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ABSTRACT

In this paper, we prove representation bottlenecks of a cascaded convolutional de-
coder1 network, considering the capacity of representing different frequency com-
ponents of an input sample. We conduct the discrete Fourier transform on each
channel of the feature map in an intermediate layer of the decoder network. Then,
we introduce the rule of the forward propagation of such intermediate-layer spec-
trum maps, which is equivalent to the forward propagation of feature maps through
a convolutional layer. Based on this, we find that each frequency component in the
spectrum map is forward propagated independently with other frequency compo-
nents. Furthermore, we prove two bottlenecks in representing feature spectrums.
First, we prove that the convolution operation, the zero-padding operation, and
a set of other settings all make a convolutional decoder network more likely to
weaken high-frequency components. Second, we prove that the upsampling oper-
ation generates a feature spectrum, in which strong signals repetitively appears at
certain frequencies. We will release all codes when this paper is accepted.

1 INTRODUCTION

Deep neural networks (DNNs) have exhibited superior performance in many tasks. However, in
recent years, many studies discovered some theoretical defects of DNNs, e.g., the vulnerability to
adversarial attacks (Goodfellow et al., 2014), and the difficulty of learning middle-complex inter-
actions (Deng et al., 2022). Besides, other studies explained typical phenomena during the training
of DNNs, e.g., the double-descent phenomenon (Nakkiran et al., 2019), the information bottleneck
hypothesis (Tishby & Zaslavsky, 2015), and the lottery ticket hypothesis (Frankle & Carbin, 2018).

In comparison, in this study, we propose a new perspective to investigate how a cascaded convolu-
tional decoder1 network represents features at different frequencies. I.e., when we apply the discrete
Fourier transform (DFT) to each channel of the feature map or the input sample, we try to prove
which frequency components of each input channel is usually strengthened/weakened by the net-
work. To this end, previous studies (Xu et al., 2019a; Rahaman et al., 2019) claimed that DNNs
were less likely to encode high-frequency components. However, these studies focused on a specific
frequency that took the landscape of the loss function on all input samples as the time domain. In
comparison, we focus on a fully different type of frequency, i.e., the frequency w.r.t. the DFT on
an input image or a feature map.

• Reformulating forward propagation in the frequency domain. As the basis for subsequent theoret-
ical proof, we discover that we can reformulate the traditional forward propagation of feature maps
as a new forward propagation on the feature spectrum. We derive the rule that forward propagates
spectrums of different channels through a cascaded convolutional network, which is mathematically
equivalent to the forward propagation on feature maps through a cascaded convolutional network.

• Based on the reformulation of the forward propagation, we prove the following conclusions.

(1) The layerwise forward propagation of each frequency component of the spectrum map is in-
dependent with other frequency components. In the forward propagation process, each frequency
component of the feature spectrum is forward propagated independently with other frequency com-
ponents, if the convolution operation does not change the size of the feature map in each channel. In

1Here, the decoder represents a typical network, whose feature map size is non-decreasing during the for-
ward propagation.
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Figure 1: Two representation bottlenecks of a cascaded convolutional decoder network. (a) The
convolution operation and the zero-padding operation make the decoder usually learn low-frequency
components first and then gradually learn higher frequencies. (b) For cascaded upconvolutional
layers, the upsampling operation in the decoder repeats strong frequency components of the input to
generate spectrums of upper layers. We visualize the magnitude map of the feature spectrum, which
is averaged over all channels. For clarity, we move low frequencies to the center of the spectrum
map, and move high frequencies to corners of the spectrum map. High frequency components in
magnitude maps in (b) are also weakened by the convolution operation after upsampling.

this way, we analyze three classic operations, including the convolution, the zero-padding, and the
upsampling operations, and prove two representation bottlenecks, as follows.

(2) Representation bottleneck 1. We prove that both the convolution operation and the zero-padding
operation make a cascaded convolutional decoder network more likely to weaken the high-frequency
components of the input sample, as shown in Figure 1(a), if the convolution operation with a padding
operation does not change the size of the feature map in a channel.

Besides, we also prove that the following three conditions further strengthen the above representa-
tion bottleneck, including (1) a deep network architecture; (2) a small convolutional kernel size; and
(3) a large absolute value of the mean value of convolutional weights.

(3) Representation bottleneck 2. We porve that the upsampling operation makes a cascaded convo-
lutional decoder network generate a feature spectrum, in which strong signals repetitively appears
at certain frequencies, as shown in Figure 1(b).

Note that all above findings can explain general trends of neural networks with convolution, zero-
padding, and upsampling operations, instead of deriving the deterministic property of a specific
network. Besides, we have not derived the property of max-pooling operations, so in this paper, it is
difficult to extend such findings to neural networks for image classification.

2 RULES OF PROPAGATING FEATURE SPECTRUMS

In this section, we aim to reformulate the forward propagation of a cascaded convolutional decoder1

network in the frequency domain. To this end, we first introduce the rule of a convolutional layer
propagating the feature spectrum from a lower layer to an upper layer.

• Convolution operation. Given a convolutional layer, let W[ker=1], W[ker=2], . . ., W[ker=D] denote D
convolutional kernels of this layer, and let b[ker=1], b[ker=2], . . . , b[ker=D] ∈ R denote D bias terms. Each
d-th kernel W[ker=d] ∈ RC×K×K is of the kernel size K × K, and C denotes the channel number.
Accordingly, we apply the kernel on a feature F ∈ RC×M×N with C channels, and obtain the output
feature F̃ ∈ RD×M

′×N′ , as follows.

F̃ = Conv(F), s.t. F̃
(d)

= W[ker=d] ⊗ F + b[ker=d]1D, d = 1, 2, . . . , D (1)

where F̃
(d)
∈ RM

′×N′ denotes the feature map of the d-th channel. ⊗ denotes the convolution
operation. 1D ∈ RD is an all-ones vector.

• Discrete Fourier transform. Given the c-th channel of the feature F ∈ RC×M×N , i.e., F (c) ∈
RM×N , we use the discrete Fourier transform (DFT) (Sundararajan, 2001) to compute the frequency
spectrum of this channel, which is termed G(c) ∈ CM×N , as follows. C denotes the algebra of
complex numbers.

G(c)
uv =

∑M−1

m=0

∑N−1

n=0
F (c)
mne

−i(um
M

+ vn
N

)2π, u = 0, . . . ,M − 1; v = 0, . . . , N − 1 (2)
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Figure 2: (a) Forward propagation in the frequency domain and (b) forward propagation in the
time domain. The convolution operation on an input feature F is essentially equivalent to matrix
multiplication on spectrums G of the feature.

Each frequency component at the frequency [u, v] is represented as a complex number, i.e.,
G

(c)
uv ∈ C. Let G = [G(1), . . . , G(C)] ∈ CC×M×N denote the tensor of frequency spectrums of the

C channels of F. We take the C-dimensional vector at the frequency [u, v] of the tensor G, i.e.,
g(uv) = [G

(1)
uv , G

(2)
uv , . . . , G

(C)
uv ]> ∈ CC , to represent the frequency component [u, v]. Frequency com-

ponents closed to [0, 0], [0, N − 1], [M − 1, 0], or [M − 1, N − 1] represent low-frequency signals,
whereas frequency components closed to [M/2, N/2] represent high-frequency signals.

• Reformulating the layerwise forward propagation process. For a specific convolutional layer
(the stride size of the convolution operation is 1), the rule of propagating spectrums of input features
into spectrums of output features is given as follows, which well represents the traditional forward
propagation of features in Equation (1).

Theorem 1. (proven in Appendix A.1). Let H = [H(1), H(2), . . . , H(D)] ∈ CD×M
′×N′ denote spec-

trums of the output feature F̃ ∈ RD×M
′×N′ . Then, H can be computed as follows.

h(u′v′) = δu′v′MNb +

M−1∑
u=0

N−1∑
v=0

αu′v′uv · T (uv)g(uv), s.t. δu′v′ =

{
1, u′ = 0; v′ = 0

0, otherwise
; (3)

αu′v′uv =
1

MN

sin((M −K)λuu′π)

sin(λuu′π)

sin((N −K)γvv′π)

sin(γvv′π)
ei((M−K)λuu′+(N−K)γvv′ )π; (4)

where h(u′v′) = [H
(1)

u′v′ , H
(2)

u′v′ , . . . , H
(D)

u′v′ ]
> ∈ CD; b = [b(1), b(2), . . . , b(D)]> ∈ RD denotes the vector

of bias terms; αu′v′uv ∈ C is a coefficient; λuu′ = (u−u′)M−u(K−1)
M(M−K+1)

, γvv′ = (v−v′)N−v(K−1)
N(N−K+1)

. T (uv) ∈
CD×C is a matrix of complex numbers, which is exclusively determined by convolutional kernels
W[ker=1], W[ker=2], . . ., W[ker=D].

T
(uv)
dc =

∑K−1

t=0

∑K−1

s=0
W

[ker=d]
cts ei(

ut
M

+ vs
N

)2π, d = 1, 2, . . . , D; c = 1, 2, . . . , C. (5)

In Equation (3), the T (uv) term corresponds to the interference process (Beaver, 2018) in physics,
and the αu′v′uv term corresponds to the diffraction process. According to Equation (4), for most
[u′, v′], [u, v], |αu′v′uv| is close to 0. |αu′v′uv| is relatively large only when [u′, v′] is close to [u, v].

We notice that in most real implementations, the convolution operation does not change the size of
the feature map in a channel by applying the padding operation. Decoder networks usually use the
upsampling operation to increase the dimension of features. Therefore, we limit our research to the
scope of convolution operations without changing the size of the feature map in a channel. Thus, we
propose the following assumption, which is used in all subsequential proofs.

Assumption 1. To simplify subsequential proofs, we assume that before each convolution operation,
there exists a circular padding operation (Londono, 1982), and set the stride size of the convolution
operation to 1. The circular padding operation is used to extend the last row and the last column of
the feature map in each channel, so as to avoid the convolution changing the size of the feature map.

Thus, keeping the feature map size unchanged removes the diffraction process term αu′v′uv in theory,
and derives Theorem 2. In fact, because |αu′v′uv| is small in most cases, the diffraction process is
actually ignorable, even when the convolution operation changes the size of the feature map.
Theorem 2. (proven in Appendix A.2). Based on Assumption 1, the layerwise dynamics of feature
spectrums in the frequency domain can be simplified as follows.

h(uv) = T (uv)g(uv) + δuvMNb (6)
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Understanding the convolution operation in the frequency domain. As Figure 2 shows, Theorem 2
means that conducting the convolution operation on an input feature F is essentially equivalent to
conducting matrix multiplication on spectrums of F. For example, for all frequencies except for the
fundamental frequency, we have the output spectrum h(uv) = T (uv)g(uv).

(Conclusion 1) Each frequency component of the feature spectrum is propagated independently
with other frequencies, h(uv) = T (uv)g(uv), where T (uv) is exclusively determined by convolutional
weights. Therefore, g(uv) is propagated independently with other frequency components g(u′v′).

• Reformulating the entire propagation process of a cascaded convolutional network. To sim-
plify the further proof, we temporarily investigate the spectrum propagation of a network with L
cascaded convolutional layers, but without activation functions. Nevertheless, we have conducted
various experiments, and experimental results in Figure 3 show that all our theorems can well reflect
properties of an ordinary cascaded convolutional network with ReLU layers.

Let a convolutional network contain L cascaded convolutional layers. Each l-th layer contains
Cl convolutional kernels, W(l)[ker=1],W(l)[ker=2], . . . ,W(l)[ker=Cl] ∈ RCl−1×K×K , with Cl bias terms
b(l,1), b(l,2), . . . , b(l,Cl) ∈ R. Let x ∈ RC0×M×N denote the input sample. The network generates the
output sample x̂ = net(x) ∈ RCL×M×N . Then, we derive the forward propagation of spectrums of x
to spectrums of x̂ in the frequency domain as follows.

Corollary 1. (proven in Appendix A.3.) Let G = [G(1), G(2), . . . , G(C0)] ∈ CC0×M×N denote fre-
quency spectrums of the C0 channels of the input x. Then, based on Assumption 1, spectrums of
the image x̂ generated by L cascaded convolutional layers, i.e., H = [H(1), H(2), . . . , H(CL)] ∈
CCL×M×N is given as

h(uv) = T(uv)(L:1)g(uv) + δuvβ (7)

where T(uv)(L:1) = T (L,uv) · · ·T (2,uv)T (1,uv) ∈ CCL×C0 ; g(uv) = [G
(1)
uv , G

(2)
uv , . . . , G

(C0)
uv ]> ∈ CC0 and

h(uv) = [H
(1)
uv , H

(2)
uv , . . . , H

(CL)
uv ]> ∈ CCL denote vectors at the frequency [u, v] in tensors G and H,

respectively. β = MN
(
b(L) +

∑L
j=2 T

(00)(L:j)b(j−1)
)
∈ CCL ; b(l) = [b(l,1), b(l,2), . . . , b(l,Cl)]> ∈ RCl

denotes the vector of bias terms of Cl convolutional kernels in the l-th layer.

Besides, the learning of parameters W(l) affects the matrix T (l,uv). Therefore, we further reformulate
the change of T (l,uv) during the learning process, as follows.
Corollary 2. (proven in Appendix A.4.) Based on Assumption 1, the change of each frequency
components T (l,uv) during the learning process is reformulated as follows.

∆T (l,uv) = −ηMN

M−1∑
u′=0

N−1∑
v′=0

χu′v′uv

(
T(u′v′)(l−1:1)g(u′v′) + δu′v′β

′
) ∂Loss

∂(h(u′v′)
)>

T(u′v′)(L:l+1)
; (8)

s.t. χu′v′uv =
1

MN

sin(K(u− u′)π/M)

sin((u− u′)π/M)

sin(K(v − v′)π/N)

sin((v − v′)π/N)
ei(

(K−1)(u−u′)
M

+
(K−1)(v−v′)

N
)π (9)

where η is the learning rate; χu′v′uv ∈ C is a coefficient; T(u′v′)(l−1:1) =

T (l−1,u′v′) · · ·T (2,u′v′)T (1,u′v′) ∈ CCl−1×C0 ; T(u′v′)(L:l+1) = T (L,u′v′) · · ·T (l+1,u′v′) ∈ CCL×Cl ;
β′ = MN

(
b(l−1) +

∑l−1
j=2 T

(00)(l−1:j)b(j−1)
)
∈ CCl−1 ; T(uv)(l−1:1) is the conjugate of T(uv)(l−1:1).

Verifying the forward propagation in Corollary 1 and the change of T (l,uv) in Corollary 2.
We computed the similarity between real spectrums H∗ = [H∗(1), H∗(2), H∗(3), · · · ] measured
by applying the DFT to the real network output, and spectrums H = [H(1), H(2), H(3), · · · ]
derived in Corollary 1, in order to verify the correctness of the forward propagation in
the frequency domain. Specifically, we measured the cosine similarity similarity(H∗,H) =
Ec[cos(vec(norm(H∗(c))), vec(norm(H(c))))], where vec(·) represents the vectorization of a matrix,
and norm(·) represents computing the norm of each complex number in a matrix.

To this end, we constructed the following three baseline networks to verify whether Corollary 1
derived from specific assumptions could also objectively reflect real forward propagations in real
neural networks. Specifically, the first baseline network contained 10 convolutional layers. Each
convolutional layer applied zero-paddings and was followed by an ReLU layer. Each convolutional
layer contained 16 convolutional kernels (kernel size was 3×3) with 16 bias terms. We set the stride
size of the convolution operation to 1. The second baseline network was constructed by removing
all ReLU layers from the first baseline network, which was closer to the assumption in Corollary 1.
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(b)
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Figure 3: (a) Fitness between the derived feature spectrums H in Corollary 1 and the real feature
spectrums H∗ measured in a real DNN. (b) Fitness between the derived change of T (l,uv) in Corol-
lary 2 and the real T (l,uv) measured in a real DNN. The shaded area represents the standard deviation.

The third baseline network was constructed by replacing all zero-paddings with circular paddings
from the second baseline network, which was exactly the same with the assumption in Corollary 1.

Figure 3(a) reports similarity(H∗,H) that was measured on spectrums in different layers and averaged
over all samples. The similarity between real spectrums and derived spectrums was large for all the
three baseline networks, which verified Corollary 1. Note that the cosine similarity was computed
based on high-dimensional vectors with as many as 322 or 642 or 2242 dimensions (determined by
the dataset), in which case tiny noises were accumulated significantly. Therefore, the similarity
greater than 0.8 was already significant enough to verify the practicality of our theory.

Besides, we also measured the similarity between the real change of T (l,uv) computed by mea-
suring real network parameters, termed ∆∗T (l,uv), and the change of T (l,uv) derived with certain
assumptions in Corollary 2, i.e., ∆T (l,uv), in order to verify Corollary 2. The similarity was also
computed as similarity(∆∗T (l,uv),∆T (l,uv)) = Ec[cos(vec(norm(∆∗T (l,uv))), vec(norm(∆T (l,uv))))].
The verification was also conducted on the above three baseline networks. Figure 3(b) reports
∀l, similarity(∆∗T (l,uv),∆T (l,uv)) averaged over all samples. The similarity was greater than 0.88
for all the three baseline networks, which verified Corollary 2.

3 REPRESENTATION BOTTLENECKS

We further analyze the effects of three classic operations on representing different frequency com-
ponents of an input sample, including the convolution operation, the zero-padding operation, and
the upsampling operation, and discover two representation bottlenecks.

• Effects of the convolution operation. Given an initialized, cascaded, convolutional decoder1

network with L convolutional layers, let us focus on the behavior of the decoder network in early
epochs of training. We notice that each element in the matrix T (l,uv) is exclusively determined
by the c-th channel of the d-th kenel W (l)[ker=d]

c,0:K−1,0:K−1 ∈ RK×K according to Equation (5). Because
parameters inW (l) in the decoder network are set to random noises, we can consider that all elements
in T (l,uv) irrelevant to each other, i.e., ∀d 6= d′, c 6= c′, T

(l,uv)
dc is irrelevant to T (l,uv)

d′c′ . Similarly, since
different layers’ parameters W (l) are irrelevant to each other in the initialized decoder network, we
can consider that elements in different layers’ T (l,uv) irrelevant to each other, i.e., ∀l 6= l′, elements
in T (l,uv) and elements in T (l′,uv) are irrelevant to each other. Moreover, since the early training
of a DNN mainly modifies a few parameters according to the lottery ticket hypothesis (Frankle &
Carbin, 2018), we can still assume such irrelevant relationships in early epochs, as follows.

Assumption 2. (proven in Appendix A.5) We assume that all elements in T (l,uv) are irrelevant to
each other, and ∀l 6= l′, elements in T (l,uv) and T (l′,uv) are irrelevant to each other in early epochs.

∀d 6= d′;∀c 6= c′, EW(l) [T
(l,uv)
dc T

(l,uv)

d′c′ ] = EW(l) [T
(l,uv)
dc ]EW(l) [T

(l,uv)

d′c′ ] (10)

∀l, d, c, d′, c′, EW(l),...,W(1) [T
(l,uv)
dc T(uv)(l−1:1)

d′c′ ] = EW(l) [T
(l,uv)
dc )]EW(l−1),...,W(1) [T(uv)(l−1:1)

d′c′ ] (11)

Besides, according to experimental experience, the mean value of all parameters in W(l) usually
has a small bias during the training process, instead of being exactly zero. Therefore, let us assume
that in early epochs, each parameter in W(l) is sampled from a Gaussian distribution N(µl, σ

2
l ).

According to h(uv) = T(uv)(L:1)g(uv) + δuvMNb in Corollary 1, each frequency component h(uv) of
the output spectrum is exclusively determined by the component g(uv) of the input sample and the
matrix T(uv)(L:1) = T (L,uv) · · ·T (2,uv)T (1,uv), since δuv = 0 on all frequencies other than the fun-
damental frequency. Therefore, the magnitude of T(uv)(L:1) reflects the strength of the network
encoding this specific frequency component g(uv).
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Theorem 3. (proven in Appendix A.5) Based on Assumption 1 and Assumption 2, we can prove that
T

(l,uv)
dc follows a Gaussian distribution of complex numbers, as follows.

∀d, c T
(l,uv)
dc ∼ ComplexN (µ̂ = µlRuv, σ̂

2 = K2σ2
l , r = σ2

lR2u,2v) (12)

s.t. Ruv =
sin(uKπ/M)

sin(uπ/M)

sin(vKπ/N)

sin(vπ/N)
ei(

(K−1)u
M

+
(K−1)v
N

)π (13)

Different from the Gaussian distribution of real numbers, the Gaussian distribution of complex
numbers has three parameters µ̂ ∈ C, σ̂2 ∈ R and r ∈ C, which control the mean value, the variance,
and the diversity of the phase of the sampled complex number, respectively. Specifically, a large
value of |r| indicates that the sampled complex number T (l,uv)

dc is less likely to have diverse phases.
Ruv ∈ C is a complex coefficient, 0 ≤ |Ruv| ≤ K2.

For a low-frequency component [ulow, vlow], |Rulowvlow | is relatively large. Therefore, the second-order
moment of T (l,ulowvlow)

dc , i.e., |µlRulowvlow |2 + K2R2
ulowvlow , is large, which indicates that the sampled

T
(l,ulowvlow)
dc is more likely to have a large norm. Besides, the parameter |r| = |σ2

lR2ulow,2vlow | is large
for low frequencies, which means that the sampled T (l,ulowvlow)

dc is less likely to have diverse phases.
In contrast, for a high-frequency component [uhigh, vhigh], the sampled T

(l,uhighvhigh)
dc is less likely to

have a large norm and is more likely to have diverse phases.

Theorem 4. (proven in Appendix A.6) For the simplest case that each convolutional layer only
contains a feature map with a single channel, i.e., ∀l, Cl = 1. Then, based on Theorem 3 and
Assumption 2, T(uv)(L:1) = T (L,uv) · · ·T (2,uv)T (1,uv) ∈ C follows a distribution, which is the product
of L complex numbers, where each complex number follows a Gaussian distribution. The mean
value of T(uv)(L:1) is

∏L
l=1 µlRuv ∈ C. The logarithm of the second-order moment is given as

log SOM(T(uv)(L:1)) =
∑L
l=1 log(|µlRuv|2 +K2σ2

l ) ∈ R.

For the more general case that each convolutional kernel contains more than one channel, i.e.,
∀l, Cl > 1, the SOM(T(uv)(L:1)) also approximately exponentially increases along with the depth
of the network with a quite complicated analytic solution. Please see Appendix A.6 for the proof.

(Conclusion 2) Therefore, according to above proof, the convolution operation makes a cascaded
convolutional decoder network more likely to weaken the high-frequency components of the input
sample, if the convolution operation does not change the feature map size. Specifically, we obtain the
following five remarks to specify detailed mechanisms of weakening high-frequency components.

Remark 1. According to Theorem 4, for each frequency component [u, v], the second-order moment
SOM(T(uv)(L:1)) will exponentially increase along with the depth L of the network. We can consider
that each layer’ T (l,uv) has independent effects log(|µlRuv|2 + K2σ2

l ) on log SOM(T(uv)(L:1)) =∑L
l=1 log(|µlRuv|2 +K2σ2

l ).

We admit that the conclusion in Remark 1 is derived from the second-order moment of T(uv)(L:1),
instead of a deterministic claim for a specific neural network. Nevertheless, according to the Law of
Large Numbers, SOM(T(uv)(L:1)) is still a convincing metric to reflect the significance of T(uv)(L:1).

Remark 2. If the decoder network is deep, then the decoder network is less likely to learn high-
frequency components. It is because |Ruv| is relatively large for low-frequency components. In this
way, the large effect of a single layer’s T (l,uv) of low-frequency components on log SOM(T(uv)(L:1)),
i.e., log(|µlRuv|2 + K2σ2

l ), can be accumulated through different layers according to the Law of
Large Numbers and the independence between different layers in Remark 1.

Therefore, the large |Rulowvlow | value for a low-frequency component [ulow, vlow] makes T(ulowvlow)(L:1)

more likely to have a large norm, whereas the small |Ruhighvhigh | value for a high-frequency component
[uhigh, vhigh] makes T(uhighvhigh)(L:1) less likely to have a large norm. This indicates that a deep decoder
network will almost certainly strengthen the encoding of low-frequency components of the
input sample, while weaken the encoding of high-frequency components.
Remark 3. If the expectation µl of convolutional weights in each l-th layer has a large absolute
value |µl|, then the decoder network is less likely to learn high-frequency components. It is because
according to Theorem 4, a large absolute value |µl| boosts the imbalance effects |µlRuv|2 among
different frequency components, thereby strengthening the trend of encoding low-frequency com-
ponents of the input sample.

6
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Remark 4. If the convolutional kernel size K is small, then the decoder network is less likely to
learn high-frequency components. It is because according to Theorem 4, a large K value alleviates
imbalance of the second-order moment SOM(T(uv)(L:1)) between low frequencies and high frequen-
cies caused by the imbalance of |Ruv|. Thus, a small K value strengthens the trend of encoding
low-frequency components of the input sample.

Remark 5. If the cascaded convolutional decoder network is trained on natural images, then the
decoder network is less likely to learn high-frequency components. Previous studies (Ruderman,
1994) have empirically found that natural images were dominated by low-frequency components.
Specifically, frequency spectrums of natural images follow a Power-law distribution. I.e., low-
frequency components (e.g., the frequency component [u, v] closed to [0, 0], [0, N − 1], [M − 1, 0],

and [M − 1, N − 1]) have much larger length ‖g(uv)‖2 =

√∑
c |G

(c)
uv |2 than other frequency com-

ponents. Besides, according to rules of the forward propagation in Equation (7) and the change of
T (l,uv) in Equation (8), if the frequency component g(uv) of the input image has a large magnitude,
then h(uv) of the output image also has a large magnitude. This means that using natural images as
the input strengthens the trend of encoding low-frequency components.

These five remarks tell us different ways to strengthen or weaken the capacity of a decoder of
modeling specific frequency components. Experiments in Section 4 have verified Remarks 1 to 4 in
the general case that each convolutional layer contains more than one feature maps.

• Effects of the zero-padding operation. To simplify the proof, let us consider the following one-
size zero-padding. Given each c-th channel F (c) ∈ RM×N of the feature map, the zero-padding puts
zero values at the edge of F (c), so as to obtain a new feature F̃ (c) ∈ RM

′×N′ , as follows.

∀m,n, F̃ (c)
mn =

{
F

(c)
mn, 0 ≤ m < M, 0 ≤ n < N

0, M ≤ m < M ′, N ≤ n < N ′
(14)

We have proven that the zero-padding operation boosts magnitudes of low-frequency components
of feature spectrums of the feature map, as shown in Theorem 5.

Theorem 5. (proven in Appendix A.7) Let each element in each c-th channel F (c) of the feature
map follows the Gaussian distribution N (a, σ2). G(c) ∈ CM×N denotes the frequency spectrum of
F (c), and H(c) ∈ CM

′×N′ denotes the frequency spectrum of the output feature F̃ (c) after applying
zero-padding on F (c). Then, the zero-padding on F (c) brings in additional signals at each frequency
[u, v] as follows, whose strength is measured by averaging over different sampled features.

∀0 ≤ u < M, 0 ≤ v < N, EF (c) [|H(c)
uv −G(c)

uv |] = |a|
(∣∣∣∣ sin(Muπ/M ′)

sin(uπ/M ′)

Nvπ/N ′

vπ/N ′

∣∣∣∣−MNδuv

)
;

∀M ≤ u < M ′, N ≤ v < N ′, EF (c) [|H(c)
uv |] =

∣∣∣∣a sin(Muπ/M ′)

sin(uπ/M ′)

Nvπ/N ′

vπ/N ′
e−i(

(M−1)u

M′ +
(N−1)v

N′ )π

∣∣∣∣ (15)

(Conclusion 3) According to rules of the forward propagation in Equation (7) and the change of
T (l,uv) in Equation (8), the zero-padding operation strengthens the trend of encoding low-frequency
components of the input sample, because EF (c) [|H(c)

uv −G(c)
uv |] is large for low frequencies [u, v].

• Effects of the upsampling operation. Let the l-th intermediate-layer feature map F ∈ RCl×M0×N0

pass through an upsampling layer to extend its width and height toM×N , subject toM = M0 ·ratio,
N = N0 · ratio as follows.

∀c,m∗, n∗, F̃ (c)
m∗n∗ =

{
F

(c)
mn, mod(m∗, ratio) = 0; mod(n∗, ratio) = 0

0, otherwise
s.t.

{
m = m∗/ratio
n = n∗/ratio

(16)

Theorem 6. (proven in Appendix A.8) Let G = [G(1), G(2), . . . , G(Cl)] ∈ CCl×M0×N0 denote spec-
trums of the Cl channels of feature F. Then, spectrums H = [H(1), H(2), . . . , H(Cl)] ∈ CCl×M×N of
the output feature F̃ can be computed as follows.

∀c, u, v, H
(c)

u+(s−1)M0,v+(t−1)N0
= G(c)

uv s.t. s = 1, . . . ,M/M0; t = 1, . . . , N/N0 (17)

Theorem 6 shows that the upsampling operation repeats the strong magnitude of the fundamental
frequency G(c)

00 of the lower layer to different frequency components ∀c,H(c)
u∗v∗ of the higher layer,

where u∗ = 0,M0, 2M0, . . . ; v
∗ = 0, N0, 2N0, . . .. Such a phenomenon is shown in Appendix C.2.
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(a)                        (b)

CIFAR-10 dataset Tiny-ImageNet dataset Broden dataset

randomly
selected

frequencies

CIFAR-10 dataset

Figure 4: (a) The exponential increase of the second-order moment of feature spectrums, SOM(h(uv))
(the linear increase of logSOM(h(uv)) along with the layer number linearly). (b) A small kernel size
K usually made the network learn a higher proportion plow of low-frequency components.

(Conclusion 4) The upsampling operation makes the upconvolution operation generate a feature
spectrum, in which strong signals of the input repetitively appears at certain frequencies. Such
unexpected strong signals hurt the representation capacity of the network.

More crucially, according to the spectrum propagation in Corollary 1, such unexpected frequency
components can be further propagated to upper layers. Thus, Corollary 1 may provide some clues
to differentiate real samples and the generated samples.

4 EXPERIMENTS

• Verifying that a neural network usually learned low-frequent components first. Our theorems
prove that a cascaded convolutional decoder network weakens the encoding of high-frequency com-
ponents. In this experiment, we visualized spectrums of the image generated by a decoder network,
which showed that the decoder usually learned low-frequency components in early epochs and then
shifted its attention to high-frequency components. To this end, we constructed a cascaded convolu-
tional auto-encoder by using the VGG-16 (Simonyan & Zisserman, 2015) as the encoder network.
The decoder network contained four upconvolutional layers. Each convolutional/upconvolutional
layer in the auto-encoder applied zero-paddings and was followed by a batch normalization layer
and an ReLU layer. The auto-encoder was trained on the Tiny-ImageNet dataset (Le & Yang, 2015)
using the mean squared error (MSE) loss for image reconstruction. Our theorem was verified by
the well-known phenomenon in Figure 1(a), i.e., an auto-encoder usually first generated images
with low-frequency components, and then gradually generated more high-frequency components.
In addition, Appendix C.1 shows results on more datasets, which also yielded similar conclusions.

• Verifying that the upsampling operation made a decoder network repeat strong signals at
certain frequencies of the generated image in Theorem 6. To this end, we compared feature
spectrums between the input spectrum and the output spectrum of the upsampling layer. We also
conducted experiments on the auto-encoder introduced above. Figure 1(b) shows that the decoder
network repeated strong signals at certain frequencies of the generated image. In addition, Ap-
pendix C.2 shows results on more datasets, which also yielded similar conclusions.

• Verifying that the zero-padding operation strengthened the encoding of low-frequency com-
ponents. To this end, we compared feature spectrums between the network with zero-padding op-
erations and the network without zero-padding operations. Therefore, we constructed the following
two baseline networks. The first baseline network contained 5 convolutional layers, and each layer
applied zero-paddings. Each convolutional layer contained 16 convolutional kernels (kernel size
was 7×7), except for the last layer containing 3 convolutional kernels. The second baseline network
was constructed by replacing all zero-padding operations with circular padding operations. Results
on the Broden dataset in Figure 5(c) show that the network with zero-padding operations encoded
more significant low-frequency components than the network with circular padding operations. In
addition, Appendix C.3 shows results on more datasets, which also yielded similar conclusions.

• Verifying factors that strengthened low-frequency components. (1) Verifying that a deep net-
work strengthened low-frequency components in Remark 1 and Remark 2. To this end, we con-
structed a network with 50 convolutional layers. Each convolutional layer applied zero-paddings to
avoid changing the size of feature maps, and was followed by an ReLU layer. We conducted this
experiment on three datasets, including CIFAR-10 (Krizhevsky et al., 2009), Tiny-ImageNet, and
Broden (Bau et al., 2017) datasets, respectively. The exponential increase of T(uv)(L:1) along with
the network depth L in Remark 1 indicates that frequency component h(uv) of the network output
also increases exponentially along with L. Therefore, for the frequency component h(uv) generated

8
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(a) (b)                                                  (c)

Input Layer 1 Layer 3 Layer 10 𝜇 = 0 𝜇 = 0.001𝜇 = 0.01Input Input zero circular

Figure 5: (a) A higher layer of a network usually generated features with more low-frequency com-
ponents, but with less high-frequency components. (b) A network whose convolutional weights have
a mean value significantly biased from 0 usually strengthened low-frequency components, but weak-
ened high-frequency components. (c) A network with zero-padding operations usually strengthened
more low-frequency components than a network with circular padding operations. Here, each mag-
nitude map of the feature spectrum was averaged over all channels. For clarity, we moved low
frequencies to the center of the spectrum map, and moved high frequencies to corners of the spec-
trum map. Besides, we only visualized components in the center of the spectrum map with the
range of relatively low frequencies u ∈ {u|0 ≤ u < M/8} ∪ {u|7M/8 ≤ u < M}; v ∈ {v|0 ≤ v <
N/8} ∪ {v|7N/8 ≤ v < N} for clarity.

by each l-th layer in a real decoder network, we measured its second-order moment SOM(h(uv)).
Figure 4(a) shows that SOM(h(uv)) increased along with the layer number in an exponential manner.

Besides, we visualized feature spectrums of different convolutional layers, which verified the claim
in Remark 2 that a deep decoder network strengthens the encoding of low-frequency components
of the input sample. Results on the Broden dataset in Figure 5(a) show that magnitudes of low-
frequency components increased along with the network layer number. In addition, Appendix C.4
shows results on more datasets, which also yielded similar conclusions.

(2) Verifying that a larger absolute mean value µl of each l-th layer’s parameters strengthened
low-frequency components in Remark 3. To this end, we compared feature spectrums of the same
network architecture with different mean values µl of parameters. Therefore, we applied the network
architecture used in the verification of the effects of the zero-padding, but we changed the kernel size
to 9×9. Based on this architecture, we constructed three networks, whose parameters were sampled
from Gaussian distributions N (µ = 0, σ2 = 0.012), N (µ = 0.001, σ2 = 0.012), and N (µ = 0.01, σ2 =
0.012), respectively. Results on the Broden dataset in Figure 5(b) show that magnitudes of low-
frequency components increased along with the absolute mean value of parameters. In addition,
Appendix C.5 shows results on more datasets, which also yielded similar conclusions.

(3) Verifying that a small kernel size K strengthened low-frequency components in Remark 4. To
this end, we compared feature spectrums of networks with different kernel sizes. Therefore, we
constructed three networks with kernel sizes of 1×1, 3×3, and 5×5. Each network contained 5 con-
volutional layers, each layer contained 16 convolutional kernels, except for the last layer containing
3 kernels. We used the metric plow =

∑
[u,v]∈Ωlow Ec[|H(c)

uv |2]/
∑
uv Ec[|H

(c)
uv |2] to measure the ratio of

low-frequency components to all frequencies, where Ωlow = [0 ≤ u < M/8, 0 ≤ v < N/8]∪ [0 ≤ u <
M/8, 7N/8 ≤ v < N ] ∪ [7M/8 ≤ u < M, 0 ≤ v < N/8] ∪ [7M/8 ≤ u < M, 7N/8 ≤ v < N ]. Fig-
ure 4(b) show that the network with a small kernel size encoded more low-frequency components.

5 CONCLUSION

In this paper, we have reformulate the rule for the forward propagation of a cascaded convolutional
decoder network in the frequency domain. Based on such propagation rules, we have discovered and
theoretically proven that both the convolution operation and the zero-padding operation strengthen
low-frequency components in the decoder. Besides, the upsampling operation repeats the strong
magnitude of the fundamental frequency in the input feature to different frequencies of the spectrum
of the output feature map. Such properties may hurt the representation capacity of a convolutional
decoder network. Experiments have verified our theoretical proofs. Note that our findings can
explain general trends of networks with above three operations, but cannot derive a deterministic
property of a specific network, and cannot be extended to networks for image classification, because
we have not derived the property of the max-pooling operation, which will be derived in the future.
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ETHICS STATEMENT STATEMENT

As a fundamental research in machine learning, this paper does not introduce any new ethical or
societal concerns. The results in this paper do not include misleading claims; their correctness is
theoretically verified. Related work is accurately represented. Though in theory any technique can
be misused, it is not likely to happen at the current stage.

REPRODUCIBILITY STATEMENT

This research discovered and theoretically explained two bottlenecks of a cascaded convolutional
decoder network in representing feature spectrums. For our theoretical results, formal statements
and the complete proofs of all Theorems, Corollaries, and the Assumption in Section 2 and Section
3 are provided in Appendix A. We have discribed additional experimental details in Appendix C,
including various model architectures and benchmark datasets, which ensure the reproducibility. We
will release all the codes and datasets when this paper is accepted.
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A PROOFS OF OUR THEORETICAL FINDINGS

We first introduce an important equation, which is widely used in the following proofs.
Lemma 1. Given N complex numbers, einθ, n = 0, 1, . . . , N − 1, the sum of these N complex
numbers is given as follows.

∀θ ∈ R,
N−1∑
n=0

einθ =
sin(Nθ2 )

sin( θ2 )
ei

(N−1)θ
2 (1)

Specifically, when Nθ = 2kπ, k ∈ Z, −N < k < N , we have

∀θ ∈ R,
N−1∑
n=0

einθ =
sin(Nθ2 )

sin( θ2 )
ei

(N−1)θ
2 = Nδθ; s.t. Nθ = 2kπ, k ∈ Z,−N < k < N,

where δθ =

{
1, θ = 0

0, otherwise

(2)

We prove Lemma 1 as follows.

Proof. First, let us use the letter S ∈ C to denote the term of
∑N−1
n=0 e

inθ.

S =

N−1∑
n=0

einθ

Therefore, eiθS is formulated as follows.

eiθS =

N∑
n=1

einθ ∈ C

Then, S can be computed as S = eiθS−S
eiθ−1 . Therefore, we have

S =
eiθS − S
eiθ − 1

=

∑N
n=1 e

inθ −
∑N−1
n=0 e

inθ

eiθ − 1

=
eiNθ − 1

eiθ − 1

=
ei
Nθ
2 − e−iNθ2
ei
θ
2 − e−i θ2

ei
(N−1)θ

2

=
(ei

Nθ
2 − e−iNθ2 )/2i

(ei
θ
2 − e−i θ2 )/2i

ei
(N−1)θ

2

=
sin(Nθ2 )

sin( θ2 )
ei

(N−1)θ
2

Therefore, we prove that
∑N−1
n=0 e

inθ =
sin(Nθ2 )

sin( θ2 )
ei

(N−1)θ
2 .

Then, we prove the special case that whenNθ = 2kπ, k ∈ Z,−N < k < N ,
∑N−1
n=0 e

inθ = Nδθ ={
N, θ = 0

0, otherwise
, as follows.

12



Under review as a conference paper at ICLR 2023

When θ = 0, we have

lim
θ→0

N−1∑
n=0

einθ = lim
θ→0

sin(Nθ2 )

sin( θ2 )
ei

(N−1)θ
2

= lim
θ→0

sin(Nθ2 )

sin( θ2 )

= N

When θ 6= 0, and Nθ = 2kπ, k ∈ Z,−N < k < N , we have
N−1∑
n=0

einθ =
sin(Nθ2 )

sin( θ2 )
ei

(N−1)θ
2

=
sin(kπ)

sin(kπN )
ei

(N−1)kπ
N

= 0

In the following proofs, the following two equations are widely used, which are derived based on
Lemma 1.

M−1∑
m=0

N−1∑
n=0

e−i(
um
M + vn

N )2π =

M−1∑
m=0

eim(−u2πM )
N−1∑
n=0

ein(−
v2π
N )

= (Mδ−u2πM )(Nδ− v2πN ) //According to Equation (2)

=

{
MN, u = v = 0

0, otherwise

To simplify the representation, let δuv be the simplification of δ−u2πM δ− v2πN in the following proofs.
Therefore, we have

M−1∑
m=0

N−1∑
n=0

e−i(
um
M + vn

N )2π = MNδuv =

{
MN, u = v = 0

0, otherwise
(3)

Similarly, we derive the second equation as follows.

M−1∑
m=0

N−1∑
n=0

ei(
(u−u′)m

M
+

(v−v′)n
N

)2π =

M−1∑
m=0

eim(
(u−u′)2π

M
)
N−1∑
n=0

ein(
(v−v′)2π

N
)

= MNδ (u−u′)2π
M

δ (v−v′)2π
N

//According to Equation (2)

= MNδu−u′δv−v′

=

{
MN, u′ = u; v′ = v

0, otherwise

(4)

A.1 PROOF OF THEOREM 1

In this section, we prove Theorem 1 in Section 2 of the main paper.

Theorem 1. Let H = [H(1), H(2), . . . , H(D)] ∈ CD×M
′×N′ denote spectrums of the output feature

F̃ ∈ RD×M
′×N′ . Then, H can be computed as follows.

h(u′v′) = δu′v′MNb +

M−1∑
u=0

N−1∑
v=0

αu′v′uv · T (uv)g(uv), s.t. δu′v′ =

{
1, u′ = 0; v′ = 0

0, otherwise
;
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αu′v′uv =
1

MN

sin((M −K)λuu′π)

sin(λuu′π)

sin((N −K)γvv′π)

sin(γvv′π)
ei((M−K)λuu′+(N−K)γvv′ )π;

where h(u′v′) = [H
(1)

u′v′ , H
(2)

u′v′ , . . . , H
(D)

u′v′ ]
> ∈ CD; b = [b(1), b(2), . . . , b(D)]> ∈ RD denotes the vector

of bias terms; αu′v′uv ∈ C is a coefficient; λuu′ = (u−u′)M−u(K−1)
M(M−K+1)

, γvv′ = (v−v′)N−v(K−1)
N(N−K+1)

. T (uv) ∈
CD×C is a matrix of complex numbers, which is exclusively determined by convolutional kernels
W[ker=1], W[ker=2], . . ., W[ker=D].

T
(uv)
dc =

∑K

t=0

∑K

s=0
W

[ker=d]
cts ei(

ut
M

+ vs
N

)2π, d = 1, 2, . . . , D; c = 1, 2, . . . , C.

Proof. Given each c-th channel of the feature spectrum G(c), the corresponding feature F (c) in the
time domain can be computed as follows.

F (c)
mn =

1

MN

M−1∑
u=0

N−1∑
v=0

G(c)
uv e

i(umM + vn
N )2π

Then, let us conduct the convlution operation (in Equation (1) in the main paper) on feature F =

[F (1), F (2), . . . , F (C)], in order to obtain the output feature F̃ ∈ RD×M ′×N ′ .

∀d = 1, 2, . . . ,D; 0 ≤ m < M ′; 0 ≤ n < N ′;

F̃ (d)
mn = b(d) +

C∑
c=1

K−1∑
t=0

K−1∑
s=0

W ker=d
cts F

(c)
m+t,n+s

= b(d) +

C∑
c=1

K−1∑
t=0

K−1∑
s=0

W ker=d
cts

1

MN

M−1∑
u=0

N−1∑
v=0

G(c)
uv e

i(
u(m+t)
M

+
v(n+s)
N

)2π

= b(d) +

C∑
c=1

1

MN

M−1∑
u=0

N−1∑
v=0

G(c)
uv e

i(um
M

+ vn
N

)2π
K−1∑
t=0

K−1∑
s=0

W ker=d
cts ei(

ut
M

+ vs
N

)2π

= b(d) +

C∑
c=1

1

MN

M−1∑
u=0

N−1∑
v=0

T
(uv)
dc G(c)

uv e
i(um
M

+ vn
N

)2π

Then, let us conduct the DFT on each channel of F̃, in order to obtain feature spectrums H(d)
u′v′ of F̃.

∀d = 1, 2, . . . , D; 0 ≤ u′ < M ′; 0 ≤ v′ < N ′;

H
(d)

u′v′ =

M′−1∑
m=0

N′−1∑
n=0

F̃ (l,d)
mn e−i(

u′m
M′ + v′n

N′ )2π

=

M′−1∑
m=0

N′−1∑
n=0

e−i(
u′m
M′ + v′n

N′ )2π(b(d) +

C∑
c=1

1

MN

M−1∑
u=0

N−1∑
v=0

T
(uv)
dc G(c)

uv e
i(um
M

+ vn
N

)2π) //Equation (3)

= M ′N ′b(d)δu′v′ +

C∑
c=1

M−1∑
u=0

N−1∑
v=0

T
(uv)
dc G(c)

uv
1

MN

M′−1∑
m=0

N′−1∑
n=0

ei((
u
M
− u′
M′ )m+( v

N
− v′
N′ )n)2π

// Let αu′v′uv =
1

MN

M′−1∑
m=0

N′−1∑
n=0

ei((
u
M
− u′
M′ )m+( v

N
− v′
N′ )n)2π

= M ′N ′b(d)δu′v′ +

M−1∑
u=0

N−1∑
v=0

αu′v′uv

C∑
c=1

T
(uv)
dc G(c)

uv
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When the convlution operation does not apply paddings, and its stride size is 1, M ′ = M − K +
1, N ′ = N −K + 1. In this way, αu′v′uv can be rewritten as follows.

αu′v′uv =
1

MN

M′−1∑
m=0

N′−1∑
n=0

ei((
u
M
− u′
M′ )m+( v

N
− v′
N′ )n)2π

//M ′ = M −K + 1, N ′ = N −K + 1

=
1

MN

M−K∑
m=0

N−K∑
n=0

ei((
u
M
− u′
M−K+1

)m+( v
N
− v′
N−K+1

)n)2π

=
1

MN

M−K∑
m=0

ei(
u
M
− u′
M−K+1

)2πm
N−K∑
n=0

ei(
v
N
− v′
N−K+1

)2πn

//According to Equation (1)

=
1

MN

sin((M −K)λuu′π)

sin(λuu′π)

sin((N −K)γvv′π)

sin(γvv′π)
ei((M−K)λuu′+(N−K)γvv′ )π

(5)

where λuu′ = (u−u′)M−u(K−1)
M(M−K+1) , γvv′ = (v−v′)N−v(K−1)

N(N−K+1) .

Therefore, we prove that the vector h(u′v′) = [H
(1)
u′v′ , H

(2)
u′v′ , . . . ,H

(D)
u′v′ ]

> ∈ CD can be computed as
follows.

∀d = 1, 2, . . . , D; h(u′v′) = δu′v′M
′N ′b +

M−1∑
u=0

N−1∑
v=0

αu′v′uvT
(uv)g(uv)

A.2 PROOF OF THEOREM 2

In this section, we prove Theorem 2 in Section 2 of the main paper.
Theorem 2. Based on Assumption 1, the layerwise dynamics of feature spectrums in the frequency
domain can be simplified as follows.

h(uv) = T (uv)g(uv) + δuvMNb (6)

Proof. Based on Assumption 1, the convolution operation does not change the size of the feature
map, i.e., M ′ = M , N ′ = N . In this case, αu′v′uv can be computed as follows.

αu′v′uv =
1

MN

M ′−1∑
m=0

N ′−1∑
n=0

ei((
u
M−

u′
M′ )m+( vN−

v′
N′ )n)2π

=
1

MN

M−1∑
m=0

N−1∑
n=0

ei(
(u−u′)m

M +
(v−v′)n

N )2π //M ′ = M,N ′ = N

=
1

MN

M−1∑
m=0

ei(
(u−u′)2π

M )m
N−1∑
n=0

ei(
(v−v′)2π

N )n //According to Equation (4)

= δu−u′δv−v′

(7)

where δu−u′ =

{
1, u′ = u

0, otherwise
; δv−v′ =

{
1, v′ = v

0, otherwise
.

Therefore, h(u′v′) can be computed as follows.

h(u′v′) =

M ′−1∑
u=0

N ′−1∑
v=0

αu′v′uvT
(u′v′)g(u

′v′) + δu′v′M
′N ′b

=

M−1∑
u=0

N−1∑
v=0

δu−u′δv−v′T
(u′v′)g(u

′v′) + δu′v′MNb

= T (u′v′)g(u
′v′) +MNbδu′v′
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Then, we prove that h(uv) = T (uv)g(uv) +MNbδuv .

A.3 PROOF OF COROLLARY 1

In this section, we prove Corollary 1 in Section 2 of the main paper.

Corollary 1. Let G = [G(1), G(2), . . . , G(C0)] ∈ CC0×M×N denote frequency spectrums of the
C0 channels of x. Then, based on Assumption 1, spectrums of the generated image x̂, i.e.,
H = [H(1), H(2), . . . , H(CL)] ∈ CCL×M×N , can be computed as follows.

h(uv) = T(uv)(L:1)g(uv) + δuvβ (8)

where T(uv)(L:1) = T (L,uv) · · ·T (2,uv)T (1,uv) ∈ CCL×C0 ; g(uv) = [G
(1)
uv , G

(2)
uv , . . . , G

(C0)
uv ]> ∈ CC0

and h(uv) = [H
(1)
uv , H

(2)
uv , . . . , H

(CL)
uv ]> ∈ CCL denote vectors at the frequency [u, v] in tensors G and H,

respectively. β = MN
(
b(L) +

∑L
j=2 T

(00)(L:j)b(j−1)
)
∈ CCL ; b(l) = [b(l,1), b(l,2), . . . , b(l,Cl)]> ∈ RCl

denotes the vector of bias terms of Cl convolutional kernels in the l-th layer.

Proof. Let G(l) = [G(l,1), G(l,2), · · · , G(l,Cl)] ∈ CCl×M×N denote feature spectrums of the l-th
layer. Let g(l,uv) = [G

(l,1)
uv , G

(l,2)
uv , · · · , G(l,Cl)

uv ]> ∈ CCl denote the frequency component at the
frequency [u, v]. When l = 0, g(0,uv) denotes the frequency component of the input sample. When
l = L, g(L,uv) denotes the frequency component of the network output.

Based on Theorem 2, g(l,uv) can be computed as follows.

∀l = 1, 2, . . . , L, g(l,uv) = T (l,uv)g(l−1,uv) + δuvMNb(l)

Then, the frequency component g(L,uv) of the network output can be computed as follows.

g(L,uv) = T (L,uv)g(L−1,uv) + δuvMNb(L)

= T (L,uv)(T (L−1,uv)g(L−2,uv) + δuvMNb(L−1)) + δuvMNb(L)

= T (L,uv)T (L−1,uv)g(L−2,uv) + T (L,uv)δuvMNb(L−1) + δuvMNb(L)

= · · ·

= T
(l,uv)
dc · · ·T (1,uv)g(0,uv) +MNT

(l,uv)
dc · · ·T (2,uv)b(1)δuv + · · ·+MNb(L)δuv

= T
(l,uv)
dc · · ·T (1,uv)g(0,uv) + δuvMN(T

(l,uv)
dc · · ·T (2,uv)b(1) + · · ·+MNb(L))

Let T(uv)(L:1) = T
(l,uv)
dc · · ·T (2,uv)T (1,uv) and β = MN

(
b(L) +

∑L
j=2 T

(00)(L:j)b(j−1)). Let
h(uv) = g(L,uv) denote the frequency component of the network output, and let g(uv) = g(0,uv)

denote the frequency component of the input sample. Then, we prove that h(uv) can be computed as
follows.

h(uv) = T(uv)(L:1)g(uv) + δuvβ

A.4 PROOF OF COROLLARY 2

In this section, we prove Corollary 2 in Section 2 of the main paper.

Corollary 2. Based on Assumption 1, the change of each frequency components T (l,uv) during the
learning process is reformulated as follows.

∆T (l,uv) = −ηMN

M−1∑
u′=0

N−1∑
v′=0

χu′v′uv

(
T(u′v′)(l−1:1)g(u′v′) + δu′v′β

′
) ∂Loss

∂(h(u′v′)
)>

T(u′v′)(L:l+1)
; (9)

s.t. χu′v′uv =
1

MN

sin(K(u− u′)π/M)

sin((u− u′)π/M)

sin(K(v − v′)π/N)

sin((v − v′)π/N)
ei(

(K−1)(u−u′)
M

+
(K−1)(v−v′)

N
)π (10)

where η is the learning rate; χu′v′uv ∈ C is a coefficient; T(u′v′)(l−1:1) =

T (l−1,u′v′) · · ·T (2,u′v′)T (1,u′v′) ∈ CCl−1×C0 ; T(u′v′)(L:l+1) = T (L,u′v′) · · ·T (l+1,u′v′) ∈ CCL×Cl ;
β′ = MN

(
b(l−1) +

∑l−1
j=2 T

(00)(l−1:j)b(j−1)
)
∈ CCl−1 ; T(uv)(l−1:1) is the conjugate of T(uv)(l−1:1).

16



Under review as a conference paper at ICLR 2023

Proof. First, we focus on a single convolutional layer.
According to the DFT and the inverse DFT, we can obtain the mathematical relationship between
G

(l,c)
uv and F (l,c)

mn , and the mathematical relationship between T (l,uv)
dc and W (l)[ker=d]

cts , as follows.


G(l,c)
uv =

M−1∑
m=0

N−1∑
n=0

F (l,c)
mn e−i(

um
M

+ vn
N

)2π

F (l,c)
mn =

1

MN

M−1∑
u=0

N−1∑
v=0

G(l,c)
uv ei(

um
M

+ vn
N

)2π


T

(l,uv)
dc =

K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts ei(

ut
M

+ vs
N

)2π

W
(l)[ker=d]
cts =

1

MN

M−1∑
u=0

N−1∑
v=0

T
(l,uv)
dc e−i(

ut
M

+ vs
N

)2π

(11)

Based on Equation (11) and the derivation rule for complex numbers (Kreutz-Delgado, 2009), we
can obtain the mathematical relationship between ∂Loss

∂G
(l,c)
uv

and ∂Loss
∂F

(l,c)
mn

, and the mathematical rela-

tionship between ∂Loss
∂T

(l,uv)
dc

and ∂Loss
∂W

(l)[ker=d]
cts

, as follows. Note that when we use gradient descent to

optimize a real-valued loss function Loss with complex variables, people usually treat the real and
imaginary values, a ∈ C and b ∈ C, of a complex variable (z = a+ bi) as two separate real-valued
variables, and separately update these two real-valued variables. In this way, the exact optimization
step of z computed based on such a technology is equivalent to ∂Loss

∂z . Since F (l,c)
mn and W (l)[ker=d]

cts

are real numbers, ∂Loss

∂F
(l,c)
mn

= ∂Loss

∂F
(l,c)
mn

and ∂Loss

∂W
(l)[ker=d]
cts

= ∂Loss

∂W
(l)[ker=d]
cts

.


∂Loss

∂G
(l,c)
uv

=
1

MN

M−1∑
m=0

N−1∑
n=0

∂Loss

∂F
(l,c)
mn

e−i(
um
M

+ vn
N

)2π

∂Loss

∂F
(l,c)
mn

=

M−1∑
u=0

N−1∑
v=0

∂Loss

∂G
(l,c)
uv

ei(
um
M

+ vn
N

)2π


∂Loss

∂T
(l,uv)
dc

=
1

MN

K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(l)[ker=d]
cts

ei(
ut
M

+ vs
N

)2π

∂Loss

∂W
(l)[ker=d]
cts

=

M−1∑
u=0

N−1∑
v=0

∂Loss

∂T
(l,uv)
dc

e−i(
ut
M

+ vs
N

)2π

(12)

Let us conduct the convolution operation (based on Assumption 1) on the feature map F(l−1) =

[F (l−1,1), F (l−1,2), . . . , F (l−1,C)] ∈ RC×M×N , and obtain the output feature map F(l) =
[F (l,1), F (l,2), . . . , F (l,D)] ∈ RD×M×N of the l-th layer as follows.

F (l,d)
mn = b(d) +

C∑
c=1

K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts F

(l−1,c)
m+t,n+s (13)

Based on Equation (11) and Equation (12), and the derivation rule for complex numbers (Kreutz-
Delgado, 2009), the exact optimization step of T (l,uv)

dc in real implementations can be computed as
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follows.

∂Loss

∂T
(l,uv)
dc

=
1

MN

K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(l)[ker=d]
cts

ei(
ut
M

+ vs
N

)2π //Equation (12)

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
m=0

N−1∑
n=0

∂Loss

∂F
(l,d)
mn

· F (l−1,c)
m+t,n+s

)
ei(

ut
M

+ vs
N

)2π //Equation (13)

//Equation (11)

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
m=0

N−1∑
n=0

∂Loss

∂F
(l,d)
mn

· 1

MN

M−1∑
u′=0

N−1∑
v′=0

G
(l−1,c)

u′v′ e−i(
u′(m+t)

M
+
v′(n+s)

N
)2π

)
ei(

ut
M

+ vs
N

)2π

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
u′=0

N−1∑
v′=0

G
(l−1,c)

u′v′ e−i(
u′t
M

+ v′s
N

)2π · 1

MN

M−1∑
m=0

N−1∑
n=0

∂Loss

∂F
(l,d)
mn

e−i(
u′m
M

+ v′n
N

)2π

)
ei(

ut
M

+ vs
N

)2π

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
u′=0

N−1∑
v′=0

G
(l−1,c)

u′v′
∂Loss

∂G
(l,d)

u′v′

e−i(
u′t
M

+ v′s
N

)2π

)
ei(

ut
M

+ vs
N

)2π //Equation (12)

=
1

MN

K−1∑
t=0

K−1∑
s=0

M−1∑
u′=0

N−1∑
v′=0

G
(l−1,c)

u′v′
∂Loss

∂G
(l,d)

u′v′

ei(
(u−u′)t
M

+
(v−v′)s
N

)2π

=

M−1∑
u′=0

N−1∑
v′=0

G
(l−1,c)

u′v′
∂Loss

∂G
(l,d)

u′v′

· 1

MN

K−1∑
t=0

K−1∑
s=0

ei(
(u−u′)t
M

+
(v−v′)s
N

)2π

// Let χu′v′uv =
1

MN

K−1∑
t=0

K−1∑
s=0

ei(
(u−u′)t
M

+
(v−v′)s
N

)2π

=

M−1∑
u′=0

N−1∑
v′=0

χu′v′uvG
(l−1,c)

u′v′
∂Loss

∂G
(l,d)

u′v′

where χu′v′uv can be rewritten as follows.

χu′v′uv =
1

MN

K−1∑
t=0

K−1∑
s=0

ei(
(u−u′)t
M

+
(v−v′)s
N

)2π

=
1

MN

K−1∑
t=0

ei
(u−u′)2π

M
t
K−1∑
s=0

ei
(v−v′)2π

N
s

=
1

MN

sin(K(u−u′)π
M

)

sin( (u−u′)π
M

)

sin(K(v−v′)π
N

)

sin( (v−v′)π
N

)
· ei(

(K−1)(u−u′)
M

+
(K−1)(v−v′)

N
)π //According to Equation1
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Similarly, we computed the gradient of the loss function w.r.t. the spectrum mapG
(l−1,c)

as follows.

∂Loss

∂G
(l−1,c)

u′v′

=
1

MN

M−1∑
m=0

N−1∑
n=0

∂Loss

∂F
(l−1,c)
mn

e−i(
u′m
M

+ v′n
N

)2π //Equation (12)

=
1

MN

M−1∑
m=0

N−1∑
n=0

(
K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts · ∂Loss

∂F
(l,d)
m−t,n−s

)
e−i(

u′m
M

+ v′n
N

)2π //Equation (13)

//Equation (12)

=
1

MN

M−1∑
m=0

N−1∑
n=0

(
K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts ·

M−1∑
u=0

N−1∑
v=0

∂Loss

∂G
(l,d)
uv

ei(
u(m−t)
M

+
v(n−s)
N

)2π

)
e−i(

u′m
M

+ v′n
N

)2π

=
1

MN

M−1∑
m=0

N−1∑
n=0

(
M−1∑
u=0

N−1∑
v=0

∂Loss

∂G
(l,d)
uv

ei(
um
M

+ vn
N

)2π ·
K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts e−i(

ut
M

+ vs
N

)2π

)
e−i(

u′m
M

+ v′n
N

)2π

=
1

MN

M−1∑
m=0

N−1∑
n=0

(
M−1∑
u=0

N−1∑
v=0

∂Loss

∂G
(l,d)
uv

T
(l,uv)
dc ei(

um
M

+ vn
N

)2π

)
e−i(

u′m
M

+ v′n
N

)2π //Equation (11)

=

M−1∑
u=0

N−1∑
v=0

∂Loss

∂G
(l,d)
uv

T
(l,uv)
dc · 1

MN

M−1∑
m=0

N−1∑
n=0

ei(
(u−u′)m

M
+

(v−v′)n
N

)2π

=

M−1∑
u=0

N−1∑
v=0

∂Loss

∂G
(l,d)
uv

T
(l,uv)
dc · δu−u′δv−v′ //Equation (4)

=
∂Loss

∂G
(l,d)

u′v′

T
(l,u′v′)
dc

Based on the derived ∂Loss
∂T

(l,uv)
dc

∈ C and ∂Loss

∂G
(l−1,c)

u′v′
∈ C, we can further write gradients ∂Loss

∂(T
(l,uv)

)>
∈

CD×C and ∂Loss

∂(g(l−1,u′v′))>
∈ CC as follows.

∂Loss

∂(T
(l,uv)

)>
=

M−1∑
u′=0

N−1∑
v′=0

χu′v′uvg(l−1,u′v′) ∂Loss

∂(g(l,u′v′))>
(14)

∂Loss

∂(g(l−1,u′v′))>
=

∂Loss

∂(g(l,u′v′))>
T

(l,u′v′)
(15)

Furthermore, we extend the above proof of a single convolutional layer to a network with L cas-
caded convolutional layers. Let g(l,u

′v′) denote the frequency component at the frequency [u′, v′]
of the l-th layer’s output feature, and let T (l,uv) the matrix computed by the l-th layer’s convolu-
tional weights. Then, according to Equation (15), the gradient w.r.t. g(l,u

′v′) can be computed as
follows.

∂Loss

∂(g(l,u′v′))T
=

∂Loss

∂(g(L,u′v′))T
T

(L,u′v′) · · ·T (l+1,u′v′)

=
∂Loss

∂(g(L,u′v′))T
T(u′v′)(L:l+1)

(16)
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According to Equation (14), the gradient w.r.t. T
(l,uv)

can be computed as follows.

∂Loss

∂(T
(l,uv)

)>
=

M−1∑
u′=0

N−1∑
v′=0

χu′v′uvg(l−1,u′v′) ∂Loss

∂(g(l,u′v′))>

//Corollary 1

=

M−1∑
u′=0

N−1∑
v′=0

χu′v′uv(T(u′v′)(l−1:1)g(0,u′v′) + β
′
δu′v′)

∂Loss

∂(g(L,u′v′))>
T(u′v′)(L:l+1)

// Let g(uv) = g(0,uv); h(uv) = g(L,uv)

=

M−1∑
u′=0

N−1∑
v′=0

χu′v′uv(T(u′v′)(l−1:1)g(u′v′) + β
′
δu′v′)

∂Loss

∂(h(u′v′)
)>

T(u′v′)(L:l+1)

(17)

Let us use the gradient descent algorithm to update the convlutional weight W (l)[ker=d]
c |n of the n-th

epoch, the updated frequency spectrum W
(l)[ker=d]
c |n+1 can be computed as follows.

∀t, s, W
(l)[ker=d]
cts |n+1 = W

(l)[ker=d]
cts |n − η ·

∂Loss

∂W
(l)[ker=d]
cts

where η is the learning rate. Then, the updated frequency spectrum T (l,uv)|n+1 computed based on
Equation (12) is given as follows.

∆T
(l,uv)
dc = T

(l,uv)
dc |n+1 − T (l,uv)

dc |n

=

K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts |n+1e

i(utM+ vs
N )2π − T (l,uv)

dc |n //Equation (11)

=

K−1∑
t=0

K−1∑
s=0

(W
(l)[ker=d]
cts |n − η ·

∂Loss

∂W
(l)[ker=d]
cts

)ei(
ut
M+ vs

N )2π − T (l,uv)
dc |n

= (

K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts |nei(

ut
M+ vs

N )2π − T (l,uv)
dc |n)− η

K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(l)[ker=d]
cts

ei(
ut
M+ vs

N )2π

= −η
K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(l)[ker=d]
cts

ei(
ut
M+ vs

N )2π //Equation (11)

= −ηMN
∂Loss

∂T
(l,uv)

dc

//Equation (12)

Therefore, we prove that any step on W (l)[ker=d]
cts equals to MN step on T (uv)

dc . In this way, pull
Equation (17) in the change of T (l,uv) can be computed as follows.

∆T (l,uv) = −ηMN

M−1∑
u′=0

N−1∑
v′=0

χu′v′uv

(
T(u′v′)(l−1:1)g(u′v′) + δu′v′β

′
) ∂Loss

∂(h(u′v′)
)>

T(u′v′)(L:l+1)
(18)

A.5 PROOFS OF ASSUMPTION 2 AND THEOREM 3

In this section, we prove Assumption 2 and Theorem 3 in the main paper.

Assumption 2. We assume that all elements in T (l,uv) are irrelevant to each other, and ∀l 6= l′,
elements in T (l,uv) and T (l′,uv) are irrelevant to each other in early epochs.

∀d 6= d′; ∀c 6= c′, EW(l) [T
(l,uv)
dc T

(l,uv)

d′c′ ] = EW(l) [T
(l,uv)
dc ]EW(l) [T

(l,uv)

d′c′ ]
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∀l, d, c, d′, c′, EW(l),...,W(1) [T
(l,uv)
dc T(uv)(l−1:1)

d′c′ ] = EW(l) [T
(l,uv)
dc )]EW(l−1),...,W(1) [T(uv)(l−1:1)

d′c′ ]

Besides, according to experimental experience, the mean value of all parameters in W(l) usually
has a small bias during the training process, instead of being exactly zero. Therefore, let us assume
that in early epochs, each parameter in W(l) is sampled from a Gaussian distribution N(µl, σ

2
l ).

Proof. Given an initialized, cascaded, convolutional decoder1 network with L convolutional layers,
let us focus on the behavior of the decoder network in early epochs of training. We notice that
each element in the matrix T (l,uv) is exclusively determined by the c-th channel of the d-th kenel
W

(l)[ker=d]
c,1:K,1:K ∈ RK×K according to Equation (5). Because parameters in W (l) in the decoder network

are set to random noises, we can consider that all elements in T (l,uv) irrelevant to each other, i.e.,
∀d 6= d′, c 6= c′, T

(l,uv)
dc is irrelevant to T (l,uv)

d′c′ . Similarly, since different layers’ parameters W (l) are
irrelevant to each other in the initialized decoder network, we can consider that elements in different
layers’ T (l,uv) irrelevant to each other, i.e., ∀l 6= l′, elements in T (l,uv) and elements in T (l′,uv)

are irrelevant to each other. Moreover, since the early training of a DNN mainly modifies a few
parameters according to the lottery ticket hypothesis (Frankle & Carbin, 2018), we can still assume
such irrelevant relationships in early epochs, as follows.

Then, we prove Theorem 3.

Theorem 3. Based on Assumption 1 and Assumption 2, we can prove that T (l,uv)
dc follows a Gaussian

distribution of complex numbers, as follows.

∀d, c T
(l,uv)
dc ∼ ComplexN (µ̂ = µlRuv, σ̂

2 = K2σ2
l , r = σ2

lR2u,2v)

s.t. Ruv =
sin(uKπ/M)

sin(uπ/M)

sin(vKπ/N)

sin(vπ/N)
ei(

(K−1)u
M

+
(K−1)v
N

)π

Proof. According to Assumption 2, each convolutional weight follows a Gaussian distribution, i.e.,
W ker=d
cts ∼ N (µl, σ

2
l ). For the convenience of proving, let us extend W ker=d

cts into an complex
number. In this way, W ker=d

cts follows a Gaussian distribution of complex numbers, i.e., W ker=d
cts ∼

ComplexN (µl, σ
2
l , 0).

Previous studies Tse & Viswanath (2005) proved that given N complex numbers, if each complex
number follows a Gaussian distribution, then the linear summation of these N complex numbers
also follows a Gaussian distribution of complex numbers. Since T (l,uv)

dc is a linear combination of
∀t, s,W (l)[ker=d]

cts , T (l,uv)
dc also follows a Gaussian distribution of complex numbers as follows.

∀d, c T
(l,uv)
dc ∼ ComplexN (µ̂, σ̂2, r)

where

µ = E[T
(l,uv)
dc ] //By definetion of µ

= E[

K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts ei(

ut
M+ vs

N )2π] //Equation (11)

//∀t 6= t′ or s 6= s′ : E[W
(l)[ker=d]
cts W

(l)[ker=d]
ct′s′ ] = E[W

(l)[ker=d]
cts ]E[W

(l)[ker=d]
ct′s′ ]

=

K−1∑
t=0

K−1∑
s=0

E[W
(l)[ker=d]
cts ]ei(

ut
M+ vs

N )2π

= µl

K−1∑
t=0

K−1∑
s=0

ei(
ut
M+ vs

N )2π //E[W
(l)[ker=d]
cts ] = µl

//let Ruv =

K−1∑
t=0

K−1∑
s=0

ei(
ut
M+ vs

N )2π

= µlRuv
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σ2 = E[(T
(l,uv)
dc − E[T

(l,uv)
dc ])(T

(l,uv)
dc − E[T

(l,uv)
dc ])] //By definetion of σ2

= V ar[T
(l,uv)
dc ]

= V ar[

K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts ei(

ut
M+ vs

N )2π] //Equation (11)

//∀t 6= t′ or s 6= s′ : E[W
(l)[ker=d]
cts W

(l)[ker=d]
ct′s′ ] = E[W

(l)[ker=d]
cts ]E[W

(l)[ker=d]
ct′s′ ]

=

K−1∑
t=0

K−1∑
s=0

V ar[W
(l)[ker=d]
cts ei(

ut
M+ vs

N )2π]

=

K−1∑
t=0

K−1∑
s=0

V ar[W
(l)[ker=d]
cts ] //V ar[aX] = |a|2V ar[X]

=

K−1∑
t=0

K−1∑
s=0

σ2
l //V ar[W

(l)[ker=d]
cts ] = σ2

l

= K2σ2
l

r = E[(T
(l,uv)
dc − E[T

(l,uv)
dc ])(T

(l,uv)
dc − E[T

(l,uv)
dc ])] //By definetion of r

= C[T
(l,uv)
dc ] //Define C[X] = E[(X− E[X])(X− E[X])]

= C[

K−1∑
t=0

K−1∑
s=0

W
(l)[ker=d]
cts ei(

ut
M+ vs

N )2π] //Equation (11)

//∀t 6= t′ or s 6= s′ : E[W
(l)[ker=d]
cts W

(l)[ker=d]
ct′s′ ] = E[W

(l)[ker=d]
cts ]E[W

(l)[ker=d]
ct′s′ ]

=

K−1∑
t=0

K−1∑
s=0

C[W
(l)[ker=d]
cts ei(

ut
M+ vs

N )2π]

=

K−1∑
t=0

K−1∑
s=0

C[W
(l)[ker=d]
cts ]ei(

2ut
M + 2vs

N )2π //C[aX] = a2C[X]

= σ2
l

K−1∑
t=0

K−1∑
s=0

ei(
2ut
M + 2vs

N )2π //V ar[W
(l)[ker=d]
cts ] = σ2

l

= σ2
l R2u,2v // Ruv =

K−1∑
t=0

K−1∑
s=0

ei(
ut
M+ vs

N )2π

Finally, let us consider the value of Ruv .

Ruv =

K−1∑
t=0

K−1∑
s=0

ei(
ut
M+ vs

N )2π

=

K−1∑
t=0

ei(
2uπ
M )t

K−1∑
s=0

ei(
2vπ
N )s

=
sin(KuM π)

sin( uM π)
·

sin(KvN π)

sin( vN π)
· ei(

(K−1)u
M +

(K−1)v
N )π //According to Equation (1)

Therefore, we prove that

∀d, c T
(l,uv)
dc ∼ ComplexN (µ̂ = µlRuv, σ̂

2 = K2σ2
l , r = σ2

lR2u,2v)

s.t. Ruv =
sin(uKπ/M)

sin(uπ/M)

sin(vKπ/N)

sin(vπ/N)
ei(

(K−1)u
M

+
(K−1)v
N

)π

22



Under review as a conference paper at ICLR 2023

A.6 PROOF OF THEOREM 4

Theorem 4. (proven in Appendix A.5) Based on Assumption 1 and Assumption 2, we can prove that
T

(l,uv)
dc follows a Gaussian distribution of complex numbers, as follows.

∀d, c T
(l,uv)
dc ∼ ComplexN (µ̂ = µlRuv, σ̂

2 = K2σ2
l , r = σ2

lR2u,2v)

s.t. Ruv =
sin(uKπ/M)

sin(uπ/M)

sin(vKπ/N)

sin(vπ/N)
ei(

(K−1)u
M

+
(K−1)v
N

)π

Proof. According to Theorem 4, ∀d, c, l : E[T
(l,uv)
dc ] = µlRuv, V ar[T

(l,uv)
dc ] = K2σ2

l .

SOM(T
(l,uv)
dc ) = E[|T (l,uv)

dc |2]

= |E[T
(l,uv)
dc ]|2 + V ar[T

(l,uv)
dc ]

= |µlRuv|2 +K2σ2
l

(19)

Then, we have

log(SOM(T(uv)(L:1))) = log(E[|T(uv)(L:1)|2])

= log(E[|T (L,uv)T(uv)(L−1:1)|2])

//Assumption 2, and Cl = 1

= log(E[|T (L,uv)|2]E[|T(uv)(L−1:1)|2])

= log((|µLRuv|2 +K2σ2
L)SOM(T(uv)(L−1:1))) //Equation (19)

= log(

L∏
l=1

|µlRuv|2 +K2σ2
l )

=

L∑
l=1

log(|µlRuv|2 +K2σ2
l )

For the more general case that each convolutional kernel contains more than one channel, i.e.,
∀l, Cl > 1, the SOM(T(uv)(L:1)) also approximately exponentially increases along with the depth
of the network with a quite complicated analytic solution, as proved below. Note that the fol-
lowing proof is based Assumption 2. Besides, we further assume that all element in T(uv)(l:1) are in-
dependent with each other. I.e., ∀d 6= d′; c 6= c′,E[T(uv)(l:1)

dc T(uv)(l:1)
d′c′ ] = E[T(uv)(l:1)

dc ]E[T(uv)(l:1)
d′c′ ].

Proof. According to Theorem 4, all element in T (l,uv) follow the same Gaussian distribution. There-
fore, we have

E[T (l,uv)] = E[T
(l,uv)
dc ]1(Cl×Cl−1)

= µlRuv1(Cl×Cl−1)

(20)

and we have

SOM(T (l,uv)) = SOM(T
(l,uv)
dc )1(Cl×Cl−1)

= (|µlRuv|2 +K2σ2
l )1(Cl×Cl−1)

(21)

Let us first consider the expectation of T(uv)(L:1) as follows.
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E[T(uv)(L:1)] = E[T (L,uv)T(uv)(L−1:1)]

= (CL−1E[T
(L,uv)
dc ]E[T(uv)(L−1:1)

dc ])1(CL×C0) //Assumption 2,Equation (20)

= (CL−1µlRuvE[T(uv)(L−1:1)
dc ])1(CL×C0) //Theorem 4

= (
1

CL

L∏
l=1

ClµlRuv)1(CL×C0) //Assumption 2

(22)

Then, we have

SOM(T(uv)(L:1))

= E[|T(uv)(L:1)|2]

= E[|T (L,uv)T(uv)(L−1:1)|2]

= (CL−1SOM(T
(L,uv)
dc )SOM(T(uv)(L−1:1)

dc ) + CL−1(CL−1 − 1)|E[T
(L,uv)
dc ]E[T(uv)(L−1:1)

dc ]|2)1(CL×C0)

//According to Assumption 2 and Equation (21),

//we further Assume ∀d 6= d′; c 6= c′,E[T(uv)(l:1)
dc T(uv)(l:1)

d′c′ ] = E[T(uv)(l:1)
dc ]E[T(uv)(l:1)

d′c′ ]

= (CL−1(|µLRuv|2 +K2σ2
L)SOM(T(uv)(L−1:1)

dc ) +
CL−1 − 1

CL−1
|E[T(uv)(L:1)

dc ]|2)1(CL×C0)

//According to Equation (19), Equation (22)

=

(
1

CL

L∏
l=1

Cl(|µlRu,v|2 + (Kσl)
2) +

L∑
l=2

Cl−1 − 1

Cl−1
| 1

Cl

l∏
k=1

CkµkRu,v|2
L∏

j=l+1

Cj−1

(
|µjRu,v|2

+ (Kσj)
2
))

1CL×C0

(23)

Therefore, we prove that for the more general case that ∀l, Cl > 1, the second-order moment
SOM(T(uv)(L:1)) also approximately exponentially increases along with the depth of the network.

A.7 PROOF OF THEOREM 5

In this section, we prove Theorem 5 in the main paper.

Theorem 5. Let each element in each c-th channel F (c) of the feature map follows the Gaussian
distribution N (a, σ2). G(c) ∈ CM×N denotes the frequency spectrum of F (c), and H(c) ∈ CM

′×N′

denotes the frequency spectrum of the output feature F̃ (c) after applying zero-padding on F (c). Then,
the zero-padding on F (c) brings in additional signals at each frequency [u, v] as follows, whose
strength is measured by averaging over different sampled features.

∀0 ≤ u < M, 0 ≤ v < N, EF (c) [|H(c)
uv −G(c)

uv |] = |a|
(∣∣∣∣ sin(Muπ/M ′)

sin(uπ/M ′)

Nvπ/N ′

vπ/N ′

∣∣∣∣−MNδuv

)
;

∀M ≤ u < M ′, N ≤ v < N ′, EF (c) [|H(c)
uv |] =

∣∣∣∣a sin(Muπ/M ′)

sin(uπ/M ′)

Nvπ/N ′

vπ/N ′
e−i(

(M−1)u

M′ +
(N−1)v

N′ )π

∣∣∣∣
24
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Proof.

EF (c) [G(c)
uv ] = E[

M−1∑
m=0

N−1∑
n=0

F (c)
mne

−i(umM + vn
N )2π] //Equation (11)

=

M−1∑
m=0

N−1∑
n=0

E[F (c)
mn]e−i(

um
M + vn

N )2π

= a

M−1∑
m=0

N−1∑
n=0

e−i(
um
M + vn

N )2π //F(c)
mn ∼ N (a, σ2)

= aMNδuv; 0 ≤ u < M, 0 ≤ v < N //Equation (3)

(24)

EF (c) [H(c)
uv ]

= EF (c) [

M ′−1∑
m=0

N ′−1∑
n=0

F̃ (c)
mne

−i(um
M′ +

vn
N′ )2π] //Equation (11)

= EF (c) [

M−1∑
m=0

N−1∑
n=0

F (c)
mne

−i(um
M′ +

vn
N′ )2π]

= a

M−1∑
m=0

N−1∑
n=0

e−i(
um
M′ +

vn
N′ )2π //F(c)

mn ∼ N (a, σ2)

= a
sin(Mu

M ′ π)

sin( u
M ′π)

sin(NvN ′ π)

sin( v
N ′π)

e−i(
(M−1)u

M′ +
(N−1)v

N′ )π; 0 ≤ u < M ′, 0 ≤ v < N ′ //Equation (1)

(25)

When 0 ≤ u < M, 0 ≤ v < N

EF (c) [|H(c)
uv −G(c)

uv |] = |EF (c) [H(c)
uv −G(c)

uv ]|
= |EF (c) [H(c)

uv ]− EF (c) [G(c)
uv ]|

//According to Equation 24,Equation 25

= |a
sin(Mu

M ′ π)

sin( u
M ′π)

sin(NvN ′ π)

sin( v
N ′π)

e−i(
(M−1)u

M′ +
(N−1)v

N′ )π − aMNδuv|

= |a|(|
sin(Mu

M ′ π)

sin( u
M ′π)

sin(NvN ′ π)

sin( v
N ′π)

| −MNδuv)

When M ≤ u < M ′, N ≤ v < N ′

EF (c) [|H(c)
uv |] = |EF (c) [H(c)

uv ]|

= |a
sin(Mu

M ′ π)

sin( u
M ′π)

sin(NvN ′ π)

sin( v
N ′π)

e−i(
(M−1)u

M′ +
(N−1)v

N′ )π| //Equation (25)

= |a||
sin(Mu

M ′ π)

sin( u
M ′π)

sin(NvN ′ π)

sin( v
N ′π)

|

Therefore, we prove that

∀0 < u < M, 0 < c < N,EF (c) [|Hc
uv −Gcuv|] = |a|(|

sin(Mu
M ′ π)

sin( u
M ′π)

sin(NvN ′ π)

sin( v
N ′π)

| −MNδuv)

∀M < u < M ′, N < c < N ′,EF (c) [|Hc
uv|] = |a

sin(Mu
M ′ π)

sin( u
M ′π)

sin(NvN ′ π)

sin( v
N ′π)

|
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A.8 PROOF OF THEOREM 6

In this section, we prove Theorem 6 in the main paper.
Theorem 6. Let G = [G(1), G(2), . . . , G(Cl)] ∈ CCl×M0×N0 denote spectrums of the Cl channels of
feature F. Then, spectrums H = [H(1), H(2), . . . , H(Cl)] ∈ CCl×M×N of the output feature F̃ can be
computed as follows.

∀c, u, v, H
(c)

u+(s−1)M0,v+(t−1)N0
= G(c)

uv s.t. s = 1, . . . ,M/M0; t = 1, . . . , N/N0 (26)

Proof.

G(c)
uv =

M0−1∑
m=0

N0−1∑
n=0

F (c)
mne

−i(umM0
+ vn
N0

)2π //Equation (11) (27)

H
(c)

u+(s−1)M0,v+(t−1)N0
=

M−1∑
m=0

N−1∑
n=0

F̃ (c)
mne

−i( (u+(s−1)M0)m
M

+
(v+(t−1)N0)n

N
)2π //Equation (11)

=

M0−1∑
m=0

N0−1∑
n=0

F (c)
mne

−i( (u+(s−1)M0)(m·ratio)
M

+
(v+(t−1)N0)(n·ratio)

N
)2π

=

M0−1∑
m=0

N0−1∑
n=0

F (c)
mne

−i( (u+(s−1)M0)m
M/ratio

+
(v+(t−1)N0)n

N/ratio
)2π

//M = M0 · ratio;N = N0 · ratio

=

M0−1∑
m=0

N0−1∑
n=0

F (c)
mne

−i( (u+(s−1)M0)m
M0

+
(v+(t−1)N0)n

N0
)2π

=

M0−1∑
m=0

N0−1∑
n=0

F (c)
mne

−i(um
M0

+ vn
N0

)2π · e−i((s−1)m+(t−1)n)2π

=

M0−1∑
m=0

N0−1∑
n=0

F (c)
mne

−i(um
M0

+ vn
N0

)2π
//s, t ∈ Z

= G(c)
uv //Equation (27)

(28)

Therefore we prove that:

∀c, u, v, H
(c)

u+(s−1)M0,v+(t−1)N0
= G(c)

uv s.t. s = 1, . . . ,M/M0; t = 1, . . . , N/N0 (29)

B RELATED WORK

Although few previous studies directly prove a DNN‘s bottleneck from the perspective of represent-
ing specific feature components, we still make a survey on research on the representation capacity
of a DNN.

Some studies focused on a specific frequency that took the landscape of the loss function on all
input samples as the time domain (Xu et al., 2019b; Rahaman et al., 2019; Xu et al., 2019a; Luo
et al., 2019). Based on such a specific frequency, they observed and proved a phenomenon namely
Frequency Principle (F-Principle) that a DNN first qucikly learned low-frequency components, and
then relatively slowly learned the high-frequency ones, which might shed new light on understanding
the representation capacity of a DNN. For example, Lin et al. (2019) empirically proposed to smooth
out high-frequency components to improve the adversarial robustness. Besides, Ma et al. (2020)
explored the boundary of the F-Principle, beyond which the F-Principle did not hold any more. In
comparison, we focus on a fully different type of frequency, i.e., the frequency w.r.t. the DFT on
an input image or a feature map.
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In this direction, previous studies mainly experimentally analyzed the relationship between the learn-
ing of different frequencies and the robustness of a DNN. Yin et al. (2019) conducted a lot of experi-
ments to analyze the robustness of a DNN w.r.t. different frequencies of the image. They discovered
that both adversarial training and Gaussian data augmentation improved the DNN’s robustness to
higher frequencies. Wang et al. (2020) empirically proposed to remove high frequency components
of convolutional weights to improve the adversarial robustness. In comparison, we theoretically
prove representations bottleneck of DNNs in the frequency domain.

Besides, many studies explained the representation capacity of a DNN in the time domain. The
information bottleneck hypothesis shows that the learning process of DNNs is to retain the task-
relevant input information and discard the task-irrelevant input information (Tishby & Zaslavsky,
2015; Shwartz-Ziv & Tishby, 2017; Wolchover & Reading, 2017; Amjad & Geiger, 2019). The
lottery ticket hypothesis shows that some initial parameters of DNNs inherently contribute more
to the network output (Frankle & Carbin, 2018). The double-descent phenomenon describes the
specific training process of DNNs that the loss first declines, then rises, and then declines again
(Nakkiran et al., 2019; Reinhard & Fatih, 2020). DNNs with the batch normalization may sometimes
conflicted with the weight decay (Van Laarhoven, 2017; Li et al., 2020). DNNs are vulnerable to
adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014). DNNs tipically encoded simple
interactions between very few input variables and complex interactions between almost all input
variables, but were difficult to encode interactions between intermediate number of input variables
(Deng et al., 2022).

C MORE EXPERIMENTAL RESULTS

C.1 VERIFYING THAT A NEURAL NETWORK USUALLY LEARNED LOW-FREQUENT
COMPONENTS FIRST.

In section, we provide more experimental results to verify that a neural network usually learned low-
frequent components first, which had already been shown in Figure 1(a) in the main paper. Here,
we also constructed a cascaded convolutional auto-encoder by using the VGG-16 as the encoder
network. The decoder network contained three upconvolutional layers for the CIFAR-10 dataset, and
contained three upconvolutional layers for the Broden dataset. Each convolutional/upconvolutional
layer in the auto-encoder applied zero-paddings and was followed by a batch normalization layer
and an ReLU layer. The auto-encoder was trained using the mean squared error (MSE) loss for
image reconstruction. Results in Figure 6 verified that the auto-encoder usually learned low-frequent
components first and gradually learned higher frequecies. We also attached the generated image
below its spectrum map in Figure 7, in order to help people understand the learning process of the
auto-encoder.

C.2 VERIFYING THAT THE UPSAMPLING OPERATION MADE A DECODER NETWORK REPEAT
STRONG SIGNALS AT CERTAIN FREQUENCIES OF THE GENERATED IMAGE.

In section, we provide more experimental results to verify that the upsampling operation in the
decoder repeats strong frequency components of the input to generate spectrums of upper layers.

First, we conducted experiments to verify Theorem 6 in the main paper, which claims that the upsam-
pling operation repeats the strong magnitude of the fundamental frequency G(c)

00 of the lower layer to
different frequency components ∀c,H(c)

u∗v∗ of the higher layer, where u∗ = 0,M0, 2M0, 3M0, . . . ; v
∗ =

0, N0, 2N0, 3N0, . . .. To verify this, given an image, let the image pass through four cascaded upsam-
pling layers. We visualized the feature spectrum generated by each upsampling layer, in order to
verify whether the upsampling operation repeated the strong magnitude of the fundamental fre-
quency of the input image to different frequency components of the feature spectrum generated by
upsampling layers. Results on the CIFAR-10 dataset and the Tiny-ImageNet dataset in Figure 8
verified Theorem 6.

Second, we provide more results on real neural networks, which have already been shown in Fig-
ure 1(b) in the main paper. We also constructed a cascaded convolutional auto-encoder by using the
VGG-16 as the encoder network. The decoder network contained four upconvolutional layers. Each
convolutional/upconvolutional layer in the auto-encoder applied zero-paddings and was followed by
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Input, spectrum

(a) CIFAR-10 dataset (b) Broden dataset

EpochsInput, spectrumEpochs

Figure 6: Magnitude maps of feature spectrums of different epochs’ network output. Each magni-
tude map was averaged over all channels. For clarity, we moved low frequencies to the center of the
spectrum map, and moved high frequencies to corners of the spectrum map. Note that we set the
magnitude of the fundamental frequency to be the same with the frequency that had the second large
magnitude. For resutls in (b), we only visualized components in the center of the spectrum map with
the range of relatively low frequencies u ∈ {u|0 ≤ u < M/8} ∪ {u|7M/8 ≤ u < M}; v ∈ {v|0 ≤ v <
N/8} ∪ {v|7N/8 ≤ v < N} for clarity.

a batch normalization layer and an ReLU layer. The auto-encoder was trained on the Broden dataset
using the mean squared error (MSE) loss for image reconstruction. Results in Figure 9 verified
Theorem 6.

C.3 VERIFYING THAT THE ZERO-PADDING OPERATION STRENGTHENED THE ENCODING OF
LOW-FREQUENCY COMPONENTS.

In section, we provide more experimental results to verify that the zero-padding operation strength-
ened the encoding of low-frequency components, which had already been shown in Figure 5(c) in
the main paper. Here, we also constructed the following two baseline networks. The first baseline
network contained 5 convolutional layers, and each layer applied zero-paddings. Each convolutional
layer contained 16 convolutional kernels (kernel size was 7×7), except for the last layer containing 3
convolutional kernels. The second baseline network was constructed by replacing all zero-padding
operations with circular padding operations. Results in Figure 10 verified that the zero-padding
operation strengthened the encoding of low-frequency components.

C.4 VERIFYING THAT A DEEP NETWORK STRENGTHENED LOW-FREQUENCY COMPONENTS.

In section, we provide more experimental results to verify that a deep network strengthened low-
frequency components, which had already been shown in Figure 5(a) in the main paper. Here, we
also constructed a network with 50 convolutional layers. Each convolutional layer applied zero-
paddings to avoid changing the size of feature maps, and was followed by an ReLU layer. We
visualized feature spectrums of different convolutional layers. Results on the CIFAR-10 dataset
and the Tiny-ImageNet dataset in Figure 11 show that magnitudes of low-frequency components
increased along with the network layer number.

C.5 VERIFYING THAT A LARGER ABSOLUTE MEAN VALUE µl OF EACH l-TH LAYER’S
PARAMETERS STRENGTHENED LOW-FREQUENCY COMPONENTS.

In section, we provide more experimental results to verify that a larger absolute mean value µl
of each l-th layer’s parameters strengthened low-frequency components, which had already been
shown in Figure 5(b) in the main paper. Here, we also applied a network architecture with 5 con-
volutional layers. Each layer contained 16 convolutional kernels (kernel size was 9×9), except
for the last layer containing 3 convolutional kernels. Based on this architecture, we constructed
three networks, whose parameters were sampled from Gaussian distributions N (µ = 0, σ2 = 0.012),
N (µ = 0.001, σ2 = 0.012), and N (µ = 0.01, σ2 = 0.012), respectively. Results on the CIFAR-10
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(a) CIFAR-10 dataset

Input, spectrum Epoch400Epoch300Epoch200Epoch100Epoch50Epoch20Epoch5Epoch1 Input, spectrum Epoch400Epoch300Epoch200Epoch100Epoch50Epoch20Epoch5Epoch1

Epoch400Epoch300Epoch200Epoch100Epoch50Epoch20Epoch5Epoch1Input, spectrum Epoch400Epoch300Epoch200Epoch100Epoch50Epoch20Epoch5Input, spectrum
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Epoch1

Figure 7: Magnitude maps of feature spectrums and the corresponding generated images of differ-
ent epochs. Results show that in the very few epochs of the training, the network removed noisy
signal caused by the upsampling, to some extent, which were in the grid pattern in the spectrum.
After that, the network learned low-frequency components first, and then gradually learned higher
frequencies. Each magnitude map in this figure was averaged over all channels. For clarity, we
moved low frequencies to the center of the spectrum map, and moved high frequencies to corners
of the spectrum map. Note that we set the magnitude of the fundamental frequency to be the same
with the frequency that had the second large magnitude.
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Figure 8: Magnitude maps of feature spectrums after one/two/there/four upsampling layers. Each
magnitude map was averaged over all channels. For clarity, we moved low frequencies to the center
of the spectrum map, and moved high frequencies to corners of the spectrum map.
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Figure 9: Magnitude maps of feature spectrums after one/two/there/four/five/six upsampling layers.
Each magnitude map was averaged over all channels. For clarity, we moved low frequencies to the
center of the spectrum map, and moved high frequencies to corners of the spectrum map.
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Figure 10: A network with zero-padding operations usually strengthened more low-frequency com-
ponents than a network with circular padding operations. Here, each magnitude map of the feature
spectrum was averaged over all channels. For clarity, we move low frequencies to the center of the
spectrum map, move high frequencies to corners of the spectrum map, and set the magnitude of the
fundamental frequency to be the same with the frequency that has the second large magnitude.
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Figure 11: Comparing feature spectrums of different layers. Results show that higher layers of a
network usually generated features with more low-frequency components. For clarity, we move low
frequencies to the center of the spectrum map, move high frequencies to corners of the spectrum
map, and set the magnitude of the fundamental frequency to be the same with the frequency that has
the second large magnitude. For resutls in (b), we only visualized components in the center of the
spectrum map with the range of relatively low frequencies u ∈ {u|0 ≤ u < M/6} ∪ {u|5M/6 ≤ u <
M}; v ∈ {v|0 ≤ v < N/6} ∪ {v|5N/6 ≤ v < N} for clarity.
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Figure 12: A network whose convolutional weights had a mean value significantly biased from 0
usually strengthened low-frequency components, but weakened high-frequency components. Here,
each magnitude map of the feature spectrum was averaged over all channels. For clarity, we moved
low frequencies to the center of the spectrum map, moved high frequencies to corners of the spec-
trum map, and set the magnitude of the fundamental frequency to be the same with the frequency
that has the second large magnitude. For resutls in (b), we only visualized components in the center
of the spectrum map with the range of relatively low frequencies u ∈ {u|0 ≤ u < M/6}∪{u|5M/6 ≤
u < M}; v ∈ {v|0 ≤ v < N/6} ∪ {v|5N/6 ≤ v < N} for clarity.

dataset and the Tiny-ImageNet dataset in Figure 12 show that magnitudes of low-frequency compo-
nents increased along with the absolute mean value of parameters.
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