the backbone or the fact that such sequences have
also been generated by the generative models in the other environments.

B.3 MODEL SIZE ROBUSTNESS

We additionally explored the necessity for larger models, by fine-tuning a 4x larger ESM model with
35M parameters. Due to memory issues, we had to reduce the batch size to 8 (while ESM 8M was
run with batch size 12), and to compensate we increased the number of steps to 30 000 (ESM 8M
had 15 000 steps). We repeated this experiment 3 times for 5 combinations of hyper parameters.
Due to the computational intensity of this model and time constraints, we could only include three
of the baseline in our current results. We don’t notice any gain in the performance for Antibody
Domainbed by increasing the model size.

C CONTEXT - ANTIBODY STRUCTURE

Antibodies or immunoglobulins (Ig) maintain a common four -piece structure consisted of two iden-
tical heavy chains (HCs) and two identical light chains (LCs). The subunites are connected by
disulfide bridges linking HCs and LCs together, forming the canonical “Y” shape of antibodies.

The most important regions for antibody design are the variable domains (V) of both the heavy and
light chains (VH and VL, respectively). These are the regions that interact with the antigens. These
domains determine the specificity of an antibody (how likely it is to attach to other molecules in the
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Figure 10: Sequence distances between antibody designs and their corresponding seeds. Colored by
environment according to the split presented in Table 1.

Figure 11: Sequence distances between antibody designs and their corresponding seeds for each
WJS generative model.
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Table 8: ESM 35M: Model selection with train and test-domain validation set.

Algorithm env0 env1 env2 env3 Average
ESM 35M: train-domain

ERM 61.3 ± 1.7 66.5 ± 0.5 63.8 ± 3.7 64.5 ± 0.6 64.0
SMA 62.6 ± 1.6 66.8 ± 0.8 70.5 ± 0.0 63.1 ± 1.5 65.7
VREx 61.9 ± 0.8 66.5 ± 0.0 65.9 ± 3.4 66.0 ± 0.2 65.1
VREx-ENS 62.39 68.27 71.10 67.49 67.31

ESM 35M: test-domain

ERM 60.6 ± 0.7 66.8 ± 0.7 60.0 ± 6.1 63.9 ± 0.4 62.8
SMA 62.8 ± 1.5 66.8 ± 1.2 69.2 ± 0.0 63.8 ± 2.0 65.6
VREx 61.3 ± 0.8 66.7 ± 0.5 64.0 ± 4.4 65.8 ± 0.3 64.4
VREx-ENS 60.78 68.34 71.27 67.14 66.9

Figure 12: The antigen binding site of an antibody contains CDR and FR regions. CDR regions
(L1-3 and H1-3) make up the antigen binding site on the N-terminus of the antibody.

body) through highly variable amino acid sequences. On the other hand, the constant domains (C)
on heavy and light chains interact with effector proteins and molecules Figure 12.

On a more granlular level, in the VH and VL domains, there are three complementarity-determining
regions: CDR-H1, CDR-H2, and CDR-H3 for VH and CDR-L1, CDR-L2, CDR-L3 for VL. These
subregions are highly variable in their amino acid sequences, and they form distinct loops creating
a surface complementary to distinct antigens. CDR-H3 is known to be the main contributor to
antigen recognition due to its sequence diversity, length, and favourable location. Since CDR-H3
loop has an impact on the loop conformations and antigen binding at the other CDRs, it is the main
driver of specificity and binding affinity. In-between the CDRs, we see the framework regions (FR).
Frameworks entail less variability and provide structural stability for the whole domain. The FR
regions induce a β sheet structure, at which the CDR loops are located at the outer edge, forming an
antigen-binding site.
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