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ABSTRACT

We develop ProtComposer to generate protein structures conditioned on spatial
protein layouts that are specified via a set of 3D ellipsoids capturing substruc-
ture shapes and semantics. At inference time, we condition on ellipsoids that are
hand-constructed, extracted from existing proteins, or from a statistical model,
with each option unlocking new capabilities. Hand-specifying ellipsoids enables
users to control the location, size, orientation, secondary structure, and approxi-
mate shape of protein substructures. Conditioning on ellipsoids of existing pro-
teins enables redesigning their substructure’s connectivity or editing substructure
properties. By conditioning on novel and diverse ellipsoid layouts from a simple
statistical model, we improve protein generation with expanded Pareto frontiers
between designability, novelty, and diversity. Further, this enables sampling des-
ignable proteins with a helix-fraction that matches PDB proteins, unlike existing
generative models that commonly oversample conceptually simple helix bundles.
Code is available at https://github.com/NVlabs/protcomposer.

1 INTRODUCTION

Proteins are intricate macromolecular machines that carry out a wide variety of biological and chem-
ical processes. A grand vision of rational protein design is to be able to design complex and modular
functions akin to those found in nature, where different spatial parts of the protein possess different
properties that act in a coordinated fashion (Chu et al., 2024; Kortemme, 2024). However, current
paradigms of ML-based protein structure generation are largely limited to unconditional generation
(Watson et al., 2023; Yim et al., 2023b), or to inpainting of scaffolds and binders conditioned on
known parts of the structure (Watson et al., 2023; Trippe et al., 2022), with no ability to control the
higher-level spatial placement or layout of the generated protein. This leads to limited diversity and
control of the generated samples and distinguishes protein generation from image generation, where
such levels of control are commonplace and lead to new capabilities in the hands of human users (Li
et al., 2023a; Rombach et al., 2022; Nie et al., 2024; Zheng et al., 2023a; Zhang et al., 2023a).

To bridge this gap in the protein design toolbox, we develop ProtComposer as a means of controlling
protein structure generative models with the protein’s layout in 3D space. Specifically, we describe
modular protein layouts via 3D ellipsoids augmented with annotations to provide a rough “sketch”
of the protein (Figure 1). Similar to blob or bounding box representations in image generation (Nie
et al., 2024; Li et al., 2023a), these ellipsoids provide a level of abstraction intermediate between
data-level (i.e., voxels) constraints and global conditioning. They are informative enough to control
the generation of diverse proteins, but are human-interpretable, easy-to-construct, and do not con-
strain the low-level details of protein structures. Hence, 3D ellipsoids facilitate a two-stage paradigm
in which complex protein designs are expressed as spatial sketches by hand or via heuristic algo-
rithms, and deep learning models “fill in” these sketches with high-quality, designable backbones.

In this work, we apply our philosophy to controlling Multiflow (Campbell et al., 2024), a joint
sequence-structure flow-matching model with state-of-the-art designability, with 3D ellipsoid lay-
outs annotated with secondary structure. Multiflow represents protein structures as a cloud of
residue frames in SE(3) and parameterizes the flow network with Invariant Point Attention (Jumper
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Figure 1: Left: ProtComposer’s flow model denoises a noisy protein structure conditioned on a
spatial protein layout of annotated ellipsoids that we inject using our Invariant-Cross Attention (ICA)
and ellipsoid tokens. Middle: At inference time, we condition our model on ellipsoids from a simple
statistical model (Sec. 3.4) that guarantees novel and diverse layouts. The generated proteins exhibit
high novelty and diversity while maintaining designability. Right: Conditioning on hand-specified
ellipsoids allows for controllable generation.

et al., 2021; Yim et al., 2023b). To inject ellipsoid conditioning into this network, we develop an
equivariant mechanism for message passing between ellipsoids in 3D space and residue frames,
which we call Invariant Cross Attention. We then fine-tune Multiflow with this cross attention into
a conditional model of protein structure and sequence, conditioned on ellipsoid layouts. We develop
a classifier-free guidance mechanism with Multiflow, enabling interpolation between ellipsoid-
conditioned and unconditional generation. Empirically, we find this family of conditional generative
distributions advances the state of the art in protein generation along three axes:

• Control—unlike existing models, we can prompt our method on (existing or novel) ar-
rangements of secondary structure ellipsoids. We develop a family of metrics to measure
adherence to ellipsoid conditioning and find strong consistency between conditioning ellip-
soid layouts and generated backbones. This consistency persists well beyond the training
distribution, with some particularly impressive generations shown in Figure 7.

• Diversity and Novelty—by conditioning on synthetic ellipsoid layouts drawn from a fam-
ily of simple statistical models (Section 3.4), we significantly increase the diversity and
novelty of generations. Although there is a cost to the designability of the generated pro-
teins, our Pareto frontier along this tradeoff far surpasses that of adjusting inference-time
parameters, the only existing option for controlling the diversity of Multiflow generations.

• Compositionality—although highly designable, protein generations often exhibit a low
degree of architectural complexity (e.g., only composed of a single alpha-helix bundle). We
argue that such proteins are analogous to pathological language model outputs with high
model likelihood but low information content (i.e., the sentence “and and and ...”
has high likelihood under many large language models.). We introduce a compositionality
metric to quantify this phenomenon and show that ellipsoid conditioning can improve the
complexity and compositionality of generated structures.

2 BACKGROUND AND RELATED WORK

Protein Structure Generation. The primary aim of protein structure generative models (Yim et al.,
2023b; Ingraham et al., 2023; Bose et al., 2024; Campbell et al., 2024) is aiding computational
design of novel proteins (Watson et al., 2023; Lauko et al., 2024). Thus, we often desire to gener-
ate beyond already existing folds or secondary structure compositions, and to control generations
to satisfy design specifications. To address controllability, there are two main explored avenues
beyond scaffolding existing structural motifs (Yim et al., 2024a). First, conditioning on block con-
tact maps and sequential secondary structure specifications (Anand & Achim, 2022; Watson et al.,
2023). Second, inference time conditioning, as in Chroma (Ingraham et al., 2023), via projections
onto a manifold or via forces from an arbitrary differentiable energy function. Such inference time
control enjoys high generality while ProtComposer is trained for a single type of shape and semantic
conditioning, but, therefore, enjoys improved adherence to the control (Table 1).
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Spatial Conditioning. For image generative models, controllable generation has enabled new ap-
plications that make up a significant portion of their utility beyond generating impressive images. To
unlock similar new capabilities for protein generation, we follow the transferrable concepts that have
crystallized out as crucial. On a technical and architectural level, this includes fine-tuning strong ex-
isting generative models with the principle of minimally perturbing the original model’s output in
the initialized conditional model (Li et al., 2023a; Zhang et al., 2023b). On a conceptual level, this
implies finding the right input specification: for different tasks, different levels of granularity are
appropriate. In the image domain, this ranges from pixel-level specifications such as semantic seg-
mentation maps or sketches to more coarse-grained specifications such as bounding-boxes (Li et al.,
2023b; Zhang et al., 2023b), or “blobs” (Nie et al., 2024), akin to our aims for proteins.

Flow models. Flow matching (Liu et al., 2022; Lipman et al., 2022; Albergo & Vanden-Eijnden,
2022; Albergo et al., 2023) aims to learn a time-dependent vector field vθ,t that, when integrated
from a start time t = 0 to t = 1, transports samples from a noise distribution x0 ∼ p0 to a data
distribution x1 ∼ p1. To train vθ,t, we sample partially noised data from a conditional probability
path pt(x | x0,x1) satisfying p0(x | x0,x1) ≈ δ(x − x0) and p1(x | x0,x1) ≈ δ(x − x1).
A common choice is a Dirac that traces out a straight line between x0 and x1 or a geodesic for
flow matching on manifolds (Chen & Lipman, 2024). At the sampled noisy datapoints xt, we
evaluate the vector field vθ,t(xt) and regress it against the conditional vector field ut(xt | x0,x1)

that corresponds to the conditional probability path through the continuity equation ∂
∂tpt = −∇ ·

(ptut). At convergence, vθ,t approximates the marginal vector field ut(x) (since the gradients are
equivalent to regressing against ut(x)) that evolves the prior p0 to the data distribution p1 through
the marginal probability path pt(x) =

∫
pt(x | x0,x1)p0(x0)p1(x1)dx0dx1.

3 METHOD

3.1 ELLIPSOID REPRESENTATION OF PROTEINS

Proteins are compositional objects—different regions have different properties, and we seek a lan-
guage in which to succinctly describe this information to control the sampling of a generative model.
To do so, we propose to represent a protein’s spatial layout using a set of K ellipsoids, each cor-
responding to a semantically coherent region of the protein. Each ellipsoid records the number of
residues in the associated region, a categorical semantic feature, its position, and its shape in terms
of the covariance matrix of the Cα coordinates in the region. We argue that this representation of
protein spatial layouts finds a favorable tradeoff between a single global annotation, such as a text
prompt or protein family, and more complex shape descriptors, such as meshes or voxel grids. A
global annotation may be insufficient to provide the desired control over the spatial layout, and a
more complex annotation could be difficult to generate or specify without training an additional
model. Meanwhile, 3D ellipsoids are expressive and precise, yet easy to generate and manipulate.

Mathematically, we define a protein spatial layout consisting of K ellipsoids as an unordered set
E = {Ek = (µk,Σk, fk, nk)}k∈{1...K} where each ellipsoid is represented as a Gaussian with
mean µk ∈ R3, covariance Σi ∈ R3×3, count nk ∈ N+, and feature annotation fk ∈ X where
X is the application-dependent feature space. Viewed as Gaussian probability distributions, our
ellipsoids do not have well-defined boundaries; however, for visualization and evaluation purposes,
we define the ellipsoid boundary to be the surface at Mahalanobis distance

√
5, i.e.,

∂Ek =

{
x ∈ R3 :

√
(x− µk)TΣ

−1
k (x− µk) =

√
5

}
(1)

This is the functional form of a conventional ellipsoid. The distance
√
5 is chosen so that 83% of

the density falls inside the surface, which yields the best visual results (Appendix Fig 12).

Ellipsoid Segmention. Provided a protein structure, obtaining its ellipsoid representation (e.g.,
for training purposes) consists of two steps: segmentation of the protein into semantically coher-
ent regions, and extraction of ellipsoid descriptions (µk,Σk, nk, fk) for each region. To segment
the protein, we consider a simple, non-learned segmentation algorithm that places two residues
in the same region if and only if they are both spatially proximal and semantically similar. We
construct a segmentation graph by drawing an edge for each such pair of residues and return the
list of connected components of this segmentation graph. For each segmented region, we aggre-
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gate the residue features to obtain fk and compute the mean and covariance of the Cα positions.
These steps are illustrated in Figure 2 and further detailed in Appendix Algorithm 3. We found
this to be more reliable than more sophisticated variants using, e.g., K-means or spectral clustering.

Figure 2: Extracting ellipsoids from data. 1) In-
put protein. 2) Annotate residues and draw edges
if they have the same feature AND are within 5Å.
3) Fit Gaussians to connected components.

In this work, we focus on 3D ellipsoids speci-
fying secondary structure layouts, i.e., regions
of α-helices and β-sheets. Our feature space is
thus a two-class space of secondary structures
types, fk ∈ X = {α, β}. We featurize residues
using DSSP (Kabsch & Sander, 1983) and draw
edges in the segmentation graph between amino
acids with the same secondary structure label
and within 5 Å. The ellipsoid annotation fk
then simply inherits the label of its constituent
residues. We exclude all loop residues and el-
lipsoids with five or fewer residues.

3.2 ELLIPSOID CONDITIONING

Unconditional model. We inject our ellipsoid conditioning into an existing protein structure genera-
tive model for which we choose Multiflow (Campbell et al., 2024), which jointly generates sequence
and structure. Following their framework, we generate proteins represented as an array of frames
T ∈ SE(3)N where each residue’s frame Ti = (Ri, ti) ∈ SE(3) has an associated translation
ti ∈ R3 and rotation matrix Ri ∈ R3×3 constructed from backbone coordinates following Al-
phaFold2 (Jumper et al., 2021). Additionally, each residue has an amino acid type ai ∈ {1 . . . 20}.
To jointly generate the translations, rotations, and amino acids, Multiflow employs three types of
flow matching procedures that iteratively update all three modalities. Translations are handled with
linear flow matching from a Gaussian prior (Lipman et al., 2022), rotations with Riemannian flow
matching on SO(3) (Chen & Lipman, 2024), and residue types with discrete flow matching (Camp-
bell et al., 2024; Gat et al., 2024), resulting in a joint flow that transports from a prior p0(t, R,a) to
the data distribution p1(t, R,a) while tracing out a probability path pt(t, R,a) where t ∈ [0, 1].

The flow is parameterized by a single backbone architecture with translations, rotations and residue
type inputs from which it predicts a time dependent translation vector field vtr

θ,t(t), rotation vector
field vrot

θ,t(R), and a rate matrixRθ,t(a) dictating residue type updates. The architecture is composed
of several identical update blocks, each of which updates d-dimensional residue representations
si ∈ Rd for i ∈ {1, . . . N}, residue pair representations zi,j ∈ Rd for i, j ∈ {1 . . . N} and residue
frames Ti for i ∈ {1, . . . N}. The updates are SE(3)-equivariant and accomplished with a mixture
of shallow transformers and Invariant Point Attention (Jumper et al., 2021); we refer to Campbell
et al. (2024) for complete architectural details. After all the update blocks, the final residue tokens
si and frames Ti are used to parameterize the flow fields vtr

θ,t(t), v
rot
θ,t(R),Rθ,t(a)

Injecting Ellipsoid Conditioning. We now aim to fine-tune a pre-trained unconditional Multiflow
model trained to sample p1(t, R,a) toward sampling an ellipsoid conditioned density p1(t, R,a |
E) and obtain ProtComposer. At inference time, ellipsoids can be specified manually or sampled
from a second distribution p(E) of novel and diverse ellipsoids (see Section 3.4) to target the density
p1(t, R,a | E)p(E). For fine-tuning, we only provide the conditioning information as additional
input - the training loss remains the unchanged loss of Multiflow. To inject the ellipsoid informa-
tion, we follow best principles from semantic map conditioning for image diffusion models (Zhang
et al., 2023b; Li et al., 2023b) and design architecture modifications that minimally perturb the un-
conditional model at the time of initialization. That is, with an empty set of ellipsoids as input, the
untrained conditional model should produce identical outputs as the unconditional model. This is
accomplished by preserving the initial residue representations si, zij ,Ti, and only supplying addi-
tional information from 3D ellipsoids to inform their updates, described below.

We introduce additional tokens ek ∈ Rd for each ellipsoid k ∈ {1 . . .K} that are of the same
dimensionality d as the residue tokens si. These tokens are initialized with embeddings of all
SE(3)-invariant quantities of ellipsoids—their size nk, squared radius of gyration tr Σ, and sec-
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Algorithm 1: Invariant Cross Attention
Input: Residue tokens si and frames

Ti = (Ri, ti); ellipsoid
parameters Ek = (µk,Σk)

rik ← T−1
i ◦ µk

Cik ← RiΣkR
T
i

aik = si + Linear(PosEmbed(rik))
a += Linear(Flatten(Cik))
qi = Linear(si)
kik,vik = Linear(aik)
si += Attentionk(qi,kik,vik)

Algorithm 2: Update Block
Input: Residue tokens si, pair reps zij , residue

frames Ti, ellipsoid tokens ek, ellipsoid
parameters Ek = (µk,Σk)

s += InvariantPointAttention(s, z,T)
s += InvariantCrossAttention(s,T,E)
s← Concat(s, e)
s += Transformer(s)
s, e← Split(s)
T← RigidUpdate(s,T)
z += EdgeUpdate(s)

ondary structure type fk. Then, in each model layer, these tokens inform the updates of the residue
representations si, zij ,Ti (and are themselves updated) via two mechanisms:

• To update the residue tokens si with information about the location and shapes of the ellip-
soids, we introduce a novel invariant cross attention mechanism (Algorithm 1 and Figure
1) whereby values are aggregated from the ellipsoid tokens in an SE(3)-invariant manner.
Similar to IPA, this mechanism uses the residue local frames to enforce invariance, although
the ellipsoid tokens are not themselves updated, which we discuss further in Appendix B.

• To provide a mechanism for residue and ellipsoid tokens to mutually update each other, we
concatenate the tokens along the sequence dimension right before the Transformer stack,
and re-split the sequence afterwards.

All other aspects of the Multiflow update blocks, such as the frame update and edge update lay-
ers, remain architecturally unmodified. In Algorithms 1 and 2, we outline the new invariant cross
attention alongside the modified update block with modifications colored green.

3.3 GUIDANCE FOR THE SELF-CONDITIONED AND JOINT FLOW

After fine-tuning a base protein structure generative model that samples pθ(t, R,a) ≈ p1(t, R,a)
to obtain ProtComposer’s distribution pθ(t, R,a | E), we interpolate between the two distributions
via classifier-free guidance (Ho & Salimans, 2022) controlled by a guidance parameter λ ≥ 0. This
enables finding the optimal λ to trade off between the designability of pθ(t, R,a) that is recovered
with λ = 0 and the diversity, novelty, and ellipsoid adherence of pθ(t, R,a | E) corresponding to
λ = 1. Interpolations for individual samples are visualized in Figure 3.

Implementing such guidance is complicated by the facts that we model the flow field instead of the
score (as in diffusion models), that ProtComposer’s conditional probability paths are not Gaussian
(the guided flows of (Ho & Salimans, 2022) are not directly applicable), and since we employ self-
conditioning. Before elaborating on the self-conditioning difficulty, we lay out how we guide the
joint flow over translations, rotations, and discrete residue types by separately interpolating their
flow fields at each inference step:

• Translations: we interpolate the unconditional vector field vtrθ,t(t) and the conditioned
version vtrθ,t,(t,E) as λvtrθ,t(t,E) + (1 − λ)vtrθ,t(t). Since the conditional probability
paths for translations are Gaussian paths, this corresponds to the guided flows of Zheng
et al. (2023b), which sample the same approximation of the unconditional distribution
tilted by the conditional distribution as guided diffusion models, i.e., an approximation
of p1(t)(1−λ)p1(t | E)λ if we were to interpolate models that only sample translations.

• Rotations: while with our non-Gaussian paths on SO(3) the results of Zheng et al. (2023b)
no longer hold, we find empirical success in using, in analogy to translations, λvrotθ,t (t,E)+

(1− λ)vrotθ,t (t), which follows Yim et al. (2024b).

• Discrete Flow: we construct the rate matrix for the discrete flow as the expectation of the
conditional rate matrix (see Campbell et al. (2024)) over predicted probabilities of the
denoised residues that we obtain as a combination of the unconditional model’s predic-
tions and the ellipsoid conditioned model’s predictions. Specifically, we use the uncon-
ditionally predicted probabilities tilted by the ellipsoid conditioned probabilities pθ(a

(1)
i |

a
(t)
i )(1−λ)pθ(a

(1)
i | a(t)i ,E)λ, where the superscript denotes denoising time.
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lambda: 0.0 
Cov: 0.4 Acc: 0.63

LL: -5.43 Soft Acc: 0.59

lambda: 0.3 
Cov: 0.45 Acc: 0.58

LL: -4.76 Soft Acc: 0.52

lambda: 0.5 
Cov: 0.53 Acc: 0.89

LL: -4.16 Soft Acc: 0.79

lambda: 0.7 
Cov: 0.74 Acc: 0.94

LL: -3.43 Soft Acc: 0.91

lambda: 1.0 
Cov: 0.77 Acc: 0.96

LL: -3.34 Soft Acc: 0.93

lambda: 0.0 
Cov: 0.16 Acc: 0.24

LL: -8.47 Soft Acc: 0.4

lambda: 0.3 
Cov: 0.24 Acc: 0.47

LL: -6.08 Soft Acc: 0.46

lambda: 0.5 
Cov: 0.4 Acc: 0.76

LL: -5.09 Soft Acc: 0.72

lambda: 0.7 
Cov: 0.49 Acc: 0.95

LL: -5.04 Soft Acc: 0.9

lambda: 1.0 
Cov: 0.63 Acc: 1.0

LL: -4.29 Soft Acc: 0.96

Figure 3: Two protein layouts (top and bottom) and generations for them with varying guidance
strength; no guidance (λ = 0) on the left, full guidance (λ = 1) on the right. Ellipsoid alignment
metrics are labeled as Cov=coverage, Acc=accuracy, LL=likelihood, and Soft Acc=soft accuracy.

Both Multiflow and ProtComposer use self-conditioning (Chen et al., 2023), in which, during in-
ference, the flow-model receives the output of the previous integration step as additional self-
conditioning input. During inference, the unconditional model pθ(t, R,a) produces the self-
conditioning variable X , and from the ellipsoid conditioned model pθ(t, R,a | E), we obtain
XE. Instead of supplying X to the unconditional and XE to the conditioned model, we use
λXE+(1−λ)X for both, which achieves better designability and ellipsoid adherence for all λ. An
exploration and ablation of self-conditioning variants is in Appendix C.2.

3.4 GENERATING NOVEL ELLIPSOIDS

In designing the ellipsoid conditioning mechanism, we have so far made no assumptions about the
sources of ellipsoids provided during inference. Next to using manually specified ellipsoids, there
is also an opportunity in sampling synthetic ellipsoids from an additional generative model pθ(E)
to sample an unconditional distribution of protein structures factorized as pθ(t, R,a | E)pθ(E).
While it may be tempting to use a deep learning solution for pθ(E), we purposefully avoid this and
argue that the factorization is best leveraged with a simple statistical model over ellipsoid layouts.
Instead of a deep learned pθ(E) that may produce layouts that are similar to the training data, a
simple statistical model for pθ(E) guarantees sampling diverse and novel layouts, which lead to
more diverse and novel protein structures from pθ(t, R,a | E)pθ(E) - properties that are crucial for
protein design where the aim is commonly to produce novel designs.

To generate novel ellipsoid layouts, we first sample means and covariances forK ellipsoids and then
assign secondary structure and residue count annotations. The model over means and covariances is

p
(
{(µk,Σk)}Kk=1

)
∝

[
K∏

k=1

N
(
µk,0, σ

2I3
)
W3(Σk;ψ

2I3, ν)

]
exp

(
−U({(µk,Σk)}Kk=1)

)
, (2)

U({(µk,Σk)}Kk=1) =
∑
k ̸=j

1[
(µk − µj)TΣ

−1
k (µk − µj)

]2 . (3)

That is, the ellipsoid means and covariances are drawn i.i.d. from isotropic Gaussian and Wishart
distributions, respectively, and multiplied with the Boltzmann factor of an energy function that pe-
nalizes ellipsoid overlaps. Intuitively, σ controls the ellipsoid’s spread, ψ controls their volume, ν
controls their anisotropy or “roundness”, and U prevents overlaps. The energy U is a simple inverse
square repulsion based on pairwise Mahalanobis distances. We sample this via rejection sampling,
i.e., by sampling µi,Σi, evaluating their energy U , and rejecting with probability e−U .

To choose the ellipsoid annotations, we first independently annotate each ellipsoid as α with proba-
bility γ and β with probability 1−γ. We then observe that for a given choice of {α, β}, the ellipsoid
volume

√
detΣi strongly determines the residue count by a simple linear fit (Appendix 10). Hence,

we use this linear fit to assign the number of residues instead of modeling it independently.
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Table 1: Recapitulating layouts of PDB proteins. Protein layout specification adherence metrics
for ProtComposer conditioned on layouts of validation set proteins under different levels of guid-
ance strength λ. Multiflow as random baseline. The Oracle metrics are computed by treating the
validation set proteins, which the layouts were drawn from, as generated proteins.

Geometric Probabilistic

Model Coverage ↑ Misplacement ↓ Accuracy ↑ Likelihood ↑ Soft Accuracy ↑ JSD ↓
Multiflow 0.49 0.40 0.59 -5.0 0.61 0.43

Chroma 0.59 0.36 0.58 -4.2 0.58 0.48
ProtComposer λ=0.2 0.55 0.33 0.66 -4.5 0.65 0.36
ProtComposer λ=0.4 0.62 0.28 0.75 -4.0 0.73 0.28
ProtComposer λ=0.6 0.70 0.21 0.85 -3.5 0.83 0.20
ProtComposer λ=0.8 0.75 0.18 0.90 -3.3 0.88 0.15
ProtComposer λ=1.0 0.78 0.17 0.90 -3.2 0.90 0.13

ProtComposer λ=1.6 0.86 0.13 0.93 -3.0 0.91 0.13
ProtComposer λ=2.0 0.79 0.14 0.92 -3.2 0.92 0.13

Oracle 0.89 0.07 0.92 -2.8 0.93 0.15

4 EXPERIMENTS

Starting from the publicly available pre-trained checkpoint, we fine-tune Multiflow (Campbell et al.,
2024) on the dataset and splits supplied by the authors, where ellipsoid spatial layouts are obtained
for each protein as described in Section 3.1. We train only on the joint unconditional modeling task
(i.e., no motif scaffolding, inverse folding, or forward folding). At inference time, we employ self-
conditioning, rotational annealing, and 500 inference steps as described in Campbell et al. (2024).
For guidance, we use the pretrained Multiflow checkpoint as the unconditional model.

Throughout our experiments, we consider three sources of ellipsoid layouts: PDB proteins from
the Multiflow validation set (data ellipsoids), ellipsoids drawn from our statistical model (Section
3.4; synthetic ellipsoids), and manually specified ellipsoids. The key feature of data ellipsoids is that
they are associated with ground-truth proteins, providing an oracle generator for ellipsoid adherence.
When using data ellipsoids, we sample proteins of equal lengths to the ground-truth proteins, while
for novel ellipsoids, the protein length is the sum of ellipsoid residue counts,

∑
k nk. Summary

statistics about both sources of ellipsoids are described in Appendix A.

4.1 ELLIPSOID CONSISTENCY

Given a 3D ellipsoid layout and a protein generated based on the layout, we seek to quantify the
degree of consistency and alignment between the protein and the layout. We define two classes
of metrics: three geometric metrics, in which we interpret ellipsoids as ellipsoids with a definite
interior and exterior based on Mahalanobis distance (Eq. 1), and three probabilistic metrics, in
which we only use the Gaussian parameters associated with the ellipsoid. Layouts are provided in
a fixed orientation, and the model equivariantly generates proteins in the same orientation, so no
roto-translational alignment is performed for any of these metrics:

• Coverage ↑—the fraction of structured residues located inside at least one ellipsoid.

• Misplacement ↓—the sum of errors
∑

k |pk−p′k| between pk := nk/
∑

k′ nk′ , the residue
fraction of ellipsoid k, and p′k, the actual fraction of structured residues inside ellipsoid k

• Accuracy ↑—the fraction of residues located inside at least one ellipsoid with the same sec-
ondary structure type as the ellipsoid annotation (residues can be counted multiple times).

• Likelihood ↑—we view the ellipsoid layout as a Gaussian mixture model (GMM), whose
density is renormalized to integrate to

∑
k nk. We then report the average log density of

each structured residue position under this renormalized GMM.

• Soft Accuracy ↑—given an ellipsoid layout viewed as a GMM, we can compute a posterior
distribution over secondary structure type f ∈ {α, β} for a residue located at arbitrary
position x in 3D space, given by p(f | x) ∝ p(f,x) ∝

∑
k:fk=f nkN (x;µk,Σk). We

7



Published as a conference paper at ICLR 2025

then report the mean (over structured residues) of the normalized probability assigned to
the actual secondary structure type of the generated residues.

• Resegment JSD ↓—we recompute the ellipsoid layout from the generated protein structure
and view both ellipsoid layouts as defining Gaussian mixture models over the event space
{α, β}×R3. We then report the Jensen-Shannon divergence between the two distributions.

Note that Coverage, Misplacement, and Likelihood only quantify the alignment between the overall
shape of the ellipsoid layout and the protein, whereas Accuracy, Soft Accuracy, and Resegment JSD
also take into consideration the secondary structure annotations.

In Table 1, we generate proteins from layouts specified by ellipsoids drawn from the validation
set of PDB proteins and we report the average for all metrics. We sample for various levels of
guidance λ with ProtComposer, where λ = 1 corresponds to the purely conditional model. We
compare with Chroma (Ingraham et al., 2023) conditioned on ellipsoid layouts via its inference time
ShapeConditioner functionality (details in Appendix A.2). For oracle and random baselines,
we compute the ellipsoid alignment of the ground truth protein and of a protein generated from
pre-trained Multiflow without any ellipsoid conditioning, respectively. We observe that ellipsoid
alignment sharply increases when the guidance strength is increased above λ = 0.5 and quickly
approaches the level of alignment of the oracle. Hence, 3D ellipsoids provide highly effective con-
trol over protein layouts. Figure 3 visualizes examples of protein generations and their associated
alignment metrics for various guidance levels. More examples in Appendix Figure 24.

4.2 IMPROVED DIVERSITY AND NOVELTY

We now show that conditioning on ellipsoid layouts can improve the diversity (and related metrics)
of Multiflow generations. Without conditioning, Multiflow and related methods generate highly des-
ignable proteins, but exhibit limited secondary structure diversity (73% helices instead of the 42%
of PDB proteins) and low complexity by visual inspection (Figure 5). These effects can be ame-
liorated by decreasing the rotational annealing, but this results in rapidly deteriorating designability
(Figure 4). We thus construct a pipeline in which synthetic ellipsoids are drawn from our statistical
model and provided as conditioning input to ProtComposer. Conceptually, this can be thought of
as manually controlling the “ellipsoid marginal” of the generated distribution, where the ellipsoids
amount to incomplete, compressed observations of the full state space (i.e., backbone structure).

To explore this pipeline systematically, we first fixK = 5 ellipsoids andψ = 5 Å in our ellipsoid sta-
tistical model, a setting that consistently produces proteins of length 120–200. We then sweep over
all combinations of protein compactness σ ∈ [3, 4 . . . 10], helix fraction γ ∈ [0.2, 0.4, 0.6, 0.8, 1]
and ellipsoid anisotropy ν ∈ [5, 10, 20, 50, 100], and guidance strength λ ∈ [0.1, 0.2 . . . 1.0]. For
each setting, we draw 100 synthetic ellipsoid layouts, generate a protein for each ellipsoid, and
evaluate the set of 100 proteins on the following metrics:

• Designability ↑—the fraction of structures for which at least one out of 8 sequences sam-
pled by ProteinMPNN (Dauparas et al., 2022) results in scRMSD < 2Å when re-folded
with ESMFold (Lin et al., 2023).

• Diversity ↑—the Vendi score (Friedman & Dieng, 2023) of the set of structures with TM-
Score (Zhang & Skolnick, 2005) as the similarity kernel, ranging from 0 to 100.

• Novelty ↑—one minus the average TM-Score to the closest chain in the PDB as retrieved
by FoldSeek (Van Kempen et al., 2024).

• Helicity ↓—the fraction of structured residues which are assigned α-helix by DSSP. While
helical proteins are not undesirable per se, we wish to increase the secondary structure
diversity of Multiflow proteins to be more similar to naturally observed helicity.

In Figure 4, we show the performance of all 1750 inference settings, with Pareto frontiers shown
for the tradeoff between designability and each of the three other metrics. We compare with Mul-
tiflow’s frontier from varying its rotational inference annealing parameter (elaborated in Appendix
A.4) which acts analogous to diffusion model low-temperature sampling to trade off diversity for
fidelity (Yim et al., 2023a; Bose et al., 2024). Further, we sweep Multiflow across protein length
distributions that match the length distributions of our ellipsoid statistical model (details in Appendix
A). For Chroma (Ingraham et al., 2023) and RFDiffusion (Watson et al., 2023), we sweep over the
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Figure 4: ProtComposer Pareto frontiers traced out by our ellipsoid statistical model’s family of
distributions and by varying guidance strength. Multiflow—varying rotational annealing strength.
Chroma and RFDiffusion—varying sampling temperature. Black dot •: metrics of PDB proteins.
Each colored point (by guidance strength) is one ProtComposer distribution. Shaded areas are stan-
dard deviations from 4 seeds for points on the frontiers (App. A).

Multiflow ProtComposerMultiflow Ours

Figure 5: Random samples with extracted ellipsoids at segmentation threshold 6.5Å from Multiflow
(left) and our synthetic ellipsoid pipeline with σ = 10 Å , ν = 100, γ = 0.5 and λ = 0.6 (right). 6
out of 10 Multiflow proteins degenerate to a single α-helix ellipsoid, while ProtComposer’s proteins
exhibit better secondary structure diversity and ellipsoid compositionality.

same length distributions and their sampling temperature. We robustly observe that ellipsoid con-
ditioning enables the generation of more diverse, more novel proteins with a helicity that is closer
to PDB proteins while retaining a higher level of designability than previously possible with Multi-
flow. Appendix Figure 18 visualizes examples of this expanded Pareto front, and Appendix Figure
23 shows scatterplots to examine the impacts of varying σ, ν, γ, and λ.

Table 2: Recovering statistics of PDB
proteins. The diversity, helicity, and com-
positionality of PDB proteins compared
with Multiflow and ProtComposer.

Model Div. Helic. Comp.

Multiflow 29 73% 1.9

Ours (λ = 0.2) 32 72% 1.8
Ours (λ = 0.4) 36 68% 2.1
Ours (λ = 0.6) 38 57% 2.6
Ours (λ = 0.8) 40 52% 2.8
Ours (λ = 1.0) 41 51% 2.9
Ours (λ = 1.6) 45 48% 3.1
Ours (λ = 2.0) 48 47% 3.2

PDB proteins 41 42% 4.1

By increasing diversity and related metrics, ellipsoid
conditioning also improves the aggregate similarity of
generated proteins to proteins from the PDB. In Ta-
ble 2, we quantitatively ascertain that proteins from
pre-trained Multiflow without ellipsoid conditioning
are more helical, less diverse, and less compositional
than PDB proteins. For this, we quantify a pro-
tein’s compositionality by splitting it into components
of residues that are close to each other (6.5Å as in
Figure 5) and of equal secondary structure. Then,
with mk as the count of residues in the k-th compo-
nent, we report the effective number of components
exp(−

∑
k pk log pk) where pk = mk/

∑
kmk can

be interpreted as a residue’s probability for the k-th
component. Table 2 shows that, by generating proteins
based on data ellipsoids (from the Multiflow validation set), ProtComposer largely closes the gap to
PDB proteins and restores the aggregate levels of helicity, diversity, and compositionality.
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A B C D E

Figure 6: Controlled manipulation of ellipsoid layouts from PDB ID 8F9Y A. (A) Original ellip-
soid layout and generated protein. (B) Rotating the rightmost α-helix. (C) Translating the β-sheets
upwards. (D) Merging and expanding the β-sheet regions. (E) Secondary structure inversion.

Figure 7: Proteins generated from hand-constructed ellipsoids. Left: 4 protein-layouts with
generated proteins. Right: 3 beta-barrels containing varying numbers of helices generated from a
large beta-sheet ellipsoid containing elongated helix ellipsoids (both top and side views shown).

4.3 FLEXIBLE CONDITIONING

To fully realize and demonstrate the potential of ProtComposer, we explore manual construction or
manipulation of ellipsoid layouts in various settings. First, in Figure 6 we demonstrate that by fixing
the noise and changing the ellipsoid parameters, we can impose fine-grained control and manipu-
lation of generated proteins. For example, we can move individual secondary structure elements,
enlarge or merge them, or convert between them. When applied to PDB protein layouts, this capa-
bility enables precise structural editing of existing proteins, an exciting and first-in-class capability.
Next, in Figure 7, we test the boundaries of the model’s generalization ability by manually con-
structing ellipsoids in eclectic layouts. These result in, for example, extremely long helix bundles,
massive β-barrels or β-sheets, and peculiar arrangements of these artificial elements. Although these
extreme structures are not always designable, they demonstrate the creative and faithful alignment
of the fine-tuned model to the provided ellipsoid conditioning.

5 CONCLUSION

We developed ProtComposer for conditioning protein structure generative models on 3D ellipsoid
layouts. We implemented it for Multiflow and secondary structure annotated ellipsoids, using novel
architectural components such as Invariant Cross Attention. We quantitatively ascertained that gen-
erations tightly adhere to the input ellipsoid layouts and provided a range of examples to demonstrate
how this enables reliably generating proteins with desired layouts via hand-specified ellipsoids and
editing existing proteins. To generate unconditionally, we condition on novel and diverse ellipsoid
layouts drawn from a newly developed statistical model. This produced a family of protein structure
distributions that far surpasses the Pareto frontiers of designability to novelty and diversity achieved
by Multiflow. ProtComposer generates more compositional proteins with a helicity close to that of
PDB proteins while maintaining designability. We anticipate expanding the annotation types of our
ellipsoids to function specifications to further push the frontier of controllable protein design.
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7 REPRODUCIBILITY STATEMENT

Our implementations are based on the architecture, training losses, optimizers, datasets, and data
processing of Multiflow (Campbell et al., 2024) for which the authors provide code at https:
//github.com/jasonkyuyim/multiflow. All code for this paper is available at https:
//github.com/NVlabs/protcomposer, and we provide the following descriptions to en-
able reproducing results based on the manuscript alone: We provide algorithm 1 to specify our in-
variant cross-attention mechanism, which can be implemented with invariant point attention classes
at https://github.com/aqlaboratory/openfold as a starting point. The modifica-
tions of the Multiflow update block are specified in Algorithm 2. Our ellipsoid extraction procedure
is detailed in algorithm 3. All parameters for sweeps to produce the Pareto frontiers in Figure 4 are
specified in Section 4.2 and our Appendix on Pareto frontier details A.4. We provide details on how
we run Multiflow as a baseline in Appendix A.4. Details on running Chroma and how we implement
ellipsoid conditioning for Chroma are available in Appendix A.2. Training details such as duration
and resource requirements are in Appendix A.1. We describe the full form of our Ellipsoid statistical
model and how to sample it in Section 3.4. All our metrics are specified explicitly in Sections 4.2
and 4.1 with citations to tools required for their computation.

8 ETHICS STATEMENT

We present a general method for protein structure generation that may be used to aid protein design.
Proteins are versatile tools that carry out biological functions. Depending on the purpose our tool is
used for—depending on which protein design it is employed to aid—its use is either ethical or un-
ethical. The vast majority of current use cases of similar technology are with the intent of achieving
positive outcomes for humanity via, e.g., developing drugs, biomolecules that accelerate industrial
processes, or proteins used as tools to improve our understanding of biology itself. Thus, we esti-
mate that the ethical use cases with potential for positive impact on humanity will far outweigh any
negative impacts from unethical uses.
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Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, and Frank
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A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

Algorithm 3: Residue Segmentation and Gaussian Fitting
Input: Positions of alpha carbons pos, Secondary structure annotation ss, Radius threshold

threshold
Output: List of ellipsoids with secondary structure type, position, and covariance.
distmat← pairwise distances(pos,pos)
edges← argwhere((distmat < threshold)and(ss[None] == ss[:,None]))
G← graph from edges(edges)
components← extract connected components(G)
ellipsoids← [ ]
for component in components do

component← list(component)
if ss[component[0]] == loop then

continue
if len(component) < 5 then

continue
ellipsoids.append({
‘type’: ss[component[0]],
‘position’: pos[component].mean()
‘covariance’: covariance(pos[component].T)
})

return ellipsoids

Training. We finetune Multiflow (Campbell et al., 2024) starting from a checkpoint provided on
the authors’ GitHub and use their optimizers, data filtering, losses, and hyperparameters (AdamW,
learning rate 0.0001). To monitor training progress, we run inference conditioned on data ellipsoids
and report designability and ellipsoid adherence metrics. We do not employ early stopping based on
any of the metrics. Training is carried out on 8 NVIDIA A100 GPUs for 20 hours, corresponding to
83 epochs.

Data. The training data consists of PDB proteins and synthetic data. The PDB training colleted by
Yim et al. (2023b) consists of 18684 proteins of length 60-384. We train on crops of size 256. Ad-
ditional training data are 4179 synthetically generated proteins of Multiflow with high designability
(see Campbell et al. (2024)). The ellipsoids to condition on at test time are extracted from the PDB
proteins and synthetic proteins as described in Section 3.1, Figure 2 and detailed in Algorithm 3.
This means that, at training time, the number of ellipsoids is determined by the data. In Figure 11,
we provide a histogram of the number of ellipsoids per protein in PDB proteins. We trained addi-
tional models (no results included in the paper) on the AlphaFold2 (Jumper et al., 2021) database
following Lin et al. (2024), which yields a model with increased diversity and blob adherence but
decreased designability.

Details of PosEmbed. Our Invariant-Cross-Attention module in Algorithm 1 uses a positional
encoding PosEmbed of the relative positions of ellipsoid means to residue positions. This is a
sinusoidal positional encoding of the relative positions (the vectors between ellipsoid means and
residue positions). Each number of the 3D offset vector is encoded into 64 dimensions, and all 3 are
concatenated.

Inference time protein length choice. At inference time, ProtComposer (and Multiflow, RFDiffu-
sion, and Chroma) take a protein length L as input, which specifies the number of residues in the
generated protein. In ProtComposer, each ellipsoid Ek is associated with a number of residues nk
that is supposed to end up in that ellipsoid. The sum of nk does not have to match the total length
L. The nk are just an additional conditioning input that the model can adhere to but does not have
to. Even if the sum of nk is larger than L, the model can still (and empirically does) use some of the
residues for strands and to connect the ellipsoids. When generating from ellipsoids from our ellip-
soid statistical model, we set L to be equal to the sum of nk. When generating from data-extracted
ellipsoids, we set L to be the length of the original protein which the ellipsoids were extracted from,
so L ¿

∑
nk.
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A.2 RUNNING CHROMA

For running Chroma (Ingraham et al., 2023), we use the author’s GitHub. For Table 1, we run
Chroma conditioned on the same data ellipsoids as ProtComposer, while the samples in the Pareto
front (Figure 4) under varying sampling temperature are sampled unconditionally. The inverse-
sampling temperatures that we sweep over are [1, 1.4, 2, 4, 8, 10, 15, 20, 40, 80] where 10 is the de-
fault provided by the authors. The length distributions are the same as for Multiflow as described in
A.4.

To condition Chroma, we utilize the conditioner classes provided in the author’s GitHub repository.
Concretely, we use the ShapeConditioner that is provided to condition on point clouds. The
point cloud that we condition on is obtained by first sampling from a Gaussian mixture model that
is defined by the set of means and covariances for the ellipsoid layout we condition on. Then,
we reject or accept each sample based on whether or not its Mahalanobis distance to any of the
ellipsoids’ Gaussian is less than

√
5Å, which is the same threshold that we use to define our ellipsoid

boundaries in equation 1, and that is used in our ellipsoid visualizations throughout the paper. The
only parameter that we alter from the ShapeConditioner default settings is to set the number
of residues according to our length distribution and to setautoscale=False since the desired
protein volume is known and specified by the input point cloud.

A.3 RUNNING RFDIFFUSION

For running RFdiffusion (Watson et al., 2023), we use the author’s GitHub. The
samples in the Pareto front (Figure 4) under varying sampling temperature are
sampled unconditionally. The sampling temperatures that we sweep over are
[0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.8, 2, 2.4, 2.8, 3.2, 4, 4.8, 6] where 1 is the default provided
by the authors.

A.4 PARETO FRONTIERS DETAILS

The black dot in Figure 4, which corresponds to the metrics achieved by PDB proteins from the
PDB is computed from our validation set. This is the validation set of proteins that were deposited
in PDB after 2021 used by Campbell et al. (2024).

Running Multiflow and rotational annealing. What we term “rotational annealing” is described
as an exponential rate schedule for the rotation vector field in Multiflow (Campbell et al., 2024)
and as “inference annealing” in FoldFlow (Bose et al., 2024). What we call rotational annealing
strenghts is denoted c in both of these papers. We run Multiflow at the rotational annealing strenghts
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 2, 3, 4, 5, 6, 10] since 4,5, and 6 all
yield essentially identical results to the annealing strength 10 used in Multiflow by default, and
variation is achieved at low annealing strenghts.

Standard deviations in shaded regions. The standard deviations that we show as shaded regions in
Figure 4 are computed from 3 parameter settings for ProtComposer’s frontiers and 3 for the Multi-
flow frontiers. We select the parameter settings for the point on the frontier that is at a designability
of 0.98 for each of the three metrics. For all three parameter settings, we rerun inference with 4 addi-
tional seeds and compute the standard deviations from the results for all four metrics (designability,
novelty, diversity, and helicity). The final reported standard deviations are obtained by averaging the
standard deviations across the three points.

Considering length distribution effects. We chose a fixed number of ellipsoids K for consistency
across protein lengths and the specific value of K = 5 since it is the most frequent number of ellip-
soids in PDB proteins (see Figure 11). However, this still gives rise to a distribution of lengths, and
we detail our considerations to provide meaningful comparisons here: To construct ProtComposer’s
Pareto frontiers, we sweep over all parameter combinations of σ, ν, γ and λ. The parameters σ, ν, γ
are parameters of ProtComposer’s ellipsoid statistical model, with each combination giving rise to a
different distribution of ellipsoids. Each ellipsoid distribution has a different length distribution (see
Figure 8). Since designability is impacted by protein length and our evaluation metrics of helicity,
diversity, and novelty could be impacted by length as well, we also sample Multiflow at all rotational
annealing strengths with several length distributions. We combine all resulting points into a single
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Figure 8: Left: Average lengths of proteins from our ellipsoid statistical model for all com-
binations of σ ∈ [3, 4 . . . 10], helix fraction γ ∈ [0.2, 0.4, 0.6, 0.8, 1] and ellipsoid anisotropy
ν ∈ [5, 10, 20, 50, 100]. Right: The corresponding standard deviations of the length distributions
of each parameter combination.

set and compute Multiflow’s Pareto frontier from that set. In an attempt to cover the space of length
distributions well, we sample with the following length distributions: 1) the length distribution of
the σ, ν, γ combination with the minimum mean length. 2) the length distribution of the σ, ν, γ com-
bination with the maximum mean lenght. 3) the length distribution of the σ, ν, γ combination with
the average mean length. 4) a uniform length distribution between the minimum mean length of all
length distributions (92) and the maximum (198).

Designability computation. We compute the fraction of structures for which at least one out of 8
sequences sampled by ProteinMPNN (Dauparas et al., 2022) results in scRMSD < 2Å when re-
folded with ESMFold (Lin et al., 2023). We use the author’s repositories for running the tools. For
ProteinMPNN we use the backbone version that takes N, CA, C, O.

B DISCUSSION

Additional Related Work. Several other protein structure generative models were developed along-
side, on top of, or after the mentioned Chroma (Ingraham et al., 2023), FrameDiff (Yim et al.,
2023b), and RFDiffusion (Watson et al., 2023). This includes Genie (Lin & AlQuraishi, 2023),
Anand & Achim (2022), Protpardelle (Chu et al., 2023), and Genie2 (Lin et al., 2024) among others.
We also note DiffTopo (Miao & Correia, 2024), which first generates a skeleton protein representa-
tion, related to our ellipsoid layouts, where helices and individual strands of sheets are represented
as three 3D points, then initializes existing secondary structure elements adhering to the skeleton,
noises them, and then denoises them using RFDiffusion.

User guidelines for choosing K: All specifications of numbers of ellipsoids K < 10 can be ex-
pected to yield successful generations. To see which K are the most in-distribution, please see the
histogram in Figure 11 where we visualize the frequency of different K.

Design of ICA and treating ellipsoids equivalent to residue frames. In our transformer layers
(algorithm 2), the residue tokens update all ellipsoid tokens, and ellipsoid tokens update all residue
tokens. In Invariant-Cross-Attention (algorithm 1), we inject ellipsoid position and geometry infor-
mation into the residues tokens without updating ellipsoid tokens.

The reason: ICA updates a residue token based on transforming the ellipsoid means and covarianc
matrices into the local coordinate frame of the residue (where residue frames are defined as in
AlphaFold2). The same mechanism is not applicable to updating ellipsoid tokens based on residue
positions since a canonical assignment of a frame to an ellipsoid is not possible. To see this, we
consider the worst-case scenario of a round ellipsoid - clearly, no canonical assignment of a 3D
orientation is possible. In the best-case scenario of an ellipsoid with three distinctly sized principal
components, we could choose, e.g., the two largest to construct a frame from. However, their sign is
arbitrary, leading to 4 options among which no canonical choice exists. Thus, we opted for our ICA
without ellipsoid token updates, which is empirically sufficient for strong ellipsoid adherence.
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Furthermore, only injecting relative positional encoding into the keys and values and not the queries
was our default choice since it is how relative positional encodings are used in language model
transformers (Shaw et al., 2018) or in geometric transformers such as SE3-Transformer (Fuchs et al.,
2020).

Specifying the number of residues per ellipsoid. In our Ellipsoid definition, each ellipsoid k is
annotated with a number of residues nk that should be associated with the ellipsoid. Removing this
additional feature could provide additional flexibility for the model at inference time. We chose to
specify the number of residues per ellipsoid to give the user the option of controlling it (or having
the number be determined via linear fit if preferred).

Possible ProtComposer use cases. We envision frameworks based on ProtComposer where only
secondary structure conditioning is possible to enable use cases such as the following:

• Example use case: We aim to scaffold a therapeutically relevant functional site. The protein
requires a certain shape to fit into a delivery mechanism. With ProtComposer we can
specify the rough shape and size of the scaffold to still fit into the delivery mechanism

• ProtComposer can redesign the connectivity of secondary structure elements: biologists
aim to escape the existing space of protein topologies and discover new ones that can be
used as scaffolds or for other design tasks.

• Example use case: We aim to design a binder for a target at a flat beta-sheet region. With
ProtComposer, we can specify that a beta-sheet of the right size and shape should interface
with the target’s beta-sheet to increase the probability of success in generating a strong
binder.

• We often know how much flexibility/rigidity we want in certain areas of the protein. With
ProtComposer, we can place a rigid helix bundle, a beta-barrel, or more loosely connected
substructures in those regions.

The Compositionality Metric. We note that our compositionality metric, the effective number of
components, which is exp(−

∑
k pk log pk) where pk = mk/

∑
kmk, is based on the Diversity

Index which is commonly employed in ecology or demography.

C ADDITIONAL RESULTS

C.1 MULTIFLOW CODESIGN SEQUENCES

Table 3: Sequence-structure co-generation. ProtComposer’s self-consistency when generating
sequence and structure jointly vs. dropping its generated sequence and producing the sequence
with ProteinMPNN. 1-seq Designability refers to generating 1 sequence per structure, while 8-seq
Designability uses the best out of 8 sequences per structure. Self-consistency RMSD is abbreviated
as scRMSD.

Approach 1-seq Designability↑ Median scRMSD↓ Mean scRMSD↓ 8-seq Designability↑
Joint Generation 0.75 1.76 2.15 –
ProteinMPNN 0.81 1.65 2.41 0.98

Multiflow codesign sequences. Whenever assessing designability we use ProteinMPNN to infer the
sequence for a protein structure generative model’s generated sequence. Our base model Multiflow
jointly generates a protein sequence and structure. Commonly we ignore this generated sequence
and also produce a sequence conditioned on the structure using ProteinMPNN. Here we assess how
ProtComposer’s co-generated sequences compare with those obtained by ProteinMPNN conditioned
on ProtComposer’s structures.

For this purpose, we select statistical model parameters with high designability (ν = 50, σ = 5) and
draw 400 structures together with sequences from ProtComposer. Table 3 shows that the designabil-
ity of the jointly generated sequence is lower than that of a single sequence generated with Pro-
teinMPNN (the default designability metric shows the best of 8 ProteinMPNN sequences). This is
similar to the Multiflow paper (Campbell et al., 2024), where co-design did not provide designability

17



Published as a conference paper at ICLR 2025

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Designability

0.10

0.15

0.20

0.25

0.30

El
lip

so
id

 A
dh

er
en

ce
 m

et
ric

 JS
D

Varying guidance scale from 0 to 1.
Separate
Conditional Both
Unonditional Both
Seq-Conditional Both
Struct-Iterpolate Seq-Conditional Both
Interpolate

Figure 9: Evaluation of our different self-conditioning variants in terms of designability and ellipsoid
adherence measured in terms of Resegment JSD. The different variants are described in Appendix
C.2.

improvements. Interestingly, the median self-consistency RMDSs (scRMSD) of the jointly gener-
ated sequences are worse, while their mean scRMSDs are better.

C.2 ABLATION OF VARIANTS FOR SELF-CONDITIONING UNDER GUIDANCE

Recall that both Multiflow and ProtComposer use self-conditioning (Chen et al., 2023), in which,
during inference, the flow-model receives the output of the previous integration step as additional
self-conditioning input. During inference, the unconditional model pθ(t, R,a) produces the self-
conditioning variable X , and from the ellipsoid conditioned model pθ(t, R,a | E), we obtain XE.
Instead of supplying X to the unconditional and XE to the conditioned model, we use λXE + (1−
λ)X . Please refer to the Multiflow paper (Campbell et al., 2024) for information on how Multiflow
without classifier-free guidance performs self-conditioning.

This choice is based on our exploration of self-conditioning variants that are shown in Figure 9,
which shows that the interpolate option performs best. The variants we explore are:

• Separate: supply X to the unconditional and XE to the conditioned model.
• Conditional Both: supply X to both models.
• Unconditional Both: supply XE to both models.
• Seq-Conditional Both: supplyX to the unconditional andXE to the conditioned model for

the structure self-conditioning input while the sequence self-conditioning input is extracted
from XE for both models.

• Struct-Iterpolate Seq-Conditional Both: supply λXE + (1 − λ)X to both models for the
structure self-conditioning input while the sequence self-conditioning input is extracted
from XE for both models.

• Interpolate: supply λXE + (1− λ)X to both models.

C.3 FURTHER RESULTS

Table 4: Compositionality of different protein structure generative models.
ProtComposer (λ = 2.0) Multiflow Chroma RFDiffusion

Compositionality 3.2 1.9 2.5 3.3
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Figure 10: Scatter plots of the number of residues in an ellipsoid and the ellipsoid’s volume for
beta-sheet and helix ellipsoids. The relationship is close to linear. Thus, we choose the number of
residues for an ellipsoid from our synthetic ellipsoid statistical model based on their volume and the
linear fit to residue count. For beta sheet ellipsoids, the linear fit correlation coefficient is 0.93, and
the p-value is 0.0. For alpha-helix ellipsoids, the linear fit is 0.97, and the p-value is 0.0.
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Figure 11: Histograms for the validation set of PDB proteins. Left: Histogram of protein lengths.
Right: Histogram of the number of ellipsoids per protein with our default segmentation parameters.
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Figure 12: Different cutoffs of squared Mahalanobis distance for visualizing ellipsoids.

Figure 13: Hand-specified beta-barrel of increasing size.
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Figure 14: Ellipsoids obtained with different radius cutoffs (Å units) for the residue segmentation
(Algorithm 3) for the two proteins with PDB IDs 7DG4 (top) and 7V2T (bottom).
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Figure 15: Scatter plots of designability vs. ellipsoid adherence metrics when conditioning on
synthetic ellipsoids that were drawn from our ellipsoid statistical model.
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Figure 16: Several rows of randomly chosen protein structures from the PDB validation set, their
corresponding ellipsoids, and, below them, the protein we generate conditioned on those ellipsoids.
Each pair of PDB protein and generated protein is annotated with the TM-Score between them. The
TM-Scores are very low and we generate novel proteins while adhering to the layouts.

22



Published as a conference paper at ICLR 2025

Figure 17: Random samples of ellipsoids and the generated proteins from our ellipsoid statistical
model with parameters σ = 6, ν = 5, γ = 0.4, and the number of ellipsoids K varying from 2 (top)
to 7 (bottom).
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Figure 18: Random samples of ellipsoids and the generated proteins from our ellipsoid statistical
model with parameters σ = 6, ν = 5, γ = 0.4, and the number of ellipsoids being K = 5.
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Figure 19: Ellipsoids sampled from our ellipsoid statistical model with different parameter combi-
nations of ν and σ, which control the ellipsoids’ “roundness” or anisotropy and their compactness,
respectively.
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Figure 20: Ellipsoid adherence metrics under varying scales of guidance strength λ for ellipsoids
extracted from the validation data. The highest ellipsoid adherence is attained at values of λ > 1.

0.25 0.30 0.35 0.40 0.45 0.50 0.55
TMScore

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Co
ve

ra
ge

0.25 0.30 0.35 0.40 0.45 0.50 0.55
TMScore

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
isp

la
ce

m
en

t

0.25 0.30 0.35 0.40 0.45 0.50 0.55
TMScore

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0.25 0.30 0.35 0.40 0.45 0.50 0.55
TMScore

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

Lik
el

ih
oo

d

0.25 0.30 0.35 0.40 0.45 0.50 0.55
TMScore

0.2

0.3

0.4

0.5

0.6

0.7

0.8

So
ft 

Ac
cu

ra
cy

0.25 0.30 0.35 0.40 0.45 0.50 0.55
TMScore

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Re
bl

ob
 JS

D

Figure 21: We generate proteins conditioned on ellipsoids extracted from the validation data and
show scatter plots of ellipsoid alignment metrics and the TMScore between the PDB protein and the
generated protein. In general, the TMScore is very low, and the generated proteins are novel.
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Figure 22: Several protein layouts (rows) and ProtComposer generations for them with varying
guidance (columns) where guidance strengths (λ ≥ 1) including extreme values for which the model
breaks down.
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Figure 23: Scatter plots of designability and novelty, entropy, helicity, or diversity when conditioning
on synthetic ellipsoids that were drawn from our ellipsoid statistical model. The colors indicate the
value of the statistical model’s parameter that is in the caption of each column.
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Figure 24: Several protein layouts (rows) and ProtComposer generations for them with varying
guidance (columns); no guidance (λ = 0) on the left, full guidance (λ = 1) on the right.

29


	Introduction
	Background and Related Work
	Method
	Ellipsoid Representation of Proteins
	Ellipsoid Conditioning
	Guidance for the Self-Conditioned and Joint Flow
	Generating Novel Ellipsoids

	Experiments
	Ellipsoid Consistency
	Improved Diversity and Novelty
	Flexible Conditioning

	Conclusion
	Acknowledgements
	Reproducibility Statement
	Ethics Statement
	Experimental Details
	Implementation Details
	Running Chroma
	Running RFdiffusion
	Pareto Frontiers Details

	Discussion
	Additional Results
	Multiflow codesign sequences
	Ablation of variants for self-conditioning under guidance
	Further Results


