Under review as a conference paper at ICLR 2026

PRE-GENERATING MULTI-DIFFICULTY PDE DATA
FOR FEW-SHOT NEURAL PDE SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

A key aspect of learned partial differential equation (PDE) solvers is that
the main cost often comes from generating training data with classical
solvers rather than learning the model itself. Another is that there
are clear azes of difficulty—e.g., more complex geometries and higher
Reynolds numbers—along which problems become (1) harder for classical
solvers and thus (2) more likely to benefit from neural speedups. Towards
addressing this chicken-and-egg challenge, we study difficulty transfer on 2D
incompressible Navier-Stokes, systematically varying task complexity along
geometry (number and placement of obstacles), physics (Reynolds number),
and their combination. Similar to how it is possible to spend compute to
pre-train foundation models and improve their performance on downstream
tasks, we find that by classically solving (analogously pre-generating) many
low and medium difficulty examples and including them in the training
set, it is possible to learn high-difficulty physics from far fewer samples.
Furthermore, we show that by combining low and high difficulty data, we
can spend 8.9% less compute on pre-generating a dataset to achieve the
same error as using only high difficulty examples. Our results highlight
that how we allocate classical-solver compute across difficulty levels is as
important as how much we allocate overall, and suggest substantial gains
from principled curation of pre-generated PDE data for neural solvers.

1 INTRODUCTION

Deep learning has emerged as a powerful paradigm for solving PDEs, enabling data-driven
surrogate models that can accelerate simulation, inference, and design across diverse scientific
domains (Li et al., 2021a; Lu et al., 2021a; Pathak et al., 2022). This has been driven by
the development of specialized models such neural operators (Li et al., 2021a; Lu et al.,
2021a) and recent transformer-based extensions (Guibas et al., 2022; Brandstetter et al.,
2023), which have demonstrated strong performance on benchmark datasets and gained
traction in the machine learning for science community. More recently, significant effort
has been devoted towards pre-generation of large datasets such as the Well (Ohana et al.,
2024) and pre-training specialized foundation models (FMs) (Herde et al., 2024; Hao et al.,
2024; Shen et al., 2024; McCabe et al., 2023). The goal of these FMs is to serve as general-
purpose foundations for PDE surrogates: delivering fast inference while minimizing—or even
eliminating—the need to retrain on new, potentially harder-to-solve PDEs.

An underlying aspect of this line of work has long been the issue that it seeks to solve PDEs
faster than classical numerical solvers but requires examples generated by the latter to do
so. While such a circuitous setup is justifiable in many of the inverse problem applications
that motivate learned solvers, it is still the case that tasks we eventually want to accelerate—
practical engineering tasks in difficult-to-simulate regimes—will be exactly those for which it
is hard to generate a significant amount. This need to decrease the sample complexity of
neural PDE solvers has spurred significant research drawing up transfer learning (Herde et al.,
2024), active learning (Bruna et al., 2024; Musekamp et al., 2024), and other method-centric
approaches (Rotman et al., 2023).

Under review as a conference paper at ICLR 2026

In this paper we take a data-centric view, studying how the training data composition of
neural PDE solvers affects their performance. We identify that a key feature of PDE data
is that most problem settings have multiple axes of difficulty along which classical solving
becomes harder, thus making neural PDE solvers both (potentially) more useful but also
more difficult to train due to low data availability. Examples of such difficulty axes include
domain geometry features, physics parameters such as the Reynolds number (Re) or Debye
length, additional terms due to forcing or compressibility, and so on. To understand how
easier-to-generate data affects the performance on harder-to-generate target distributions,
we consider incompressible Navier-Stokes simulations with difficulty varying along either or
both of (1) geometry—as defined by the number and complexity of obstacles in the flow—or
(2) physics in terms of the flow’s Re. For simplicity, we use classical simulation costs to divide
these two axes into three difficulty categories—easy, medium, and hard—and investigate how
mixing in easy and medium data affects performance on the hard distribution.

Our first key result is that adding easy-to-medium difficulty data substantially
improves performance on the hard distribution. Naturally, one might expect that medium
difficulty data might be more useful, and our second main result is that there is often a
favorable tradeoff justifying pre-generating medium-difficulty datasets instead of
easy ones when solving cross in two classes of simulation, flow past an object (FPO) and
lid-driven cavity (LDC), and using both supervised-only neural PDE solvers—specifically
the Factorized Fourier Neural Operator (FFNO) (Tran et al., 2021) and the Convolutional
Neural Operator (CNO) (Raonic et al., 2023)—and the current state-of-the-art multi-physics
pretrained Poseidon FM (Herde et al., 2024). These complementary settings allow us
to assess both specialized neural operators and large pretrained models under controlled
difficulty-mixing regimes. In more detail, our contributions are the following:

1. Augmenting hard (e.g., multi-obstacle) training with lower-difficulty data (e.g., zero or
one obstacle) substantially improves accuracy on the hard test set. For example, most of
the performance of Poseidon-B fine-tuned solely on hard FPO data can be recovered when
90% of it is replaced with easy or medium data , which reduces data-generation time 8.9x.

2. Despite the higher generation cost of medium difficulty (e.g., single-obstacle) examples
relative to easy (e.g., no obstacle) ones, for most pre-generation budgets one can obtain
a better error by training on fewer examples of the former rather than more of the latter.
This demonstrates the importance of optimally selecting the pre-generation simulations.

3. Beyond square obstacles, we show that single simple-obstacle data can improve the few-
shot performance of models on flows around more complex shapes from FlowBench (Tali
et al., 2024), even when given only a few examples from it. This demonstrates the
potential of a single dataset serving as a foundation for few-shot training of learned
solvers on multiple harder datasets.

We will release all pre-generated datasets and code to reproduce our results. For related
work, please see Appendix A.

2 PRE-GENERATING DATASETS FOR STUDYING DIFFICULTY TRANSFER

As discussed in the introduction, PDE tasks often feature gradations of difficulty that
significantly increase the cost of simulation, making neural PDE solvers both more expensive
to train (because of the complexity of generating the associated data) and potentially more
useful (because of their ability to replace said expensive solves). This increased numerical
difficulty can stem from shorter timesteps, higher per-timestep cost (e.g., worse conditioning
of linear solves), and meshing challenges. To study how low-to-medium difficulty data can
improve few-shot performance on high difficulty data, we consider the 2D incompressible
Navier-Stokes (INS) equations of fluid flow. Given a domain Q C [0,1]?, they govern the
velocity u(x,t) and pressure p(x,t) of a fluid at point x € Q° and time ¢ > 0 as follows:

dpu+ (u-V)u+ Vp =vAu and V-u=0 (1)
Different simulation settings can be defined using different domains 2, different boundary
conditions u(x,t) and p(x,t) for x € 99, different initial conditions u(x,0) and p(x,0)

for x € Q2°, and different kinematic viscosities v > 0. We focus on two canonical settings:
(1) flow past an object (FPO), in which the boundary conditions impose two no slip walls

Under review as a conference paper at ICLR 2026

-0.800 0.000 0.800

—0.050 —0.025 0.000 0.025 0.050 -0.050 —0.025 0.000 0.025 0.050 —-0.050 —0.025 0.000 0.025 0.050 -0.800 0.000 0.800

Figure 1: Top: vorticity snapshots across increasing geometry Figure 2: FPO
difficulty, with flows past zero, one, and multiple (2-10) square obstacles. ~ with objects from the
Bottom: snapshots across physics difficulties in the form of low FlowBench G1 NURBS
([100, 1000]), medium ([2000,4000]), and high ([8000,10000]) Re bands. data (Tali et al., 2024).

(Dirichlet w = 0) around an inlet and an outlet, and (2) lid-driven cavity flow (LDC), which
has three no slip walls and a horizontal velocity at the top; in both cases the interior of
the domain is at rest to start.

2.1 DIFFICULTY AXES

Starting from these basic setups, we vary simulations along three data-difficulty axes:
geometry, physics, and their combination. As detailed below, changing the geometry involves
modifying the domain 2 and its boundary conditions to add, remove, or change the shape of
obstacles, with a greater number of objects or more complex shapes corresponding to greater
difficulty. On the other hand, changing the physics involves varying the initial velocity u(x, 0)
to change the Reynolds number, a dimensionless quantity that when increased typically
makes the flow more complex and hard-to-simulate. Figures 1 and 2 illustrate how the
vorticity fields of the simulations change with increasing difficulty, while Figure 3 shows the
corresponding increase in simulation cost.

We next describe at a high level the settings used to generate the axes’ data; further details,
including about our OpenFOAM (Jasak et al., 2007) setup, can be found in Appendix B.

1. Geometry: A straightforward way to change the problem geometry to increase problem
difficulty is by adding or removing obstacles to the flow. In this difficulty axis, we add
between zero and ten square obstacles at random, non-overlapping positions. The resulting
simulations are categorized as easy if they have no obstacles, medium if they have one
obstacle, and hard if they have two or more. The way these changes affect the simulation
is illustrated in the top row of Figure 1, and their effect on the FPO generation cost is
plotted in Figure 3; in short, more obstacles yield more complex, harder-to-simulate flows.
Physics: Another way of increasing problem difficulty is to increase the Reynolds number,
which is well-known to describe the complexity of a flow. It is defined using a characteristic
velocity U and length-scale L to be Re = UL/v, so we increase the initial velocity u(x, 0)
at the inlet (FPO) or the lid (LDC) to make it larger. In particular, we categorize
simulations into easy, medium, and hard if the corresponding Re is between [100, 1000],
[2000, 4000], and [8000, 10000], respectively; within each band, the Re is sampled from
a truncated Gaussian distribution. Figure 1 (bottom) demonstrates how a higher Re
induces richer fluid structure, yielding the higher simulation cost (cf. Figure 3).

N

Under review as a conference paper at ICLR 2026

Simulation Times by Dataset Complexity

— 1750 1653.3
0 1550.9 1599.2
< 1500
o
o
@ 1250
@ 1000 942.8
£
=1 731.1
= 750 609.5
K]
& 300 350.4
S 263.1
£ 250 170.7
5o, mmm [

0

No No No One One One Multiple Multiple Multiple

obstacle obstacle obstacle obstacle obstacle obstacle obstacles obstacles obstacles
Low Re Medium Re High Re Low Re Medium Re High Re Low Re Medium Re High Re

Figure 3: Computational cost of simulating flow past an object (FPO) at different difficulty
settings, demonstrating increasing runtime along both the domain geometry axis (increasing number
of obstacles) and the physics axis (increasing Reynolds number). The costs reported are averages
across thirty simulations.

As mentioned before, we combine the geometry and physics axes to obtain our third difficulty
axis; in the latter case we use low Re flows with no objects as the easy examples and medium
Re flows with one object as the medium examples. In all cases, we treat “easy/medium /hard”
as a relative, cost-based notion of difficulty: configurations that are cheaper to solve (e.g.,
low-Re, simple geometries) form the easy tier, while those that require substantially more
wall-clock time (e.g., high-Re, multi-obstacle flows) form the hard tier (see Figure 3).

Lastly, we also enhance our investigation of geometry difficulty by changing the object
complexity, specifically by incorporating simulations from FlowBench (Tali et al., 2024).
Specifically, we use their G1 dataset of FPO simulations of flows around Non-Uniform Rational
B-Splines (NURBS), two examples of which are depicted in Figure 2. Because FlowBench is ex-
ternal, we do not measure the classical solve difficulty and treat no-obstacle and single (square)
obstacle flows from the geometry axis as the easy and medium difficulty settings, respectively.

2.2 PRE-GENERATED DATASETS

For each of the above settings and difficulty axes (excluding FlowBench) we generate
n = 6,400 simulations with different randomly sampled initial conditions. Specifically,
following Herde et al. (2024) we sample Re between [100,1000] (or higher if we are varying
along the physics axis, as described above) and use that to set the inlet (FPO) or lid (LDC)
velocity. We store the solution y! = (u;(x,t), p;(x,t)) of each simulation i = 1,...,n at
T = 20 timesteps t = 1,...,T on a regular grid of points x €). Starting with this data, we
hold out a subset of N = 100 trajectories and set the goal of a learned PDE solver as using
the remaining data to learn a model that, given the initial conditions y{ = (u;(x,0), p;(x,0))
of a held-out trajectory i, predicts a trajectory ¢ where t € [1,T] and §; = ({;(x, 1), p;(x,t)).
Following Raonic et al. (2023); Herde et al. (2024), we measure its success at doing so using
the mean relative L1 error (nMAE):

N T 4 ,
nMAE = > Y |ly/ - 9/

i=1 t=1

o3 M} ®

i=1 t=1

3 EMPIRICAL RESULTS

We now turn to our empirical investigation, in which we evaluate several supervised and
foundation models while varying the difficulty composition of their training and fine-tuning
data along the difficulty axes described in Section 2.1. This results in three key takeaways:
mixing in lower difficulty data can be sufficient for strong performance (Section 3.1), it can be
beneficial to mix in a few medium difficulty examples rather than many easy ones (Section 3.2),
and there is potential for “foundation datasets” that have strong few-shot performance on
diverse data, as suggested via few-shot evaluations on FlowBench (Section 3.3). Crucially,
throughout we are interested in the model’s performance a target distribution consisting only

Under review as a conference paper at ICLR 2026

Difficulty Mixing — Physics axis
(FPO No Obstacle)

Difficulty Mixing — Physics axis
(LDC No Obstacle)

? i

2 x10-1] | -~} FFNO — Easy—Hard [-~} FFNO — Easy—Hard
5 o] —}— FFNO — Medium—Hard | 52x107|| —+— FFNO — Medium-Hard
= ~+- CNO — Easy-Hard —| ~}- CNO — Easy-Hard
3 x10-2] | CNO — Medium-Hard — CNO — Medium-Hard
[[
> 107 <
© ©
o o
& 2x1073 x
c c
© 1073 ©
[(]
= =

2x107

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

Difficulty Mixing — Physics axis
(FPO Multiple Obstacles)

0.25

. 0.50
Fraction of Hard Examples in the Training Data

0.75 1.00

Difficulty Mixing — Physics axis
(FPO Multiple Obstacles)

i: ig:i 5’\ Poseidon-T — Easy—Hard
5x1071 \ . ;
é * @\1 I § 3x101 § Poseidon-T — Medium-Hard
W e S\ { e (TR R Poseidon-B — Easy—Hard
X . . .
= - CNO — Easy—Hard - \ —— Poseidon-B — Medium-Hard
| ——— i I [—
Lax10 CNO — Medium—Hard PR Poseidon-L — Easy—Hard
© -} FFNO — Easy-Hard = | Poseidon-L — Medium—-Hard
Q | o |
o . —+— FFNO — Medium-Hard < 5 \
c e c 5x10
3 N © 4 x10°2
= § = 3x102
3x10™
2x107 T

0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data

0.00 0.25 0.50 1.00
Fraction of Hard Examples in the Training Data

Figure 4: Performance on hard (high Re) examples while varying the data composition.
We fix the total number of training examples to 800 and show the error of various models as
the fraction of the data consisting of high Re (€ [8000,10000]) examples increases. Here the
easy examples and medium examples are low Re (€ [100,1000]) and medium Re (€ [2000,4000]),
respectively. The two row evaluates supervised models on no-obstacle FPO (left) and LDC (right),
the bottom left evaluates supervised models on flows past multiple objects, and the right evaluates
multiple Poseidon FMs on flows past multiple objects. Across all results we observe that a small
fraction of lower difficulty examples is able to recover much of the performance of neural PDE
solvers trained on solely hard (target) examples.

of the relevant axis’s hard examples, which we estimate by evaluating on a held out set. For
example, if we train on mixture of no-obstacle, single-obstacle, and multi-obstacle training
examples, we report performance on a test set drawn from only the latter’s distribution.

The specific supervised models we consider are the Convolutional Neural Opera-
tor (CNO) (Raonic et al., 2023) and the Factorized Fourier Neural Operator (FFNO) (Tran
et al., 2021), which have demonstrated strong performance on several benchmarks (Ohana
et al., 2024; Tali et al., 2024; Dauner et al., 2024; Takamoto et al., 2022; Koehler et al., 2024).
These two models are trained from scratch on the different training mixtures we consider.
To see whether our findings continue to hold in the higher performance regimes enabled by
large-scale multi-physics pretraining, we also consider the Poseidon family of FMs trained on
diverse PDE families (Herde et al., 2024), evaluating three variants: Tiny (21M parameters),
Base (158M), and Large (629M). Unlike CNO and FFNO, in this case we train or fine-tune
the models on our training mixure starting from a model checkpoint pretrained on diverse
PDE families. Training details of all models are reported in the Appendix.

3.1 TRAINING ON SIMPLER EXAMPLES GOES A LONG WAY

We start with difficulty-mixing evaluations, in which we fix the total number of training
points to n = 800 and vary the proportion allocated to hard examples from the target
distribution. Our main finding is that adding a small set of hard examples to otherwise lower

Under review as a conference paper at ICLR 2026

Difficulty Mixing — Geometry axis Difficulty Mixing — Geometry axis
-~~~ CNO — Easy-Hard ’g Poseidon-T — Easy—Hard
5 CNO — Medium—-Hard 5 ix }gj ‘\ Poseidon-T — Medium-Hard
= = 4x A .
= 10%1 L.~ . -~} FFNO — Easy—-Hard Saxiol ¥ Poseidon-B — Easy—Hard
— %, v..__ —— FFNO — Medium-Hard =10 —— Poseidon-B — Medium-Hard
v \ v ’f —————— Poseidon-L — Easy—Hard
B 2 0] | Poseidon-L — Medium-Hard
9 -1 9 \‘\
o 5x10 4 .\
S S5x1072 \
D 4x 107 D 4x 1072 \
= 2 3%x102 j
3x101 21072 , —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data Fraction of Hard Examples in the Training Data

Figure 5: Performance on hard (multi-obstacle) FPO while varying data composition.
The total number of training examples is fixed to 800 and we evaluate using varying fractions of
zero obstacle (easy) and single obstacle (medium) simulations in the training data. As with varying
Re, for both supervised models (left) and Poseidon FMs (right), a small number of lower difficulty
examples suffices to recover most of the performance of models trained on entirely hard examples.

Difficulty Mixing — Combined axis , Difficulty Mixing — Combined axis
1007,
10° i -4~ CNO — Easy-Hard ' Poseidon-T — Easy—-Hard
5 ! CNO — Medium—Hard 55x107 | Poseidon-T — Medium—Hard
5 1 -~} FFNO — Easy-Hard 5)‘%' —————— Poseidon-B — Easy->Hard
~ l i“; —}+— FFNO — Medium~-Hard =100 ‘.{ —— Poseidon-B — Medium—Hard
g \ g | A Poseidon-L — Easy—Hard
Bsx10t 2 107 \ Poseidon-L — Medium-Hard
o] K9] \
o o4 1
c c5x1072 \
© © \
(] (] |
= =
3x10°1 2x107? "‘(::"—3::::: -------- . S
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Fraction of Hard Examples in the Training Data Fraction of Hard Examples in the Training Data

Figure 6: Performance on hard (multi-obstacle and high Re) FPO while varying data
composition along both physics and geometry. The total number of training examples is fixed
to 800 and we evaluate using varying fractions of zero obstacle low Re flow (easy) and single obstacle
medium Re flow (medium) simulations in the training data. As with varying Re and geometry sepa-
rately, for both supervised models (left) and Poseidon FMs (right), a small number of lower difficulty
examples suffices to recover most of the performance of models trained on entirely hard examples.

difficulty (easy and medium) training data is sufficient to recover most of the performance of
training on a dataset where all 800 examples are hard. Below we discuss how this manifests
along specific difficulty axes. Note that the total number n = 800 of training points was
determined by training only on hard data using several candidate budgets n and finding that
the test error plateaued after around 800 examples; we standardize this budget throughout this
subsection, although as discussed in Figure 11 our main finding holds for other budgets as well.

1. Physics axis (Fig. 4): While models trained on lower difficulty examples do poorly on
the hard (high Re) test examples, replacing just 10% of them by target distributions
examples recovers most of the benefit of training fully on the latter. Notably, using
the numbers in Figure 3 we see that the former involves 8.9x less compute time. At
10% hard examples, Poseidon-B typically reduces error by about 96% at 10% hard
data, while CNO and FFNO show ~ 98% reductions in the no-obstacle and ~ 6% in the
multi-obstacle setting. Increasing the proportion of hard examples provides incremental
gains until 25% and plateaus after.

2. Geometry axis (Fig. 5): The same pattern when composing multi-object FPO with
flows past zero or one objects: the main improvement for CNO, FFNO, and Poseidon
is obtained when only 10% of the data is from the target distribution. In particular, at

Under review as a conference paper at ICLR 2026

10t Cost vs. Error — Physics axis Cost vs. Error — Physics axis
- ~t- CNO —Easy-Hard L 3x107? --=-- Poseidon-B — Easy-Hard
@] 1 CNO — Medium-Hard o —=— Poseidon-B — Medium—-Hard
= 6x10 & :; Egl\?o:ré::/::::j = —= Poseidon-B — Hard—Hard
w \\i/k\ —4— FFNO — Medium—-Hard w
sx107h j_:_:\& N FFNO — Hard-Hard =)
q>_, e g 2% 107
S 4x107! 5 | T e TTme e,
© I»\«%"*“‘"* ------- b R | ® ===t
3] *”‘\4—\—\}/_{ 3]
o o
C 3x107! C
© @©
() [}
= =
-2
5x10° 10? 2 x10° 5x10° 10 5x10° 10? 2 x10° 5x 10°
Data Generation Cost (Seconds) Data Generation Cost (Seconds)

Figure 7: Comparing data generation cost vs. error while augmenting hard (multi-
obstacle high Re) FPO examples with easy (multi-obstacle low Re), medium (multi-obstacle
medium Re), and hard (multi-obstacle high Re) examples. We fix the number of hard examples
to 200 and plot the compute required to generate them and between 1 and 3200 lower and equal
difficulty examples. For both supervised models (left) forand Poseidon-B (right), generating medium
difficulty data has a generally more favorable tradeoff, achieving the same or lower error at the same
budget. At sufficiently large compute budgets, however, training exclusively on hard data (hard to
hard) yields the lowest error.

that percentage Poseidon-B improves by roughly 96-97% in terms of error relative to
training on all-easy examples. Additional hard data yields only modest improvement.

3. Combined axis (Fig. 6): We observe similar behavior when varying along the combined
domain geometry and problem physics axis, with most of the benefit of training on the
target distribution obtained with 10% examples and improving only modestly afterwards.

In summary, across all three difficulty axes and all model families, we consistently find that a
small hard fraction (often around 10%) is enough to obtain most of the performance of hard-
only training; results change only marginally beyond =~25% data from the target distribution.

3.2 COST-EFFECTIVENESS OF PRE-GENERATING FEWER MEDIUM DIFFICULTY EXAMPLES

Having demonstrated that low-cost simulation data can be added to just a few (harder-to-
obtain) examples from the target distribution to recover much of the performance trained
solely on the hard examples, we now examine the cost vs. error tradeoffs of using data at
different points on the difficulty axis. In particular, we examine whether there are regimes
in which it is favorable to generate and train on medium difficulty (e.g. single-obstacle or
intermediate Re) examples rather than easy examples. To do so we fix the number of hard
examples to 200 and vary the number of lower difficulty examples added to the training mix
between 1 and 3200. For completeness, we also evaluate a hard-on-hard variant that augments
the Npara=200 seed with additional target-distribution (high-Re, multi-obstacle) samples.
This setting delivers the lowest error per added sample but at the highest pre-generation cost,
so we use it primarily as an upper-bound reference when comparing cost-normalized tradeoffs
to medium- and easy-on-hard mixes. Since medium difficulty examples are more costly to
generate than easy ones, we study how the error varies as a function of the pre-generation
cost. Our main finding is that there indeed are many pre-generation budgets at which the
error obtained by training on medium difficulty examples is lower than that obtained by
training on (more) easy examples. Below we discuss the extent to which this holds along
specific difficulty axes.

1. Physics axis (Fig. 7): While the increase in data generation cost is small when going
from low to medium Re, for both FFNO and Poseidon the error of the model trained on
the latter is lower at all data generation costs evaluated, demonstrating the value of using
intermediate rather than easy examples when targeting a hard distribution.

2. Geometry axis (Fig. 8): Unlike changing physics, changing the domain geometry
by adding obstacles significantly increases computational cost. Nevertheless, for the
supervised models (CNO and FFNO) it is usually favorable to train on FPO simulations

Under review as a conference paper at ICLR 2026

Cost vs. Error — Geometry axis Cost vs. Error — Geometry axis

- 3x1072
_ T §--mmmmmn £3 o --=-- Poseidon-B — Easy—Hard
5 6x107 1 i o —=— Poseidon-B — Medium—-Hard
t \%‘{* ; t —=- Poseidon-B — Hard—Hard
W10 YOS -
— 2X10 " Bl —
0 S e _|
-2
q>) 1 --f-- CNO — Easy-Hard g 2x10
5 4x10 CNO — Medium-Hard | 5
r_u —4- CNO — Hard-Hard E
() [}
o --}-~ FFNO — Easy-Hard o
C 3x107! —f— FFNO — Medium-Hard| €
© FFNO — Hard-Hard ©
() [}
= =
5% 10° 106 2 x10° 5 x 105 5x10° 106 2 x 105 5% 105
Data Generation Cost (Seconds) Data Generation Cost (Seconds)

Figure 8: Comparing data generation cost vs. error while augmenting hard (multi-
obstacle) FPO with easy (no obstacle), medium (single obstacle), and hard (multi-obstacle)
examples. We fix the number of hard examples to 200 and plot the compute required to generate
them and between 1 and 3200 lower and equal difficulty examples. For supervised models, generating
medium difficulty data has a generally more favorable tradeoff, achieving the same or lower error at
the same budget; for Poseidon-B, generating medium data is more cost-effective given 5e5 seconds
or more time for pre-generation. At sufficiently large compute budgets, however, training exclusively
on hard data (hard to hard) yields the lowest error.

with one (medium) rather than no (easy) obstacles at all computational budgets. For the
better-performing Poseidon FM, training on medium difficulty examples is cost-effective
at data-generation budget of 5eb seconds and higher.

3. Combined axis (Fig. 9): when the hard examples involve a high Re flow past multiple
objects, we find that augmenting with medium difficulty examples performs better than or
the same as using (more) easy examples at the same generation budget. However, we also
find that for both supervised models and the Poseidon FM that adding increasingly more
low difficulty examples starts to increase the error on the target distribution, demonstrating
that care needs to be taken when doing this data composition.

In summary, across all difficulty axes we find that it is cost-effective or at least not significantly
harmful to train on medium difficulty rather than easy examples, despite the former’s greater
generation cost. This result demonstrates the importance of considering multiple scales of
difficulty when pre-generating a data mixture for a specific high difficulty target distribution.

3.3 TOWARDS FOUNDATION DATASETS

In our last evaluation, we study the implications of multi-difficulty training for large-scale
pre-generation of datasets for solving diverse PDE tasks. As an example of the latter, we con-
sider examples from the FlowBench dataset (Tali et al., 2024) of flows past irregular NURBS
objects (cf. Section 2.1). Using flows past zero objects and flows past one square object as the
easy and medium distributions, respectively, we show in Figure 10 that adding these simpler ex-
amples can reduce the error. This is especially pronounced in the case of FFNO when its train-
ing data is augmented with single object FPO examples. This suggests the potential utility of
pre-generating large medium difficulty datasets and reusing them on multiple other datasets,
thus amortizing the pre-generation costs. This pipeline is analogous to that of pre-training a
foundation model, the cost of which is amortized as it is applied to multiple downstream tasks.

This idea of a pre-generated “foundation dataset” can also be used to describe much larger-
scale efforts like The Well (Ohana et al., 2024). However, what our study demonstrates
is that, just like the length and quality of web data used to train large language models
matters, so does the difficulty of data pre-generated for training PDEs. In particular, as
discussed in the last section, medium (across any axis) data can be much more effective as a
mixing dataset than easy (across any axis) data for multi-obstacle performance. The current
section further shows this for FlowBench NURBS data. Thus, when pre-generating such large
datasets, it will be important to incorporate settings that more closely approach the types of
more difficult problems that will be of actual interest to future users of neural PDE solvers.

Under review as a conference paper at ICLR 2026

Cost vs. Error — Combined axis Cost vs. Error — Combined axis

A --=-- Poseidon-B — Easy—-Hard
- N [
e i \y\ /}\ e * e 3% 102 7+ Posefdon-B — Medium-Hard
- ‘{‘/ {/!/\ - = Poseidon-B — Hard-Hard
W 5,102 % \%\ --}-- CNO — Easy-Hard L
— RN CNO — Medium-Hard | 1
— “~__ -~} CNO — Hard-Hard —
(W) [() 5
2 ————g 2 2x10
=)
B 4x107 £
] ()
o 4
c --}- FFNO — Easy—Hard c
© —}— FFNO — Medium-Hard (]
] FFNO — Hard—Hard (]
= =

1072

5x 10° 10? 2 x10° 5x 10°
Data Generation Cost (Seconds)

5x10° 10‘": 2 x10° 5x10°
Data Generation Cost (Seconds)

Figure 9: Comparing data generation cost vs. error while augmenting hard (multi-
obstacle high Re) FPO examples with easy (no obstacle low Re), medium (single obstacle
medium Re), and hard (multi-obstacle high Re) examples. We fix the number of hard examples
to 200 and plot the compute required to generate them and between 1 and 3200 lower and equal
difficulty examples. For both supervised models and Poseidon-B, generating medium difficulty data
has a generally more favorable tradeoff, achieving the same or lower error at the same budget as
easy data. However, in all cases, too many lower difficulty examples can reduce performance. At
sufficiently large compute budgets, training exclusively on hard data (hard to hard) yields the lowest
erTor.

Difficulty Mixing — Geometry axis
(Poseidon-B)

Cost vs. Error — Flowbench (NURBS)

5 2x1071 : . 1 —— 400 total training samples
E . bt e 5 5x10 800 total training samples
Y F\“’/\;\N utJ 1200 total training samples
o 4~ CNO — Easy-Hard J2xa0
9] y—Hari
2 CNO — Medium-Hard :
% 3x10 -}~ FFNO — Easy—Hard > 10
o —— FFNO — Medium-Hard "c‘ s x10-2 \
% ffffff Poseidon-B — Easy—Hard 3
@ 2x1072 —— Poseidon-B — Medium—Hard =
= | S . 2x 102 T~
10° 10* 10° 10° 0.00 0.75 1.00

¢ 025 050
Data Generation Cost (Seconds) Fraction of Hard Examples in the Training Data
Figure 11: Performance of Poseidon-B as
the fraction of target distribution data in-
creases. Each curve fixes the training set size

Figure 10: Performance on FlowBench’s
NURBS FPO simulations when 200 tar-
get examples are augmented with 1-3200 zero

obstacle FPO (easy) or single square-obstacle
FPO (medium) simulations. In multiple cases
such, e.g. adding medium examples when train-
ing FFNO, doing this data augmentation sub-
stantially improves performance on the target
FlowBench distribution.

and varies the number of medium (one obstacle)
vs. hard (multi-obstacle) examples in it. In all
three cases, most of the improvement over train-
ing on just single-obstacle examples is obtained
by replacing just 10% of the data with target
distribution examples.

4 CONCLUSION

This paper presents a data-centric study on the role of training data composition for neural
PDE solvers. Our study considers three difficulty axes comprising the domain geometry in
the form of the number and shape of flow obstacles, the problem physics in the form of the
Reynolds number, and the combination of the two. Across all settings we find that examples
from lower-difficulty settings can significantly improve the performance on the associated
hard test distribution. Furthermore, this result holds for both supervised models like CNO
and FFNO as well as the Poseidon family of state-of-the-art multi-physics-pretrained FMs.
This suggests that our observed performance gains are not only function of model class or

Under review as a conference paper at ICLR 2026

model capacity but also a function of the quality and difficulty level of the training data
distribution, as well as how it relates to the target distribution. In particular, we show
that incorporating intermediate-difficulty examples has significant benefits. Therefore, for
a fixed computational budget, it may be more cost-effective to generate smaller number
of high-quality moderately complex—i.e., intermediate—data, rather than relying on large
volumes of simpler data. Hence, our work suggests that future data-generation workflows for
neural PDE solvers should take into account tradeoffs between the difficulty of generating
low-to-medium-to-high complexity data and the potential benefits of harder-to-simulate
data for learning that target distribution.

REPRODUCIBILITY STATEMENT

We took several steps to make our results easy to reproduce. Problem setups, difficulty axes,
dataset sizes/splits, and the evaluation metric are specified in the main text (Secs. 2-3), in-
cluding the definition of nMAE in Eq. (2) and the exact target-and-mix protocols summarized
in Figures 4-9. The full simulation pipeline for generating FPO and LDC datasets—covering
domain construction, boundary conditions, Reynolds-number sampling, time scheduling,
discretization schemes, solver settings, post-processing to a 128 x 128 grid, and the saved
data format—is documented in the Supplementary Material, App. B (FPO in Sec. B.1,
LDC in Sec. B.2, scheduling in Sec. B.3, numerics in Sec. B.4, and data format in Sec. B.4.9;
Table 1; Figs. 12, 13, 14). Model architectures, training/fine-tuning procedures, hyperpa-
rameters, and the compute environment are detailed in Supplementary, App. C (CNO
in Sec. C.1, F-FNO in Sec. C.2, Poseidon variants in Secs. C.3—C.5), with training-time
summaries in App. C.6 (Table 2). External corpora and out-of-distribution geometry
experiments using FlowBench, and how they are combined with our pre-generated data, is
described in Section. 3.3. We will release all pre-generated datasets and the code used to
produce our figures and results to enable exact replication.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length
generalization in large language models. Advances in Neural Information Processing
Systems, 35:38546—-38556, 2022.

Johannes Brandstetter, Max Welling, and Daniel E. Worrall. Message passing neural pde
solvers. In International Conference on Learning Representations (ICLR), 2022.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde
solvers, 2023. URL https://arxiv.org/abs/2202.03376.

Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin schemes
with active learning for high-dimensional evolution equations. Journal of Computational

Physics, 496:112588, 2024.

Steven L. Brunton and J. Nathan Kutz. Machine learning for fluid mechanics. Annual
Review of Fluid Mechanics, 52:477-508, 2020.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and
Chulhee Yun. Position coupling: Improving length generalization of arithmetic transformers
using task structure. arXiv preprint arXiv:2405.20671, 2024.

Maximilian Dauner et al. Residual factorized fourier neural operator for simulation of three-
dimensional turbulent flows. In OpenReview preprint (ICLR submission) id: yGdoTL9¢18,
2024. URL https://openreview.net/forum?id=yGdoTL9g18.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan

Catanzaro. Adaptive fourier neural operators: Efficient token mixers for transformers,
2022. URL https://arxiv.org/abs/2111.13587.

10

https://arxiv.org/abs/2202.03376
https://openreview.net/forum?id=yGdoTL9g18
https://arxiv.org/abs/2111.13587

Under review as a conference paper at ICLR 2026

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, An-
ima Anandkumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator
transformer for large-scale pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness
of easy training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Képpeli, Roberto Molinaro,
Emmanuel de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for
pdes. Advances in Neural Information Processing Systems, 37:72525-72624, 2024.

Jordan Hoffmann, Yohai Bar-Sinai, Lisa M. Lee, Jovana Andrejevic, Shruti Mishra, Shmuel M.
Rubinstein, and Chris H. Rycroft. Machine learning in a data-limited regime: Augmenting
experiments with synthetic data uncovers order in crumpled sheets. Science Advances, 5
(4):eaau6792, 2019. doi: 10.1126/sciadv.aau6792. URL https://wuw.science.org/doi/
abs/10.1126/sciadv.aau6792.

Hrvoje Jasak. Error analysis and estimation for the finite volume method with applications
to fluid flows. PhD thesis, Imperial College London, University of London, 1996.

Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. Openfoam: A c++ library for
complex physics simulations. In International workshop on coupled methods in numerical
dynamics, volume 1000, pages 1-20. Dubrovnik, Croatia), 2007.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and
Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422-440,
2021.

Frederic Koehler et al. A benchmark for autoregressive neural emulators of pdes. In NeurIPS
2024 Datasets and Benchmarks Track, 2024. URL https://arxiv.org/abs/2411.00180.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between
function spaces. Journal of Machine Learning Research, 24:1-79, 2023.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and
Michael W. Mahoney. Characterizing possible failure modes in physics-informed neu-
ral networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
df438e5206£31600e6ae4af72f2725f1-Abstract.html.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations, 2021a. URL https://arxiv.org/abs/2010.08895.

Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations (ICLR),
2021b.

Zongyi Li, Kamyar Gupta, Nikola B. Kovachki, Kamyar Azizzadenesheli, and Anima Anand-
kumar. Fourier neural operator with learned deformations for pdes on general geometries.
In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqgiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via deeponet based on the universal approximation theorem
of operators. Nature Machine Intelligence, 3(3):218-229, March 2021a. ISSN 2522-5839. doi:
10.1038/s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via deeponet based on the universal approximation theorem
of operators. Nature Machine Intelligence, 3(3):218-229, 2021b.

11

https://www.science.org/doi/abs/10.1126/sciadv.aau6792
https://www.science.org/doi/abs/10.1126/sciadv.aau6792
https://arxiv.org/abs/2411.00180
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://arxiv.org/abs/2010.08895
http://dx.doi.org/10.1038/s42256-021-00302-5

Under review as a conference paper at ICLR 2026

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiw:2310.0299/, 2023.

Daniel Musekamp, Marimuthu Kalimuthu, David Holzmidiller, Makoto Takamoto, and Mathias
Niepert. Active learning for neural pde solvers. arXiv preprint arXiv:2408.01536, 2024.

Ajay Nadig, Akshaya Thoutam, Madeline Hughes, Anay Gupta, Andrew W Navia, Nicolo
Fusi, Srivatsan Raghavan, Peter S Winter, Ava P Amini, and Lorin Crawford. Consequences
of training data composition for deep learning models in single-cell biology. bioRxiv, pages
2025-02, 2025.

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez,
Marsha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well:
a large-scale collection of diverse physics simulations for machine learning. Advances in
Neural Information Processing Systems, 37:44989-45037, 2024.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-
hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli,
Pedram Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A
global data-driven high-resolution weather model using adaptive fourier neural operators,
2022. URL https://arxiv.org/abs/2202.11214.

Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686—707, 2019.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators
for robust and accurate learning of pdes. Advances in Neural Information Processing
Systems, 36:77187-77200, 2023.

Michael Rotman, Amit Dekel, Ran Ilan Ber, Lior Wolf, and Yaron Oz. Semi-supervised
learning of partial differential operators and dynamical flows. In Proceedings of the
Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 2023.

Ricardo Buitrago Ruiz, Tanya Marwah, Albert Gu, and Andrej Risteski. On the benefits of
memory for modeling time-dependent pdes. arXiv preprint arXiv:2409.023183, 2024.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. Ups: Towards foundation models for
pde solving via cross-modal adaptation. arXiv e-prints, pages arXiv-2403, 2024.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and
Chuang Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision.
arXiv preprint arXiv:2408.09472, 2024.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, and Others. Pdebench: An extensive
benchmark for scientific machine learning. NeurIPS Datasets and Benchmarks, 2022.

Ronak Tali, Ali Rabeh, Cheng-Hau Yang, Mehdi Shadkhah, Samundra Karki, Abhisek
Upadhyaya, Suriya Dhakshinamoorthy, Marjan Saadati, Soumik Sarkar, Adarsh Krish-
namurthy, Chinmay Hegde, Aditya Balu, and Baskar Ganapathysubramanian. Flow-
bench: A large scale benchmark for flow simulation over complex geometries, 2024. URL
https://arxiv.org/abs/2409.18032.

Anh Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiw preprint arXiw:2111.13802, 2021. URL https://arxiv.org/abs/2111.
13802.

Henry G Weller, Gavin Tabor, Hrvoje Jasak, and Christer Fureby. A tensorial approach
to computational continuum mechanics using object-oriented techniques. Computers in
physics, 12(6):620-631, 1998.

12

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2409.18032
https://arxiv.org/abs/2111.13802
https://arxiv.org/abs/2111.13802

Under review as a conference paper at ICLR 2026

A RELATED WORK

Two leading paradigms for learning PDE solutions are physics-informed neural net-
works (PINNs) and neural operators. PINNs embed PDE residuals and boundary conditions
into the loss, enabling mesh-free training, strong use of physics priors, and efficacy in
small-data forward/inverse settings (Raissi et al., 2019; Karniadakis et al., 2021). At the
same time, training can involve challenging multi-term loss balancing and optimization stiff-
ness (Krishnapriyan et al., 2021), with slower convergence on multi-scale or chaotic regimes
(e.g., high Re turbulence) and sensitivity to complex geometries or boundary conditions
(Karniadakis et al., 2021). Neural operators (e.g., DeepONet, FNO) learn mappings between
function spaces, providing amortized inference, cross-discretization/geometry generalization,
and scalability via pretraining on synthetic data (Lu et al., 2021b; Li et al., 2021b; Kovachki
et al., 2023). Their performance, however, typically depends on substantial supervised
datasets; robustness may be reduced under distribution shift across physics/geometry,
and accuracy near shocks/discontinuities or conservation /stability guarantees may require
additional structure and memory (Kovachki et al., 2023; Brandstetter et al., 2022; Ruiz
et al., 2024). Geometry-aware operator variants (e.g., GeoFNO) enhance robustness on
irregular domains yet still rely on curated simulation corpora (Li et al., 2023). Recent
surveys synthesize these properties across PDE tasks, including turbulent flows (Karniadakis
et al., 2021; Brunton and Kutz, 2020).

Unlike these efforts, we focus on the data itself, specifically on how generating better quality
data may improve performance. There exists some work in the sciences on augmenting
scarce experimental datasets with abundant simulated data from simplified systems, e.g.
Hoffmann et al. (2019) demonstrated that combining simulated flat-folding patterns with
limited experimental data enabled machine learning models to recover structure in crumpled
sheets. Similar studies are being conducted in biology, where recent work investigates the
effects of training data composition on the performance of foundation models for single-cell
genomics (Nadig et al., 2025). We view our contribution as a more systematic study of how
to generate and make use of data of different qualities.

Outside of PDEs, data difficulty has also been explored in other areas such as language
modeling. For example, a major difficulty axis in natural language processing is context
length, with several explorations of how to train models capable of solving long-context
tasks without resorting to purely long-context training (Anil et al., 2022; Cho et al., 2024).
Separately, our work is also related to work on easy-to-hard generalization in arithmetic
reasoning tasks (Sun et al., 2024; Hase et al., 2024) Here, the past work has found that
appropriately training the models on simpler tasks—for example simpler math problems—
leads to better performance on harder tasks. Here a task’s hardness is determined according
to some human hardness measures, e.g. grade-level for STEM problems.

B DATASET GENERATION AND SIMULATION SETUP

We generate two major datasets—Flow Past Object (FPO) and Lid-Driven Cavity (LDC)—to
investigate the impact of domain complexity on the performance and generalization of neural
PDE solvers. Each dataset contains three levels of difficulty: easy (no obstacles), medium (a
single obstacle), and hard (2-10 randomly placed obstacles). All simulations are run using
OpenF0AM, a finite-volume CFD solver.

B.1 FPO DoMAIN

In the FPO setting, we simulate flow around one or more square obstacles within a 2 x 2
m rectangular domain using the icoFoam solver. The left boundary is treated as a velocity
inlet, where we impose a parabolic inflow profile representative of fully developed laminar
channel flow. The right boundary is set as a pressure outlet with fixed value, and the top
and bottom boundaries are treated as no-slip walls.

13

Under review as a conference paper at ICLR 2026

Mesh Grid Around 1 Obstacle

Structured Mesh Grid - Multiple Obstacles
2.00

1.75 4

1.50 A

1.254

y-coordinate (m)
=
(=)
o

0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
x-coordinate (m)

Figure 12: Structured mesh used in our multi obstacle setup. Left: full 2 X 2 m mesh domain.
Right: zoom-in around one obstacle.

To define the parabolic inlet condition, we prescribe the horizontal velocity component u(y)
across the height H = 2 m of the domain using the analytical profile for plane Poiseuille flow:

y(H —y)
H2 7
where Upax is the peak velocity occurring at the vertical midline (y = H/2). This ensures

zero velocity at the top and bottom walls (y = 0, H) and a smooth parabolic profile across
the inlet face.

u(y) = 4Unax - y e [Oa H],

Reynolds numbers are sampled from a truncated normal distribution A/(5000,2000%) with
support in [100, 10000], and the corresponding Upax is scaled to satisfy:

Uavg - L

2
Re= -2 = with Upg = ~Umax, L=2m, v=15x10"°m?/s,
14

3
where U,y is the mean velocity of the parabolic profile. Solving for Up,ax ensures consistency
between the desired Reynolds number and the imposed inlet condition.

Obstacle configurations are generated by randomly placing between 2 and 10 square holes in
the domain, using a rejection sampling algorithm to prevent overlap or boundary collision.
For each simulation:

e The geometry is procedurally constructed by modifying blockMeshDict, and mesh
generation is handled via OpenFOAM’s native utilities.

e The simulation duration is dynamically adjusted based on the sampled Reynolds
number using a characteristic time scale, and outputs are recorded at 20 evenly
spaced intervals.

e Velocity and pressure fields are post-processed using OpenFOAM utilities and
interpolated onto a 128 x 128 uniform grid via barycentric interpolation.

B.2 LDC DoOMAIN

In the LDC setting, fluid flows in a closed 2 x 2 m cavity with a moving top wall. We again

use the icoFoam solver with zero velocity on side and bottom walls and a parabolic profile

imposed on the top wall. The top-wall velocity is scaled to match a target Reynolds number:
Re-v

Umax = 5 with v = 1.5 x 107° m?/s, L = 2 m.

14

Under review as a conference paper at ICLR 2026

-0.08 0.00 0.08 -0.06 0.00 0.06 -0.01 0.00 0.00

-0.08 0.00 0.08 -0.06 0.00 0.06 -0.01 0.00 0.00

[T
-0.08 0.00 0.08 -0.06 0.00 0.06 -0.01 0.00 0.00

Figure 13: FPO Flow Fields (Velocity). Top row shows velocity and pressure fields for easy,
medium, and complex setups; White areas represent the square obstacles (holes) in the domain.

B.3 FLow DEVELOPMENT SCHEDULING.

To ensure that each simulation reaches a fully developed state before data is recorded,
we adaptively determine the simulation end time based on the sampled Reynolds number
Re. This is critical in both the FPO and LDC domains, where flow transients can vary
significantly with Re, and premature truncation would lead to incomplete or biased solution
fields.

We define a piecewise scheduling rule that maps the Reynolds number to a simulation end
time Tepnq via either a linear scaling or a constant duration, depending on the flow regime.

15

Under review as a conference paper at ICLR 2026

For moderate to high Re values, we employ the characteristic viscous diffusion time scale:
L2
v-Re’

where L = 2 m is the characteristic length of the domain, and v = 1.5 x 107° m?/s is the
kinematic viscosity of the fluid. The total simulation time is then computed as:

tna =

Tona = Y - tnd,

where 7 is a multiplicative factor that increases with Re to accommodate longer transients
associated with inertial effects. For very low Reynolds numbers (Re < 100), where steady-
state is approached slowly and viscous effects dominate, we assign a fixed total duration of
2700 seconds.

The multiplicative factors v are manually calibrated for different Re ranges as shown below:

Re Range ¥ Teng Formula
5000-10000 40 Tena = 40 - tha
4000-5000 30 Tenda = 30 - thg

2500-4000 20 Tena =20 - tna
1000-2500 10 Tena =10 - tna

500-1000 5 Tond = 5 - tnd
400-500 4 Tond = 4 - toa
300-400 3 Tond = 3 - tod
200-300 2 Tond = 2 - tod
100-200 1 Tona = 1 - toa

10-100 Tona = 2700 s (fixed)

Table 1: Reynolds-number-dependent scheduling of simulation end time.

The computed Tenq is rounded up to the nearest hundred and used to configure the
controlDict file for each simulation. The write interval is also dynamically selected to
yield 20 evenly spaced output frames, ensuring consistent temporal sampling across all
Reynolds number regimes. This scheduling mechanism guarantees physically meaningful
and temporally aligned datasets, while avoiding wasted computation for low-Re flows or
premature termination for higher-Re flows.

B.4 NUMERICAL DISCRETIZATION AND SOLVER CONFIGURATION

All simulations are performed using OpenFOAM v2406 to numerically solve the incompressible
Navier—Stokes equations. To ensure stable and accurate data generation across diverse
Reynolds numbers and geometric complexities, we adopt a consistent finite-volume setup for
time integration, spatial discretization, and linear solver configurations.

Governing Equations. We solve the incompressible Navier-Stokes system in the exact
form used in the main paper:

dpu+ (u-V)u+ Vp =vAu and V-u=0 (3)
where u(x,t) is the velocity field, p is the (kinematic) pressure, and v is the kinematic
viscosity.

B.4.1 TIME DISCRETIZATION
To maintain numerical robustness at higher Reynolds numbers and small time steps, we
discretize the temporal derivative using a first-order implicit backward-Euler scheme:

ou Un+1 . g1

—_— =

ot At

This choice offers unconditional stability and aligns with OpenFOAM'’s standard transient
solvers.

16

Under review as a conference paper at ICLR 2026

-0.010.00 0.00 -0.010.00 0.00 -0.00 0.00 0.00

-0.010.00 0.00 -0.010.00 0.00 -0.00 0.00 0.00

-0.010.00 0.00 -0.010.00 0.00 -0.00 0.00 0.00

Figure 14: LDC Flow Fields (Velocity). Top row: velocity and pressure fields for easy, medium,
and complex setups.

B.4.2 SpPATIAL DERIVATIVES

All spatial derivatives are evaluated using the finite-volume method with second-order
accurate schemes:
e Gradient terms such as Vp and VU use central differencing:
V¢ =~ Gauss linear,

which preserves smooth fields with low numerical diffusion.

e Convective fluxes, dominant at higher Reynolds numbers, use an upwind-biased
linear scheme with gradient reconstruction:

V - (¢U) ~ Gauss linearUpwind grad(U),

17

Under review as a conference paper at ICLR 2026

balancing stability with second-order accuracy, especially near obstacles where steep
gradients occur.

e Diffusive terms (Laplacians) use:
VQ(b ~ Gauss linear orthogonal,

appropriate for our structured Cartesian grids.'

B.4.3 INTERPOLATION AND SURFACE GRADIENTS

Cell-face values are interpolated linearly:

¢s ~ linear(¢),

and surface-normal gradients use the orthogonal scheme, leveraging the grid’s structured
nature.

B.4.4 LINEAR SOLVERS

The momentum and pressure equations are solved using efficient iterative solvers:
e Pressure (p): PCG (Preconditioned Conjugate Gradient) with DIC (Diagonal-based
Incomplete Cholesky) preconditioning.

e Velocity (U): smoothSolver with symmetric Gauss—Seidel smoothing.

Per-equation tolerances are:

Pressure: tolerance = 107°% relTol = 0.05 (final: 0)
Velocity: tolerance =107°, relTol =0 (final)

B.4.5 DESIGN MOTIVATION

This configuration follows established best practices in the OpenFOAM ecosystem and prior
simulation-driven ML benchmarks, ensuring numerical stability and physical realism across
a wide range of Reynolds numbers. We adopt Gauss linear for gradients and diffusive
terms to preserve smoothness on structured grids Weller et al. (1998), and linearUpwind
grad(U) to balance accuracy and robustness in the presence of sharp gradients and internal
obstacles Jasak (1996). The backward-Euler time integration and implicit solvers align with
standard OpenFOAM settings for incompressible flows and are widely used in both industrial
and academic studies Jasak et al. (2007).

B.4.6 SIMULATION PIPELINE (TRANSIENT)

We automate data generation via modular Python scripts for both FPO and LDC:
1. Domain Construction: Randomized obstacle positions are sampled; a mesh is
constructed via a modified blockMeshDict.

2. Velocity and Controls: Boundary velocity profiles and run duration are computed
from the sampled Reynolds number.

3. Simulation Execution: The case is solved using icoFoam; fields are written at
fixed intervals to yield 20 timesteps.

4. Postprocessing: Velocity and pressure fields are parsed and projected onto a
128 x 128 regular grid.

5. Geometry Encoding: Each grid cell includes a binary mask (fluid vs. obstacle)
and a signed distance field (SDF) via an Euclidean distance transform.

'If mild non-orthogonality appears, Gauss linear corrected is a safe alternative.

18

Under review as a conference paper at ICLR 2026

SDF (Signed Distance Function)

- 0.8

- 0.6

0.4

0.2

0.0

(a) Binary mask: white = hole, black = fluid. (b) Signed distance field (SDF) corresponding
to the mask.

Figure 15: Geometry encodings. Visualization of the binary mask and corresponding SDF used
to encode obstacle geometry.

B.4.7 RANDOMIZED OBSTACLE GENERATION
We construct domains with multiple internal holes via blockMeshDict:

e Random Hole Placement: Sample n € [2,10] axis-aligned rectangles {z,y,w, h}
strictly within [0, 2] x [0, 2] (optionally enforcing non-overlap).

e Block Decomposition: Subdivide a structured Cartesian grid; cells lying entirely
inside holes are removed. Faces adjoining missing cells become boundary patches
holel, hole2, ...

e Boundary Patches: The outer walls (including the moving lid for LDC) and the hole
patches are set as no-slip walls (U = 0) unless the experiment specifies inlets/outlets

(FPO).

B.4.8 BouNDARY CONDITIONS AND REYNOLDS NUMBER

For LDC, the top-wall velocity Uyjq is set to match a target Reynolds number:

Ulia L Rev
dEe oy 4=)
v L
For FPO, inlet speed is set analogously; outlets use zero-gradient pressure and velocity

conditions consistent with standard setups.

Re =

B.4.9 DATA FORMAT

Each trajectory is stored as a NumPy array with shape (20, 128, 128, 6), containing six
channels: horizontal velocity u, vertical velocity v, pressure p, normalized Reynolds number

ﬁ?}, binary mask, and SDF. A representative visualization is shown in Figure 15.

C MODEL ARCHITECTURES

In this section, we provide implementation and training details for the neural operator models
evaluated in our study. We focus on two classes of models: (1) the Convolutional Neural

19

Under review as a conference paper at ICLR 2026

Operator (CNO) (Raonic et al., 2023), which is trained from scratch, and (2) Poseidon-
T (Herde et al., 2024), a pretrained transformer-based model fine-tuned on our downstream
task. These models differ significantly in their architectural design, parameterization, and
training strategy.

All models are trained to predict velocity and pressure fields for 2D incompressible Navier-
Stokes simulations. Given an input-output pair (u¢, usy1), where u; € REXHXW denotes the
flow variables at timestep ¢ and C' is the number of channels, models are trained to minimize
the relative ¢; loss:

w1 — et lla
L(ug, w = —] T - 4
(ts t+1) ||Ut+1H1+€) ()

where ;41 is the model prediction and € = 107! ensures numerical stability.

C.1 CONVOLUTIONAL NEURAL OPERATOR (CNO)

The Convolutional Neural Operator (CNO) used in our experiments is based on the architec-
ture proposed by Raonic et al. (2023), with several adjustments tailored to our time-dependent
Navier-Stokes flows. The model is implemented in PyTorch Lightning and trained in an
autoregressive supervised setting.

The model is structured as an encoder-decoder network with residual blocks, optional
attention in the bottleneck, and optional time-conditioning via instance normalization. Key
components of the architecture include:

e Encoder and Decoder: The encoder has Njayers = 4 downsampling stages with a
channel multiplier of 32. The decoder mirrors this with corresponding upsampling
layers. Each stage consists of a combination of convolutional and spectral convolution
blocks.

e Residual Blocks: The encoder and bottleneck include N,os = 8 residual blocks per
level and Nyes neck = 8 blocks in the bottleneck.

e Normalization: We use instance normalization (specified via nl_dim = [2,3]),
conditional on the input timestep.

e Time Conditioning: The model is trained with is_time = 1 to incorporate the
current timestep as an additional input feature.

e Grid Resolution: All experiments use a spatial resolution of 128 x 128.

e Loss Function: We use a normalized relative ¢; loss, computed per-sample and
averaged over the batch.

e Autoregressive Training: The CNO is trained in an autoregressive supervised
manner using transitions of the form ¢ — ¢t+1 only. We set allowed = ’one’ in the
training configuration, restricting the training to adjacent timestep pairs.

e Other Details: Training used a batch size of 32, learning rate of 7.5 x 1074, step
learning-rate schedule over 400 epochs, and weight decay of 1 x 1076,

0.00075 The model contains approximately 18 million parameters and does not utilize
attention in our setup.

C.2 FACTORIZED FOURIER NEURAL OPERATOR (F-FNO)

The Factorized Fourier Neural Operator (F-FNO) used in our experiments is based on the
architecture proposed by Tran et al. (2021), designed for efficient learned simulation of PDEs.
The model is implemented in PyTorch Lightning and trained in an autoregressive one-step
prediction setting. It consists of a deep sequence of Fourier operator layers with factorized
spectral convolutions and improved residual connections, which allow stable training even at
greater network depths than the original FNO . Key components of the architecture include:

e Network Depth and Parameters: We deploy a 5-layer F-FNO, following the
high-capacity configuration from the original paper.

20

Under review as a conference paper at ICLR 2026

. This is an order of magnitude fewer parameters than a comparable geo-FNO model,
despite the increased depth, due to the factorized kernel representation.

e Spectral Layers: Each layer applies a separable Fourier convolution on the input
features, factorizing the transform over each spatial dimension . In practice, we drop
half of the higher-frequency Fourier modes in each layer to reduce computational
cost (e.g., on a 64 x 64 grid we keep only the top 16 modes per dimension) . The
retained frequency components serve as learned global convolution kernels applied
via inverse FFT.

e Feedforward Block: After the spectral convolution, each layer includes a two-layer
feed-forward network (pointwise MLP) operating in the physical space . We use ReLLU
activations in these feed-forward layers . This pointwise MLP mixes features per
grid location and is analogous to the transformer’s MLP block, providing non-linear
coupling of the channels.

e Residual Connections: A skip connection adds each layer’s input to its output
after the non-linear feed-forward stage . This post-activation residual design preserves
more of the original signal and stabilizes gradient flow in deep stacks , enabling
the F-FNO to converge even with dozens of layers (where the original FNO would
diverge at > 12 layers).

e Coordinate Encoding: Following Tran et al. (2021), we augment the input with
explicit spatial coordinate channels. Each input field is concatenated with its
normalized = and y coordinates (as two additional channels), providing a positional
encoding that consistently improves accuracy . The Fourier layers inherently utilize
absolute positions (through the grid indices in the transform), while the feed-forward
layers benefit from the coordinate features to capture location-dependent effects .

e Autoregressive Training: We train the F-FNO in a one-step-ahead prediction
manner. The model uses only the current state as input to predict the next state,
enforcing a first-order Markov assumption (no multi-step history) . We employ
teacher forcing during training, i.e. at each training step the ground-truth state at
time ¢ is provided as input to predict t+1 . This approach avoids the need to unroll
long sequences during training and was found to improve stability and accuracy.

e Input Normalization and Noise: We apply per-variable normalization to input
fields and add a small Gaussian noise perturbation during training . These techniques,
recommended by ?, act as regularization and help prevent training instabilities (we
observed that without the added noise, the model’s validation loss could sometimes
spike early in training).

e Training Setup: The F-FNO is trained with a batch size of 16, using a learning
rate of 5 x 107° and a cosine annealing schedule (no restarts) over 400 epochs,
along with a weight decay of 1 x 1076, These hyperparameters match those used
for our other models to ensure a fair comparison. We did not employ the optional
weight-sharing of Fourier weights across layers in our configuration, as it has minimal
impact on performance at this depth .

C.3 PoOseIDON-T

We evaluate Poseidon-T using the pretrained model checkpoints provided by Herde et al.
(2024), available on Hugging Face.? We perform fine-tuning on our custom datasets without
any further pretraining.

The architecture follows a SwinUNet-based transformer backbone with hierarchical attention
and patch embeddings. We retain the pretrained model structure and only update weights
via supervised autoregressive finetuning. Key configuration details include:

e Backbone: SwinUNet with hierarchical attention and window-based self-attention.

e Variant: We use Poseidon-T, which has a base embedding dimension of 48, depths
[4,4,4,4], and patch size 4.

2https://huggingface.co/camlab-ethz/Poseidon-T

21

https://huggingface.co/camlab-ethz/Poseidon-T

Under review as a conference paper at ICLR 2026

e Resolution: All inputs are processed at 128 x 128 resolution.

e Training Setup: Fine-tuning is performed for 100 epochs with batch size 16, weight
decay of 1 x 1079, and cosine learning rate schedule starting from 5 x 1072,

e Loss Function: We use a normalized relative ¢; loss, computed per-sample and
averaged over the batch.

Only the decoder and time-conditioning layers are updated during fine-tuning. The rest of
the model remains unchanged from the pretrained checkpoint.

C.4 POSEIDON-B

We evaluate Poseidon-B using the pretrained model checkpoint provided by Herde et al. (2024),
available on Hugging Face.” We perform fine-tuning on our custom datasets without any
further pretraining. The architecture mirrors Poseidon-T’s setup, following a SwinUNet-based
transformer backbone with hierarchical (U-Net style) multiscale attention and window-based
self-attention. We retain the pretrained model structure and update weights via supervised
autoregressive fine-tuning. Key configuration details include:

e Backbone: SwinUNet with hierarchical attention (patch merging/expansion) and
windowed self-attention.

e Variant: Poseidon-B, base embedding dimension 96, depths [8, 8, 8, 8] (eight
SwinV2 transformer blocks per level), patch size 4.

e Resolution: All inputs are processed at 128 x 128 resolution (matching the pre-
training grid size).*

e Training setup: 100 epochs, batch size 16, weight decay 1 x 1076, cosine learning-
rate schedule starting from 5 x 1075,

e Loss: Normalized relative ¢; loss, computed per-sample and averaged over the
batch.

e Fine-tuned parameters: Only the decoder and time-conditioning layers are
updated; all other weights remain frozen from the pretrained checkpoint.

C.5 POSEIDON-L

We evaluate Poseidon-L using the pretrained model checkpoint provided by Herde et al.
(2024), available on Hugging Face.” We fine-tune this model on our custom datasets with no
additional pretraining. The architecture is identical to the other Poseidon variants, employing
the same SwinUNet-style transformer backbone with hierarchical multiscale attention and
window-based (shifted-window) self-attention. We preserve the original model architecture
and learn weights via supervised autoregressive fine-tuning. Key configuration details include:

e Backbone: SwinUNet with hierarchical attention and window-based self-attention
(shifted-window mechanism).

e Variant: Poseidon-L, base embedding dimension 192, depths [8, 8, 8, 8] (eight
SwinV2 transformer blocks at each level), patch size 4.

¢ Resolution: All inputs are handled at 128 x 128 resolution, consistent with the
model’s pretraining grid size.’

e Training setup: 100 epochs, batch size 16, weight decay 1 x 1076, cosine learning-
rate schedule starting from 5 x 1075,

e Loss: Normalized relative ¢; loss, computed per-sample and averaged over the
batch.

Shttps://huggingface.co/camlab-ethz/Poseidon-B
‘https://huggingface.co/camlab-ethz
*https://huggingface.co/camlab-ethz/Poseidon-L
Shttps://huggingface.co/camlab-ethz

22

https://huggingface.co/camlab-ethz/Poseidon-B
https://huggingface.co/camlab-ethz
https://huggingface.co/camlab-ethz/Poseidon-L
https://huggingface.co/camlab-ethz

Under review as a conference paper at ICLR 2026

e Fine-tuned parameters: Only the decoder and time-conditioning (time-encoded
layer normalization) layers are updated during fine-tuning; all other weights are
frozen to their pretrained values.

C.6 COMPUTATIONAL RESOURCES

We report compute details and training runtimes for the experiments conducted in this study.
All models were trained on a single GPU using PyTorch with SLURM-based scheduling. The
Convolutional Neural Operator (CNO) models were trained from scratch for 400 epochs, while
Poseidon-T/B/L models were fine-tuned for 200 epochs from publicly released checkpoints.

CNO models were trained from scratch while Poseidon models were fine-tuned on a single
NVIDIA L40S GPU on the Babel cluster. For autoregressive training with ¢ — ¢+1
supervision, training time scaled approximately with the number of trajectories. Table 2
summarizes the approximate training time for varying dataset sizes. For completeness, we
include FFNO (trained from scratch) and additional Poseidon variants (B and L) alongside
Poseidon-T. FFNO and CNO were trained from scratch; all Poseidon variants (T/B/L) were
fine-tuned.

Table 2: Approximate training durations with increasing number of training trajectories on a single
NVIDIA L40S GPU. FFNO and CNO trained from scratch; Poseidon variants fine-tuned.

Training Trajectories CNO FFNO Poseidon-T Poseidon-B Poseidon-L

200 3h 30m 1h 2h 6h 40m -
400 6h 48m 7h 3h 11h 30m -
800 7h 55m 1d 13h 9h 19h 1d 3h
1600 1d 4h 1d 21h 18h 1d 16h -

All experiments were run using a single GPU with no mixed precision or distributed training.

C.7 TRAINING CONVERGENCE ANALYSIS

To provide additional insight into the training dynamics of our models across different difficulty
mixing scenarios, we present the convergence behavior during training and validation in
Figure 16. The training loss is computed as the mean L1 loss over the training set, which
consists of samples from both easy/medium and hard data according to the difficulty ratio of
each experiment. The validation loss is computed as the mean L1 loss over a fixed validation
set of 100 samples per experiment: 50 samples drawn from the easy /medium distribution and
50 samples from the hard distribution. Figure 16 shows the training and validation loss curves
for Poseidon-B across two difficulty mixing scenarios: medium-to-hard and easy-to-hard
geometry composition. Both subplots demonstrate smooth convergence and stable validation
loss across different mixing ratios, reflecting the robustness of our training procedure and
validating the generalization properties of models trained on lower-difficulty data augmented
with target-difficulty examples. It is important to note that the validation loss shown here
uses a balanced split (50 easy/medium, 50 hard samples) to monitor training stability across
difficulty compositions, whereas the test performance numbers reported in the main paper
evaluate on the complete hard dataset to assess generalization to the target distribution.

C.8 ADDITIONAL RESULTS: FLOWBENCH HARMONICS ANALYSIS

To further validate the applicability of our findings beyond the primary FPO and LDC
domains, we examine the performance on the FlowBench dataset using Harmonics geometries.
Similar to the NURBS results presented in the main paper, we augment the target Harmonics
examples with zero-obstacle FPO (easy) and single-obstacle FPO (medium) data. Figure C.8
presents the cost versus error scaling behavior for models trained on 100 target Harmonics
examples augmented with varying data generation costs from lower-difficulty FPO simulations.
Consistent with our observations on NURBS geometries and our primary difficulty-mixing
experiments, adding lower-difficulty examples substantially reduces error across multiple

23

Under review as a conference paper at ICLR 2026

Loss curve for Difficulty Mixing - Geometry axis Loss curve for Difficulty Mixing - Geometry axis
S x10-1 Poseidon B - Medium to Hard Poseidon B - Easy to Hard
i —— Training Loss Ll —— Training Loss
3x10-1 \ Validation Loss 3x10 Validation Loss
2x107! W’.\‘
“’A
wn 10! r—“m
0 vl
9 g
~ 5102 Wy
!
3x1072 A'
2x10°2 :'K"-"J/\
Mlglpg
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch
(a) Medium-to-hard geometry. (b) Easy-to-hard geometry.

Figure 16: Training convergence for Poseidon-B across difficulty mixing scenarios. Both
subplots show training and validation loss (L1 loss) over epochs for models trained with varying
fractions of easy/medium and hard examples. Training loss is computed over the full training set
(with mixed difficulty ratio), while validation loss is computed over a fixed set of 100 samples (50
from easy/medium, 50 from hard). Convergence is smooth and stable, demonstrating the robustness

of the difficulty mixing strategy.

L | T ———— -
O 10—1,

=

L

—

— 5 102 - FFNO — Easy-Hard

_02) —— FFNO — Medium—Hard
v | Poseidon-B — Easy—Hard
S:J —— Poseidon-B — Medium—-Hard
c 2% 1072

©

(4]

=

103 10% 10° 106
Data Generation Cost (Seconds)

Figure 17: Performance on FlowBench’s Harmonics FPO simulations when 100 target
examples are augmented with zero-obstacle FPO (easy) or single-obstacle FPO (medium) simula-
tions. Similar to NURBS results, data augmentation with medium-difficulty examples substantially
improves performance for most models on the target Harmonics distribution.

model architectures. This result demonstrates that difficulty mixing is an effective and
generalizable strategy for improving performance on challenging datasets, extending the
applicability of our approach across diverse geometric families.

24

	Introduction
	Pre-generating datasets for studying difficulty transfer
	Difficulty axes
	Pre-generated datasets

	Empirical results
	Training on simpler examples goes a long way
	Cost-effectiveness of pre-generating fewer medium difficulty examples
	Towards foundation datasets

	Conclusion
	Related work
	Dataset Generation and Simulation Setup
	FPO Domain
	LDC Domain
	Flow Development Scheduling.
	Numerical Discretization and Solver Configuration
	Time Discretization
	Spatial Derivatives
	Interpolation and Surface Gradients
	Linear Solvers
	Design Motivation
	Simulation Pipeline (Transient)
	Randomized Obstacle Generation
	Boundary Conditions and Reynolds Number
	Data Format

	Model Architectures
	Convolutional Neural Operator (CNO)
	Factorized Fourier Neural Operator (F-FNO)
	Poseidon-T
	Poseidon-B
	Poseidon-L
	Computational Resources
	Training Convergence Analysis
	Additional Results: FlowBench Harmonics Analysis

