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África Periánez
benshi.ai
Barcelona, Spain
africa@benshi.ai

Andrew Trister
Bill and Melinda Gates Foundation
Seattle, USA
andrew.trister@gatesfoundation.org

Madhav Nekkar & Ana Fernández del Rı́o
benshi.ai
Barcelona, Spain
{madhav,ana}@benshi.ai

Pedro L. Alonso
Faculty of Medicine, Universidad de Barcelona
Barcelona. Spain
alonso@ub.edu

ABSTRACT

Malaria can be prevented, diagnosed, and treated; however, every year, there
are more than 200 million cases and 200.000 preventable deaths. Malaria re-
mains a pressing public health concern in low- and middle-income countries, es-
pecially in sub-Saharan Africa. We describe how by means of mobile health ap-
plications, machine-learning-based adaptive interventions can strengthen malaria
surveillance and treatment adherence, increase testing, measure provider skills
and quality of care, improve public health by supporting front-line workers and
patients (e.g., by capacity building and encouraging behavioral changes, like us-
ing bed nets), reduce test stockouts in pharmacies and clinics and informing public
health for policy intervention.

1 INTRODUCTION

Not everyone benefits equally from the same treatment, has the same environment, or can receive
therapy at the same time. Adaptive interventions consider human differences as treatment begins
and during its course to ensure each person gets the treatment that continuously works for them.
Interventions are adaptive in that they adapt to the individual (providing personalization) and their
evolving context and needs (i.e., adjusting dynamically).

Both clinical and patient actions are essential to high-quality, low-cost, effective healthcare. Human
behavior constitutes the primary mode for activating health improvements, including decisions made
by clinicians and their patients. In medical practice, clinicians can be gently nudged to improve
decision-making by providing a decision architecture in which optimal default clinical actions are
suggested. Outside controlled clinical environments (e.g., intensive care units), patient actions (e.g.,
lifestyle choices and treatment adherence) primarily determine health outcomes. Mobile health is
key to promoting continuous and proactive healthcare monitoring. It can, for example, mitigate
the lack of medication adherence, which can be low and challenging to address, as patient actions
control healthcare delivery outside medical environments.

The data generated by the users of digital applications are instrumental in determining past and cur-
rent behaviors and predicting future conduct. This information can be used to deliver personalized
mobile-mediated interventions. Such interventions aim to provide the appropriate type or degree of
support by adapting to an individual’s changing internal and contextual states (Nahum-Shani et al.,
2018; Menictas et al., 2019; Carpenter et al., 2020; Bidargaddi.N amd Schrader et al., 2020; Cop-
persmith et al., 2021).

Mobile health applications also serve as a direct channel of communication with their users, from
front-line healthcare workers to patients and the general public. Interventions and incentives can be
delivered directly to the users through their phones. Machine learning (ML) can help generate pre-
dictions regarding the behavior of app users, health outcomes, and their contexts. These predictions
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can be integrated with real-time information pertaining to the users’ choices and circumstances to
determine the individuals or groups needing additional support. Moreover, these predictions can
be used to personalize the timing of the interventions delivered to each user. Similarly, reliable
predictions regarding the evolution or variations in the demand for different medical supplies can
help establish reminder and suggestion systems that can help ensure that all the supply chain actors
(e.g., pharmacists) maintain adequate stocks of essential supplies at all times. Motivational prompts,
personalized reminders, incentives, engaging elements (such as game-designed elements), and other
nudges can be used to boost and reinforce good practices (Hrnjic & Tomczak, 2019).

Adaptive interventions in healthcare have primarily been deployed in resource-rich coun-
tries (Nahum-Shani et al., 2018; Hardeman et al., 2019). Given the immense disease burdens borne
by low- and middle-income countries and the increasing smartphone penetration in these regions,
the use of adaptive interventions to improve health outcomes may be highly beneficial to global
health. In this research, we explore this potential based on a case study of malaria. A discussion of
the ML methods can be found in the appendix A.

2 MALARIA: A CASE STUDY

Malaria, caused by the parasite Plasmodium falciparum, remains a deadly illness across much of the
Global South.

Malaria in pregnancy and infancy is a major public health concern and a key driver of maternal
and newborn mortality (Tarning, 2016). In 2020, nearly 630,000 deaths worldwide were caused
by malaria, a disproportionate share of which (96%) occurred in Africa (Organization, 2022). In
Sub-Saharan Africa, malaria is responsible for 12% of all child fatalities (Roser & Ritchie, 2019),
and children under five account for approximately 80% of all malaria deaths (Organization, 2022).

Although global malaria incidence and mortality have substantially decreased in the recent two
decades, progress stalled since 2015 (Noor & Alonso, 2022), and researchers worry that the COVID-
19 pandemic has disrupted malaria intervention coverage, reversing these gains (Weiss et al., 2021).

2.1 SURVEILLANCE: PROGRESS TOWARDS ELIMINATION

Even with the World Health Organization’s (WHO) historic approval of a malaria vaccine (Li et al.,
2022), senior leaders caution that a broader approach will be needed for malaria eradication, in-
cluding improved collection and usage of high-quality data—from health-management information
systems and electronic databases to geospatial models (Alonso, 2021)—and flexible evaluation and
implementation of interventions by local decision-makers (Alonso & O’Brien, 2022). According to
a global landscape review, malaria surveillance systems in 2015—2016 were “insufficient to sup-
port the planning and implementing of targeted interventions and measure progress toward malaria
elimination” (Lourenço et al., 2019). Such elimination efforts require the accurate notification of
individual cases within 24 h of diagnosis to provide timely and targeted responses, which essentially
represent adaptive interventions (WHO, 2015).

Notably, such malaria surveillance frameworks must be integrated, data-driven, tailored, and based
on mobile platforms. Mobile health for malaria surveillance, that uses a combination of message-
and application-based reporting, can support health workers and clinicians in recording malaria case
information (Githinji et al., 2014; Baliga et al., 2019; RTI, 2020; Oo et al., 2021; Bhowmick et al.,
2021), decreasing delays in case reporting to health officials, and improving the quality of data
collection. Data fragmentation remains a barrier to a cohesive malaria response, and previously
siloed data from diverse sources (private/public healthcare providers, government agencies, etc.)
must be integrated to create a real-time, case-based malaria surveillance system (Rahi & Sharma,
2020). Automation is essential, as analytics related to threat monitoring, requirement identification,
and system performance must be readily available for decision-makers (Ohrt et al., 2015).

A comprehensive malaria surveillance system can inform policy interventions, e.g., the allocation of
mosquito nets, tests, and antimalarials can be targeted to favor individuals and communities in need.
By understanding the changes in people’s mobility and clustering, the impact of non-pharmaceutical
interventions can be evaluated, and geographic areas in which additional actions may be helpful can
be identified (Grantz et al., 2020). Several studies revealed that the characterization of travel patterns
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through geolocation data and their combination with contextual information on malaria incidence
can inform strategies to target travelers and reduce transmission (Milusheva, 2020).

2.2 PREVENTION

For pregnant women visiting institutions for antenatal care, the WHO recommends the administra-
tion of intermittent preventive treatment with sulfadoxine–pyrimethamine and distribution of long-
lasting insecticide-treated mosquito nets (LLINs) (Salomão et al., 2017).

Unfortunately, many pregnant women in low- and middle-income countries do not receive either in-
tervention owing to stock-outs in data-fragmented health systems (Salomão et al., 2017). Accurate
demand forecasts that can integrate real-time contextual information are needed to ensure equitable
and efficient allocation of important preventive goods. For example, by building geospatial models
and combining data from net manufacturers, national programs, and cross-sectional household sur-
veys, researchers can develop detailed maps of LLIN access and usage (Bertozzi-Villa et al., 2021).
These analyses can also be automated to identify geographic areas in which additional supplies or
different actions may be required.

Patient behavior also determines the efficacy of the interventions, as many pregnant women fail to
take their pills (Mubyazi et al., 2005) or do not use bed nets for various practical reasons (Manu et al.,
2017; Gultie et al., 2020). These aspects highlight the importance of communication to encourage
behavioral changes (Ricotta et al., 2014).

For children aged 3—59 months, WHO recommends seasonal malaria chemoprevention (SMC)
during the months of peak malaria transmission. Although SMC effectively controls malaria and
reduces hospitalizations (Diawara et al., 2017; Baba et al., 2020; Issiaka et al., 2020; Cairns et al.,
2021), clinical data and pharmacokinetic analyses reveal that complete adherence to treatment is
observed in fewer than 20% of children outside the study setting (Ding et al., 2020). Targeted
interventions for behavioral changes are required to improve the real-world effectiveness of SMC.

Caregiver-targeted message-based interventions to increase preventive health behaviors (such as
sleeping under a net) have been noted to be successful in decreasing the malaria prevalence in chil-
dren under the age of five (Mohammed et al., 2019). Despite the vast potential of mobile health
solutions, one-size-fits-all interventions are typically implemented in which a standard message is
sent to all participants. There exists an enormous opportunity for the delivery of personalized inter-
ventions that can appropriately incentivize a given user and guide targeted public health campaigns,
which may include gamification and leveraging of individual social networks (Ernst et al., 2017). As
a potential example, researchers recently tested an ML model in conjunction with an accelerometer-
based approach for measuring a range of LLIN use behaviors: Although these technologies represent
a proof of concept at present, they can support the implementation of financial incentives based on
granular LLIN-use monitoring over longer time periods (Koudou et al., 2022).

The only way to understand which interventions work best and which incentives drive behavioral
change is by running experiments on the ground (Banerjee et al., 2010; Bates et al., 2012; Zhou
et al., 2020a; 2021).

2.3 QUALITY OF CARE

2.3.1 DIAGNOSIS

Malaria is one of the most under-diagnosed and over-treated diseases. The potential for severe
outcomes means that any patient with a fever (especially a child) may be administered treatment
for malaria, often without having received a diagnostic test (Amankwa et al., 2019; Ajibaye et al.,
2019; Boadu et al., 2016; Beisel et al., 2016). The administration of drugs without a conclusive
test may accelerate antimalarial resistance, an increasingly worrying problem according to WHO
malaria experts (Rasmussen et al., 2022).

Although microscopy is the gold-standard for malaria diagnosis, its implementation remains infea-
sible in many resource-constrained settings (Beisel et al., 2016). Consequently, many stakeholders
have turned to rapid diagnostic tests (RDTs). However, their access remains limited, with frequent
stock-outs (Boadu et al., 2016; Blanas et al., 2013) that may be related to inaccurate record-keeping.
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Digital tools and demand forecasting algorithms can alleviate this problem, as has been proved in
India with an app that included a supply chain management component (Rajvanshi et al., 2021).

Furthermore, many lay community health workers struggle to appropriately perform RDTs (Boadu
et al., 2016; Blanas et al., 2013; Beisel et al., 2016), and thus, capacity-building efforts to increase
their skills are urgently required. Digital monitoring of the health workers’ performance can serve
as an effective quality control strategy and a mode of delivering feedback (Laktabai et al., 2018).
Personalized digital nudges can direct the health workers who need additional support to specific
online learning resources or encourage them to sign up for an in-person training session.

Patient-facing steering may also be required, as sick patients who receive a negative test may still ex-
pect treatment. Patient and provider education around antimicrobial resistance may help, in addition
to increasing awareness and clinical decision support for the management of other febrile illnesses.

2.3.2 ARTEMISININ COMBINATION THERAPY (ACT)

ACT is the first-line malaria treatment throughout most of the malaria-endemic world. Notable
issues include stock-outs (Blanas et al., 2013; Rowe et al., 2009; O’Connell et al., 2011) and the
distribution of low-quality antimalarials, especially in urban areas Newton et al. (2017). Most an-
timalarials are distributed through the private sector, where non-artemisinin therapies are prevalent
and 5–24 times less expensive than quality-assured ACT (O’Connell et al., 2011). In this context,
it is important to strengthen the supply chain with a data-driven approach, potentially by using de-
mand forecasting algorithms to send appropriately timed reminders to pharmacists to ensure that
they restock necessary supplies.

The quality of care and clinical management of malaria remains widely varying and substandard. In
Sub-Saharan Africa, less than one-third of the children diagnosed with malaria receive both a blood
test diagnosis and appropriate antimalarial treatment (Cohen et al., 2020). Evidence for gaps in the
community health workers’ and drug dispensers’ ability to appropriately manage malaria has been
found in several countries (Rowe et al., 2009; Blanas et al., 2013; Chowdhury et al., 2020; Buabeng,
2010; Kamuhabwa & Silumbe, 2013). Capacity-building efforts are clearly necessary, and adaptive
interventions can facilitate the assignment of appropriate content to each worker (Katsaris et al.,
2021). AI-based user segmentation and behavioral phenotyping can yield highly granular cohorts
to be focused on. For example, we research the capacity development of midwives by predicting
their demand for specific contents (Guitart et al., 2021a) and building recommendation systems for
an e-learning app by predicting the chance that a given user clicks on a certain item (Guitart et al.,
2021b).

Lastly, patient adherence to antimalarial regimes is a notable issue, with estimates suggesting that it
ranges from 40% to 65% (Amponsah et al., 2015; Mace et al., 2011; Onyango et al., 2012). Trials of
message-based-reminders to healthcare workers (Zurovac et al., 2011; Kaunda-Khangamwa et al.,
2018) and patients (Macı́as Saint-Gerons et al., 2022) have shown promise while highlighting the
necessity of personalized interventions involving relevant and actionable messages (Buabeng, 2010).
In the case of tuberculosis, where adherence is also a problem, researchers have noted that an ML-
driven approach to predict TB adherence risk in conjunction with adaptive interventions dynamically
increases the odds ratio of next-day treatment adherence verification by 35% (Boutilier et al., 2021).

2.3.3 PRE-REFERRAL TREATMENT

Another crucial area where malaria care delivery can be strengthened is pre-referral treatment, usu-
ally rectal artesunate (RAS), recommended by WHO for young children with suspected severe
malaria when injections are not available (WHO, 2022). Although the effectiveness of RAS has been
demonstrated in placebo-controlled trials (Gomes et al., 2009), more recent studies have indicated
that its introduction in real-world conditions may increase the malaria case-fatality rates (WHO,
2022). This phenomenon is attributable to several reasons, such as low patient adherence to refer-
ral guidelines (Simba et al., 2010) and inadequate ability of health workers to deliver pre-referral
care (Amboko et al., 2022) appropriately. Patient- and provider-facing steering and capacity building
are needed to strengthen health systems and ensure that guidelines are followed.
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3 CONCLUSIONS

Combating the devastating toll of malaria requires multifaceted and innovative strategies. Tech-
nology alone is not a panacea, and no simple solution exists. However, ensuring high-quality data
collection from diverse sources, such as mobile phones, supply chains, public surveys, and elec-
tronic health records, can play a crucial step. These data can be integrated to obtain intrinsic and
contextual information that can drive personalized and adaptive interventions.

The use cases are vast: Reminding antenatal care clinics to stock up on LLINs; providing capacity-
building resources to struggling community health workers; supporting a district health officer in
responding to a new malaria outbreak; incentivizing pharmacists to administer diagnostic tests be-
fore prescribing treatments; or encouraging patients to adhere to a treatment regime.
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A APPENDIX: TOOLS AND METHODS

This appendix describes the proposed conceptual and methodological framework: a data-centric be-
havioral ML platform (Tang et al., 2021) that leverages logs from different types of mobile health
solutions—together with contextual information—to deliver adaptive interventions to healthcare
workers and their patients directly through their phones.

A.1 DATA-CENTRIC PLATFORM

Our platform is data-centric in that data tracking, and labeling lies at its core. Integration with the
different apps is achieved through our Software Developer Kit (HealthKit SDK), which provides
specifications on what information should be logged (and how) and the messaging service that de-
livers the interventions. Integration through this SDK ensures that various user metrics and traits
characterizing engagement and behavior are readily available, which can help clarify the individuals
to be targeted by specific interventions and the time for delivering the interventions.

A.2 MACHINE LEARNING

The application of data science and ML methodologies to extract and predict valuable information
to inform intervention design lies at the core of the software we build. As is generally the case, no
single model is best across all datasets and use cases. Use-case-specific data pipelines transform
incoming information through the HealthKit SDK into metrics ready to be consumed by the statis-
tical and ML models, which in turn produce additional metrics that can be used in the intervention
definition.

A.2.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) is the ideal paradigm for sequential decision-making in dynamically
evolving contexts that respond to those decisions. It allows us to continually improve how we make
choices for a patient at any given moment, maximizing the potential for positive outcomes while
minimizing undesired side effects. A competition on policy learning for malaria control using RL
was for example included as part of the KDD Cup Challenge 2019 (Zhou et al., 2020b; Nguyen
et al., 2019; Zou, 2021).
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Contextual are a formulation of the RL problem with limited state representation, and dynamics
(Burtini et al., 2015; Yao et al., 2021; Dwivedi et al., 2022; Zhang et al., 2022). Similarly, restless
bandits can be used for resource allocation (Mate et al., 2022). They are significantly less data-
intensive than other RL approaches while being robust and tractable. This framework is instrumen-
tal in the context of adaptive intervention delivery. At their core lies the exploration-exploitation
trade-off, i.e., the compromise between clinical research (to gather knowledge about treatments)
and clinical practice (to benefit the patients) by assigning the best intervention possible based on all
available information at that point.

A.2.2 TIME-VARYING AND DYNAMIC PREDICTION MODELING

Time series datasets such as clinical records represent valuable sources of information sometimes
spanning a patient’s entire lifetime of care. The approach to decision-making described in this
paper is dynamic (i.e., sequential and adaptive). The analytic and predictive modeling to support
this needs to be similarly dynamic, with the time-dependent evolution of the systems of interest
and their characteristics at its core. Supervised and unsupervised ML with time-varying data (such
as the survival analysis described in the next section), time series modeling, and longitudinal data
processing should be part of the toolbox. We can use them to understand and predict how the systems
of interest behave and evolve to inform our decision-making.

For behavioral nudging, besides the individual predictions generated using survival analysis de-
scribed below, multivariate time series forecasting can be critical to optimizing specific interven-
tions, such as reminders to prevent stockouts of medical supplies based on demand prediction. Fur-
thermore, considering the time-varying nature of data and interventions within an RL framework
allows us to understand and optimize a patient’s treatment as different sequential interventions in
time instead of as a single-point decision.

Predictive modeling can help define the target individuals for the intervention and appropriate de-
livery time. As discussed, accurate demand prediction is key to optimizing the supply chain and
inventory. Forecasting methods that can learn simultaneously from multiple time series, often com-
bining deep and state space modeling elements, have been noted to be effective (Seeger et al., 2017;
Salinas et al., 2019; Lim et al., 2019; Salinas et al., 2020; Benidis et al., 2020).

A.2.3 DEEP AND ENSEMBLE SURVIVAL ANALYSIS

With time dependence at its core, survival analysis refers to a collection of algorithms used to predict
time to an event of interest (which was traditionally death or organ failure) (Wright et al., 2017; Fu &
Simonoff, 2016; Lee et al., 2020). These methodologies can be used to predict behavior and health
outcomes at the individual level, as they are well suited to extract information from censored data
(i.e., models that can learn from subjects who have yet to experience the event of interest besides
those that have). Their output is a survival curve for each subject, indicating the probability of not
having experienced the event of interest depending on the time. By carefully selecting the events
we predict and how we measure time, we can profile individuals using multiple predictions and risk
scores (of clinical complications or of lack of adherence to treatment, for example).

A.2.4 RECOMMENDATION SYSTEMS

Recommendation algorithms can be used to decide the techniques to target health workers, patients,
and the general public. Different methodologies are expected to be suitable for different apps and
use cases, from deep learning-based click-through-rate predictions (Qu et al., 2016; Guo et al., 2017;
Lian et al., 2018; Lu et al., 2020; Guitart et al., 2021b) to collaborative, interactive recommendation
systems Ie et al. (2019); Liu et al. (2019); Lillicrap et al. (2019); Chen et al. (2020). We foresee a
growing shift toward reinforcement-learning-based methods beyond the (relatively widespread) use
of contextual bandits (Barraza-Urbina & Glowacka, 2020). This approach is particularly useful for
optimizing a sequence of interventions while reconciling short- and long-term goals in the desired
outcome.
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