
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Pre-Generating Multi-Difficulty PDE Data
For Few-Shot Neural PDE Solvers

Anonymous authors
Paper under double-blind review

Abstract

A key aspect of learned partial differential equation (PDE) solvers is that
the main cost often comes from generating training data with classical
solvers rather than learning the model itself. Another is that there
are clear axes of difficulty—e.g., more complex geometries and higher
Reynolds numbers—along which problems become (1) harder for classical
solvers and thus (2) more likely to benefit from neural speedups. Towards
addressing this chicken-and-egg challenge, we study difficulty transfer on 2D
incompressible Navier-Stokes, systematically varying task complexity along
geometry (number and placement of obstacles), physics (Reynolds number),
and their combination. Similar to how it is possible to spend compute to
pre-train foundation models and improve their performance on downstream
tasks, we find that by classically solving (analogously pre-generating) many
low and medium difficulty examples and including them in the training
set, it is possible to learn high-difficulty physics from far fewer samples.
Furthermore, we show that by combining low and high difficulty data, we
can spend 8.9× less compute on pre-generating a dataset to achieve the
same error as using only high difficulty examples. Our results highlight
that how we allocate classical-solver compute across difficulty levels is as
important as how much we allocate overall, and suggest substantial gains
from principled curation of pre-generated PDE data for neural solvers.

1 Introduction

Deep learning has emerged as a powerful paradigm for solving PDEs, enabling data-driven
surrogate models that can accelerate simulation, inference, and design across diverse scientific
domains (Li et al., 2021a; Lu et al., 2021a; Pathak et al., 2022). This has been driven by
the development of specialized models such neural operators (Li et al., 2021a; Lu et al.,
2021a) and recent transformer-based extensions (Guibas et al., 2022; Brandstetter et al.,
2023), which have demonstrated strong performance on benchmark datasets and gained
traction in the machine learning for science community. More recently, significant effort
has been devoted towards pre-generation of large datasets such as the Well (Ohana et al.,
2024) and pre-training specialized foundation models (FMs) (Herde et al., 2024; Hao et al.,
2024; Shen et al., 2024; McCabe et al., 2023). The goal of these FMs is to serve as general-
purpose foundations for PDE surrogates: delivering fast inference while minimizing—or even
eliminating—the need to retrain on new, potentially harder-to-solve PDEs.

An underlying aspect of this line of work has long been the issue that it seeks to solve PDEs
faster than classical numerical solvers but requires examples generated by the latter to do
so. While such a circuitous setup is justifiable in many of the inverse problem applications
that motivate learned solvers, it is still the case that tasks we eventually want to accelerate—
practical engineering tasks in difficult-to-simulate regimes—will be exactly those for which it
is hard to generate a significant amount. This need to decrease the sample complexity of
neural PDE solvers has spurred significant research drawing up transfer learning (Herde et al.,
2024), active learning (Bruna et al., 2024; Musekamp et al., 2024), and other method-centric
approaches (Rotman et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this paper we take a data-centric view, studying how the training data composition of
neural PDE solvers affects their performance. We identify that a key feature of PDE data
is that most problem settings have multiple axes of difficulty along which classical solving
becomes harder, thus making neural PDE solvers both (potentially) more useful but also
more difficult to train due to low data availability. Examples of such difficulty axes include
domain geometry features, physics parameters such as the Reynolds number (Re) or Debye
length, additional terms due to forcing or compressibility, and so on. To understand how
easier-to-generate data affects the performance on harder-to-generate target distributions,
we consider incompressible Navier-Stokes simulations with difficulty varying along either or
both of (1) geometry—as defined by the number and complexity of obstacles in the flow—or
(2) physics in terms of the flow’s Re. For simplicity, we use classical simulation costs to divide
these two axes into three difficulty categories—easy, medium, and hard—and investigate how
mixing in easy and medium data affects performance on the hard distribution.

Our first key result is that adding easy-to-medium difficulty data substantially
improves performance on the hard distribution. Naturally, one might expect that medium
difficulty data might be more useful, and our second main result is that there is often a
favorable tradeoff justifying pre-generating medium-difficulty datasets instead of
easy ones when solving cross in two classes of simulation, flow past an object (FPO) and
lid-driven cavity (LDC), and using both supervised-only neural PDE solvers—specifically
the Factorized Fourier Neural Operator (FFNO) (Tran et al., 2021) and the Convolutional
Neural Operator (CNO) (Raonic et al., 2023)—and the current state-of-the-art multi-physics
pretrained Poseidon FM (Herde et al., 2024). These complementary settings allow us
to assess both specialized neural operators and large pretrained models under controlled
difficulty-mixing regimes. In more detail, our contributions are the following:
1. Augmenting hard (e.g., multi-obstacle) training with lower-difficulty data (e.g., zero or

one obstacle) substantially improves accuracy on the hard test set. For example, most of
the performance of Poseidon-B fine-tuned solely on hard FPO data can be recovered when
90% of it is replaced with easy or medium data , which reduces data-generation time 8.9×.

2. Despite the higher generation cost of medium difficulty (e.g., single-obstacle) examples
relative to easy (e.g., no obstacle) ones, for most pre-generation budgets one can obtain
a better error by training on fewer examples of the former rather than more of the latter.
This demonstrates the importance of optimally selecting the pre-generation simulations.

3. Beyond square obstacles, we show that single simple-obstacle data can improve the few-
shot performance of models on flows around more complex shapes from FlowBench (Tali
et al., 2024), even when given only a few examples from it. This demonstrates the
potential of a single dataset serving as a foundation for few-shot training of learned
solvers on multiple harder datasets.

We will release all pre-generated datasets and code to reproduce our results. For related
work, please see Appendix A.

2 Pre-generating datasets for studying difficulty transfer

As discussed in the introduction, PDE tasks often feature gradations of difficulty that
significantly increase the cost of simulation, making neural PDE solvers both more expensive
to train (because of the complexity of generating the associated data) and potentially more
useful (because of their ability to replace said expensive solves). This increased numerical
difficulty can stem from shorter timesteps, higher per-timestep cost (e.g., worse conditioning
of linear solves), and meshing challenges. To study how low-to-medium difficulty data can
improve few-shot performance on high difficulty data, we consider the 2D incompressible
Navier-Stokes (INS) equations of fluid flow. Given a domain Ω ⊂ [0, 1]2, they govern the
velocity u(x, t) and pressure p(x, t) of a fluid at point x ∈ Ω◦ and time t ≥ 0 as follows:

∂tu+ (u · ∇)u+∇p = ν∆u and ∇ · u = 0 (1)

Different simulation settings can be defined using different domains Ω, different boundary
conditions u(x, t) and p(x, t) for x ∈ ∂Ω, different initial conditions u(x, 0) and p(x, 0)
for x ∈ Ω◦, and different kinematic viscosities ν ≥ 0. We focus on two canonical settings:
(1) flow past an object (FPO), in which the boundary conditions impose two no slip walls

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Top: vorticity snapshots across increasing geometry
difficulty, with flows past zero, one, and multiple (2–10) square obstacles.
Bottom: snapshots across physics difficulties in the form of low
([100, 1000]), medium ([2000, 4000]), and high ([8000, 10000]) Re bands.

Figure 2: FPO
with objects from the
FlowBench G1 NURBS
data (Tali et al., 2024).

(Dirichlet u = 0) around an inlet and an outlet, and (2) lid-driven cavity flow (LDC), which
has three no slip walls and a horizontal velocity at the top; in both cases the interior of
the domain is at rest to start.

2.1 Difficulty axes

Starting from these basic setups, we vary simulations along three data-difficulty axes:
geometry, physics, and their combination. As detailed below, changing the geometry involves
modifying the domain Ω and its boundary conditions to add, remove, or change the shape of
obstacles, with a greater number of objects or more complex shapes corresponding to greater
difficulty. On the other hand, changing the physics involves varying the initial velocity u(x, 0)
to change the Reynolds number, a dimensionless quantity that when increased typically
makes the flow more complex and hard-to-simulate. Figures 1 and 2 illustrate how the
vorticity fields of the simulations change with increasing difficulty, while Figure 3 shows the
corresponding increase in simulation cost.

We next describe at a high level the settings used to generate the axes’ data; further details,
including about our OpenFOAM (Jasak et al., 2007) setup, can be found in Appendix B.
1. Geometry: A straightforward way to change the problem geometry to increase problem

difficulty is by adding or removing obstacles to the flow. In this difficulty axis, we add
between zero and ten square obstacles at random, non-overlapping positions. The resulting
simulations are categorized as easy if they have no obstacles, medium if they have one
obstacle, and hard if they have two or more. The way these changes affect the simulation
is illustrated in the top row of Figure 1, and their effect on the FPO generation cost is
plotted in Figure 3; in short, more obstacles yield more complex, harder-to-simulate flows.

2. Physics: Another way of increasing problem difficulty is to increase the Reynolds number,
which is well-known to describe the complexity of a flow. It is defined using a characteristic
velocity U and length-scale L to be Re = UL/ν, so we increase the initial velocity u(x, 0)
at the inlet (FPO) or the lid (LDC) to make it larger. In particular, we categorize
simulations into easy, medium, and hard if the corresponding Re is between [100, 1000],
[2000, 4000], and [8000, 10000], respectively; within each band, the Re is sampled from
a truncated Gaussian distribution. Figure 1 (bottom) demonstrates how a higher Re
induces richer fluid structure, yielding the higher simulation cost (cf. Figure 3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Computational cost of simulating flow past an object (FPO) at different difficulty
settings, demonstrating increasing runtime along both the domain geometry axis (increasing number
of obstacles) and the physics axis (increasing Reynolds number). The costs reported are averages
across thirty simulations.

As mentioned before, we combine the geometry and physics axes to obtain our third difficulty
axis; in the latter case we use low Re flows with no objects as the easy examples and medium
Re flows with one object as the medium examples. In all cases, we treat “easy/medium/hard”
as a relative, cost-based notion of difficulty: configurations that are cheaper to solve (e.g.,
low-Re, simple geometries) form the easy tier, while those that require substantially more
wall-clock time (e.g., high-Re, multi-obstacle flows) form the hard tier (see Figure 3).

Lastly, we also enhance our investigation of geometry difficulty by changing the object
complexity, specifically by incorporating simulations from FlowBench (Tali et al., 2024).
Specifically, we use their G1 dataset of FPO simulations of flows around Non-Uniform Rational
B-Splines (NURBS), two examples of which are depicted in Figure 2. Because FlowBench is ex-
ternal, we do not measure the classical solve difficulty and treat no-obstacle and single (square)
obstacle flows from the geometry axis as the easy and medium difficulty settings, respectively.

2.2 Pre-generated datasets

For each of the above settings and difficulty axes (excluding FlowBench) we generate
n = 6, 400 simulations with different randomly sampled initial conditions. Specifically,
following Herde et al. (2024) we sample Re between [100, 1000] (or higher if we are varying
along the physics axis, as described above) and use that to set the inlet (FPO) or lid (LDC)
velocity. We store the solution yi

t = (ui(x, t), pi(x, t)) of each simulation i = 1, . . . , n at
T = 20 timesteps t = 1, . . . , T on a regular grid of points x ∈ Ω. Starting with this data, we
hold out a subset of N = 100 trajectories and set the goal of a learned PDE solver as using
the remaining data to learn a model that, given the initial conditions yi

0 = (ui(x, 0), pi(x, 0))
of a held-out trajectory i, predicts a trajectory ŷi

t where t ∈ [1, T] and ŷi
t = (ûi(x, t), p̂i(x, t)).

Following Raonic et al. (2023); Herde et al. (2024), we measure its success at doing so using
the mean relative L1 error (nMAE):

nMAE =

N∑
i=1

T∑
t=1

∥∥y i
t − ŷ i

t

∥∥
1

/ N∑
i=1

T∑
t=1

∥∥y i
t

∥∥
1

(2)

3 Empirical results

We now turn to our empirical investigation, in which we evaluate several supervised and
foundation models while varying the difficulty composition of their training and fine-tuning
data along the difficulty axes described in Section 2.1. This results in three key takeaways:
mixing in lower difficulty data can be sufficient for strong performance (Section 3.1), it can be
beneficial to mix in a few medium difficulty examples rather than many easy ones (Section 3.2),
and there is potential for “foundation datasets” that have strong few-shot performance on
diverse data, as suggested via few-shot evaluations on FlowBench (Section 3.3). Crucially,
throughout we are interested in the model’s performance a target distribution consisting only

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

2 × 10 4

10 3
2 × 10 3

10 2
2 × 10 2

10 1
2 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Difficulty Mixing Physics axis
(FPO No Obstacle)

FFNO Easy Hard
FFNO Medium Hard
CNO Easy Hard
CNO Medium Hard

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

2 × 10 3

10 2

2 × 10 2

10 1

2 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Difficulty Mixing Physics axis
(LDC No Obstacle)

FFNO Easy Hard
FFNO Medium Hard
CNO Easy Hard
CNO Medium Hard

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

3 × 10 1

4 × 10 1

5 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Difficulty Mixing Physics axis
(FPO Multiple Obstacles)

CNO Easy Hard
CNO Medium Hard
FFNO Easy Hard
FFNO Medium Hard

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

2 × 10 2

3 × 10 2
4 × 10 2
5 × 10 2

10 1

2 × 10 1

3 × 10 1
4 × 10 1
5 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Difficulty Mixing Physics axis
(FPO Multiple Obstacles)

Poseidon-T Easy Hard
Poseidon-T Medium Hard
Poseidon-B Easy Hard
Poseidon-B Medium Hard
Poseidon-L Easy Hard
Poseidon-L Medium Hard

Figure 4: Performance on hard (high Re) examples while varying the data composition.
We fix the total number of training examples to 800 and show the error of various models as
the fraction of the data consisting of high Re (∈ [8000, 10000]) examples increases. Here the
easy examples and medium examples are low Re (∈ [100, 1000]) and medium Re (∈ [2000, 4000]),
respectively. The two row evaluates supervised models on no-obstacle FPO (left) and LDC (right),
the bottom left evaluates supervised models on flows past multiple objects, and the right evaluates
multiple Poseidon FMs on flows past multiple objects. Across all results we observe that a small
fraction of lower difficulty examples is able to recover much of the performance of neural PDE
solvers trained on solely hard (target) examples.

of the relevant axis’s hard examples, which we estimate by evaluating on a held out set. For
example, if we train on mixture of no-obstacle, single-obstacle, and multi-obstacle training
examples, we report performance on a test set drawn from only the latter’s distribution.

The specific supervised models we consider are the Convolutional Neural Opera-
tor (CNO) (Raonic et al., 2023) and the Factorized Fourier Neural Operator (FFNO) (Tran
et al., 2021), which have demonstrated strong performance on several benchmarks (Ohana
et al., 2024; Tali et al., 2024; Dauner et al., 2024; Takamoto et al., 2022; Koehler et al., 2024).
These two models are trained from scratch on the different training mixtures we consider.
To see whether our findings continue to hold in the higher performance regimes enabled by
large-scale multi-physics pretraining, we also consider the Poseidon family of FMs trained on
diverse PDE families (Herde et al., 2024), evaluating three variants: Tiny (21M parameters),
Base (158M), and Large (629M). Unlike CNO and FFNO, in this case we train or fine-tune
the models on our training mixure starting from a model checkpoint pretrained on diverse
PDE families. Training details of all models are reported in the Appendix.

3.1 Training on simpler examples goes a long way

We start with difficulty-mixing evaluations, in which we fix the total number of training
points to n = 800 and vary the proportion allocated to hard examples from the target
distribution. Our main finding is that adding a small set of hard examples to otherwise lower

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

3 × 10 1

4 × 10 1

5 × 10 1

100
M

ea
n

Re
la

tiv
e

L1
 E

rro
r

Difficulty Mixing Geometry axis
CNO Easy Hard
CNO Medium Hard
FFNO Easy Hard
FFNO Medium Hard

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

2 × 10 2

3 × 10 2
4 × 10 2
5 × 10 2

10 1

2 × 10 1

3 × 10 1
4 × 10 1
5 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Difficulty Mixing Geometry axis
Poseidon-T Easy Hard
Poseidon-T Medium Hard
Poseidon-B Easy Hard
Poseidon-B Medium Hard
Poseidon-L Easy Hard
Poseidon-L Medium Hard

Figure 5: Performance on hard (multi-obstacle) FPO while varying data composition.
The total number of training examples is fixed to 800 and we evaluate using varying fractions of
zero obstacle (easy) and single obstacle (medium) simulations in the training data. As with varying
Re, for both supervised models (left) and Poseidon FMs (right), a small number of lower difficulty
examples suffices to recover most of the performance of models trained on entirely hard examples.

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

3 × 10 1

5 × 10 1

100

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Difficulty Mixing Combined axis
CNO Easy Hard
CNO Medium Hard
FFNO Easy Hard
FFNO Medium Hard

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

2 × 10 2

5 × 10 2

10 1

2 × 10 1

5 × 10 1

100
M

ea
n

Re
la

tiv
e

L1
 E

rro
r

Difficulty Mixing Combined axis
Poseidon-T Easy Hard
Poseidon-T Medium Hard
Poseidon-B Easy Hard
Poseidon-B Medium Hard
Poseidon-L Easy Hard
Poseidon-L Medium Hard

Figure 6: Performance on hard (multi-obstacle and high Re) FPO while varying data
composition along both physics and geometry. The total number of training examples is fixed
to 800 and we evaluate using varying fractions of zero obstacle low Re flow (easy) and single obstacle
medium Re flow (medium) simulations in the training data. As with varying Re and geometry sepa-
rately, for both supervised models (left) and Poseidon FMs (right), a small number of lower difficulty
examples suffices to recover most of the performance of models trained on entirely hard examples.

difficulty (easy and medium) training data is sufficient to recover most of the performance of
training on a dataset where all 800 examples are hard. Below we discuss how this manifests
along specific difficulty axes. Note that the total number n = 800 of training points was
determined by training only on hard data using several candidate budgets n and finding that
the test error plateaued after around 800 examples; we standardize this budget throughout this
subsection, although as discussed in Figure 11 our main finding holds for other budgets as well.

1. Physics axis (Fig. 4): While models trained on lower difficulty examples do poorly on
the hard (high Re) test examples, replacing just 10% of them by target distributions
examples recovers most of the benefit of training fully on the latter. Notably, using
the numbers in Figure 3 we see that the former involves 8.9× less compute time. At
10% hard examples, Poseidon-B typically reduces error by about 96% at 10% hard
data, while CNO and FFNO show ≈ 98% reductions in the no-obstacle and ≈ 6% in the
multi-obstacle setting. Increasing the proportion of hard examples provides incremental
gains until 25% and plateaus after.

2. Geometry axis (Fig. 5): The same pattern when composing multi-object FPO with
flows past zero or one objects: the main improvement for CNO, FFNO, and Poseidon
is obtained when only 10% of the data is from the target distribution. In particular, at

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 × 105 106 2 × 106 5 × 106

Data Generation Cost (Seconds)

3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Cost vs. Error Physics axis
CNO Easy Hard
CNO Medium Hard
CNO Hard Hard
FFNO Easy Hard
FFNO Medium Hard
FFNO Hard Hard

5 × 105 106 2 × 106 5 × 106

Data Generation Cost (Seconds)
10 2

2 × 10 2

3 × 10 2

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Cost vs. Error Physics axis
Poseidon-B Easy Hard
Poseidon-B Medium Hard
Poseidon-B Hard Hard

Figure 7: Comparing data generation cost vs. error while augmenting hard (multi-
obstacle high Re) FPO examples with easy (multi-obstacle low Re), medium (multi-obstacle
medium Re), and hard (multi-obstacle high Re) examples. We fix the number of hard examples
to 200 and plot the compute required to generate them and between 1 and 3200 lower and equal
difficulty examples. For both supervised models (left) forand Poseidon-B (right), generating medium
difficulty data has a generally more favorable tradeoff, achieving the same or lower error at the same
budget. At sufficiently large compute budgets, however, training exclusively on hard data (hard to
hard) yields the lowest error.

that percentage Poseidon-B improves by roughly 96–97% in terms of error relative to
training on all-easy examples. Additional hard data yields only modest improvement.

3. Combined axis (Fig. 6): We observe similar behavior when varying along the combined
domain geometry and problem physics axis, with most of the benefit of training on the
target distribution obtained with 10% examples and improving only modestly afterwards.

In summary, across all three difficulty axes and all model families, we consistently find that a
small hard fraction (often around 10%) is enough to obtain most of the performance of hard-
only training; results change only marginally beyond ≈25% data from the target distribution.

3.2 Cost-effectiveness of pre-generating fewer medium difficulty examples

Having demonstrated that low-cost simulation data can be added to just a few (harder-to-
obtain) examples from the target distribution to recover much of the performance trained
solely on the hard examples, we now examine the cost vs. error tradeoffs of using data at
different points on the difficulty axis. In particular, we examine whether there are regimes
in which it is favorable to generate and train on medium difficulty (e.g. single-obstacle or
intermediate Re) examples rather than easy examples. To do so we fix the number of hard
examples to 200 and vary the number of lower difficulty examples added to the training mix
between 1 and 3200. For completeness, we also evaluate a hard-on-hard variant that augments
the Nhard=200 seed with additional target-distribution (high-Re, multi-obstacle) samples.
This setting delivers the lowest error per added sample but at the highest pre-generation cost,
so we use it primarily as an upper-bound reference when comparing cost-normalized tradeoffs
to medium- and easy-on-hard mixes. Since medium difficulty examples are more costly to
generate than easy ones, we study how the error varies as a function of the pre-generation
cost. Our main finding is that there indeed are many pre-generation budgets at which the
error obtained by training on medium difficulty examples is lower than that obtained by
training on (more) easy examples. Below we discuss the extent to which this holds along
specific difficulty axes.
1. Physics axis (Fig. 7): While the increase in data generation cost is small when going

from low to medium Re, for both FFNO and Poseidon the error of the model trained on
the latter is lower at all data generation costs evaluated, demonstrating the value of using
intermediate rather than easy examples when targeting a hard distribution.

2. Geometry axis (Fig. 8): Unlike changing physics, changing the domain geometry
by adding obstacles significantly increases computational cost. Nevertheless, for the
supervised models (CNO and FFNO) it is usually favorable to train on FPO simulations

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 × 105 106 2 × 106 5 × 106

Data Generation Cost (Seconds)

3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Cost vs. Error Geometry axis

CNO Easy Hard
CNO Medium Hard
CNO Hard Hard

FFNO Easy Hard
FFNO Medium Hard
FFNO Hard Hard

5 × 105 106 2 × 106 5 × 106

Data Generation Cost (Seconds)

2 × 10 2

3 × 10 2

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Cost vs. Error Geometry axis
Poseidon-B Easy Hard
Poseidon-B Medium Hard
Poseidon-B Hard Hard

Figure 8: Comparing data generation cost vs. error while augmenting hard (multi-
obstacle) FPO with easy (no obstacle), medium (single obstacle), and hard (multi-obstacle)
examples. We fix the number of hard examples to 200 and plot the compute required to generate
them and between 1 and 3200 lower and equal difficulty examples. For supervised models, generating
medium difficulty data has a generally more favorable tradeoff, achieving the same or lower error at
the same budget; for Poseidon-B, generating medium data is more cost-effective given 5e5 seconds
or more time for pre-generation. At sufficiently large compute budgets, however, training exclusively
on hard data (hard to hard) yields the lowest error.

with one (medium) rather than no (easy) obstacles at all computational budgets. For the
better-performing Poseidon FM, training on medium difficulty examples is cost-effective
at data-generation budget of 5e5 seconds and higher.

3. Combined axis (Fig. 9): when the hard examples involve a high Re flow past multiple
objects, we find that augmenting with medium difficulty examples performs better than or
the same as using (more) easy examples at the same generation budget. However, we also
find that for both supervised models and the Poseidon FM that adding increasingly more
low difficulty examples starts to increase the error on the target distribution, demonstrating
that care needs to be taken when doing this data composition.

In summary, across all difficulty axes we find that it is cost-effective or at least not significantly
harmful to train on medium difficulty rather than easy examples, despite the former’s greater
generation cost. This result demonstrates the importance of considering multiple scales of
difficulty when pre-generating a data mixture for a specific high difficulty target distribution.

3.3 Towards foundation datasets

In our last evaluation, we study the implications of multi-difficulty training for large-scale
pre-generation of datasets for solving diverse PDE tasks. As an example of the latter, we con-
sider examples from the FlowBench dataset (Tali et al., 2024) of flows past irregular NURBS
objects (cf. Section 2.1). Using flows past zero objects and flows past one square object as the
easy and medium distributions, respectively, we show in Figure 10 that adding these simpler ex-
amples can reduce the error. This is especially pronounced in the case of FFNO when its train-
ing data is augmented with single object FPO examples. This suggests the potential utility of
pre-generating large medium difficulty datasets and reusing them on multiple other datasets,
thus amortizing the pre-generation costs. This pipeline is analogous to that of pre-training a
foundation model, the cost of which is amortized as it is applied to multiple downstream tasks.

This idea of a pre-generated “foundation dataset” can also be used to describe much larger-
scale efforts like The Well (Ohana et al., 2024). However, what our study demonstrates
is that, just like the length and quality of web data used to train large language models
matters, so does the difficulty of data pre-generated for training PDEs. In particular, as
discussed in the last section, medium (across any axis) data can be much more effective as a
mixing dataset than easy (across any axis) data for multi-obstacle performance. The current
section further shows this for FlowBench NURBS data. Thus, when pre-generating such large
datasets, it will be important to incorporate settings that more closely approach the types of
more difficult problems that will be of actual interest to future users of neural PDE solvers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 × 105 106 2 × 106 5 × 106

Data Generation Cost (Seconds)

4 × 10 1

5 × 10 1
M

ea
n

Re
la

tiv
e

L1
 E

rro
r

Cost vs. Error Combined axis

CNO Easy Hard
CNO Medium Hard
CNO Hard Hard

FFNO Easy Hard
FFNO Medium Hard
FFNO Hard Hard

5 × 105 106 2 × 106 5 × 106

Data Generation Cost (Seconds)
10 2

2 × 10 2

3 × 10 2

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Cost vs. Error Combined axis
Poseidon-B Easy Hard
Poseidon-B Medium Hard
Poseidon-B Hard Hard

Figure 9: Comparing data generation cost vs. error while augmenting hard (multi-
obstacle high Re) FPO examples with easy (no obstacle low Re), medium (single obstacle
medium Re), and hard (multi-obstacle high Re) examples. We fix the number of hard examples
to 200 and plot the compute required to generate them and between 1 and 3200 lower and equal
difficulty examples. For both supervised models and Poseidon-B, generating medium difficulty data
has a generally more favorable tradeoff, achieving the same or lower error at the same budget as
easy data. However, in all cases, too many lower difficulty examples can reduce performance. At
sufficiently large compute budgets, training exclusively on hard data (hard to hard) yields the lowest
error.

103 104 105 106

Data Generation Cost (Seconds)

2 × 10 2

5 × 10 2

10 1

2 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Cost vs. Error Flowbench (NURBS)

CNO Easy Hard
CNO Medium Hard
FFNO Easy Hard
FFNO Medium Hard
Poseidon-B Easy Hard
Poseidon-B Medium Hard

Figure 10: Performance on FlowBench’s
NURBS FPO simulations when 200 tar-
get examples are augmented with 1-3200 zero
obstacle FPO (easy) or single square-obstacle
FPO (medium) simulations. In multiple cases
such, e.g. adding medium examples when train-
ing FFNO, doing this data augmentation sub-
stantially improves performance on the target
FlowBench distribution.

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

2 × 10 2

5 × 10 2

10 1

2 × 10 1

5 × 10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Difficulty Mixing Geometry axis
(Poseidon-B)
400 total training samples
800 total training samples
1200 total training samples

Figure 11: Performance of Poseidon-B as
the fraction of target distribution data in-
creases. Each curve fixes the training set size
and varies the number of medium (one obstacle)
vs. hard (multi-obstacle) examples in it. In all
three cases, most of the improvement over train-
ing on just single-obstacle examples is obtained
by replacing just 10% of the data with target
distribution examples.

4 Conclusion

This paper presents a data-centric study on the role of training data composition for neural
PDE solvers. Our study considers three difficulty axes comprising the domain geometry in
the form of the number and shape of flow obstacles, the problem physics in the form of the
Reynolds number, and the combination of the two. Across all settings we find that examples
from lower-difficulty settings can significantly improve the performance on the associated
hard test distribution. Furthermore, this result holds for both supervised models like CNO
and FFNO as well as the Poseidon family of state-of-the-art multi-physics-pretrained FMs.
This suggests that our observed performance gains are not only function of model class or

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

model capacity but also a function of the quality and difficulty level of the training data
distribution, as well as how it relates to the target distribution. In particular, we show
that incorporating intermediate-difficulty examples has significant benefits. Therefore, for
a fixed computational budget, it may be more cost-effective to generate smaller number
of high-quality moderately complex—i.e., intermediate—data, rather than relying on large
volumes of simpler data. Hence, our work suggests that future data-generation workflows for
neural PDE solvers should take into account tradeoffs between the difficulty of generating
low-to-medium-to-high complexity data and the potential benefits of harder-to-simulate
data for learning that target distribution.

Reproducibility Statement

We took several steps to make our results easy to reproduce. Problem setups, difficulty axes,
dataset sizes/splits, and the evaluation metric are specified in the main text (Secs. 2–3), in-
cluding the definition of nMAE in Eq. (2) and the exact target-and-mix protocols summarized
in Figures 4-9. The full simulation pipeline for generating FPO and LDC datasets—covering
domain construction, boundary conditions, Reynolds-number sampling, time scheduling,
discretization schemes, solver settings, post-processing to a 128× 128 grid, and the saved
data format—is documented in the Supplementary Material, App. B (FPO in Sec. B.1,
LDC in Sec. B.2, scheduling in Sec. B.3, numerics in Sec. B.4, and data format in Sec. B.4.9;
Table 1; Figs. 12, 13, 14). Model architectures, training/fine-tuning procedures, hyperpa-
rameters, and the compute environment are detailed in Supplementary, App. C (CNO
in Sec. C.1, F-FNO in Sec. C.2, Poseidon variants in Secs. C.3–C.5), with training-time
summaries in App. C.6 (Table 2). External corpora and out-of-distribution geometry
experiments using FlowBench, and how they are combined with our pre-generated data, is
described in Section. 3.3. We will release all pre-generated datasets and the code used to
produce our figures and results to enable exact replication.

References

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length
generalization in large language models. Advances in Neural Information Processing
Systems, 35:38546–38556, 2022.

Johannes Brandstetter, Max Welling, and Daniel E. Worrall. Message passing neural pde
solvers. In International Conference on Learning Representations (ICLR), 2022.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde
solvers, 2023. URL https://arxiv.org/abs/2202.03376.

Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin schemes
with active learning for high-dimensional evolution equations. Journal of Computational
Physics, 496:112588, 2024.

Steven L. Brunton and J. Nathan Kutz. Machine learning for fluid mechanics. Annual
Review of Fluid Mechanics, 52:477–508, 2020.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and
Chulhee Yun. Position coupling: Improving length generalization of arithmetic transformers
using task structure. arXiv preprint arXiv:2405.20671, 2024.

Maximilian Dauner et al. Residual factorized fourier neural operator for simulation of three-
dimensional turbulent flows. In OpenReview preprint (ICLR submission) id: yGdoTL9g18,
2024. URL https://openreview.net/forum?id=yGdoTL9g18.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan
Catanzaro. Adaptive fourier neural operators: Efficient token mixers for transformers,
2022. URL https://arxiv.org/abs/2111.13587.

10

https://arxiv.org/abs/2202.03376
https://openreview.net/forum?id=yGdoTL9g18
https://arxiv.org/abs/2111.13587

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, An-
ima Anandkumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator
transformer for large-scale pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness
of easy training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro,
Emmanuel de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for
pdes. Advances in Neural Information Processing Systems, 37:72525–72624, 2024.

Jordan Hoffmann, Yohai Bar-Sinai, Lisa M. Lee, Jovana Andrejevic, Shruti Mishra, Shmuel M.
Rubinstein, and Chris H. Rycroft. Machine learning in a data-limited regime: Augmenting
experiments with synthetic data uncovers order in crumpled sheets. Science Advances, 5
(4):eaau6792, 2019. doi: 10.1126/sciadv.aau6792. URL https://www.science.org/doi/
abs/10.1126/sciadv.aau6792.

Hrvoje Jasak. Error analysis and estimation for the finite volume method with applications
to fluid flows. PhD thesis, Imperial College London, University of London, 1996.

Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. Openfoam: A c++ library for
complex physics simulations. In International workshop on coupled methods in numerical
dynamics, volume 1000, pages 1–20. Dubrovnik, Croatia), 2007.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and
Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440,
2021.

Frederic Koehler et al. A benchmark for autoregressive neural emulators of pdes. In NeurIPS
2024 Datasets and Benchmarks Track, 2024. URL https://arxiv.org/abs/2411.00180.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between
function spaces. Journal of Machine Learning Research, 24:1–79, 2023.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and
Michael W. Mahoney. Characterizing possible failure modes in physics-informed neu-
ral networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
df438e5206f31600e6ae4af72f2725f1-Abstract.html.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations, 2021a. URL https://arxiv.org/abs/2010.08895.

Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations (ICLR),
2021b.

Zongyi Li, Kamyar Gupta, Nikola B. Kovachki, Kamyar Azizzadenesheli, and Anima Anand-
kumar. Fourier neural operator with learned deformations for pdes on general geometries.
In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via deeponet based on the universal approximation theorem
of operators. Nature Machine Intelligence, 3(3):218–229, March 2021a. ISSN 2522-5839. doi:
10.1038/s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via deeponet based on the universal approximation theorem
of operators. Nature Machine Intelligence, 3(3):218–229, 2021b.

11

https://www.science.org/doi/abs/10.1126/sciadv.aau6792
https://www.science.org/doi/abs/10.1126/sciadv.aau6792
https://arxiv.org/abs/2411.00180
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://arxiv.org/abs/2010.08895
http://dx.doi.org/10.1038/s42256-021-00302-5

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

Daniel Musekamp, Marimuthu Kalimuthu, David Holzmüller, Makoto Takamoto, and Mathias
Niepert. Active learning for neural pde solvers. arXiv preprint arXiv:2408.01536, 2024.

Ajay Nadig, Akshaya Thoutam, Madeline Hughes, Anay Gupta, Andrew W Navia, Nicolo
Fusi, Srivatsan Raghavan, Peter S Winter, Ava P Amini, and Lorin Crawford. Consequences
of training data composition for deep learning models in single-cell biology. bioRxiv, pages
2025–02, 2025.

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez,
Marsha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well:
a large-scale collection of diverse physics simulations for machine learning. Advances in
Neural Information Processing Systems, 37:44989–45037, 2024.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-
hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli,
Pedram Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A
global data-driven high-resolution weather model using adaptive fourier neural operators,
2022. URL https://arxiv.org/abs/2202.11214.

Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators
for robust and accurate learning of pdes. Advances in Neural Information Processing
Systems, 36:77187–77200, 2023.

Michael Rotman, Amit Dekel, Ran Ilan Ber, Lior Wolf, and Yaron Oz. Semi-supervised
learning of partial differential operators and dynamical flows. In Proceedings of the
Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 2023.

Ricardo Buitrago Ruiz, Tanya Marwah, Albert Gu, and Andrej Risteski. On the benefits of
memory for modeling time-dependent pdes. arXiv preprint arXiv:2409.02313, 2024.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. Ups: Towards foundation models for
pde solving via cross-modal adaptation. arXiv e-prints, pages arXiv–2403, 2024.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and
Chuang Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision.
arXiv preprint arXiv:2403.09472, 2024.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, and Others. Pdebench: An extensive
benchmark for scientific machine learning. NeurIPS Datasets and Benchmarks, 2022.

Ronak Tali, Ali Rabeh, Cheng-Hau Yang, Mehdi Shadkhah, Samundra Karki, Abhisek
Upadhyaya, Suriya Dhakshinamoorthy, Marjan Saadati, Soumik Sarkar, Adarsh Krish-
namurthy, Chinmay Hegde, Aditya Balu, and Baskar Ganapathysubramanian. Flow-
bench: A large scale benchmark for flow simulation over complex geometries, 2024. URL
https://arxiv.org/abs/2409.18032.

Anh Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021. URL https://arxiv.org/abs/2111.
13802.

Henry G Weller, Gavin Tabor, Hrvoje Jasak, and Christer Fureby. A tensorial approach
to computational continuum mechanics using object-oriented techniques. Computers in
physics, 12(6):620–631, 1998.

12

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2409.18032
https://arxiv.org/abs/2111.13802
https://arxiv.org/abs/2111.13802

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Related work

Two leading paradigms for learning PDE solutions are physics-informed neural net-
works (PINNs) and neural operators. PINNs embed PDE residuals and boundary conditions
into the loss, enabling mesh-free training, strong use of physics priors, and efficacy in
small-data forward/inverse settings (Raissi et al., 2019; Karniadakis et al., 2021). At the
same time, training can involve challenging multi-term loss balancing and optimization stiff-
ness (Krishnapriyan et al., 2021), with slower convergence on multi-scale or chaotic regimes
(e.g., high Re turbulence) and sensitivity to complex geometries or boundary conditions
(Karniadakis et al., 2021). Neural operators (e.g., DeepONet, FNO) learn mappings between
function spaces, providing amortized inference, cross-discretization/geometry generalization,
and scalability via pretraining on synthetic data (Lu et al., 2021b; Li et al., 2021b; Kovachki
et al., 2023). Their performance, however, typically depends on substantial supervised
datasets; robustness may be reduced under distribution shift across physics/geometry,
and accuracy near shocks/discontinuities or conservation/stability guarantees may require
additional structure and memory (Kovachki et al., 2023; Brandstetter et al., 2022; Ruiz
et al., 2024). Geometry-aware operator variants (e.g., GeoFNO) enhance robustness on
irregular domains yet still rely on curated simulation corpora (Li et al., 2023). Recent
surveys synthesize these properties across PDE tasks, including turbulent flows (Karniadakis
et al., 2021; Brunton and Kutz, 2020).

Unlike these efforts, we focus on the data itself, specifically on how generating better quality
data may improve performance. There exists some work in the sciences on augmenting
scarce experimental datasets with abundant simulated data from simplified systems, e.g.
Hoffmann et al. (2019) demonstrated that combining simulated flat-folding patterns with
limited experimental data enabled machine learning models to recover structure in crumpled
sheets. Similar studies are being conducted in biology, where recent work investigates the
effects of training data composition on the performance of foundation models for single-cell
genomics (Nadig et al., 2025). We view our contribution as a more systematic study of how
to generate and make use of data of different qualities.

Outside of PDEs, data difficulty has also been explored in other areas such as language
modeling. For example, a major difficulty axis in natural language processing is context
length, with several explorations of how to train models capable of solving long-context
tasks without resorting to purely long-context training (Anil et al., 2022; Cho et al., 2024).
Separately, our work is also related to work on easy-to-hard generalization in arithmetic
reasoning tasks (Sun et al., 2024; Hase et al., 2024) Here, the past work has found that
appropriately training the models on simpler tasks—for example simpler math problems—
leads to better performance on harder tasks. Here a task’s hardness is determined according
to some human hardness measures, e.g. grade-level for STEM problems.

B Dataset Generation and Simulation Setup

We generate two major datasets—Flow Past Object (FPO) and Lid-Driven Cavity (LDC)—to
investigate the impact of domain complexity on the performance and generalization of neural
PDE solvers. Each dataset contains three levels of difficulty: easy (no obstacles), medium (a
single obstacle), and hard (2–10 randomly placed obstacles). All simulations are run using
OpenFOAM, a finite-volume CFD solver.

B.1 FPO Domain

In the FPO setting, we simulate flow around one or more square obstacles within a 2× 2
m rectangular domain using the icoFoam solver. The left boundary is treated as a velocity
inlet, where we impose a parabolic inflow profile representative of fully developed laminar
channel flow. The right boundary is set as a pressure outlet with fixed value, and the top
and bottom boundaries are treated as no-slip walls.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 12: Structured mesh used in our multi obstacle setup. Left: full 2× 2 m mesh domain.
Right: zoom-in around one obstacle.

To define the parabolic inlet condition, we prescribe the horizontal velocity component u(y)
across the height H = 2 m of the domain using the analytical profile for plane Poiseuille flow:

u(y) = 4Umax · y(H − y)

H2
, y ∈ [0, H],

where Umax is the peak velocity occurring at the vertical midline (y = H/2). This ensures
zero velocity at the top and bottom walls (y = 0, H) and a smooth parabolic profile across
the inlet face.

Reynolds numbers are sampled from a truncated normal distribution N (5000, 20002) with
support in [100, 10000], and the corresponding Umax is scaled to satisfy:

Re =
Uavg · L

ν
, with Uavg =

2

3
Umax, L = 2 m, ν = 1.5× 10−5 m2/s,

where Uavg is the mean velocity of the parabolic profile. Solving for Umax ensures consistency
between the desired Reynolds number and the imposed inlet condition.

Obstacle configurations are generated by randomly placing between 2 and 10 square holes in
the domain, using a rejection sampling algorithm to prevent overlap or boundary collision.
For each simulation:

• The geometry is procedurally constructed by modifying blockMeshDict, and mesh
generation is handled via OpenFOAM’s native utilities.

• The simulation duration is dynamically adjusted based on the sampled Reynolds
number using a characteristic time scale, and outputs are recorded at 20 evenly
spaced intervals.

• Velocity and pressure fields are post-processed using OpenFOAM utilities and
interpolated onto a 128× 128 uniform grid via barycentric interpolation.

B.2 LDC Domain

In the LDC setting, fluid flows in a closed 2× 2 m cavity with a moving top wall. We again
use the icoFoam solver with zero velocity on side and bottom walls and a parabolic profile
imposed on the top wall. The top-wall velocity is scaled to match a target Reynolds number:

Umax =
Re · ν
L

, with ν = 1.5× 10−5 m2/s, L = 2 m.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 13: FPO Flow Fields (Velocity). Top row shows velocity and pressure fields for easy,
medium, and complex setups; White areas represent the square obstacles (holes) in the domain.

B.3 Flow Development Scheduling.

To ensure that each simulation reaches a fully developed state before data is recorded,
we adaptively determine the simulation end time based on the sampled Reynolds number
Re. This is critical in both the FPO and LDC domains, where flow transients can vary
significantly with Re, and premature truncation would lead to incomplete or biased solution
fields.

We define a piecewise scheduling rule that maps the Reynolds number to a simulation end
time Tend via either a linear scaling or a constant duration, depending on the flow regime.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For moderate to high Re values, we employ the characteristic viscous diffusion time scale:

tnd =
L2

ν · Re
,

where L = 2 m is the characteristic length of the domain, and ν = 1.5× 10−5 m2/s is the
kinematic viscosity of the fluid. The total simulation time is then computed as:

Tend = γ · tnd,

where γ is a multiplicative factor that increases with Re to accommodate longer transients
associated with inertial effects. For very low Reynolds numbers (Re < 100), where steady-
state is approached slowly and viscous effects dominate, we assign a fixed total duration of
2700 seconds.

The multiplicative factors γ are manually calibrated for different Re ranges as shown below:

Re Range γ Tend Formula

5000–10000 40 Tend = 40 · tnd
4000–5000 30 Tend = 30 · tnd
2500–4000 20 Tend = 20 · tnd
1000–2500 10 Tend = 10 · tnd
500–1000 5 Tend = 5 · tnd
400–500 4 Tend = 4 · tnd
300–400 3 Tend = 3 · tnd
200–300 2 Tend = 2 · tnd
100–200 1 Tend = 1 · tnd
10–100 – Tend = 2700 s (fixed)

Table 1: Reynolds-number-dependent scheduling of simulation end time.

The computed Tend is rounded up to the nearest hundred and used to configure the
controlDict file for each simulation. The write interval is also dynamically selected to
yield 20 evenly spaced output frames, ensuring consistent temporal sampling across all
Reynolds number regimes. This scheduling mechanism guarantees physically meaningful
and temporally aligned datasets, while avoiding wasted computation for low-Re flows or
premature termination for higher-Re flows.

B.4 Numerical Discretization and Solver Configuration

All simulations are performed using OpenFOAM v2406 to numerically solve the incompressible
Navier–Stokes equations. To ensure stable and accurate data generation across diverse
Reynolds numbers and geometric complexities, we adopt a consistent finite-volume setup for
time integration, spatial discretization, and linear solver configurations.

Governing Equations. We solve the incompressible Navier–Stokes system in the exact
form used in the main paper:

∂tu+ (u · ∇)u+∇p = ν∆u and ∇ · u = 0 (3)

where u(x, t) is the velocity field, p is the (kinematic) pressure, and ν is the kinematic
viscosity.

B.4.1 Time Discretization

To maintain numerical robustness at higher Reynolds numbers and small time steps, we
discretize the temporal derivative using a first-order implicit backward-Euler scheme:

∂U

∂t
≈ Un+1 −Un

∆t
.

This choice offers unconditional stability and aligns with OpenFOAM’s standard transient
solvers.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 14: LDC Flow Fields (Velocity). Top row: velocity and pressure fields for easy, medium,
and complex setups.

B.4.2 Spatial Derivatives

All spatial derivatives are evaluated using the finite-volume method with second-order
accurate schemes:

• Gradient terms such as ∇p and ∇U use central differencing:

∇ϕ ≈ Gauss linear,

which preserves smooth fields with low numerical diffusion.
• Convective fluxes, dominant at higher Reynolds numbers, use an upwind-biased

linear scheme with gradient reconstruction:

∇ · (ϕU) ≈ Gauss linearUpwind grad(U),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

balancing stability with second-order accuracy, especially near obstacles where steep
gradients occur.

• Diffusive terms (Laplacians) use:

∇2ϕ ≈ Gauss linear orthogonal,

appropriate for our structured Cartesian grids.1

B.4.3 Interpolation and Surface Gradients

Cell-face values are interpolated linearly:

ϕf ≈ linear(ϕ),

and surface-normal gradients use the orthogonal scheme, leveraging the grid’s structured
nature.

B.4.4 Linear Solvers

The momentum and pressure equations are solved using efficient iterative solvers:

• Pressure (p): PCG (Preconditioned Conjugate Gradient) with DIC (Diagonal-based
Incomplete Cholesky) preconditioning.

• Velocity (U): smoothSolver with symmetric Gauss–Seidel smoothing.

Per-equation tolerances are:

Pressure: tolerance = 10−6, relTol = 0.05 (final: 0)

Velocity: tolerance = 10−5, relTol = 0 (final)

B.4.5 Design Motivation

This configuration follows established best practices in the OpenFOAM ecosystem and prior
simulation-driven ML benchmarks, ensuring numerical stability and physical realism across
a wide range of Reynolds numbers. We adopt Gauss linear for gradients and diffusive
terms to preserve smoothness on structured grids Weller et al. (1998), and linearUpwind
grad(U) to balance accuracy and robustness in the presence of sharp gradients and internal
obstacles Jasak (1996). The backward-Euler time integration and implicit solvers align with
standard OpenFOAM settings for incompressible flows and are widely used in both industrial
and academic studies Jasak et al. (2007).

B.4.6 Simulation Pipeline (Transient)

We automate data generation via modular Python scripts for both FPO and LDC:

1. Domain Construction: Randomized obstacle positions are sampled; a mesh is
constructed via a modified blockMeshDict.

2. Velocity and Controls: Boundary velocity profiles and run duration are computed
from the sampled Reynolds number.

3. Simulation Execution: The case is solved using icoFoam; fields are written at
fixed intervals to yield 20 timesteps.

4. Postprocessing: Velocity and pressure fields are parsed and projected onto a
128× 128 regular grid.

5. Geometry Encoding: Each grid cell includes a binary mask (fluid vs. obstacle)
and a signed distance field (SDF) via an Euclidean distance transform.

1If mild non-orthogonality appears, Gauss linear corrected is a safe alternative.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Binary mask: white = hole, black = fluid. (b) Signed distance field (SDF) corresponding
to the mask.

Figure 15: Geometry encodings. Visualization of the binary mask and corresponding SDF used
to encode obstacle geometry.

B.4.7 Randomized Obstacle Generation

We construct domains with multiple internal holes via blockMeshDict:

• Random Hole Placement: Sample n ∈ [2, 10] axis-aligned rectangles {x, y, w, h}
strictly within [0, 2]× [0, 2] (optionally enforcing non-overlap).

• Block Decomposition: Subdivide a structured Cartesian grid; cells lying entirely
inside holes are removed. Faces adjoining missing cells become boundary patches
hole1, hole2, . . .

• Boundary Patches: The outer walls (including the moving lid for LDC) and the hole
patches are set as no-slip walls (U = 0) unless the experiment specifies inlets/outlets
(FPO).

B.4.8 Boundary Conditions and Reynolds Number

For LDC, the top-wall velocity Ulid is set to match a target Reynolds number:

Re =
Ulid L

ν
=⇒ Ulid =

Re ν

L
.

For FPO, inlet speed is set analogously; outlets use zero-gradient pressure and velocity
conditions consistent with standard setups.

B.4.9 Data Format

Each trajectory is stored as a NumPy array with shape (20, 128, 128, 6), containing six
channels: horizontal velocity u, vertical velocity v, pressure p, normalized Reynolds number
R̂e, binary mask, and SDF. A representative visualization is shown in Figure 15.

C Model Architectures

In this section, we provide implementation and training details for the neural operator models
evaluated in our study. We focus on two classes of models: (1) the Convolutional Neural

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Operator (CNO) (Raonic et al., 2023), which is trained from scratch, and (2) Poseidon-
T (Herde et al., 2024), a pretrained transformer-based model fine-tuned on our downstream
task. These models differ significantly in their architectural design, parameterization, and
training strategy.

All models are trained to predict velocity and pressure fields for 2D incompressible Navier-
Stokes simulations. Given an input-output pair (ut, ut+1), where ut ∈ RC×H×W denotes the
flow variables at timestep t and C is the number of channels, models are trained to minimize
the relative ℓ1 loss:

L(ut, ut+1) =
∥ut+1 − ût+1∥1
∥ut+1∥1 + ϵ

, (4)

where ût+1 is the model prediction and ϵ = 10−10 ensures numerical stability.

C.1 Convolutional Neural Operator (CNO)

The Convolutional Neural Operator (CNO) used in our experiments is based on the architec-
ture proposed by Raonic et al. (2023), with several adjustments tailored to our time-dependent
Navier-Stokes flows. The model is implemented in PyTorch Lightning and trained in an
autoregressive supervised setting.

The model is structured as an encoder-decoder network with residual blocks, optional
attention in the bottleneck, and optional time-conditioning via instance normalization. Key
components of the architecture include:

• Encoder and Decoder: The encoder has Nlayers = 4 downsampling stages with a
channel multiplier of 32. The decoder mirrors this with corresponding upsampling
layers. Each stage consists of a combination of convolutional and spectral convolution
blocks.

• Residual Blocks: The encoder and bottleneck include Nres = 8 residual blocks per
level and Nres_neck = 8 blocks in the bottleneck.

• Normalization: We use instance normalization (specified via nl_dim = [2, 3]),
conditional on the input timestep.

• Time Conditioning: The model is trained with is_time = 1 to incorporate the
current timestep as an additional input feature.

• Grid Resolution: All experiments use a spatial resolution of 128× 128.
• Loss Function: We use a normalized relative ℓ1 loss, computed per-sample and

averaged over the batch.
• Autoregressive Training: The CNO is trained in an autoregressive supervised

manner using transitions of the form t → t+1 only. We set allowed = ’one’ in the
training configuration, restricting the training to adjacent timestep pairs.

• Other Details: Training used a batch size of 32, learning rate of 7.5× 10−4, step
learning-rate schedule over 400 epochs, and weight decay of 1× 10−6.

0.00075 The model contains approximately 18 million parameters and does not utilize
attention in our setup.

C.2 Factorized Fourier Neural Operator (F-FNO)

The Factorized Fourier Neural Operator (F-FNO) used in our experiments is based on the
architecture proposed by Tran et al. (2021), designed for efficient learned simulation of PDEs.
The model is implemented in PyTorch Lightning and trained in an autoregressive one-step
prediction setting. It consists of a deep sequence of Fourier operator layers with factorized
spectral convolutions and improved residual connections, which allow stable training even at
greater network depths than the original FNO . Key components of the architecture include:

• Network Depth and Parameters: We deploy a 5-layer F-FNO, following the
high-capacity configuration from the original paper.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

. This is an order of magnitude fewer parameters than a comparable geo-FNO model,
despite the increased depth, due to the factorized kernel representation.

• Spectral Layers: Each layer applies a separable Fourier convolution on the input
features, factorizing the transform over each spatial dimension . In practice, we drop
half of the higher-frequency Fourier modes in each layer to reduce computational
cost (e.g., on a 64× 64 grid we keep only the top 16 modes per dimension) . The
retained frequency components serve as learned global convolution kernels applied
via inverse FFT.

• Feedforward Block: After the spectral convolution, each layer includes a two-layer
feed-forward network (pointwise MLP) operating in the physical space . We use ReLU
activations in these feed-forward layers . This pointwise MLP mixes features per
grid location and is analogous to the transformer’s MLP block, providing non-linear
coupling of the channels.

• Residual Connections: A skip connection adds each layer’s input to its output
after the non-linear feed-forward stage . This post-activation residual design preserves
more of the original signal and stabilizes gradient flow in deep stacks , enabling
the F-FNO to converge even with dozens of layers (where the original FNO would
diverge at ≥ 12 layers).

• Coordinate Encoding: Following Tran et al. (2021), we augment the input with
explicit spatial coordinate channels. Each input field is concatenated with its
normalized x and y coordinates (as two additional channels), providing a positional
encoding that consistently improves accuracy . The Fourier layers inherently utilize
absolute positions (through the grid indices in the transform), while the feed-forward
layers benefit from the coordinate features to capture location-dependent effects .

• Autoregressive Training: We train the F-FNO in a one-step-ahead prediction
manner. The model uses only the current state as input to predict the next state,
enforcing a first-order Markov assumption (no multi-step history) . We employ
teacher forcing during training, i.e. at each training step the ground-truth state at
time t is provided as input to predict t+1 . This approach avoids the need to unroll
long sequences during training and was found to improve stability and accuracy.

• Input Normalization and Noise: We apply per-variable normalization to input
fields and add a small Gaussian noise perturbation during training . These techniques,
recommended by ?, act as regularization and help prevent training instabilities (we
observed that without the added noise, the model’s validation loss could sometimes
spike early in training).

• Training Setup: The F-FNO is trained with a batch size of 16, using a learning
rate of 5 × 10−5 and a cosine annealing schedule (no restarts) over 400 epochs,
along with a weight decay of 1× 10−6. These hyperparameters match those used
for our other models to ensure a fair comparison. We did not employ the optional
weight-sharing of Fourier weights across layers in our configuration, as it has minimal
impact on performance at this depth .

C.3 Poseidon-T

We evaluate Poseidon-T using the pretrained model checkpoints provided by Herde et al.
(2024), available on Hugging Face.2 We perform fine-tuning on our custom datasets without
any further pretraining.

The architecture follows a SwinUNet-based transformer backbone with hierarchical attention
and patch embeddings. We retain the pretrained model structure and only update weights
via supervised autoregressive finetuning. Key configuration details include:

• Backbone: SwinUNet with hierarchical attention and window-based self-attention.
• Variant: We use Poseidon-T, which has a base embedding dimension of 48, depths
[4, 4, 4, 4], and patch size 4.

2https://huggingface.co/camlab-ethz/Poseidon-T

21

https://huggingface.co/camlab-ethz/Poseidon-T

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Resolution: All inputs are processed at 128× 128 resolution.
• Training Setup: Fine-tuning is performed for 100 epochs with batch size 16, weight

decay of 1× 10−6, and cosine learning rate schedule starting from 5× 10−5.
• Loss Function: We use a normalized relative ℓ1 loss, computed per-sample and

averaged over the batch.

Only the decoder and time-conditioning layers are updated during fine-tuning. The rest of
the model remains unchanged from the pretrained checkpoint.

C.4 Poseidon-B

We evaluate Poseidon-B using the pretrained model checkpoint provided by Herde et al. (2024),
available on Hugging Face.3 We perform fine-tuning on our custom datasets without any
further pretraining. The architecture mirrors Poseidon-T’s setup, following a SwinUNet-based
transformer backbone with hierarchical (U-Net style) multiscale attention and window-based
self-attention. We retain the pretrained model structure and update weights via supervised
autoregressive fine-tuning. Key configuration details include:

• Backbone: SwinUNet with hierarchical attention (patch merging/expansion) and
windowed self-attention.

• Variant: Poseidon-B, base embedding dimension 96, depths [8, 8, 8, 8] (eight
SwinV2 transformer blocks per level), patch size 4.

• Resolution: All inputs are processed at 128× 128 resolution (matching the pre-
training grid size).4

• Training setup: 100 epochs, batch size 16, weight decay 1× 10−6, cosine learning-
rate schedule starting from 5× 10−5.

• Loss: Normalized relative ℓ1 loss, computed per-sample and averaged over the
batch.

• Fine-tuned parameters: Only the decoder and time-conditioning layers are
updated; all other weights remain frozen from the pretrained checkpoint.

C.5 Poseidon-L

We evaluate Poseidon-L using the pretrained model checkpoint provided by Herde et al.
(2024), available on Hugging Face.5 We fine-tune this model on our custom datasets with no
additional pretraining. The architecture is identical to the other Poseidon variants, employing
the same SwinUNet-style transformer backbone with hierarchical multiscale attention and
window-based (shifted-window) self-attention. We preserve the original model architecture
and learn weights via supervised autoregressive fine-tuning. Key configuration details include:

• Backbone: SwinUNet with hierarchical attention and window-based self-attention
(shifted-window mechanism).

• Variant: Poseidon-L, base embedding dimension 192, depths [8, 8, 8, 8] (eight
SwinV2 transformer blocks at each level), patch size 4.

• Resolution: All inputs are handled at 128 × 128 resolution, consistent with the
model’s pretraining grid size.6

• Training setup: 100 epochs, batch size 16, weight decay 1× 10−6, cosine learning-
rate schedule starting from 5× 10−5.

• Loss: Normalized relative ℓ1 loss, computed per-sample and averaged over the
batch.

3https://huggingface.co/camlab-ethz/Poseidon-B
4https://huggingface.co/camlab-ethz
5https://huggingface.co/camlab-ethz/Poseidon-L
6https://huggingface.co/camlab-ethz

22

https://huggingface.co/camlab-ethz/Poseidon-B
https://huggingface.co/camlab-ethz
https://huggingface.co/camlab-ethz/Poseidon-L
https://huggingface.co/camlab-ethz

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Fine-tuned parameters: Only the decoder and time-conditioning (time-encoded
layer normalization) layers are updated during fine-tuning; all other weights are
frozen to their pretrained values.

C.6 Computational Resources

We report compute details and training runtimes for the experiments conducted in this study.
All models were trained on a single GPU using PyTorch with SLURM-based scheduling. The
Convolutional Neural Operator (CNO) models were trained from scratch for 400 epochs, while
Poseidon-T/B/L models were fine-tuned for 200 epochs from publicly released checkpoints.

CNO models were trained from scratch while Poseidon models were fine-tuned on a single
NVIDIA L40S GPU on the Babel cluster. For autoregressive training with t → t+1
supervision, training time scaled approximately with the number of trajectories. Table 2
summarizes the approximate training time for varying dataset sizes. For completeness, we
include FFNO (trained from scratch) and additional Poseidon variants (B and L) alongside
Poseidon-T. FFNO and CNO were trained from scratch; all Poseidon variants (T/B/L) were
fine-tuned.

Table 2: Approximate training durations with increasing number of training trajectories on a single
NVIDIA L40S GPU. FFNO and CNO trained from scratch; Poseidon variants fine-tuned.

Training Trajectories CNO FFNO Poseidon-T Poseidon-B Poseidon-L

200 3h 30m 1h 2h 6h 40m –
400 6h 48m 7h 3h 11h 30m –
800 7h 55m 1d 13h 9h 19h 1d 3h
1600 1d 4h 1d 21h 18h 1d 16h –

All experiments were run using a single GPU with no mixed precision or distributed training.

C.7 Training Convergence Analysis

To provide additional insight into the training dynamics of our models across different difficulty
mixing scenarios, we present the convergence behavior during training and validation in
Figure 16. The training loss is computed as the mean L1 loss over the training set, which
consists of samples from both easy/medium and hard data according to the difficulty ratio of
each experiment. The validation loss is computed as the mean L1 loss over a fixed validation
set of 100 samples per experiment: 50 samples drawn from the easy/medium distribution and
50 samples from the hard distribution. Figure 16 shows the training and validation loss curves
for Poseidon-B across two difficulty mixing scenarios: medium-to-hard and easy-to-hard
geometry composition. Both subplots demonstrate smooth convergence and stable validation
loss across different mixing ratios, reflecting the robustness of our training procedure and
validating the generalization properties of models trained on lower-difficulty data augmented
with target-difficulty examples. It is important to note that the validation loss shown here
uses a balanced split (50 easy/medium, 50 hard samples) to monitor training stability across
difficulty compositions, whereas the test performance numbers reported in the main paper
evaluate on the complete hard dataset to assess generalization to the target distribution.

C.8 Additional Results: FlowBench Harmonics Analysis

To further validate the applicability of our findings beyond the primary FPO and LDC
domains, we examine the performance on the FlowBench dataset using Harmonics geometries.
Similar to the NURBS results presented in the main paper, we augment the target Harmonics
examples with zero-obstacle FPO (easy) and single-obstacle FPO (medium) data. Figure C.8
presents the cost versus error scaling behavior for models trained on 100 target Harmonics
examples augmented with varying data generation costs from lower-difficulty FPO simulations.
Consistent with our observations on NURBS geometries and our primary difficulty-mixing
experiments, adding lower-difficulty examples substantially reduces error across multiple

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Epoch

2 × 10 2

3 × 10 2

5 × 10 2

10 1

2 × 10 1

3 × 10 1

5 × 10 1

Lo
ss

Loss curve for Difficulty Mixing - Geometry axis
Poseidon B - Medium to Hard

Training Loss
Validation Loss

(a) Medium-to-hard geometry.

0 25 50 75 100 125 150 175 200
Epoch

10 2

2 × 10 2

3 × 10 2

5 × 10 2

10 1

2 × 10 1

3 × 10 1

Lo
ss

Loss curve for Difficulty Mixing - Geometry axis
Poseidon B - Easy to Hard

Training Loss
Validation Loss

(b) Easy-to-hard geometry.

Figure 16: Training convergence for Poseidon-B across difficulty mixing scenarios. Both
subplots show training and validation loss (L1 loss) over epochs for models trained with varying
fractions of easy/medium and hard examples. Training loss is computed over the full training set
(with mixed difficulty ratio), while validation loss is computed over a fixed set of 100 samples (50
from easy/medium, 50 from hard). Convergence is smooth and stable, demonstrating the robustness
of the difficulty mixing strategy.

103 104 105 106

Data Generation Cost (Seconds)
10 2

2 × 10 2

5 × 10 2

10 1

M
ea

n
Re

la
tiv

e
L1

 E
rro

r

Cost vs. Error Flowbench (Harmonics)

FFNO Easy Hard
FFNO Medium Hard
Poseidon-B Easy Hard
Poseidon-B Medium Hard

Figure 17: Performance on FlowBench’s Harmonics FPO simulations when 100 target
examples are augmented with zero-obstacle FPO (easy) or single-obstacle FPO (medium) simula-
tions. Similar to NURBS results, data augmentation with medium-difficulty examples substantially
improves performance for most models on the target Harmonics distribution.

model architectures. This result demonstrates that difficulty mixing is an effective and
generalizable strategy for improving performance on challenging datasets, extending the
applicability of our approach across diverse geometric families.

24

	Introduction
	Pre-generating datasets for studying difficulty transfer
	Difficulty axes
	Pre-generated datasets

	Empirical results
	Training on simpler examples goes a long way
	Cost-effectiveness of pre-generating fewer medium difficulty examples
	Towards foundation datasets

	Conclusion
	Related work
	Dataset Generation and Simulation Setup
	FPO Domain
	LDC Domain
	Flow Development Scheduling.
	Numerical Discretization and Solver Configuration
	Time Discretization
	Spatial Derivatives
	Interpolation and Surface Gradients
	Linear Solvers
	Design Motivation
	Simulation Pipeline (Transient)
	Randomized Obstacle Generation
	Boundary Conditions and Reynolds Number
	Data Format

	Model Architectures
	Convolutional Neural Operator (CNO)
	Factorized Fourier Neural Operator (F-FNO)
	Poseidon-T
	Poseidon-B
	Poseidon-L
	Computational Resources
	Training Convergence Analysis
	Additional Results: FlowBench Harmonics Analysis

