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ABSTRACT

Discovering causal relations from observational data is important. The existence
of unobserved variables, such as latent confounders or mediators, can mislead the
causal identification. To address this issue, proximal causal discovery methods
were proposed to adjust for the bias with the proxy of the unobserved variable.
However, these methods only focused on discrete variables, which limits their
real-world application. Besides, the extension to the continuous case is not easy
as the naive discretization method can introduce biases due to the discretization
error. To tackle this challenge, we propose a new method based on a comprehen-
sive analysis regarding discretization error. We begin by identifying the source of
discretization error and how it introduces the bias. We then introduce smoothness
conditions under which the discretization error can be reduced to an infinitesimal
level, provided the proxy is discretized with sufficiently fine bins. We also find that
such conditions can hold for a broad family of causal models, e.g., Additive Noise
Model. Based on this, we design a proxy-based hypothesis test that is provable to
be consistent for identifying causal relationships within continuous variables. We
demonstrate the utility of our method on synthetic and real-world data.

1 INTRODUCTION

Causal discovery has received increasing attention due to its wide application in machine learning,
medicine, and psychology. While the golden standard for causal discovery remains randomized
experimentation (RCT), it can be too expensive, unethical, or even infeasible to conduct in the real
world. For this reason, identifying causal relations from pure observation data is desirable.

A well-known issue of inferring causation from observation is the existence of unobserved variables,
such as latent confounders Jager et al. (2008) and mediators Hicks & Tingley (2011). These variables
describe intrinsic characteristics that are widely present but difficult to quantify (e.g. health status,
living habit), and hence induce biases for the causal identification.

To address this problem, recent studies proposed to leverage the proxy variable to correct for the
bias caused by the unobserved variable. Here, the proxy variable can be a noisy measurement or an
observed child of the unobserved variable, from which useful information about the latent bias can
be inferred. For example, (Rothman et al., 2008) developed a matrix adjustment method based on
prior knowledge of the proxy generation mechanism; (Kuroki & Pearl, 2014) showed that the gener-
ation mechanism could be automatically identified, thus avoiding the need for external information.
Based on this, (Miao et al., 2018; Tchetgen et al., 2020) proposed a proxy-based hypothesis test
to distinguish causation from latent confounding, and Tchetgen Tchetgen et al. (2023) treated the
proxy as a negative control outcome and employed control outcome calibration Tchetgen Tchetgen
(2014) for identification.

Despite the progress that has been made, these works only focused on discrete variables, which con-
strained their applicability in scenarios involving continuous variables, such as medication dosages
and vital sign measurements. A natural approach for such scenarios is discretizing continuous vari-
ables into discrete ones and applying the proximal method for discrete variables. However, this
approach can result in misidentification Liu et al. (2002); Margaritis (2005), because the discretiza-
tion errors can break the independence structure brought by the proxy variable, i.e., a key property
for the proximal method to work, as illustrated by the following example. Therefore, it remains an
open question of how to infer causal relations for continuous variables.
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Figure 1: Illustration of Exam. 1.1. (a) The causal graph where observed variables are marked in
gray. (b) Identification results of our method and Miao et al. (2018) for discrete variables. (c) As the
discretization error grows, the identification changes from valid (green) to invalid (red).

Example 1.1. Prescription opioids (e.g., morphine, oxycodone) have been traditionally used as
pain relievers in patients with severe disease McQuay (1999). Despite their wide usage, critics often
question their safety, citing a higher mortality rate associated with opioid use Zhang et al. (2018).
Indeed, this association can be a confounding bias induced by the hidden health status, according to
recent RCTs Anand et al. (2004); Rosini et al. (2015), in the sense that patients with poorer health
often require more opioids to ease the pain, and meanwhile are more likely to die. To remove the
bias, we can use the patient’s vital sign, e.g., blood pressure, as the proxy variable. However, as
shown in Fig. 1 (b), naively applying the discrete method (“Baseline”) leaves the bias remaining.
This is because the discretization error can break key independence in the proximal model (Fig. 1
(c)) and therefore compromise the power of the proxy variable.

In this paper, we propose to tackle this challenge with a proximal-based method grounded in a
comprehensive analysis of discretization methods. Specifically, we first propose to identify the
source of the discretization error as well as how it introduces the identification bias. We further
identify smoothness conditions under which this error can be reduced to arbitrarily small. Moreover,
we pleasingly find that this condition can hold for a broad family of causal models (e.g., Additive
Noise Model), as long as the structural equation is continuous and differentiable. Based on this
analysis, we proceed to infer the causal relations with a hypothesis testing procedure that is provable
to be consistent, given a sufficiently large sample size and fine and finite partitions of the continuous
variables. Back to the opioids example, Fig. 1 (b) shows that our identification result aligns well
with the RCT findings, while compared baselines fail to do so.

Our contributions are summarized as follows:

1. We identify smoothness conditions to effectively control the discretization error.

2. We propose a proximal-based hypothesis testing method that is consistent for causal identification.

3. We demonstrate the validity and utility of our method on synthetic and real-world data.

2 RELATED WORKS

Proximal causal discovery. The use of proxy to adjust for latent bias can be traced back to the
seminal work of (Rothman et al., 2008), who developed a matrix adjustment method that required
external knowledge about the proxy generation mechanism. To ease this requirement, (Kuroki &
Pearl, 2014) showed that for surrogate-rich setting, i.e., cases with multiple proxies, one could iden-
tify the error mechanism and thus the causal relation without external information. Following this
work, the surrogate-rich setting has been extensively studied in (Louizos et al., 2017; Deaner, 2021;
Mastouri et al., 2021; Miao et al., 2022; Cheng et al., 2022). On the other side, identification with a
single proxy, though of higher practical value, has been hard to come by. For example, the method
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Figure 2: Illustration of the proximal causal discovery. X ?→ Y is the causal edge of interest. U is
the unobserved variable. W and Z are resp. the outcome-inducing and the treatment-inducing proxy
variables, where W 99K Y and Z 99K X mean the edges can exist or not. (a) denotes the graph for
discrete variables in Miao et al. (2018). For continuous variables, our method only requires a single
proxy to test the causal relation with confounding bias in (b) and mediation bias in (c).

in (Tchetgen Tchetgen et al., 2023) could not achieve complete identification. (Miao et al., 2018;
Tchetgen et al., 2020), the works most related to ours, only applied to discrete variables satisfying
particular level constraints. In our paper, we propose a novel approach that can achieve complete
identification for the continuous case with a single proxy.

Conditional Independence (CI) test with discretization. Causal discovery is closely related to
the test of CI, since the correlation between two variables is believed to be causation only if it does
not disappear conditioning on a third variable Pearl (2009). Since testing CI is much easier in the
discrete case, many attempts have been made to test continuous CI via discretization Margaritis
(2005); Huang (2010). Nonetheless, general theoretical guarantees for such discretization were
not carefully studied until the recent work of (Neykov et al., 2021). In (Neykov et al., 2021), the
authors imposed smoothness assumptions on the conditional distributions, so that if one binned the
conditioning variable with sufficient refined partitions, the problem of testing continuous CI could
be converted (with tractable cost) to that of testing discrete CI in each partition. Such an idea is
further exploited under weaker assumptions in (Warren, 2021). However, these methods required
the conditioning variable to be observable. As a contrast, we study cases where the conditioning
variable is unobservable and hence can not be directly discretized.

3 PRELIMINARY

Problem setup. We consider the problem of identifying the causal relationship between a pair of
variables, X and Y . The system also includes an unobserved variable U , which can be either a
sufficient confounder or mediator between X and Y . For this case, causal identification is generally
not feasible due to the confounding Jager et al. (2008) or mediation bias Hicks & Tingley (2011). To
adjust for the bias, we assume the availability of a proxy variable W . In practice, the proxy variable
can be a noisy measurement or an observed child of the unobserved variable U . We illustrate the
relations between X,Y, U,W with models (b) and (c) in Fig. 2.

Notations. We use PX ,PX,Y ,PX|Y to resp. denote the marginal, joint, and conditional distribu-
tions. We use pr(x) to denote the density of X (resp., probability of X = x) for the case when X
is continuous (resp., discrete). We then use pr(X ∈ A) and pr(Y ∈ B|x) :=

∫
B
pr(y, x)/pr(x)dy

to denote the probabilities of X ∈ A and Y ∈ B given X = x. For discrete U,W with resp. J,K
levels, we use P (W |u) := {pr(w1|u), ..., pr(wK |u)}T and P (w|U) := {pr(w|u1), ..., pr(w|uJ)}
to denote the column and row vectors consist of transition probabilities. The transition matrix from
U to W is defined as P (W |U) := {P (W |u1), ..., P (W |uJ)}. We use →p (resp., →d) to denote
convergence in probability (resp., in distribution). We denote ∥A−B∥L1 :=

∑
i,j |A(i, j)−B(i, j)|

for any matrices A,B. We define A ⪯ (resp., ⪰)B if A(i, j) ≤ (resp., ≥)B(i, j) for any i, j.

Hypothesis Testing in the discrete case. When the system is composed of discrete variables,
(Miao et al., 2018) proposed to identify the causal relation by testing the null causal hypothesis
H0 : X ⊥⊥ Y |U , which will be rejected if the direct causal relation X → Y exists. To test H0 under
the presence of unobserved U , (Miao et al., 2018) required another proxy variable Z and proposed
to test the linearity between two probability functions of x, i.e., pr(y|Z, x) and P (W |Z, x), by
exploiting the independence structure brought by W and Z. Specifically, suppose that X,U,W,Z
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are discrete variables with (resp.) I, J,K,M levels such that IM > K, we have

P (W |Z, x) = P (W |U)P (U |Z, x), pr(y|Z, x) = P (y|U, x)P (U |Z, x),

since W ⊥⊥ Z,X|U . When P (W |U) is invertible, we have the following:

pr(y|Z, x) = P (y|U)P (W |U)−1P (W |Z, x) + {P (y|U, x)− P (y|U)}P (W |U)−1P (W |Z, x)︸ ︷︷ ︸
= 0 when H0 holds

.

(1)
Under H0, we have P (y|U, x)−P (y|U) = 0 for any x. Therefore, the 2nd term in Eq. 1 disappears,
leading to a linear relation between pr(y|Z, x) and P (W |Z, x). Based on this, (Miao et al., 2018)
proposed to test H0 by measuring the linearity between qy := P (y|Z,X) and the covariates matrix
Q := P (W |Z,X). Specifically, with the estimated q̂y and Q̂,

√
n(q̂y − qy)→d N(0,Σy), Q̂→p Q, Σ̂y →p Σy, with Σ̂y,Σy positive-definite, (2)

we can calculate ξy := {In − Σ̂
− 1

2
y Q̂T (Q̂Σ̂−1

y Q̂T )−1Q̂Σ̂
− 1

2
y }Σ̂

− 1
2

y q̂y as the least square residual

of regressing Σ̂
− 1

2
y q̂y on Σ̂

− 1
2

y Q̂. If H0 holds, Miao et al. (2018) showed that Ty → χ2
r , where

r := IM −K. Then one can perform hypothesis testing using Ty given any significance level α.

Challenges for the continuous case. Extending this analysis to the continuous case is not easy,
since Eq. 1 transforms into an integral form over the variable U , rendering linear regression and Eq. 2
infeasible. A natural approach is to discretize X and W and apply the above procedure. However,
such a discretization, if not conducted properly, will break the independence structure W ⊥⊥ X|U
induced by the proxy variable W . This will introduce a non-ignorable error for hypothesis testing,
as illustrated in Example 1.1 where I = 3,K = 2, L := |Y | = 3. Due to these challenges, it
remains open to identify causal relationships for continuous variables.

To tackle this issue, we conduct a thorough analysis of the discretization error, which enables us to
effectively infer the causal relationships involving continuous variables. In particular, we delve into
how the discretization error matters and leverage Total-Variation (TV) Smoothness to demonstrate
its asymptotic diminishment. With this guarantee in place, we proceed to show that the hypothesis
test remains asymptotically valid. As a byproduct, our analysis only requires a single proxy W ,
instead of two proxies W,Z in the discrete case. This practical implication is particularly valuable
in situations where access to two proxies is not feasible.

4 METHODOLOGY

In this section, we introduce our method for testing the null causal hypothesis involving continuous
variables when we can only access a single proxy W . Our method is based on a comprehensive anal-
ysis regarding the error introduced during discretizing the continuous domains of X,W, Y . In par-
ticular, we identify the smoothness conditions on the conditional distribution PY |U,X and PW |U,X ,
under which the discretization error can be controlled to an infinitesimal level, making the hypothe-
sis testing remain valid even after discretization. We further show that such smoothness conditions
can hold for a broad family of causal models, such as the Additive Noise Model (ANM).

The rest of the section is organized as follows. First, in Sec. 4.1, we delve into the discretization
error to investigate where it occurs and how it matters. Then, in Sec. 4.2, we discuss how to control
these errors with smoothness regularities. Finally, in Sec. 4.3, we show that the proper control of the
discretization errors leads to an asymptotically valid hypothesis test.

4.1 IDENTIFYING SOURCES OF THE DISCRETIZATION ERROR

We provide an overview of our testing procedure and identify where discretization errors may occur
and how they affect the procedure. Our procedure begins with binning the continuous X,Y,W into
their discrete copies X̃, Ỹ , W̃ , followed by the hypothesis testing on these copies.

To be specific, for continuous variables X,U,W with bounded support, let {Ai}Ii=1, {Bj}Jj=1,

{Ck}Kk=1 be resp. the measurable partitions of supp(X), supp(U), supp(W ), and denote the parti-
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tioned discrete variables resp. as X̃, Ũ , W̃ . By the law of total probability, we have:

pr(W ∈ Ck|x) =
∑

j
pr(W ∈ Ck|U ∈ Bj , x) pr(U ∈ Bj |x),

pr(y|x) =
∑

j
pr(y|U ∈ Bj , x) pr(U ∈ Bj |x).

In the form of transition matrices, these mean:

P (W̃ |x) = P (W̃ |Ũ , x)P (Ũ |x), pr(y|x) = P (y|Ũ , x)P (Ũ |x).

Similar to the discrete case, we suppose that The matrix P (W̃ |Ũ , x) is invertible for all x ∈
supp(X).
Remark 4.1. This condition requires the dependency of the proxy W on U to be strong enough,
which is necessary for the proximal causal learning Kuroki & Pearl (2014); Miao et al. (2018).

Under Asm. 4.1, we can combine the two equations together by inversing the P (W̃ |Ũ , x) and have:

pr(y|x) = P (y|Ũ , x)P(W̃ |Ũ , x)−1P (W̃ |x).

Heuristically, under H0 :X ⊥⊥ Y |U and the independence structure X ⊥⊥ W |U brought from the
proxy W , we have p(y|u, x) = p(y|x) and p(w|u, x) = p(w|x) for any x, u, y. If we further have
P (y|Ũ , x) ≈ P (y|Ũ) and P (W̃ |Ũ , x) ≈ P (W̃ |Ũ), then we can rewrite the above equation as1:

pr(y|x) ≈ P (y|Ũ)P (W̃ |Ũ)−1P (W̃ |x), (3)

which means pr(y|x) varies linearly with P (W̃ |x) under H0. In this regard, the linearity-based test
in Miao et al. (2018) can be applied seamlessly to the continuous case.

However, the above approximations P (y|Ũ , x) ≈ P (y|Ũ) and P (W̃ |Ũ , x) ≈ P (W̃ |Ũ) may
not hold, since the discretization of U may break the independence structures. We call the
∥P (W̃ |Ũ , x) − P (W̃ |Ũ)∥1 and the ∥P (y|Ũ , x) − P (y|Ũ)∥1 as the discretization error, which can
make the hypothesis testing invalid as the linearity no longer holds under H0.

In the subsequent section, we will characterize the smoothness Asmtion under which the discretiza-
tion error can be reduced to an infinitesimal level.

4.2 CONTROLLING THE DISCRETIZATION ERROR

In this section, we provide the analysis regarding the discretization error control. Before preceding
any technical detail, we first summarize our idea below. Specifically, the objective of interest is to
find a proper way of discretization such that:

|pr(y|U ∈ Bj , x)− pr(y|U ∈ Bj)| ≤ ϵ, given X ⊥⊥ Y |U,

for any ϵ > 0. In this regard, applying to all Bj ⊂ supp(U), we have |P (y|Ũ , x) − P (y|Ũ)| ⪯
[ϵ]1×J and |P (W̃ |Ũ , x)− P (W̃ |Ũ)| ⪯ [ϵ]K×J , making the linearity in Eq. 3 approximately holds.
For this purpose, we introduce the following smoothness conditions for functions u 7→ PY |U=u,X

and u 7→ PW |U=u,X .

We assume the u 7→ PY |U=u,X , u 7→ PY |U=u, u 7→ PW |U=u,X , and u 7→ PW |U=u are resp.
LY |X -Lipschitz, LY -Lipschitz, LW |X -Lipschitz, LW -Lipschitz in terms of Total-Variation (TV)
distance:

TV(PY |U=u1,X ,PY |U=u2,X) ≤ LY |X |u1 − u2|, TV(PY |U=u1
,PY |U=u2

) ≤ LY |u1 − u2|,
TV(PW |U=u1,X ,PW |U=u2,X) ≤ LW |X |u1 − u2|, TV(PW |U=u1

,PW |U=u2
) ≤ LW |u1 − u2|,

where TV(P,Q) := 1
2

∫
|p(x)− q(x)|dx = supD |P(D)−Q(D)|.

Remark 4.2. This Asmtion was introduced in the conditional independence testing Warren (2021),
however requires all variables to be observed. Essentially, this condition means the mapping u 7→
PY |U=u,X , u 7→ PY |U=u, u 7→ PW |U=u,X , and u 7→ PW |U=u change smoothly with u.

1Note that P (W̃ |Ũ , x) ≈ P (W̃ |Ũ) ⇔ P (W̃ |Ũ , x)−1 ≈ P (W̃ |Ũ)−1, because the function F (M) :
M 7→ M−1 from a matrix to its inversion is a continuous function.
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To see how this Asmtion can control the discretization error of PY |U,X (the case for PW |U,X is
similar and we omit here for brevity), we note that under Asm. 4.2, it is easy to see that if the
diameter of the bin Bj is less than ϵ/LY (or ϵ/LY |X ), we will have LY |u1 − u2| ≤ ϵ for any
u1, u2 ∈ Bj . Then we have

TV(PY |U=u1
,PY |U∈Bj

) =

∫
Bj

TV(PY |U=u1
,PY |U=u2

)dPU (u2)/PU (Bj)

≤
∫
Bj

LY |u1 − u2|dPU (u2)/PU (Bj) ≤ ϵ.

According to the definition of TV-distance, we have

|pr(y|U = u1)− pr(y|U ∈ Bj)| ≤ ϵ. (4)

Similarly, if the diameter of Bj is less than ϵ/LY |X , we have

|pr(y|U = u1, x)− pr(y|U ∈ Bj , x)| ≤ ϵ. (5)

As we have pr(y|U = u1, x) = pr(y|U = u1) given X ⊥⊥ Y |U , we combine (5) and (4) and use
the triangle inequity to obtain that

|pr(y|U ∈ Bj , x)− pr(y|U ∈ Bj)| ≤ 2ϵ,

which means discretization error can be arbitrarily small when the bin diameter is small enough. We
summarize the above analysis to the following theorem.

Theorem 4.3 (Discretization error control with TV smoothness). Suppose Asm. 4.2 holds. For each
ϵ, suppose that {Bj}Jj=1 is a measurable partition of supp(U) such that for every bin Bj ,

diam(Bj) ≤
1

2
min{ϵ/LY , ϵ/LY |X}.

Then under X ⊥⊥ Y |U , we have:

|pr(y|U ∈ Bj , x)− pr(y|U ∈ Bj)| ≤ ϵ.

Remark 4.4. Thm. 4.3 can be extended to accommodate weaker smoothness conditions such as
the Hölder continuity. It can also be extended to cases where U takes an unbounded support, by
truncating the U to a bounded support s.t. the probability of the residue term is smaller than than ϵ.

Thm. 4.3 characterizes the condition for the discretization approach to be valid. In the following, we
will show that such a smoothness condition can hold for the ANM model, which has been widely
used in the causal inference literature Pearl (2009); Peters et al. (2017).

Proposition 4.5 (ANM satisfying Lipschitz continuity). Suppose that X ← U → Y (similarly for
X → U → Y ) is an addictive noise model, that is, X = h(U) + N and Y = g(U) + E, where
N,E are exogenous noises. Denote the probability density function of E as fE . Then, the functions
u 7→ PY |U=u,X and u 7→ PY |U=u are Lipschitz continuous with respect to L1-distance if:

1. g and fE are continuous and differentiable, and

2. f ′
E is absolute integral, i.e.

∫
|f ′

E(e)|de exists.

As for non-additive models, the 2nd condition can hold for the exponential family E ∼ exp.

In the following section, we will show how the discretization guarantee obtained above leads to a
valid test of the null causal hypothesis.

4.3 HYPOTHESIS TEST WITH ASYMPTOTIC VALIDITY

In this section, we introduce our testing procedure for H0 : X ⊥⊥ Y |U and show its asymptotic
validity by leveraging results in Thm. 4.3. Specifically, given the smoothness condition outlined
in Asmtion 4.2, when H0 holds, we can approximate P (y|Ũ , x) as P (y|Ũ) and P (W̃ |Ũ , x) as
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P (W̃ |Ũ). This approximation allows us to assess the linear relationship pr(y|x) ∼ P (W̃ |x) in (3),
provided that the bin number is large enough to make each bin size sufficiently small.

To test the linearity, we discretize the proxy W into W̃ and apply the procedure Miao et al. (2018)
on W̃ . Specifically, we denote qy := P (y|X̃), Q := P (W̃ |X̃) and (q̂y, Q̂) be the corresponded

estimators in Eq. 2. Similarly, we denote the least square residual of regressing Σ̂
− 1

2
y q̂y on Σ̂

− 1
2

y Q̂

as ξy := {In − Σ̂
− 1

2
y Q̂T (Q̂Σ̂−1

y Q̂T )−1Q̂Σ̂
− 1

2
y }Σ̂

− 1
2

y q̂y . To ensure the uniqueness of the least square
solution, we similarly assume Banerjee & Roy (2014); Miao et al. (2018): The matrix Q has full
row rank.

Then we construct the statistics Ty := n− 1
2 ξTy ξy that converges to the chi-square distribution under

H0, which provides the evidence to determine whether to reject the null hypothesis.
Theorem 4.6 (Asymptotic validity). Suppose models (a)-(b), Asm. 4.2, and Asms. 4.3 hold. Dis-
cretize X,W to I,K(I > K) levels with sufficient fine bins. Denote the level difference as
r := I − K, the maximal bin diameter as m2, and the sample size as n. If H0 : X ⊥⊥ Y |U is
correct, then Ty→ χ2

r in distribution when m→ 0, n→∞.

Thm. 4.6 can be generalized to account for all levels of Y . Specifically, suppose that Ỹ has L levels
and let qT :=

{
qT1 , ..., q

T
L−1

}
. Then, under H0, we have:

q ≈
{
pr(y1|Ũ)P (W̃ |Ũ)−1, ..., pr(yL−1|Ũ)P (W̃ |Ũ)−1

}Q 0 0
...

. . .
...

0 0 Q

 .

Denote the diagonal matrix on the right-hand side as Q0. Q0 is a I(L− 1)× I(L− 1) matrix with
full row rank. We can construct a new test statistic T that aggregates all levels of Ỹ by replacing
(q̂y, Q̂) with (q̂, Q̂0) wherever they appear in the construction of ξy and Ty . Specifically, suppose
we have estimators (q̂, Q̂0) that satisfy:

n
1
2 (q̂ − q)→d N(0,Σ), Q̂0 →p Q0, and Σ̂→p Σ, with Σ̂,Σ positive-definite. (6)

Let ξ := {I − Σ̂− 1
2 Q̂T

0 (Q̂0Σ̂
−1Q̂T

0 )
−1Q̂0Σ̂

− 1
2 }Σ̂− 1

2 q̂ be the least-square residual of regressing
Σ̂− 1

2 q̂ on Σ̂− 1
2 Q̂0 and T := nξT ξ be the test statistic, we have:

Corollary 4.7. Assume models (a)-(b), Asm. 4.1, and Asms. 4.3. Discretize X,W, Y to I,K,L(I >
K) levels. Denote r := I(L− 1)−K, the maximal bin diameter as m, and the sample size as n. If
H0 :X ⊥⊥ Y |U is correct, then Ty→ χ2

r in distribution when m→ 0, n→∞.
Remark 4.8. The proposed test applies to any causal model that satisfies X ⊥⊥ W |U , including
cases where U,W are multivariate variables. It can also be generalized to accommodate observed
confounders (mediators) Z, by re-defining qy := P (y|X̃, z) and Q := P (W̃ |X̃, z).

5 EXPERIMENT

In this section, we evaluate our method on synthetic data and a real-world application, i.e., treatment
study of sepsis disease in the Intensive Care Unit (ICU) scenario Johnson et al. (2016).

Compared baselines. We compare our method with the following baselines: i) Vanilla (X ⊥⊥
Y |W ) that directly adjusts for the bias with the proxy variable W ; ii) Oracle (X ⊥⊥ Y |U ) which
assumes the latent variable U is available for conditioning; and iii) Miao et al. Miao et al. (2018)
that was designed for discrete X,U,W with respectively I, J,K levels such that I > J = K.

Metrics. We report the type-I error and the type-II error of the test. The type-I error is the rate of
rejecting a true null hypothesis, i.e., the prediction is X → Y while the ground truth is X ̸→ Y .
The type-II error is the rate of not rejecting a false null hypothesis, i.e., the prediction is X ̸→ Y
while the ground truth is X → Y .

Implementation details. The significant level α is set to 0.05. For our method, the X,W, Y are
discretized by quantile, with bin numbers (resp.) setting to I = 16, K = 12, L = 5 for synthetic data

2Here, m is the maximal diameter of the (implicit) bins {Bj}Jj=1.
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and I = 14,K = 12, L = 5 for real-world data. The asymptotic estimator in Eq.2 is obtained by the
empirical probability mass functions p̂r(w|x) and p̂r(y|x)3. For the Vanilla and Oracle baselines,
the kernel-based conditional independence (KCI) test Zhang et al. (2012) is used. For Miao et al.
Miao et al. (2018), the discretization bin numbers are small and set to I = 3,K = 2, L = 3, so as
to the necessity of sufficiently large bin numbers to control the discretization error.

5.1 SYNTHETIC DATA

Data generation. We consider the confounding graph and the mediation graph resp. shown in Fig. 2
(b) and (c) with W ̸→ Y . For each graph, we use the structural equation Vi =

∑
j∈PAi

fij(Vj)+Ei

to generate data for each vertex Vi from its parent set PAi and the associated exogenous noise Ei.
For each i, we randomly choose fij from {linear, tanh, sin, sigmoid}, and the distribution of
Ei from {gaussian, uniform, exponential, gamma}. To remove the effect of randomness, we
repeat 10 times, with each time we generate 100 replications (resp.) under H0 and H1. The sample
size is set to {400, 600, 800, 1000, 1200}.

Figure 3: (a,b) Type-I and type-II errors of our method under different bin numbers. (c) Discretiza-
tion errors under different bin diameters.

Influence of bin numbers. Fig. 3 shows the type-I and type-II errors of our method with bin
numbers varying from 4 to 12. As we can see, the type-I error decreases and approaches the oracle
level when K increases. This is because when K increases, the diameter of each bin becomes
small. Under Asm. ??, this means the discretization error |pr(Y |U ∈ Bj)− pr(Y |U ∈ Bj , X)|
is close to an infinitesimal level (as shown in Fig. 3 (c)) and Q̂ ∼ q̂ has an approximate linear
relation. Therefore, the test statistic T converges to the chi-square distribution, and the type-I error
is controlled. For the type-II error as a trade-off with the type-I error, we can observe that it grows as
the type-I error decreases. Besides, we can also observe that it is consistently small across different
values of K, which may be due to the strong dependency between X and Y .

Hypothesis testing results. Fig. 4 shows the type-I and type-II errors of our method and baselines.
As shown, our method can control the type-I error to the threshold p = 0.05 up to a small inflation
caused by the discretization error. Besides, the error gets smaller as the sample size grows, which
aligns with our theoretical results in Thm. 4.6 and Cor. 4.7. Notably, the type-I error Miao et al.
Miao et al. (2018) significantly bypasses the threshold as the bin numbers are too small to control
the discretization error. It is also interesting to see from the result of the Vanilla method that directly
conditioning on the proxy variable fails to remove the confounding bias caused by U .

5.2 TREATMENT OF SEPSIS DISEASE

We apply our method to infer the following causal relations in the scenario of sepsis disease:

1. Vancomycin→White Blood Cell (WBC) count. The vancomycin is a common antibiotic Moel-
lering Jr (2006); Rybak et al. (2009) used to control bacterial infection (measured by the WBC
count) in patients with sepsis. According to an existing RCT Rosini et al. (2015), vancomycin
can causally influence the WBC count. As patients exhibit a higher mortality rate with an in-
creased degree of bacterial infection, the white blood cell (WBC) count can serve as a surrogate
measure of mortality, as illustrated in Figure 1 (a).

3Please refer to the appendix for details.
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(a) (b)

Figure 4: Type-I and type-II errors of our method and baselines under different sample sizes.

2. Morphine ̸→ WBC count. Prescription morphine is a common opioid medication used in pain
management McQuay (1999). Clinically, the dosage of morphine appears a strong correlation
with the WBC count Zhang et al. (2018). However, according to a recent RCT Anand et al.
(2004), this correlation is highly likely to be confounding bias instead of causation.

For both cases, the latent confounder is the patient’s health status. To adjust for the confounding, we
use blood pressure as the proxy variable.

Table 1: Identified causal relations in sepsis disease.

Method Vancomycin→WBC Morphine→WBC

Ground truth (RCT) ! %

Vanilla ! !

Miao et al.Miao et al. (2018) % !

Ours ! %

Data extraction. We consider the Medical Information Mart for Intensive Care (MIMIC III) John-
son et al. (2016) database, which consists of electronic health records from patients in the ICU. From
MIMIC III, we extract 3,251 patients that are diagnosed with sepsis during their stays. Among these,
there are (resp.) 1,888 and 559 patients with vancomycin and morphine records.

Results. Tab. 1 shows inferred causal relations of our method and baselines. As we can see, our
results well align with the RCT findings in both cases, which demonstrates its effectiveness and
utility. In contrast, there is a large discrepancy between the results given by baseline methods and
the RCTs. For example, the vanilla method detects Morphine→WBC, which can be a false positive
result due to the failure of adjusting for the confounding bias. Miao et al. Miao et al. (2018) gives
inconsistent results in both cases, indicating that the proxy variable may lose its power without
careful control of the discretization error.

6 CONCLUSION

In this paper, we propose a proxy-based method to identify causal relations when unobserved vari-
ables are present. Our method exploits the TV smoothness to show that the discretization error can
be asymptotically controlled, rendering the hypothesis testing valid. We demonstrate the utility of
our method on both synthetic data and the treatment study of sepsis disease.

Limitation and future work. Our method relies on discretization and therefore may suffer from
accumulated discretization error for high-dimensional proxies since the error can be accumulated
across dimensions. This is a common issue faced by all conditional independence (CI) test meth-
ods Ramdas et al. (2015); Shah & Peters (2020). To alleviate this problem, we will investigate
theories on high-dimensional CI test Bellot & van der Schaar (2019); Ankan & Textor (2022) and
discretization [Van Handel, 2014, Lem. 5.12] to pursue a delicate solution. Besides, our method can
be potentially applied to multi-variable causal discovery methods by incorporating our method into
existing algorithms such as the Fast Causal Inference (FCI) algorithm Spirtes et al. (2000).
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A CONTROLLING THE DISCRETIZATION ERROR

In this section, we introduce the proof of Thm. 4.2 and Exam. 4.4.

For the convenience of the mathematical derivation, we use the L1-distance and the Total Variance
(TV) distance interchangeably, since for two distributions P,Q:

||P,Q||1 :=
1

2

∫
|p(x)− q(x)|dx = TV (P,Q).

A.1 PROOF OF THM. 4.2

Theorem 4.2. Suppose that u 7→ PY |X,U=u and u 7→ PY |U=u are (resp.) LY |X -Lipschitz and LY -
Lipschitz with respect to L1-distance. Suppose that {Bj}Jj=1 is a measurable partition of supp(U),
and that for every bin Bj ,

diam(Bj) ≤
1

2
min{ϵ/LY , ϵ/LY |X}.

Suppose that X ⊥⊥ Y |U , then, we have:

|pr(y|U ∈ Bj , x)− pr(y|U ∈ Bj)| ≤ ϵ.

To prove Thm. 4.2, we first introduce the following lemma, which shows that if two distributions
are close in L1-distance, then their probability density values are also close.
Lemma A.1. Consider two distributions P,Q over the random variable X , if ||P,Q||1 ≤ ϵ, then
|prP(X ∈ A)− prQ(X ∈ A)| ≤ ϵ, for any set A ∈ supp(X).

Proof. The proof is immediate considering the fact that the L1-distance equals the TV distance and
the definition that:

TV (P,Q) := sup
A
|prP(X ∈ A)− prQ(X ∈ A)| .

We also require the following lemma, which connects the smoothness conditions to the closeness of
distributions in L1-distance.
Lemma A.2. Suppose that u 7→ PY |U=u be LY -Lipschitz with respect to L1-distance. Suppose
that {Bj}Jj=1 is a measurable partition of supp(U), and that diam(Bj) ≤ ϵ/LY for every bin Bj

in the partition. Then, for all u0 ∈ Bj , we have:

||PY |U=u0
,PY |U∈Bj

||1 ≤ ϵ. (7)

Proof. We first show that PY |U∈Bj
can be written as:

PY |U∈Bj
= −
∫
Bj

PY |U=udPU (u), (8)

where −
∫

denotes the averaged integral over Bj , i.e., the integral divided by the measure on the
integration domain Bj .

Specifically, for any Borel set D ⊆ supp(Y ), the left hand side of (8) is:

PY |U∈Bj
(D) = pr(Y ∈ D|U ∈ Bj),

while the right-hand side is:∫
Bj

PY |U=u(D)dPU (u)/PU (Bj) = pr(Y ∈ D,U ∈ Bj)/pr(U ∈ Bj).

Therefore, (8) holds according to Bayes’ theorem.
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Second, due to the assumed Lipschitzness, for any u, u0 ∈ Bj , we have:

||PY |U=u0
,PY |U=u||1 = sup

D

∣∣PY |U=u0
(D)− PY |U=u(D)

∣∣ ≤ LY |u0 − u| ≤ ϵ. (9)

Now, to prove (7), we hope to prove:

||PY |U=u0
,PY |U∈Bj

)||1 = sup
D

∣∣PY |U=u0
(D)− PY |U∈Bj

(D)
∣∣ ≤ ϵ. (10)

Next, we prove (10) by (8) and (9). Specifically, note that for any D ⊆ supp(Y ), we have:

|PY |U=u0
(D)− PY |U∈Bj

(D)| =

∣∣∣∣∣PY |U=u0
(D)−−

∫
Bj

PY |U=u(D)dPU (u)

∣∣∣∣∣ # (8)

=

∣∣∣∣∣−
∫
Bj

PY |U=u0
(D)dLU (u)−−

∫
Bj

PY |U=u(D)dPU (u)

∣∣∣∣∣ #−
∫
Bj

dPU (u) = 1

≤ −
∫
Bj

∣∣PY |U=u0
(D)− PY |U=u(D)

∣∣ dPU (u) # Triangle inequity

≤ −
∫
Bj

ϵ dPU (u) = ϵ. # (9)

Since for any D ⊆ supp(Y ),
∣∣PY |U=u0

(D)− PY |U∈Bj
(D)

∣∣ ≤ ϵ, we have (10) holds, and hence
prove the proposition.

Analogously, we also have the following lemma.

Lemma A.3. Suppose that u 7→ PY |X,U=u be LY |X -Lipschitz with respect to L1-distance. Suppose
that {Bj}Ii=1 is a measurable partition of supp(U), and that diam(Bj) ≤ ϵ/LY |X for every bin
Bj in the partition. Then, for all u0 ∈ Bj , we have:

||PY |X,U=u0
,PY |X,U∈Bj

||1 ≤ ϵ.

Equipped with Lem. A.1, Lem. A.2, and Lem. A.3, we now introduce the proof of Thm. 4.2.

Proof of Thm. 4.2. According to the Lipschitzness of u 7→ PY |X,U=u and Lem. A.3, we have:

||PY |X,U=u0
,PY |X,U∈Bj

|| ≤ 1

2
ϵ.

According to Lem. A.1, this indicates |pr(y|x, U = u0)− pr(y|x, U ∈ Bj)| ≤ 1
2ϵ.

Under X ⊥⊥ Y |U , we have pr(y|x, U = u0) = pr(y|U = u0). Hence, we have:

|pr(y|U = u0)− pr(y|x, U ∈ Bj)| ≤
1

2
ϵ. (11)

Similarly, according to the Lipschitzness of u 7→ PY |U=u, we have:

|pr(y|U = u0)− pr(y|U ∈ Bj)| ≤
1

2
ϵ. (12)

Combining (11) and (12) with the triangle inequity, we have:

|pr(y|U ∈ Bj)− pr(y|x, U ∈ Bj)| ≤
|pr(y|U ∈ Bj)− pr(y|U = u0)|+ |pr(y|U = u0)− pr(y|x, U ∈ Bj)| ≤ ϵ.
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A.2 PROOF OF PROP. A.4: ANMS THAT SATISFY THE LIPSCHITZ CONTINUITY

Proposition A.4. Suppose that X ← U → Y (similarly for X → U → Y ) is an addictive noise
model, that is, X = h(U) +N and Y = g(U) + E, where N,E are exogenous noises. Denote the
probability density function of E as fE . Then, the functions u 7→ PY |U=u,X and u 7→ PY |U=u are
Lipschitz continuous with respect to L1-distance if:

1. g and fE are continuous and differentiable, and

2. f ′
E is absolute integral, i.e.

∫
|f ′

E(e)|de exists.

The second condition can be satisfied by, for example, the exponential family E ∼ exp.

Proof. Under X ⊥⊥ Y |U , we have PY |X,U=u = PY |U=u. Hence, it is suffice to show the Lipschitz-
ness of u 7→ PY |U=u.

Specifically, we hope to prove ∀u1, u2 ∈ supp(U):

||PY |U=u1
,PY |U=u2

)||1 ≤ LY |u1 − u2| . (13)

We first re-write (13) with the structural function g and probability density function fE .

Specifically, the L1-distance can be re-written as the L1-distance between the probability density
functions:

||PY |U=u1
,PY |U=u2

||1 =
1

2

∫ ∣∣fY |U=u1
(y)− fY |U=u2

(y)
∣∣ dy.

We also have:
fY |U=u(y) = fE(y − g(u)),

by inversing the structural equation Y = g(U) + E.

As a result, (13) can be re-written as: ∀u1, u2 ∈ supp(U),∫
|fE(y − g(u1))− fE(y − g(u2))| dy ≤ 2Ly |u1 − u2| . (14)

Next, we show (14) is true if:

1. g and fE are continuous and differentiable,

2. f ′
E is absolute integrable, i.e.

∫
f ′
E(e)de exists.

Applying the Mean Value Theorem4on the function u 7→ fE(y− g(u)), we have ∃uc ∈ (u1, u2) s.t.

|fE(y − g(u1))− fE(y − g(u2))| = |f ′
E(y − g(uc))g

′(uc)| · |u1 − u2|

In this regard, we have:∫
|fE(y − g(u1))− fE(y − g(u2))| dy = |g′(uc)|

∫
|f ′

E(y − g(uc))|dy |u1 − u2| .

Let LY := |g′(uc)|
∫
|f ′

E(y − g(uc))|dy5, we have:∫
|fE(y − g(u1))− fE(y − g(u2))| dy ≤ 2Ly |u1 − u2| ,

hence, the Lipschitzness is proved.

4The Mean Value Theorem requires the function fE ◦ g to be continuous on [u1, u2] and differentiable on
(u1, u2), which are satisfied by the assumed continuity and differentiability of g and fE .

5LY is a constant value because we assume the function f ′
E is absolutely integrable.
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B HYPOTHESIS TEST WITH ASYMPTOTIC VALIDITY

B.1 PROOF OF THM. 4.8: ASYMPTOTIC VALIDITY

Theorem 4.8. Assume models (a)-(b), Asm. 4.1, and Asms. 4.6-4.7. Discretize X,W to I,K(I >K)
levels with sufficient fine bins. Denote the level difference as r := I −K, the maximal bin diameter
as m6, and the sample size as n. If H0 :X ⊥⊥ Y |U is correct, then Ty→ χ2

r in distribution when
m→ 0, n→∞.

Proof. According to the law of total probability, we first have:

pr(W ∈ Ck|x) =
∑
j

pr(W ∈ Ck|U ∈ Bj , x)pr(U ∈ Bj |x).

In the form of the transition matrix, this means:

P (W̃ |x) = P (W̃ |Ũ , x)P (Ũ |x). (15)

We also have:
pr(y|x) =

∑
j

pr(y|U ∈ Bj , x)pr(U ∈ Bj |x).

In the form of the transition matrix, this means:

pr(y|x) = P (y|Ũ , x)P (Ũ |x). (16)

Under Asm. 4.1, (15) can be rewritten as:

P (W̃ |Ũ , x)−1P (W̃ |x) = P (Ũ |x). (17)

(16) and (17) together give:

pr(y|x) = P (y|Ũ , x)P (W̃ |Ũ , x)−1P (W̃ |x). (18)

The idea is that, under Asm. 4.6 and H0 :X ⊥⊥ Y |U , we have P (y|Ũ , x) ≈ P (y|Ũ) by Thm. 4.2.

In addition, under model (a)-(b) (X ⊥⊥W |U ), we also have P (W̃ |Ũ , x) ≈ P (W̃ |Ũ).

Therefore, we have (informally):

pr(y|x) ≈ P (y|Ũ)P (W̃ |Ũ)−1P (W̃ |x).

This means under H0, pr(y|x) has a linear relationship with P (W̃ |x), for fixed y, as x varies.
Therefore, any evidence against the linearity is evidence against H0.

Formally speaking, rewrite (18) as:

pr(y|x)

=
[
P (y|Ũ) + P (y|Ũ , x)− P (y|Ũ)

] [
P (W̃ |Ũ)−1 + P (W̃ |Ũ , x)−1 − P (W̃ |Ũ)−1

]
P (W̃ |x)

= P (y|Ũ)P (W̃ |Ũ)−1P (W̃ |x) + ∆P (W̃ |x), (19)

where

∆ = P(y|Ũ)
[
P(W̃ |Ũ , x)−1 − P(W̃ |Ũ)−1

]
+
[
P(y|Ũ , x)− P(y|Ũ)

]
P(W̃ |Ũ)−1

+
[
P(y|Ũ , x)− P(y|Ũ)

] [
P(W̃ |Ũ , x)−1 − P(W̃ |Ũ)−1

]
.

Since X ⊥⊥W |U , Asm. 4.6 and Thm. 4.2 , we have:

lim
ϵ→0

P (W̃ |Ũ , x)− P (W̃ |Ũ) = [0],

6Here, m is the maximal diameter of the (implicit) bins {Bj}Jj=1.
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where [0] denote the zero matrix. Since matrix inversion F (M) : M 7→ M−1 is a continuous
function, we have:

lim
ϵ→0

P (W̃ |Ũ , x)−1 − P (W̃ |Ũ)−1 = [0], (20)

Under H0 : X ⊥⊥ Y |U , we also have:

lim
ϵ→0

P (y|Ũ , x)− P (y|Ũ) = [0]. (21)

With (20) and (21), we have:

lim
ϵ→0

∆ = [0],

lim
ϵ→0

P (y|x) = P (y|Ũ)P (W̃ |Ũ)−1P (W̃ |x).

Considering all bins of supp(X), this can be written in the form of the transition matrix:

lim
ϵ→0

qTy = P (y|Ũ)P (W̃ |Ũ)−1Q, (22)

which means qTy ∼ Q (as x varies) is linear under H0.

In the following, we discuss the asymptotic distribution of n
1
2 ξy and Ty .

We first show that n
1
2 ξy → N(0,Ωy) in distribution when n → ∞ and ϵ → 0. Specifi-

cally, given that Q̂ → Q, Σ̂y → Σy in probability and n
1
2 (q̂y − qy) → N(0,Σy) in distribu-

tion, applying Slutsky’s theorem, we have n
1
2 (ξy − ΩyΣ

− 1
2

y qy) → N(0,Ωy) in distribution with

Ωy = I − Σ
− 1

2
y QT (QΣ−1

y QT )−1QΣ
− 1

2
y . If H0 is correct, by (22), we have ΩyΣ

− 1
2

y qy → 0, which,
by applying Slutsky’s theorem again, implies that n

1
2 ξy → N(0,Ωy) in distribution.

Next, we show that Ωy has rank r = I − K. Specifically, the rank of Q is K by Asm. 4.7 . Be-

cause multiplying an invertible matrix does not change the rank of the matrix, the rank of QΣ
− 1

2
y

is K. Since transposing a matrix does not change its rank, the rank of the idempotent matrix
Σ

− 1
2

y QT (QΣ−1
y QT )−1QΣ

− 1
2

y is also K. By Corollary 11.5 of (Banerjee & Roy, 2014), the ma-

trix Σ
− 1

2
y QT (QΣ−1

y QT )−1QΣ
− 1

2
y has K eigenvalues equal to one and I −K eigenvalues equal to

zero. Hence, Ωy is an idempotent matrix with rank r = I −K.

Finally, we show that the test statistic Ty := n
1
2 ξTy ξy has an asymptotic chi-square distribution with

freedom r.

We first introduce a theorem about the asymptotic distribution of a random variable X and the
random variable XTX . According to Thm. 1.12 of Shao (2003), if X → Y in distribution, then
nXTX → Y TY in distribution. Now, let X be n

1
2 and Y be N(0,Ωy), we have:

Ty := nξTy ξy → N(0,Ωy)
TN(0,Ωy) in distribution.

We then explain why N(0,Ωy)
TN(0,Ωy) = χ2

r . Because Ωy is a symmetric matrix, we can find
an orthogonal matrix V such that V ΩyV

T = diag(1, ..., 1, 0, ..., 0), a diagonal matrix with r 1s and
I − r 0s in the diagonal. Hence, we have V N(0,Ωy) ∼ N(0, diag(1, ..., 1, 0, ..., 0)) and,

N(0,Ωy)
TN(0,Ωy) = [V N(0,Ωy)]

T
[V N(0,Ωy)] = χ2

r.
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C EMPIRICAL ESTIMATION METHOD

In this section, we provide the empirical estimation method to obtain estimators that satisfy the
asymptotic properties:

n
1
2 (q̂y − qy)→ N(0,Σy) in distribution,

Q̂→ Q and Σ̂y → Σy in probability, with Σ̂y,Σy positive-definite.

We start from the univariate case for illustration.

Univariate case. Consider a discrete random variable X that takes k levels of values
{x1, x2, ..., xk}. For n iid samples {X1, X2, ..., Xn}, let Zi be the number of samples that take
the value xi. Then, we have Z := {Z1, Z2, ..., Zk}T follows a multinomial distribution with pa-
rameters (n,p), where p := {pr(x1), pr(x2), ..., pr(xk)}T . In the following, we use pi to denote
pr(xi) for simplicity.

Our objective is to compute the Maximum Likelihood Estimator (MLE) p̂ := {p̂1, ..., p̂k}T of p,
which enjoys the asymptotic properties.

For this purpose, we first write the joint probability mass function for n sample:

fn(z1, z2, ..., zk|n,p) = n!

k∏
i=1

pzii
zi!

.

Then, the log-likelihood is:

hn(p1, p2, ..., pk, n|z) := log(f(z1, z2, ..., zk|n,p)) = log(n!) +

k∑
i=1

zilog(pi)−
k∑

i=1

zi!.

To obtain the MLE estimator p̂, we maximize hn(p), with p1 + p2 + ...+ pk = 1 as the constraint.
This can be converted to an unconstrained optimization problem by a Lagrange multiplier:

arg max
p1,p2,...,pk

ln(p1, p2, ..., pk) := hn(p1, p2, ..., pk, n) + λ(1−
k∑

i=1

pi).

The derivative
`
ln(p) is:

h
ln(p) = [

∂ln
∂p1

, ...,
∂ln
∂pk

]T = [
zi
pi
− λ, ...,

zk
pk
− λ]T .

Let
`
ln(p) = 0 and considering

∑k
i p

∗
i = 1, we have p∗i = zi

n , λ = n.

Therefore, the MLE estimator is p̂ = {Z1

n , ..., Zk

n }. The covariance matrix of p̂ can be computed by
definition:

Cov[p̂] =
1

n


p1(1− p1) −p1p2 ... −p1pk
−p2p1 p2(1− p2) ... −p2pk

...
...

...
−pkp1 −pkp2 ... pk(1− pk)

 . (23)

Another way to compute the covariance matrix is to use the Fisher information. Specifically, the
Taylor expansion of

`
ln(p) at p0 (the ground-truth parameter) is:

h
ln(p) =

h
ln(p0) + [

2h
ln(p0)]

T (p− p0) + o(p),

where
`
ln(p) = [ z1p1

− n, ..., zk
pk
− n]T ,

`2
ln(p) = −diag[ z1p2

1
, ..., zk

p2
k
].

Let p = p̂, considering the Hessian matrix
`2

ln(p) is symmetric for any p, we have:

√
n(p̂− p0) = (− 1

n

2h
ln(p0))

−1(
1√
n

h
ln(p0)).
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Since the multinomial is defined on iid samples, and we have ln(p) =
∑n

i li(p), we can view ln(p)
and its derivative as the summation of iid random vectors. Thus, by the law of large numbers and
central limit (in the matrix form), we have (by noting that E[

`
l1(p0)]) = 0):

− 1

n

2h
ln(p0)→ −E[

2h
l1(p0)] in probability,

1√
n

h
ln(p0) =

√
n(

1

n

h
ln(p0)− E[

h
l1(p0)])→ N(0,Var[

h
l1(p0)]) in distribution.

Let Jn(p) := −E[
`2

ln(p)], Vn(p) := Var[
`
ln(p)], we then have:

√
n(p̂− p0)→ N(0, J1(p0)

−1V1(p0)J1(p0)
−1) in distribution,

where J1(p0) = − 1
nE[

`2
ln(p0)] = −diag{ 1

p1
, ..., 1

pk
}, and

V1(p0) =
1

n
Var[

h
ln(p0)] =


1−p1

p1
−1 ... −1

−1 1−p2

p2
... −1

...
...

...
−1 −1 ... 1−pk

pk

 .

Note that the asymptotic covariance J1(p0)
−1V1(p0)J1(p0)

−1 is consistent with the result in (23).
Also note that J1 no longer equals to V1, that is, the Fisher information matrix has a “sandwich”
form.

Bivariate case. Consider two discrete random variables X,Y , which (resp.) take k, l levels of values
{x1, ..., xk} and {y1, ..., yl}. For n iid samples {(X1, Y1), ..., (Xn, Yn)}, let Zij be the number
of samples that take the value (xi, yj). Then, we have Z := {Zij}Tij follows the multinomial
distribution with parameters (n,p), where p := {pr(xi, yj)}ij = {pr(xi)pr(yj |xi)}ij .

To obtain the MLE estimator p̂ = [{p̂(xi)}i, {p̂(yj |xi)}ij ]T , we again write the log-likelihood
function for n samples:

hn(p) = log(n!) +
∑
i,j

zij log(p(yj |xi) +
∑
i,j

zij log(p(xi))−
∑
i,j

log(zij !). (24)

To obtain p̂, we maximize hn(p), with the following k + 1 constraints:
∑

j p(yj |xi) = 1 for
i = 1, 2, ..., k, and

∑
i p(xi) = 1. This can be converted to the following unconstrained optimization

problem:

argmax
p

ln(p) := hn(p)+λ1(1−
∑
j

p(yj |x1))+...+λk(1−
∑
j

p(yj |xk))+λk+1(1−
∑
i

p(xi)).

Let the derivative
`
ln(p) = [{ Zi:

p(xi)
− λk+1}i, { Zij

p(yj |xi)
− λi}ij ]T = 0, where Zi: :=

∑
j Zij , we

have λi = Zi:, λk+1 = n, and the MLE estimator p̂ = [{p̂(xi)}i, {p̂(yj |xi)}ij ]T , where p̂(xi) =
Zi:

n , p̂(yj |xi) =
Zij

Zi:
.

In the following, we compute the covariance matrix of p̂ with the Fisher information. Specifically,
we need to compute the matrices J1(p0) and V1(p0).

The first and second order derivative of ln(p) are (resp.):
h

ln(p) = [{ Zi:

p(xi)
− n}i, {

Zij

p(yj |xi)
− Zi:}ij ]T(k+kl)×1

2h
ln(p) = diag[{ Zi:

p(xi)2
}i, {−

Zij

p(yj |xi)2
}ij ](k+kl)×(k+kl).

Hence, Jn(p) = −E[
`2

ln(p)] = ndiag[{ 1
p(xi)
}i, { p(xi)

p(yj |xi)
}ij ].
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By definition, we have Vn(p) = Var[
`
ln(p)], which involves the following terms (obtained by

simple calculus and the fact that Cov(A+B,C) = Cov(A,C) + Cov(B,C)):

Var[
Zi:

p(xi)
− n] = n

1− p(xi)

p(xi)

Var[
Zij

p(yj |xi)
− Zi:] = n

p(xi)(1− p(yj |xi))

p(yj |xi)

Cov[
Zi1:

p(xi1)
− n,

Zi2:

p(xi2)
− n] = −n

Cov[
Zi1j1

p(yj1|xi1)
− Zi1:,

Zi2j2

p(yj2|xi2)
− Zi2:] = 0

Cov[
Zi1:

p(xi1)
− n,

Zi2j

p(yj |xi2)
− Zi2:] = 0.

Therefore, for p̂ = {p̂(x1), ..., p̂(xk), p̂(y1|x1), ..., p̂(yl|x1), ..., p̂(y1|xk), p̂(yl|xk)}T , we have:
√
n(p̂− p0)→D N(0, J1(p0)

−1V1(p0)J1(p0)
−1),

where:

J1(p0)
−1 = diag[p(x1), p(x2), ..., p(xk)︸ ︷︷ ︸

k

,
p(y1|x1)

p(x1)
, ...,

p(yl|x1)

p(x1)
, ...,

p(y1|xk)

p(xk)
, ...,

p(yl|xk)

p(xk)︸ ︷︷ ︸
k×l

],

and

V1(p0) =

[
A [0]k×kl

[0]kl×k diag{a11, a12, ..., akl}kl×kl

]
,

with

A =


1−p(x1)
p(x1)

−1 ... −1
−1 1−p(x2)

p(x2)
... −1

...
...

...
−1 −1 ... 1−p(xk)

p(xk)


k×k

.

Therefore, J1(p0)
−1V1(p0)J1(p0)

−1 is:[
B [0]k×kl

[0]kl×k diag{a11b211, a12b212, ..., aklb2kl}kl×kl

]
,

with

B =


p(x1)(1− p(x1)) −p(x1)p(x2) ... −p(x1)p(xk)
−p(x2)p(x1) p(x2)(1− p(x2)) ... −p(x2)p(xk)

...
...

...
−p(xk)p(x1) −p(xk)p(x1) ... p(xk)(1− p(xk))


k×k

.

and

aij =
p(xi)(1− p(yj |xi))

p(yj |xi)
, bij =

p(yj |xi)

p(xi)
.

In addition, according to the marginal property of the multinomial distribution, the asymptotic nor-
mality covariance Σy of the estimator q̂yj = [p̂(yj |x1), ..., p̂(yj |xk)]

T = [
Z1j

Z1:
, ...,

Zkj

Zk:
]T is:

Σy = diag{a1jb21j , ..., akjb2kj} = diag[
p(yj |x1)(1− p(yj |x1))

p(x1)
, ...,

p(yj |xk)(1− p(yj |xk))

p(xk)
],

whose consistent estimator Σ̂y can be obtained by replacing p with p̂.
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