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Abstract

Scientific literature contains essential but often fragmented and conflicting evi-
dence, a permanent challenge brought into focus by the emergence of Large Lan-
guage Models (LLMs) that can read and extract information at web-scale. Tradi-
tional methods for knowledge integration rely on knowledge graphs that treat ex-
tracted statements as deterministic facts, imposing rigid assumptions such as the
closed-world assumption and independence of relationships, which fail to capture
uncertainty or reconcile contradictions. We introduce a shift from deterministic
fact aggregation to a probabilistic framework that models article-level evidence as
noisy, partial observations of a latent hierarchical structure. Applied to a biomed-
ical corpus, our method synthesizes article-level evidence to form stable and bi-
ologically coherent clusters, indicating that stable signals can be extracted even
when inputs are sparse, biased, or unreliable.

1 Introduction

Scientists face a relentless challenge of integrating an ever-expanding body of evidence into a co-
herent understanding of complex systems. Automated web-scale LLMs, designed for knowledge
extraction Garcia et al. (2024), offer a potential rescue, promising to synthesize information at a
scale far beyond human capacity. However, their effectiveness is immediately confronted by a harsh
reality: the scientific knowledge they are tasked with processing is inherently fragmented, noisy,
and often contradictory. This is especially true in biomedicine, where an agent must make sense of
thousands of articles reporting qualitative, context-specific associations with variable reliability.

To structure this information, the dominant paradigm has been to extract relational triples from text
and assemble them into deterministic knowledge graphs (KGs), where nodes represent entities and
edges represent relations (e.g., Nitrate reduction decreases intestinal inflammation,
or Visceral fat improves insulin signaling). This approach forces the autonomous ex-
tractor (which, from now on, we refer to as “agent”) to treat knowledge as a fixed set of verifi-
able facts and relies on two key assumptions ill-suited for scientific domains: the Closed-World
Assumption (CWA) that unmentioned facts are false (i.e., have a probability of 0), and the tuple-
independence assumption, which treats each relation as probabilistically independent of others.
These assumptions are deeply problematic in fields where knowledge is dynamic, incomplete, and
interdependent. For instance, if an agent processes evidence for (A, positively correlated, B) and (B,
positively correlated, C), a deterministic KG would treat these as independent, while a more suitable
model would allow the capture of a transitive structure inferring A likely influences C indirectly.

In this work, we propose a fundamental shift in knowledge representation: from deterministic graphs
to probabilistic models of latent relational structure aimed at reliable inference under imperfect
evidence. Rather than treat textual assertions as ground-truth facts, we model them as noisy, sparse
observations drawn from an underlying, unobserved distribution over relationships. We demonstrate

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: .



our approach using an agentic framework in which specialized agents mine thousands of biomedical
articles to extract relational evidence (separate ongoing work, used here only for evaluation and is
not part of this contribution). Inspired by the framework of Probabilistic Knowledge Bases (PKBs),
we reject both the CWA and tuple-independence assumptions in favor of a joint distribution over all
possible relations, where each piece of evidence serves to update a global probabilistic model in a
way that remains stable under missing or biased inputs.

A natural way to model relationships between entities is through correlation. However, extracted
textual evidence is neither symmetric nor statistically grounded, making it incompatible with a co-
variance interpretation. We therefore project the evidence into the space of positive semi-definite
(PSD) matrices, ensuring consistency with transitive correlations and enabling inference across un-
mentioned pairs. This projection is guided by curated world knowledge, providing a high-confidence
backbone for relationship existence. By anchoring noisy article-level evidence to external priors, the
projection resolves underdetermination and makes disparate articles mutually informative, improv-
ing robustness to spurious or strategically misleading extractions.

Moreover, to ensure our results are statistically grounded, we adhere to the principle of maximum
entropy Jaynes (1957). Accordingly, we treat extracted evidence as soft constraints and otherwise
prefer the most non-committal distribution consistent with the data: a zero-mean Gaussian defined
solely by its second-order structure. This approach makes our model both minimal and expressive,
facilitating a faithful transformation from qualitative claims to a probabilistic structure.

We address the multi-modality of scientific discourse by unifying the covariance matrices with a
Jensen–Shannon (JS) divergence divergence based Hierarchical Gaussian Mixture Model (HGMM),
clustering articles by latent distributions at multiple resolutions. The hierarchy captures broad the-
matic groupings at higher levels and finer specializations at the leaves, offering a flexible view of
scientific subfields that accommodates distributional heterogeneity and shift across contexts.

Even within coherent clusters, some articles diverge from the majority or conflict with world knowl-
edge. To this end, we introduce a validation step that compares alternative consensus summaries
of each cluster to identify systematically misaligned articles. Irreconcilable cases are placed into
a dedicated out-of-consensus set, yielding more reliable clusters and providing a principled way
to highlight articles whose evidence fundamentally disagrees with the broader scientific consensus,
including potential artifacts of bias or erroneous extraction.

Our method proceeds in four stages: (1) We assume the existence of an Evidence Extraction Engine,
extracting associations from biomedical texts; (2) World-Knowledge-Guided PSD Projection, map-
ping these associations into covariance matrices anchored to curated priors; (3) Hierarchical Article
Clustering, which organizes articles into a nested mixture of latent distributions; and (4) Validation,
improving cluster coherence and isolating out-of-consensus articles under imperfect and shifting
evidence (see Fig. 1).

2 Related Work

Early approaches for relation extraction (RE) relied on supervised models trained over limited rela-
tion types and curated corpora. The emergence of Large Language Models (LLMs) enabled pow-
erful few-shot RE from unstructured text Beltagy et al. (2019); Lab (2022), spurring numerous new
research systems. However, most pipelines still treat extracted triples as discrete facts inserted into
deterministic knowledge graphs (KGs)Downey & Etzioni (2014); Fan (2025). In biomedicine, large
KGs exemplify this paradigm (e.g., the NIH Biomedical KGFund (2024), which enriches triples and
scores paths for semantic consistency (e.g., inferring “A increases C” via “A increases B” and “B
increases C”). Despite these advances, the reasoning remains rule-and-path based rather than gen-
erative: it relies on semantic entailment and does not posit an underlying distribution from which
the literature arises, implicitly treating relations as unambiguous, static, and largely independent.
Recent LLM-based systems improve extraction fidelityPeng & Zhou (2024) and entity resolution,
and some weight edges by frequency or textual context Xiao (2024), but they still lack a coherent
probabilistic treatment of joint uncertainty and interdependence.

These shortcomings lead to “Probabilistic” Knowledge Bases, which relax the Closed World As-
sumption and allow uncertainty Dong et al. (2014); Niu et al. (2012); Wang (2014). Rather than
viewing extracted relations as ground truth, PKBs define a probability distribution over possible
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facts. However, most PKBs assume tuple independence and require schema-specific designs, lim-
iting their ability to capture transitive or indirect dependencies between relations. Recent work has
attempted Bayesian inference from LLM outputs Cui (2025), but these models often rely on strong
parametric assumptions or focus on structured domains. In contrast, our approach treats literature-
derived associations as conditionally dependent evidence for a latent multivariate structure, enabling
transitive inference and global uncertainty modeling.

Another related field of work is Statistical Relational Learning (SRL). SRL integrates relational logic
with probabilistic graphical models, enabling reasoning over structured domains where facts are
uncertain and interdependent Getoor & Taskar (2007); Richardson & Domingos (2006); Huang et al.
(2012). Frameworks like Markov Logic Networks Richardson & Domingos (2006) and Probabilistic
Soft Logic Huang et al. (2012) allow modeling of weighted logical constraints, but often require
manual rule specification or operate on fixed graph schemas. Our method shares the SRL goal
of modeling relational uncertainty, but differs by forgoing explicit logic rules in favor of learning
continuous latent covariance structures. This enables scalable inference from LLM-derived evidence
without requiring ontology-level constraints or hand-crafted rules.

3 Framework and Preliminaries

Our goal is to learn a hierarchical probabilistic model of entity relationships from a large corpus
of scientific literature. Let V = {ei}Mi=1 be the predefined set of M biological entities. We use a
multi-agent LLM system capable of extracting relation types from text, where we focus on a core
set of three relation types, R = {+1,−1, 0}, representing positive correlation, negative correlation,
and no correlation, respectively. It is important to note that the evidence reflects the existence of the
relationship, assumed to be statistically validated by the related article, and not the magnitude. A
detailed description of the relation types is provided in Supplementary Section A.

We index each article in our corpus of N documents by i, where each agent processes article i to
extract evidence about relationships between entities Vi ⊆ V mentioned therein. A fundamental
assumption is that all evidence from the same article constitutes partial observations from a specific
mixture of latent probability distributions, as formalized in our generative model (Section 3.1). The
special case of “meta-review” papers is addressed in Supplementary Section B. The evidence from
article i is represented by a raw evidence matrix Ri ∈ {−1, 0,+1, Null}|Vi|×|Vi|, where (Ri)uv
encodes the reported relation between entities eu and ev , and Null marks unobserved pairs; let
Ti = {(u, v) | (Ri)uv ̸= Null} be the set of observed pairs in article i.

At the core of our methodology is the fact that the sparse, qualitative evidence matrices are not valid
covariance structures. Our process, therefore, begins with a regularized projection of the evidence
matrix Ri onto the space of symmetric positive semi-definite (PSD) matrices to construct a valid
|Vi|×|Vi| covariance matrix, Γi. This projection is formulated as an optimization problem with three
regularization components (see equation 3). The resulting Γi serves as a single, multi-dimensional
“observation” summarizing the relational information from article i. We next detail these terms:

(1) Evidence Adherence, which ensures the resulting covariance matrix remains faithful to the ob-
served evidence Ri; (2) MaxEnt Prior, where, following the principle of maximum entropy ( Jaynes
(1957)), we select the least informative distribution consistent with the data, encouraging a well-
formed covariance shape, namely a zero-mean Gaussian specified only by its second-order structure;
and (3) World Knowledge Regularization, where aggregated knowledge from established biomedical
databases (e.g., STRING-DB Szklarczyk et al. (2023)) provides high-confidence priors on the exis-
tence of relationships. This “world knowledge” is encoded as a sparse set of priors S = {(i, j, sij)}
with sij ∈ [0, 1] denoting the confidence in the relationship between entities ei and ej . The associ-
ated regularization loss Lworld penalizes deviations from these priors, anchoring the projection and
resolving underdetermination.

3.1 The Generative Model: Hierarchical World Model

To model the distribution of relationships across the literature, we treat each article’s covariance
matrix Γi as a sample from the latent world model, which we model as a Hierarchical Gaussian
Mixture Model (HGMM) with zero means. This structure allows us to discover latent clusters of
articles that share similar correlation patterns (e.g., “cancer metabolism”, “inflammatory response”)
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while modeling the corpus as a nested mixture of latent distributions, capturing both broad areas of
agreement at higher levels and fine-grained specializations at the ℓ leaves.

Since our observations, Γi, are themselves covariance matrices, a standard likelihood function is
not readily tractable, making direct Maximum Likelihood Estimation difficult. We therefore use an
adaptation of the HGMM where the likelihood of an observation Γi being generated from a cluster k
is based on the Jensen-Shannon (JS) divergence. This approach properly models the geometry of the
space of covariance matrices, treating proximity in distributional space as the measure of likelihood:

p(Γi|zi = k,Σk) ∝ exp (−β · JS (N (0,Γi) || N (0,Σk[Vi]))) (1)

where β is a scaling parameter, and Σk[Vi] is the submatrix of the cluster’s global covariance matrix
aligned to the Vi entities in article i. Let T denote the resulting dendrogram with node set N and
leaf set L. We construct T by recursively applying a flat, weighted JS-GMM in a top-down manner.
At node t ∈ N we fit a Kt-component JS-GMM to all articles using sample weights {w(t)

i } (root:
w

(root)
i = 1/N ), obtaining soft assignments γ

(t)
i,k and local proportions {πt,k}. For each child c

of t, article weights inherit multiplicatively as w
(c)
i = w

(t)
i γ

(t)
i,c and the procedure recurses on c

until stopping criteria are met. The hierarchy thus arises by repeatedly reusing the full corpus while
concentrating probability mass along each branch via inherited weights.

Each node t is summarized by a global covariance Σt ∈ RM×M defined as the weighted JS barycen-
ter of its articles under {w(t)

i }, serving as the consensus estimate at that resolution. Given local
proportions {πt,k}, the leaf prior for ℓ with path P(ℓ) is:

Πℓ =
∏

(t→k)∈P(ℓ)

πt,k ,
∑
ℓ∈L

Πℓ = 1. (2)

The set {Σℓ}ℓ∈L, article weights {w(ℓ)
i }, and priors {Πℓ} form the primary output of the generative

model, which we use for consensus estimation, validation, and downstream inference.

Finally, while the hierarchical model encourages coherent clusters, some articles may diverge from
the latent distribution or conflict with curated world knowledge. To address this, we introduce a
validation stage that identifies and reassigns such articles. Articles rejected from all leaves are
placed in a dedicated out-of-consensus set, enabling systematic identification of articles that conflict
with both the article-derived consensus and the curated world knowledge. We detail the stages next:
World-Knowledge-Guided PSD Projection (Section 4.1), Article Clustering (Section 4.2), Validation
and Out-of-Consensus Identification (Section 4.3) and Evaluation (Section 5).

4 Method Overview

For evidence extraction, we assume the existence of a multi-agent system (MAS) built on large
language models; the specifics of the novel MAS architecture used in our work are detailed in the
Evaluations section. In this system, articles are processed independently to output a structured evi-
dence matrix. While this per-article approach is not a strict requirement of our framework, as a set
of articles could be projected to a PSD matrix collectively, we find it highly advantageous. It enables
massively parallel and asynchronous relation extraction and allows each article to have its own sta-
tistical meaning, independent of the global model. Consequently, since each article typically covers
only a subset of biomedical concepts, the resulting evidence matrices {Ri}Ni=1 differ in dimension
and sparsity, reflecting article-specific coverage.

4.1 World-Knowledge-Guided PSD Projection

Given {Ri}Ni=1, we project each Ri into the space of positive semi-definite (PSD) covariance matri-
ces using a regularized optimization procedure. This guarantees that the output encodes a valid joint
distribution over entities, respects article-level observations, and induces transitive correlations. We
treat observed (non-null) entries in Ri as soft constraints and impose regularization terms to: (1) en-
force unit variance across all entities, (2) promote independence in unobserved pairs following the
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Figure 1: Framework Overview. (a) Agentic evidence extraction produces article-level relational
claims structured for modeling. (b) World-knowledge–guided PSD projection maps claims to co-
variance matrices, enforcing unit variance, symmetry, and a maximum-entropy prior while aligning
to curated priors from world knowledge. (c) JS-based hierarchical GMM clusters articles across
resolutions via top-down weighted recursion, with validation that prunes misaligned articles into a
dedicated out-of-consensus set. (d) The learned model supports downstream inference and discov-
ery, including edge prediction for unseen entity pairs.

maximum entropy principle Jaynes (1957), and (3) encourage agreement with the curated world-
knowledge matrix S ∈

(
[0, 1] ∪ {Null}

)M×M
. Let Si denote the subset of non-null entity pairs

from S that appear in Vi. Because S encodes confidences in the existence of relationships but not
their sign, we compare absolute values of covariances against S (see Supplementary Section C).

We parameterize the PSD matrix as C = A⊤A, with A ∈ R|Vi|×|Vi|, ensuring positive semi-
definiteness by construction. The projected covariance Γi is obtained by minimizing:

A = arg min
C=A⊤A

{
1

|Ti|
∑

(u,v)∈Ti

(Cuv − (Ri)uv)
2
+ Lworld(C;S) +Rstruct(C)

}
, Γi = C (3)

Lworld(C;S) := λ1

|Si|

∑
(u,v)∈Si

(|Cuv| − Suv)
2
;Rstruct(C) := λ2

|Vi| ∥diag(C)− 1∥2 + λ3

|Vi|2 ∥C − I∥2F

Where λi denote regularization coefficients. The main term preserves fidelity to article evidence,
Lworld enforces alignment with curated world-knowledge, and Rstruct consists of two components:
(1) a unit-variance term designed to fix diag(C) = 1 to ensure a valid standardized covariance, and
(2) a maximum entropy term which promotes independence between unobserved pairs following
the maximum entropy principle Jaynes (1957). This yields Γi, a valid covariance matrix that in-
tegrates noisy article claims with stable world knowledge, forming the foundation for downstream
probabilistic modeling.

4.2 Hierarchical Article Clustering

Unlike standard Gaussian mixture models (GMMs) defined over fixed-length vectors, our setting
requires clustering covariance matrices of varying dimensions. We use a custom JS-divergence
based hierarchical GMM (HGMM) where each component k at node t is represented by a global
positive semidefinite (PSD) covariance Σt,k ∈ RM×M over the full entity set of size M . To handle
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the variable dimensions, the comparison between an article’s specific covariance Γi (over entity
subset Vi) and a global centroid Σt,k is restricted to the aligned principal submatrix, Σt,k[Vi].

Each node t maintains mixture proportions πt,k for its local components, normalized such that∑
k πt,k = 1. The responsibility of article i for component k at node t is defined via the Jensen-

Shannon (JS) divergence between Gaussians (see Supplementary Section D) where β acts as the
temperature parameter:

γ
(t)
i,k =

πt,k exp
(
− β JS(Γi ∥Σt,k[Vi])

)∑
m πt,m exp

(
− β JS(Γi ∥Σt,m[Vi])

) (4)

The local proportions {πt,k} induce a prior mixture over leaves. For a leaf ℓ with path P(ℓ) from
the root to its parent, define the leaf prior mass as the product of local proportions along the path:

Πℓ =
∏

(t→k)∈P(ℓ)

πt,k,
∑

ℓ∈Leaves

Πℓ = 1 (5)

Each article i carries an effective weight w(t)
i at node t, representing the fraction of its mass that

has reached t. At the root, weights are initialized uniformly as w(root)
i = 1/N for N total articles.

When descending to a child component k, the inherited weight is updated as w(t,k)
i = w

(t)
i · γ(t)

i,k ,

ensuring that the leaf-level weight w(ℓ)
i reflects the full path of assignments from the root to the leaf

ℓ. Leaf weights are defined as w(ℓ)
i = w

(tℓ)
i · γ(tℓ)

i,ℓ , where tℓ is the parent node of ℓ.

Each centroid Σt,k is updated as the weighted barycenter of its assigned articles. This ensures the
problem is convex by definition as a sum of convex terms. To preserve positive semidefiniteness, we
employ a factorized parameterization Σt,k = A⊤

t,kAt,k and solve:

At,k = arg min
A∈RM×M

∑
i

w
(t)
i γ

(t)
i,k JS

(
Γi∥(A⊤A)[Vi]

)
(6)

The hierarchical GMM proceeds recursively in a top-down fashion, splitting nodes until reaching
stopping criteria. The end result is a partition of the corpus into leaf clusters, each leaf ℓ associated
with a centroid covariance Σℓ and per-article weights {w(ℓ)

i } that quantify article contributions.
Together with the leaf priors {Πℓ} defined in equation 5, these quantities parameterize the leaf-level
latent mixture used for posterior responsibilities, iterative validation (Section 4.3), and unseen-edge
imputation (Section 5.2). For more regarding HGMM implementation see Supplementary Section E.

4.3 Validation and Out-of-Consensus Identification

Once the HGMM is complete, we define two representative covariance matrices for each leaf cluster
ℓ: Σbar

ℓ , Σpsd
ℓ ∈ RM×M , where Σbar

ℓ denotes the JS barycenter covariance of the articles assigned
to ℓ given by the hierarchical GMM, and Σpsd

ℓ denotes the joint PSD-projected covariance obtained
by optimizing over all articles in ℓ simultaneously, with incorporation of curated world knowledge
via equation 3. The JS barycenter captures how articles collectively agree under the mixture model
geometry, while the joint PSD projection enforces global consistency and world-knowledge con-
straints. If these two summaries diverge, it signals that the cluster contains conflicting evidence.

For each unordered pair (u, v) with u ̸= v, we quantify the discrepancy between the two global
matrices as ∆(ℓ)

uv := (Σbar
ℓ,uv − Σpsd

ℓ,uv)
2 and obtain the standardized per-edge discrepancy defined as

∆̄
(ℓ)
uv := ∆

(ℓ)
uv/σ2

uv,ℓ, where σuv,ℓ denotes the weighted standard deviation of the covariance values

assigned to edge (u, v) by all articles in cluster ℓ that cover it. Edges with large ∆̄
(ℓ)
uv highlight loci

of disagreement between the two global summaries, indicating potential out-of-consensus structure.

In parallel, for each article i we define its standardized per-edge residual relative to the cluster PSD
projection: d̄(i)uv := (Γ

(i)
uv − Σpsd

ℓ,uv)
2/σ2

uv,ℓ where Γ(i) is the projected covariance of article i. This
captures how strongly article i disagrees with the global cluster projection.
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Each article i contributes only over its covered edges Vi. To quantify its influence on the discrepant
edges of cluster ℓ, we define:

Ri,ℓ :=
w

(ℓ)
i

|Vi|
∑

(u,v)∈Vi

∆̄(ℓ)
uv d̄

(i)
uv (7)

This captures the average standardized discrepancy contributed by article i, adjusted for its hierarchi-
cal weight w(ℓ)

i and the extent to which its covariance entries diverge from Σpsd
ℓ . During validation,

each article i with Ri,ℓ > τ is removed from ℓ, and reallocated across the remaining leaves m ̸= ℓ in
proportion to its weights w(u)

i , with bookkeeping to prevent reassignment back to the rejected com-
ponent. After reallocation, we recompute all JS barycenters as well as update σuv,ℓ. This validation
step is applied iteratively over all leaves until convergence (no further moves). Articles that fail to
remain in any cluster are collected into a dedicated out-of-consensus set O.

5 Evaluations

Our evaluations are designed to test three overarching goals: first, whether the framework can re-
cover biologically meaningful clusters that align with known pathways and disease concepts; sec-
ond, whether it can reliably impute unseen associations between entities, enabling the discovery of
novel relationships; and third, whether the framework improves common downstream analysis re-
sults, such as pathway enrichment analysis. Here, we present preliminary results, detail the resources
already allocated to future evaluations, and outline our plans ahead.

The core of our evaluation will be conducted using two complementary data sources: 1) An article-
level evidence extraction engine produced by a domain-specific agentic pipeline, which extracts
relations from 3,598 full-text open-access articles, and was curated and fine-tuned using human
experts. The pipeline was built and aligned to extract diet-host-microbiome entities and relations.
We treat this extraction layer as fixed and independent of our modeling; 2) A corpus of 180 datasets
drawn from three related biological benchmarks (Buzzao et al., 2024; Geistlinger et al., 2021; Hutter
& Zenklusen, 2018). Each dataset contains raw gene-expression measurements (features) for control
and disease groups, as well as a list of known biological pathways that serve as ground-truth labels
associated with diseases.

This structure allows us to ”create evidence” by treating each dataset as an article and its most
significant correlations associated with the condition as ”reported evidence.” The similarity between
articles can be assessed, as datasets sharing pathways should be grouped together by our clustering
algorithm. We have already constructed this compendium and sampled correlation candidates to
match the distribution of our real-world literature data.

5.1 Preliminary Results

Literature Extracted Relations. To validate the extracted relations as a source for a statistical
model, we adopt a simplified flat JS-based GMM (see Section 4.2), trained on article-level evidence,
without world-knowledge regularizer (λ1 = 0). We fitted the JS-GMM for T=10 independent runs
using identical hyperparameters.

Figure 2a displays the M-step objective, normalized by its initial value, across the EM iterations.
The deviation between runs is presented as an error band. As the figure shows, there is a monotonic
decrease after initialization. This behavior indicates a convergence to stable EM fixed points. To
evaluate the stability of the clustering, we identified ”consensus groups”: sets of articles that were
consistently assigned to the same cluster across all T independent runs. Figure 2b compares the
size of the five largest consensus groups to a random allocation baseline. As the figure shows, the
observed groups are significantly larger than those expected by chance, rejecting the hypothesis that
these groups could be formed randomly. A single permutation test for the largest group, shown in
Figure 2c, further illustrates this substantial difference.

To farther validate these internal metrics, we conducted an external, biologically meaning-
ful evaluation. This was performed using an LLM-as-judge validation with the Claude Pro
API. From each cluster, we subsampled five sets of 40 entity-relation triples in the format
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Figure 2: Convergence and consensus across T=10 JS-GMM fits (K=3). (a) Normalized M-
step loss over inner gradient step (error-bands 5-95% in light-blue); curves show monotone descent.
(b) Top-5 consensus-groups from GMM (blue) versus random baseline (orange, error-bars 5-95%
intervals; R=100 permutations); all ranks exceed the null (p<0.001). (c) Permutation test for largest
consensus-group size under a random-assignment baseline (R=1000 permutations; log-scaled x-
axis). Dashed line marks the observed value (667); no permutation reached this value (p<0.001).

(entity1, entity2, relation type). The LLM was then prompted to assess the biological similar-
ity between all pairs of these sets, assigning a score from 0 (low similarity) to 1 (high similarity). A
t-test comparing the similarity scores of within-cluster pairs to those of between-cluster pairs yielded
a statistically significant result (T-statistic: 35.61; p < 0.05). This supports the hypothesis that our
clusters successfully group articles with coherent and distinct biological themes.

Benchmark Compendium. We next turn to the benchmark compendium with ground truth path-
ways. We simulate 50 articles per dataset (42 datasets; 2,100 articles; simulator details in Supple-
mentary Section G), estimate covariances for these articles via the PSD projection, and cluster them
with a flat JS-GMM using K=10. Figure 3 shows, for each dataset, the distribution of its articles
across clusters. As the figure shows, most datasets are strongly concentrated in a single cluster.

The dashed horizontal line in Figure 3 marks the mean largest-share expected under random as-
signment with the same cluster-size profile, and the observed concentrations lie well above this
reference. Using pathway labels as ground truth, within-cluster pathway similarity significantly ex-
ceeded between-cluster similarity (p=4.75×10−12), indicating that the PSD projection plus GMM
recovers biologically meaningful structure at K=10.
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Figure 3: Dataset composition across clusters (K=10). Stacked bars show, for each benchmark
dataset, the proportion of its simulated articles assigned to each cluster after PSD projection and
flat JS-GMM clustering. Datasets are ordered left to right by entropy (lowest to highest). The
dashed horizontal line marks the expected mean largest-share under random assignment with the
same cluster-size profile. Most datasets exceed this baseline, consistent with pathway-grounded
alignment (p ≤ 4.75×10−12).

Taken together, these convergence behaviors and validation results strongly suggest that the evidence
extracted by our LLM-based pipeline is internally consistent and can be faithfully represented by a
statistical model.
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5.2 Ongoing Experiments

Building on these results, we will execute a comprehensive suite of experiments.

For clustering validation, building on our preliminary pathway-grounded test using empirical co-
variances, we will perform a head-to-head comparison of the HGMM-derived clusters obtained
from empirical covariances versus world-knowledge–guided PSD-projected matrices, evaluationg
both against the ground-truth pathway in the benchmark compendium to measure our model’s abil-
ity to recover biologically meaningful groupings from relational data. For the literature corpus, we
will expand on the LLM-based validation with the dedicated LLM-based validation engine Wang
et al. (2025).

For imputation of unseen relationships, we will employ a leave-one-out protocol on the benchmark
data, training the model on all but one dataset and predicting the unseen correlations in the held-
out set, and on the literature data, we will perform a similar task using two dedicated, large-scale
microbiome datasets to test the model’s ability to generate novel, domain-relevant hypotheses.

Finally, for the enhancement of downstream analysis, we will examine whether our framework
improves standard bioinformatics workflows, especially Pathway Enrichment Analysis (PEA), a
method to assess whether a set of genes is over-represented in a known biological pathway. We will
compare the results of common PEA methods (e.g., GSEA Subramanian et al. (2005), Hypergeo-
metric test) on the sparse, raw data from our benchmarks versus the same data after completion by
our framework’s imputation, and as an ablation study, we will determine if our framework allows for
successful pathway identification from a significantly smaller initial set of known gene relationships,
demonstrating an ability to amplify weak biological signals.

6 Conclusion

We present a framework for transforming sporadic evidence from biomedical literature into a struc-
tured probabilistic model of scientific knowledge. With the rise of agentic evidence extraction en-
gines, meeting a long-standing necessity, we believe our world-knowledge-guided PSD projection,
which turns qualitative, article-specific claims into statistically consistent covariance structures, will
allow the construction of a ”unified hierarchical world model” that organizes the literature at multi-
ple resolutions. The early results are promising: we recover stable consensus clusters, and identify
clusters aligned with biological knowledge. Together, they indicate that latent probabilistic models
can capture reproducible signals from noisy scientific text. Moreover, we acquire an extensive set of
biological benchmarks that will help with extensive validation of the usability of the framework.

6.1 Limitations

Our approach has three main limitations:

Greedy hierarchy construction: As the HGMM is learned top–down, which is computationally
attractive yet introduces path dependence whereby early splits, locally optimal under current as-
signments, can propagate downstream, yielding leaf structures that are sensitive to initialization,
stopping rules, and small perturbations in {Γi}. Our iterative validation and reassignment (Sec-
tion 4.3) mitigates such greedy-bias by pruning misaligned articles, although some noise continues
to persist.

Coverage-dependent divergence: Since cluster responsibilities and centroid updates rely on JS
divergence between zero-mean Gaussians restricted to aligned subspaces, and this divergence scales
with the dimensionality of the compared submatrix (i.e., with |Vi|), allowing higher-coverage articles
to exert disproportionate influence and bias components toward such studies.

Causal direction versus covariance modeling: Since some of the article-level claims in Ri are
directional (e.g., “A increases B”), yet within the current framework they serve as soft constraints
during projection but are ultimately interpreted as a symmetric covariance structure in Γ̂i, with
Lworld matching magnitudes to S (which is direction-agnostic), an intentional abstraction that en-
ables joint Gaussian modeling and transitive inference, but it discards causal directionality.
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Supplementary Material

A Textual Relation Taxonomy

We wish to use only those textual relations that can be confidently mapped to second–order statistical
structure, specifically the sign of a covariance (positive, negative) or the explicit absence of associa-
tion. We therefore define a conservative mapping from extracted relation types to R = {+1,−1, 0},
where +1 encodes evidence for positive correlation, −1 for negative correlation, and 0 for an explicit
statement of no association. We distinguish 0 from Null: 0 indicates an article explicitly claims no
relationship; Null indicates no information was extracted about the pair.

Let A be the set of textual relations returned by the agentic extractor:

A = {association, NoAssociation, decreaseAssociation,
increaseAssociation, positiveCorrelation, negativeCorrelation,

causalEffect, substitution, consists}
We retain only relations that reliably indicate the sign of a correlation or an explicit absence claim.
The mapping to R is:

increaseAssociation, positiveCorrelation −→ +1,

decreaseAssociation, negativeCorrelation −→ −1,

NoAssociation −→ 0

B Meta-Review Articles

Meta-reviews and broad surveys aggregate results across heterogeneous biological contexts. Treat-
ing them as if belonging to a single latent distribution is inappropriate. their evidence should act
as global prior knowledge rather than context-specific observations. Accordingly, we treat meta-
reviews as literature-derived “world knowledge” that regularizes all clusters.

We define the meta-review set M ⊂ {1, . . . N} using document-level cues and coverage statistics.
An article i is flagged as a meta-review if: (1) it contains textual cues such a title/abstract containing
(review, systematic review, meta-analysis); (2) it contains unusually broad entity coverage
|Vi| (e.g., above the 95th percentile of the corpus).

For each m ∈ M we compute its PSD-projected covariance Γm exactly as for any article (Sec-
tion 4.1), producing a coherent second-order summary of its aggregated claims.

Let U denote all nodes (internal and leaves) of the HGMM learned on the non–meta-review articles
A = {1, . . . , N} \M. For each node t ∈ U , let {w(t)

i }i∈A be the inherited article weights prior to
meta-review injection, and let Wu =

∑
i∈A w

(t)
i be the total mass at t. We introduce a node-specific

meta-review mass ρ ∈ [0, 1) (shared across nodes) and assign to each meta-review a uniform per-
node weight

w̃(t)
m =

ρWt

|M| for all m ∈ M. (8)

Non–meta-review weights remain unchanged, w̃(t)
i = w

(t)
i for i ∈ A. This choice ensures that

meta-review influence is equal across meta articles and that the total injected mass at node t scales
with its size Wt, while ρ directly controls the strength of literature-wide regularization.

We then recompute the JS-barycenter at every node u using the augmented weights:

Σt = argmin
C⪰0

∑
i∈A

w̃
(t)
i JS

(
Γi ∥C[Vi]

)
+

∑
m∈M

w̃(t)
m JS

(
Γm ∥C[Vm]

)
(9)

where C[Vi] denotes the principal submatrix aligned to Vi. Operationally, this step is performed
after the HGMM is fit on A and before the validation procedure (Section 4.3). Meta-reviews are not
used to update responsibilities or to change the tree structure; they act solely as a global regularizer
on node covariances.

We note that Meta-reviews are excluded from held-out folds and from discrepancy statistics in vali-
dation and edge prediction; they do not receive or trigger reassignments.
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C Coherence with world-knowledge

The curated world-knowledge evidence matrix S is derived from the STRING database Szklarczyk
et al. (2023), a widely used resource integrating known and predicted associations between biolog-
ical entities. STRING reports both functional (indirect) associations such as co-expression, shared
pathways, and physical (direct) molecular interactions supported by experimental data and curated
databases. In constructing S, we restrict attention to the physical interaction subset, ensuring that
the world-knowledge prior reflects experimentally grounded molecular relationships rather than in-
direct or correlative signals. Each selected association is assigned a confidence score in the range
sij ∈ [0, 1], reflecting the probability that the interaction exists. These scores capture existence
confidence but not the magnitude or direction of the relationship. Accordingly, when incorporat-
ing S into our PSD projection step (Section 4.1), we compare the absolute values of the estimated
covariances to the corresponding STRING confidence scores.

D Jensen-Shannon Divergence

During the clustering step 4.2, we use the JS divergence, a symmetric and bounded variant of KL
divergence. Given two probability distributions P and Q, the Jensen-Shannon divergence is defined
as:

JS(P∥Q) =
1

2
KL(P∥M) +

1

2
KL(Q∥M), where M =

1

2
(P +Q) (10)

We use the closed-form expression for KL divergence between zero-mean Gaussians:

JS(Γi ∥Σk[Vi]) =
1

2

[
tr
(
(Σk[Vi])

−1Γi

)
+ tr

(
Γ−1
i Σk[Vi]

)
− 2|Vi|

]
(11)

E Hierarchical GMM

At node t, each article i contributes a PSD-projected covariance Γi on entities Vi ⊆ [M ], and each
candidate component k = 1, . . . ,K is parameterized by a global PSD covariance Σt,k ∈ RM×M .
The inherited effective weight of article i at node t is denoted w

(t)
i ≥ 0, initialized at the root as

w
(root)
i = 1/N and propagated downward via w

(t,k)
i = w

(t)
i γ

(t)
i,k . We define a divergence-based

pseudo–log-likelihood at node t for a K-component mixture with weights {πt,k}Kk=1:

LJS(K; t) =
∑
i

w
(t)
i log

(
K∑

k=1

πt,k exp
(
−D(Γi ∥Σt,k[Vi])

))
(12)

For each internal node t we evaluate 2 ≤ K ≤ 5 and score a candidate K using a BIC-inspired
criterion,

BIC(K; t) = − 2LJS(K; t) + p(K; t) logNu, Nt :=
∑
i

w
(t)
i (13)

and choose
K⋆(t) = argmin

K
BIC(K; t) (14)

provided the improvement over the no-split baseline is substantive, i.e.

BIC(K⋆; t) ≤ BIC(1; t)−∆BIC (15)

Each covariance Σt,k contributes M(M+1)
2 free symmetric entries, and the mixture weights add

K − 1 degrees of freedom, giving

p(K; t) = K · M(M+1)
2 + (K − 1) (16)

The top-down recursion halts at node t under three conditions: (1) if the maximum tree depth Dmax

has been reached, (2) if the node’s effective mass Nt =
∑

i w
(t)
i falls below a small threshold τ ,

or (3) if the best split fails to improve sufficiently, that is if BIC(K⋆; t) > BIC(1; t) − ∆BIC.
Nodes satisfying any of these conditions are declared leaves, and their centroids Σℓ together with
the inherited weights {w(ℓ)

i } form the final leaf-level clusters.
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F Random Cluster Baseline

During edge prediction, in order to isolate the benefit of the act of clustering itself, we repeat each
of the test folds with R random clusterings matching the GMM cluster size profile.

For test fold j let {n(j)
k }Kk=1 be the cluster sizes from HGMM on {di}Bi̸=j . We generate R random

assignments of the training datasets into K clusters of sizes {n(j)
k }.

Each random run r yields:

E(r)
j = MSE over Tnovel using closest Σ(r,j)

k

The average random error being:

Erandom =
1

B

B∑
j=1

(
1

R

R∑
r=1

E(r)
j

)
(17)

G Simulator for pathway-grounded validation

We use 42 gene-expression datasets. Each dataset d has a binary pathways vector pd ∈ {0, 1}P
(ground truth). For each d, we run limma and rank genes by the moderated t-test p-value; we
keep the top k=80 genes, and all sampling is from this top-k set. For each dataset we generate 50
synthetic “articles”: for article r we sample an integer m ∼ N (50, 152), sample m genes without
replacement from the top-k pool, extract the sick-patient expression submatrix X

(r)
d ∈ Rnd×m,

and compute the empirical covariance Σ
(r)
d ∈ Rm×m using the unbiased estimator with 1/(nd−1)

normalization. Across 42 datasets and 50 articles per dataset this yields 2,100 articles.

To match the modeling pipeline used for literature evidence, each empirical covariance is converted
to a binary evidence matrix and then projected to PSD before clustering. Concretely, we form
B

(r)
d by taking the entrywise sign of Σ(r)

d off-diagonal and setting magnitude to 0.5 (i.e., B(r)
uv =

0.5 sign(Σ
(r)
uv ) for u ̸= v; diagonals fixed separately), and then apply the PSD-projection objective

of Eq. 3 with λ1=0 (no world-knowledge regularization) to obtain Γ
(r)
d . We then cluster {Γ(r)

d }
using a flat JS–GMM (Sec. 4.2).

For evaluation, each article inherits pd. After clustering, we draw two independent samples of article
pairs, within the same cluster and between different clusters, compute the Jaccard similarity of their
pathway vectors,

J(pi,pj) =
|pi ∩ pj |
|pi ∪ pj |

,

and compare the two similarity distributions using a one-sided Mann–Whitney U (Wilcoxon rank–
sum) test to assess whether within-cluster pathway similarity exceeds between-cluster similarity.

H Compute Resources

Environment. Google Colab GPU runtime with an NVIDIA A100 (40 GB VRAM); experiments
executed on a single GPU worker.

Memory footprint. The dominant tensors are K (typically 5) dense covariance-like matrices of size
20,000 × 20,000. Memory per matrix is n2 × b bytes with n=20,000 and element size b ∈ {4, 8}
bytes (float32/float64). This yields ≈ 1.49 GiB per matrix (float32) or ≈ 2.98 GiB (float64), i.e.,
≈ 7.45 GiB (float32) or ≈ 14.9 GiB (float64) for five matrices.

Runtime. PSD projection steps complete in minutes; JS-GMM clustering requires ∼ 45-60 minutes
per run. With T=10 independent fits, total wall-clock is ∼ 8-10 GPU-hours.

Storage. Intermediate artifacts (matrices, logs, and figures) occupy on the order of 10-20 GB de-
pending on numeric precision.

Scope. Runtimes above cover the experiments reported in the paper; small exploratory runs during
development are excluded.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Sec. 1 state the core contributions, which are instantiated in
Secs. 3-5 with results in Sec. 5.1 supporting these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sec. 6.1 explicitly discusses the limitations of the model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No formal theorems are presented; the paper specifies objectives and algo-
rithms (e.g., Eq. 3; Secs. 4.1-4.2) rather than proved theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Datasets, protocols, baselines, and metrics are specified in Sec. 5. PSD in-
cluding the projection objective (3). JS-HGMM divergence details ( 4.2) and validation
( 4.3).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: This draft does not release code or processed data; it uses public resources
(e.g., TCGA, STRING C). We plan to release code and configurations upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec. 5.1 details all experimental details used during training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean± s.d. error bars across T=10 runs and p-values from size-
matched permutation tests (Fig. 2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All compute resources are detailed in dedicated Section H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human subjects; analyses rely on public, de-identified literature resources
(e.g., STRING C) and standard benchmarks; we adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work is foundational and evaluated offline on public, de-identified
datasets; we do not study deployment or user-facing decisions, so we omit a broader-
impacts discussion (not required per the NeurIPS FAQ).

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk generative model or scraped dataset is released; the work ana-
lyzes public literature and benchmark data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit and cite all third-party assets: STRING Szklarczyk et al.
(2023) and the three benchmark compendia (Buzzao et al., 2024; Geistlinger et al., 2021;
Hutter & Zenklusen, 2018)

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: No new assets are released in this submission. We rely on open-access articles
and public benchmarks, and any future code/model release will be documented post-review
at camera-ready.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human-subjects research was conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human-subjects experiments; IRB approval was not required.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are used for agentic evidence-extraction (Sec. 3). LLMs were used
only for per-sentence grammar and phrasing edits of this manuscript; no content generation,
analysis, or evaluation relied on LLMs, consistent with the NeurIPS 2025 LLM policy.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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