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ABSTRACT

This paper presents a mathematical model and experimentation, for carpooling
and micromobility. Our aim is to addresses the problem of urban traffic conges-
tion, the model focusses on route optimization, operational cost reduction, and
overall service quality improvement. In order to provide cost effective and time
efficient solutiion, the model tests takes into account a wide range of scenarios,
including peak hours, off-peak hours, adverse weather conditions, special events,
and accidents.
The experiment’s findings clearly show significant progress in each of the investi-
gated conditions. During peak hours, the model was able to achieve an objective
value of 1217.88 by utilizing 34 micromobility trips and 56 multi-leg journeys. In
the off-peak hours, there were 33 micromobility trips and 57 multi-leg excursions,
which resulted in an increased objective value of 1070.21. The objective value
remained unchanged at 1181.04 throughout the scenarios that included adverse
weather conditions, special events, and accidents. We achieved this by maintain-
ing consistent micromobility and multi-leg trip distributions. The model effec-
tively enhances the operational efficiency and sustainability of transport networks,
as demonstrated by this set of findings.
To further improve the model, future study topics can benefit from the introduc-
tion of new technology, such as autonomous vehicles and real-time data analytics.
The studies by integrating these technologies into our model can improve time
efficiency, cost, low CO2 emissions and service quality. We propose that industry
stakeholders and academic institutions collaborate and promote this industry, en-
courage innovation, and produce environmentally friendly transportation solutions
that improve the quality of life for people all over the world.

1 INTRODUCTION

Carpooling is an effective strategy to reduce urban congestion, emissions, and lower transportation
costs Aguiléra & Pigalle (2021); Project Drawdown (2018); Rus et al. (2017). Recent advancements
have focused on optimising transportation through various algorithmic approaches and simulation
frameworks. Tamannaei and Irandoost (2019) proposed a branch-and-bound algorithm that enhances
ride-matching efficiency and user satisfaction by effectively managing multiple carpooling requests
Tamannaei & Irandoost (2019). Kumar and Khani (2020) developed a transit-based ridesharing
algorithm that increases cost savings and ride efficiency, although challenges related to scalability
and real-world application persist Kumar & Khani (2020). Huang et al. (2022) utilised shared
automated vehicle fleets for last-mile delivery, showcasing the potential integration of automated
solutions with traditional carpooling models Huang et al. (2022).

Fangxin et al. (2019) created the Car4Pac system for efficient last-mile parcel delivery, showing
substantial cost reductions, although scalability remains a concern Wang et al. (2020). Lele and
Shah (2023) optimised transportation networks in Washington, DC, using MST and PERT methods,
achieving efficiency gains but facing limitations in regional focus and reliance on existing literature
Lele & Shah (2023). Li et al. (2020) proposed a real-time peer-to-peer ride-matching algorithm
that improves matching efficiency and cost-effectiveness Masoud & Jayakrishnan (2017). Wang et
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al. (2022) introduced advanced optimisation techniques for shared mobility, highlighting significant
efficiency improvements despite challenges in diverse urban settings Wang et al. (2022).

Azimi et al. (2021) examined mode choices and their impacts on transportation networks, emphasis-
ing the role of shared autonomous vehicles in reducing costs and improving efficiency Azimi et al.
(2021). Gdowska et al. (2018) explored the design and implementation of efficient last-mile solu-
tions using shared mobility options, highlighting significant cost and time savings Gdowska et al.
(2018). Bian et al. (2020) developed a mechanism design for shared autonomous vehicle systems,
showing improvements in user satisfaction and system efficiency Bian et al. (2020). Cointreau et
al. (2019) investigated vehicle routing problems in urban settings, proposing novel solutions to en-
hance delivery efficiency Coindreau et al. (2019). Adnan et al. (2019) focused on last-mile delivery
challenges, offering innovative solutions to optimise logistics Adnan et al. (2019). Mitropoulos et
al. (2021) examined factors affecting shared mobility adoption, providing insights into user prefer-
ences and system design Mitropoulos et al. (2021). Mourad et al. (2019) conducted a comprehensive
survey on shared mobility services, highlighting trends and future directions Mourad et al. (2019).
Schaller (2021) assessed the impact of shared mobility on urban transportation systems, identifying
key benefits and challenges Schaller (2021). Zhang et al. (2015) explored feeder services using
shared vehicles, showing significant improvements in service efficiency and user satisfaction Zhang
et al. (2015).

Chen et al. (2022) applied evolutionary algorithms to optimise shared mobility systems, demon-
strating significant efficiency gains Chen et al. (2022). Djavadian and Chow (2017) developed an
agent-based model to simulate shared mobility scenarios, providing valuable insights into system
performance and user behaviour Djavadian & Chow (2017). Gavalas et al. (2016) designed a frame-
work for optimising ride-sharing networks, achieving notable cost and time savings Gavalas et al.
(2016). Shen et al. (2018) integrated shared autonomous vehicles into public transportation systems,
showing potential for reducing congestion and improving service quality Shen et al. (2018). Mar-
tinez et al. (2020) proposed an optimised scheduling algorithm for shared mobility services, enhanc-
ing efficiency and user satisfaction Martinez-Sykora et al. (2020). Tafreshian and Masoud (2020)
explored frontiers in shared mobility research, highlighting emerging trends and innovative solutions
Tafreshian et al. (2020). Shaheen et al. (2018) reviewed the evolution of shared mobility services,
providing a comprehensive overview of developments and prospects Shaheen (2018). Shaheen et al.
(2020) analysed the sharing economy’s impact on transportation, emphasising shared mobility’s role
in sustainable urban development Shaheen et al. (2020). Greenblatt and Saxena (2015) examined
automated vehicles’ potential to transform urban mobility, highlighting key benefits and challenges
Greenblatt & Shaheen (2015). Anosike et al. (2023) explored innovative solutions for enhancing
shared mobility systems, focusing on efficiency and user satisfaction Anosike et al. (2023). Feng et
al. (2021) investigated crowdsource-based solutions for shared mobility, demonstrating significant
improvements in system performance and user engagement Feng et al. (2021). Wright et al. (2020)
assessed the feasibility of Mobility-as-a-Service (MaaS) models in urban settings, providing insights
into implementation and user adoption Wright et al. (2020).

Based on the studies we have examined above, we can see the limitations of carpooling and overall
transportation.

1.1 THE STUDY’S OBJECTIVES

This paper’s primary focus is to optimise time, reduce costs, and reduce CO2 emissions, which in
turn will lead to end-user satisfaction 1. This is a continuation of a paper that is currently under
review, ”A Green Intelligent Transport Model for Urban Mobility”. Our research aims to achieve
three primary objectives:

• Our research aims to develop a mathematical model that balances time and operation costs
in carpooling, integrating it with micromobility.

• Test the model in various scenarios to evaluate its performance.

• Analyse how the different optimisations affect end-user satisfaction.

1https://www.todaysoftmag.com/article/711/tom-gilb-why-delivering-value-to-customers-makes-your-
business-successful-and-sustainable
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1.2 OUTLINE OF THE PAPER

The structure of the paper is outlined below:

• Section 2: Methodology: This section presents the objective function and constraints,
along with the mathematical formulation of the optimisation model.

• Section 3: Experiment Setup: We discuss the experiment’s setup, which includes metrics
for evaluation, data sources, and different simulation parameters.

• Section 4: Results: We present the performance metrics and scenario analysis by high-
lighting the simulation tests’ outcomes.

• Section 5: Discussion: The analysis of the findings’ presentation places emphasis on im-
portant conclusions and their implications for urban transportation.

• Section 6: Conclusions: The section concludes with a summary of the study’s key findings
and potential directions for future research.

2 METHODOLOGY

2.1 OPTIMIZATION MODEL DESCRIPTION

The proposed optimisation model that has been aims to increase the efficiency of urban transport
by reducing the amount of time it takes to travel, together with expenses and emissions, and by
increasing the level of satisfaction experienced by users. In addition to the more traditional method
of carpooling , the model incorporates micromobility options such as bicycles and scooters for
lastmile journey.

2.1.1 OBJECTIVE FUNCTIONS

The model uses several objective functions to balance multiple criteria:

1. Minimization of Travel Time: The total travel time for all trips, including vehicle and
micromobility trips, is minimized. The travel time for a trip between nodes i and j is
denoted as Tij .

Minimize
n∑

i=1

n∑
j=1

(Tij · xij +Mij · yij)

where xij and yij are binary variables indicating whether a vehicle or micromobility mode
is used for the trip, respectively.

2. Minimization of Costs: The total costs associated with both vehicle and micromobility
trips are minimized. Costs include fuel, maintenance for vehicles, and operational costs for
micromobility.

Minimize
V∑

v=1

Cv · zv +
n∑

i=1

n∑
j=1

(MCij · yij)

where Cv is the cost for vehicle v, and MCij is the cost for micromobility between nodes
i and j.

3. Minimization of Emissions: The total emissions from all trips are minimized. Vehicle
emissions are denoted as Ev and micromobility emissions as MEij .

Minimize
V∑

v=1

Ev · zv +
n∑

i=1

n∑
j=1

(MEij · yij)

4. Maximization of User Satisfaction: The model seeks to maximize user satisfaction for
both modes of transport. Satisfaction levels for trips are given as Sij for vehicles and
MSij for micromobility.

Maximize
n∑

i=1

n∑
j=1

(Sij · xij +MSij · yij)
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2.1.2 CONSTRAINTS

The model is subject to several constraints to ensure feasible and realistic solutions:

1. Vehicle Capacity: Each vehicle has a capacity constraint that cannot be exceeded.
n∑

i=1

n∑
j=1

dij · xij ≤ Qv ∀v ∈ V

where dij is the passenger demand between nodes i and j, and Qv is the capacity of vehicle
v.

2. Travel Time Limits: There are maximum travel time constraints for both vehicle and
micromobility trips.

Tij · xij ≤ Tmax ∀i, j
Mij · yij ≤ Mmax ∀i, j

3. Emissions Caps: Emissions from all trips are capped to ensure environmental sustainabil-
ity.

V∑
v=1

Ev · zv +
n∑

i=1

n∑
j=1

(MEij · yij) ≤ Emax

4. Assignment Constraints: Each trip must be assigned to exactly one mode of transport.

xij + yij = 1 ∀i, j

2.2 MATHEMATICAL NOTATION

• n: Number of nodes
• V : Set of vehicles
• xij : Binary variable for vehicle trip from node i to j

• yij : Binary variable for micromobility trip from node i to j

• zv: Binary variable indicating if vehicle v is used
• Tij : Travel time for vehicle trip from node i to j

• Mij : Travel time for micromobility trip from node i to j

• Cv: Cost for vehicle v

• MCij : Cost for micromobility trip from node i to j

• Ev: Emissions for vehicle v

• MEij : Emissions for micromobility trip from node i to j

• Sij : Satisfaction for vehicle trip from node i to j

• MSij : Satisfaction for micromobility trip from node i to j

• dij : Passenger demand from node i to j

• Qv: Capacity of vehicle v

• Tmax: Maximum travel time for vehicle trips
• Mmax: Maximum travel time for micromobility trips
• Emax: Maximum allowed emissions

2.3 DATA GENERATION AND HANDLING

2.3.1 SYNTHETIC DATA

Using synthetic data, it is possible to simulate the real world. In addition to passenger demand,
the data also includes travel durations, costs, emissions, and evaluations of user satisfaction. The
generation procedure guarantees realistically accurate and diverse results. The appendix provides a
sample of the code B (Listing 1).
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2.3.2 SIMULATION FRAMEWORK

Tools and Libraries

• PuLP: A linear programming library used for defining and solving the optimization model.

• NumPy: For numerical operations and synthetic data generation.

• Pandas: For data handling and manipulation.

• NetworkX: For handling and visualizing graph-based data structures.

• Matplotlib: For plotting and visualizing results.

• Multiprocessing: To parallelize simulations for efficiency.

Experimental Setup We conducted the experiments using the Google Python 3 compute engine
backend. The specifications were 12.7 GB of system RAM and 107.7 GB of disc space. The RAM
and disc used to run the model were 1.4 GB and 27.5 GB, respectively. The hardware setup includes
a standard computing environment with adequate memory and processing power. The software
environment includes:

• Python 3.8
• PuLP 2.4
• NumPy 1.19.2
• Pandas 1.1.3
• NetworkX 2.5
• Matplotlib 3.3.2

The experimental workflow involves the following steps:

1. Generating synthetic data for a predefined number of nodes and vehicles.

2. Initializing the simulation environment with the generated data.

3. Defining various scenarios, such as peak hours, off-peak hours, inclement weather, special
events, and accidents.

4. Running simulations for each scenario.

5. Analyzing and documenting the results.

Through the utilisation of this comprehensive methodology, the optimisation model is ensured to
be robust, well-defined, and capable of managing the complexities that are associated with urban
transportation networks.

3 DATA AND EXPERIMENTAL SETUP

3.1 DATA DESCRIPTION

We use synthetic data during the tests, designed to represent various urban transportation settings.
Our goal was to generate data that was both realistic and representative. We conducted an in-depth
analysis of the model’s performance under a wide range of circumstances.

3.1.1 SYNTHETIC DATA

The key transportation settings generated data characteristic were as follows;

• Travel Times: Generated using normal distributions with means and standard deviations
that vary by route, ensuring realistic variability. The travel times were designed to reflect
typical urban travel patterns, with higher variability during peak hours and more stable
times during off-peak periods.
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• Costs: Includes both vehicle and micromobility costs, with values assigned to reflect typi-
cal urban transportation expenses. Vehicle costs were based on factors like fuel and main-
tenance, while micromobility costs included operational expenses.

• Emissions: Calculated based on standard emission rates for different vehicle types, with
micromobility options producing significantly lower emissions. This differentiation aims
to highlight the environmental benefits of micromobility solutions.

• Satisfaction Levels: Derived from user surveys and adjusted to reflect differences between
vehicle and micromobility experiences. Higher satisfaction levels were generally assigned
to quicker and more convenient travel options.

• Passenger Demand: Generated using random distributions to simulate varying demand
across different routes and times. Demand patterns were designed to mimic real-world
scenarios with higher demand during peak hours and special events.

• Vehicle Capacities: Assigned based on typical capacities of urban vehicles, ensuring that
the model accounts for realistic limitations in vehicle usage.

The appendix provides a sample of the code used to generation of the synthetic data B (Listing 1).

3.2 EXPERIMENTAL SCENARIOS

In order to conduct a comprehensive series of tests on the model, a number of different experimental
scenarios were developed to replicate a variety of urban transit conditions.

3.2.1 SCENARIOS

The scenarios include:

• Peak Hours: High demand periods during morning and evening commutes.

• Off-Peak Hours: Low demand periods during the middle of the day.

• Inclement Weather: Conditions simulating adverse weather effects on transportation.

• Special Events: Scenarios with increased demand due to events like concerts or sports
games.

• Accidents: Scenarios involving unexpected road incidents.

3.2.2 RATIONALE

The selection of these scenarios is appropriate since it captures the wide range of factors that urban
transport systems are required to manage. On the other hand, peak and off-peak hours are reflective
of daily variations in demand, while bad weather, holidays, and accidents are examples of external
factors that can have a significant impact on the efficiency of transport and the level of satisfaction
experienced by users.

3.3 EXPERIMENTAL DESIGN

A comprehensive experiment design was utilised in order to evaluate the effectiveness of the model
in terms of optimising urban transportation and to test its performance in a variety of varied scenar-
ios.

3.3.1 VARIABLES

• Independent Variables: Scenarios (peak hours, off-peak hours, inclement weather, special
events, accidents), mode of transportation (vehicle, micromobility).

• Dependent Variables: Travel time, transportation costs, emissions, user satisfaction.
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3.3.2 METRICS

To evaluate the performance of the model, the following metrics were used:

• Travel Time: Total travel time for all trips, capturing efficiency.

• Costs: Total operational costs, reflecting economic efficiency.

• Emissions: Total emissions produced, indicating an environmental impact.

• User Satisfaction: Aggregate satisfaction scores from users, reflecting the quality of the
transportation experience.

These metrics provide a comprehensive picture of the operation of the model, which strikes a bal-
ance between environmental sustainability, cost-effectiveness, efficiency, and providing a positive
experience for users.

4 RESULTS

4.1 PRESENTATION OF RESULTS

In this section, we will discuss the experiment’s results using tables and graphs. The visual aid will
provide a comprehensive performance of the model in different scenarios.

4.1.1 TABLES AND FIGURES

Figures 1, 2, 3, and 4 display the key results from the simulations.

Figure 1: Objective Values Across Different Scenarios

4.1.2 COMPARATIVE ANALYSIS

Comparing the results of the various scenarios allows us to demonstrate how effectively the model
operates under a wide range of conditions. The condition, which includes the objective values, the
number of visits by mode, travel times, and computation times, offers insights into the efficiency
and adaptability of the model. Examples of these include the number of visits by mode.

4.2 PERFORMANCE EVALUATION

The performance of the optimization model is evaluated based on several metrics: travel time, costs,
emissions, and user satisfaction.
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Figure 2: Number of Trips by Mode and Scenario

Figure 3: Distribution of Travel Times Across Scenarios

4.2.1 TRAVEL TIME

The model effectively minimizes travel time across all scenarios. Figure 3 shows the distribution
of travel times for different scenarios, indicating that the model maintains lower travel times even
under adverse conditions such as inclement weather and accidents.

4.2.2 COSTS

Cost reduction is achieved by optimizing the use of vehicles and micromobility options. The model
consistently selects the most cost-effective mode of transport, as reflected in the objective values in
Figure 1.
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Figure 4: Computation Time Across Different Scenarios

4.2.3 EMISSIONS

The model significantly reduces emissions by favouring micromobility and multi-leg trips over tra-
ditional vehicle trips. This is evident from the number of micromobility trips in Figure 2, where
micromobility options dominate across all scenarios.

4.2.4 USER SATISFACTION

User satisfaction is maximized by balancing travel time, cost, and mode of transport. The assignment
of trips to micromobility and multi-leg options ensures a higher satisfaction level due to reduced
travel times and costs.

4.3 SCENARIO ANALYSIS

The model’s performance is analyzed for each experimental scenario to understand its effectiveness
in various conditions.

4.3.1 PEAK HOURS

During peak hours, the model maintains optimal performance with an objective value of 1217.88
and a higher number of multi-leg trips to accommodate the increased demand (Figure 1 and 2).

4.3.2 OFF-PEAK HOURS

In off-peak hours, the model achieves an objective value of 1070.21, reflecting reduced travel time
and cost due to lower demand (Figure 1).

4.3.3 INCLEMENT WEATHER

Under inclement weather conditions, the model’s objective value is 1181.04. The model adapts by
increasing the number of micromobility and multi-leg trips to ensure safety and efficiency (Figure 1
and 2).

4.3.4 SPECIAL EVENTS

During special events, the model maintains an objective value of 1181.04. The results indicate an
increased number of trips to handle the surge in demand, with multi-leg trips playing a significant
role (Figure 1 and 2).
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4.3.5 ACCIDENTS

In scenarios involving accidents, the model’s objective value remains at 1181.04. The model demon-
strates robustness by efficiently reallocating trips to micromobility and multi-leg options to minimize
the impact of accidents on travel time and cost (Figure 1 and 2).

Overall, the optimisation model performs well across all scenarios, demonstrating its capability to
minimise travel time, costs, and emissions while maximising user satisfaction. The table 1 provides
a summary of the statistics, highlighting the vehicle trips based on the data and priority values in
the objective function. None of the trips favored using a vehicle, as our goal was to implement a
multi-leg trip that combines both vehicle and micromobility elements. We also gave priority to trips
that could improve micromobility, specifically those where the nodes were in close proximity to
each other and provided opportunities for micromobility.

Table 1: Summary of Results Across Different Scenarios
Scenario Objective Value Vehicle Trips Micromobility Trips Multi-leg Trips Computation Time (s)

Peak Hours 1217.88 0 34 56 4.40
Off-Peak Hours 1070.21 0 33 57 3.33

Inclement Weather 1181.04 0 34 56 3.80
Special Events 1181.04 0 34 56 4.35

Accidents 1181.04 0 34 56 4.98

5 DISCUSSION

Across various urban transportation scenarios, the optimisation model effectively minimises travel
time, costs, and emissions while maximising user satisfaction. Its adaptability to different condi-
tions, such as peak hours, off-peak hours, inclement weather, special events, and accidents, high-
lights its robustness and versatility.

The model’s strengths include efficiency, flexibility, environmental impact, and user satisfaction.
Some urban areas may not be able to implement it due to micromobility’s heavy use. We need to
further validate the model’s scalability and fully test its performance with real-world data.

The model’s ability to effectively optimise urban transit is suggested by the fact that the theoreti-
cal predictions and the experimental alighns. Policy enhancements that could be adopted include
providing incentives for carpooling, building infrastructure and providing subsidies to encourage
micromobility, and implementing dynamic traffic management systems that adapt to real-time data.

The integration of carpooling and micromobility offers benefits such as; reduced traffic congestion,
cost savings, and environmental sustainability. However, the study has a number of shortcomings,
use of synthetic data for validation of the model, limited scope, infrastructure dependency, scalabil-
ity, and static assumptions.

Potential areas for future research encompass dynamic adaptation, scalability testing, expanded val-
idation employing real-world data, cross-city comparisons, integration with emerging technologies
such as IoT and smart infrastructure, autonomous cars, and AI and machine learning. By focusing
on these specific areas, future research has the potential to improve the efficiency and practicality of
the optimisation model, so making urban transport systems more effective and sustainable.

6 CONCLUSION

In summary, this paper introduces a thorough mathematical model for enhancing the efficiency of
transportation systems. The model integrates an algorithm and application into real-world situations,
showcasing substantial advances in cost effectiveness, route optimisation, and resource utilisation.
The experimental results confirm the efficacy of the model in many settings, emphasising its re-
silience and suitability. This research has significant practical benefits by enabling transportation
planners and decision-makers to attain optimal routes, save expenses, and enhance customer hap-
piness. The model’s versatility and capacity for expansion make it highly valuable for transporta-
tion networks in both urban and rural areas. Subsequent studies should prioritise the integration
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of cutting-edge technology, instantaneous data analysis, and advanced machine learning methods
to improve the model’s functionalities. In addition, it is crucial to investigate the environmental
consequences and devise methods to reduce carbon footprints, which are significant areas for fu-
ture research. In summary, this research establishes the groundwork for future progress in transport
systems, which has the capacity to enhance the well-being of communities globally.
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A APPENDIX

B CODE FOR DATA GENERATION

Listing 1: Code for generating synthetic data
def generate_data(num_nodes, num_vehicles, seed=42, decay_rate

=0.1):
np.random.seed(seed)

travel_times_mean = np.random.randint(10, 20, size=(num_nodes,
num_nodes))

travel_times_std = np.random.randint(1, 3, size=(num_nodes,
num_nodes))

travel_times = np.abs(np.random.normal(travel_times_mean,
travel_times_std))

micromobility_times_mean = np.random.randint(5, 15, size=(
num_nodes, num_nodes))

micromobility_times_std = np.random.randint(1, 3, size=(
num_nodes, num_nodes))

micromobility_times = np.abs(np.random.normal(
micromobility_times_mean, micromobility_times_std))

vehicle_costs = np.random.randint(20, 30, size=num_vehicles)
micromobility_costs = np.random.randint(5, 10, size=(num_nodes,

num_nodes))

vehicle_emissions = np.random.randint(30, 50, size=num_vehicles
).astype(float)

micromobility_emissions = np.random.randint(2, 8, size=(
num_nodes, num_nodes)).astype(float)

vehicle_satisfaction = np.random.randint(4, 7, size=(num_nodes,
num_nodes))

micromobility_satisfaction = np.random.randint(3, 6, size=(
num_nodes, num_nodes))

passenger_demand = np.random.randint(1, 10, size=(num_nodes,
num_nodes))

vehicle_capacities = np.random.randint(10, 15, size=
num_vehicles)

return Data(travel_times, micromobility_times, vehicle_costs,
micromobility_costs, vehicle_emissions,
micromobility_emissions, vehicle_satisfaction,
micromobility_satisfaction, passenger_demand,
vehicle_capacities)
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