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Abstract001

Large language models (LLMs) based on gen-002
erative pre-trained Transformer have achieved003
remarkable performance on knowledge graph004
question-answering (KGQA) tasks. However,005
LLMs often produce ungrounded subgraph006
planning or reasoning results in KGQA due to007
the hallucinatory behavior brought by the gener-008
ative paradigm. To tackle this issue, we propose009
READS to reformulate the KGQA process010
into discriminative subtasks, which simplifies011
the search space for each subtasks. Based on012
the subtasks, we design a new corresponding013
discriminative inference strategy to conduct014
the reasoning for KGQA, thereby alleviating015
hallucination and ungrounded reasoning issues016
in LLMs. Experimental results show that the017
proposed approach outperforms multiple strong018
comparison methods, along with achieving019
state-of-the-art performance on widely used020
benchmarks WebQSP and CWQ. 1021

1 Introduction022

Large language models (LLMs) have shown023

remarkable reasoning capabilities in KGQA024

task (Yu et al., 2022; Huang and Chang, 2023;025

Wang et al., 2023b), especially the feasibility026

to prompt the LLMs to generate searching and027

reasoning results through the LLMs’ built-in028

knowledge. Typically, based on the given029

question, LLMs can be prompted to provide a030

plan for the question-related subgraph through one-031

time generation. After retrieving the subgraph,032

LLMs can directly generate the answers along033

with the reasoning steps using the subgraph as034

context. Utilizing internal knowledge or reasoning035

ability distilled from stronger models like GPT-036

4, the generative KGQA model can effectively037

conduct knowledge graph reasoning, along with038

achieving state-of-the-art performance on the039

1Our code and data will be released upon acceptance.

Figure 1: The generation-based methods tend to
generate unsupported or redundant subgraphs and
reasoning results (left), while the proposed method
address the issue by establishing proper searching space
for each of the KGQA subtasks (right).

KGQA tasks (Mondorf and Plank, 2024; LUO 040

et al., 2024; Sun et al., 2024a). 041

Despite their success, the generative reasoning 042

methods often produce ungrounded planning 043

or reasoning results due to the hallucinatory 044

behavior (Zhang et al., 2023; Sun et al., 2024b; 045

Pan et al., 2024), which is opposite to the 046

deterministic characteristic of knowledge reasoning 047

process (Garcez et al., 2015; Xiong et al., 2024). As 048

shown in Figure 1, when searching question-related 049

subgraphs, generation-based methods come with 050

not existed path “1->5->3” due to hallucinatory 051

planning , or retrieve redundant paths at one step “1- 052

>2; 1->3; 1->4” as a compensate to the generation 053

uncertainty (upper left). When conducting answer 054

inference on the retrieved subgraph, the generation- 055

based methods may generate unreasonable step 056

“since r3" as inference chain or even entity “4” that 057
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do not exist in the subgraphs as answers (bottom058

left). The hallucinatory behavior of the generative059

LLMs hinders the advancement of KGQA.060

To address the issue, we propose LLM-Based061

Reasoning With Discriminative Subtasks (READS)062

to strengthen the LLM-based knowledge reasoning063

process. READS decomposes the KGQA process064

into three discriminative subtasks: graph searching,065

graph pruning, and answer inference. The066

decomposition aims to explicitly simulate the067

capabilities of searching for question-related068

knowledge, identifying semantic constraints, and069

inferring the answer position on the subgraph,070

respectively. Meanwhile, READS simplifies071

search space from the knowledge graph without072

toolboxes, along with designed discriminative073

inference strategy to conduct the reasoning of074

KBQA effectively. In summary, our main075

contributions are as follows:076

• We introduce READS, an novel reasoning077

framework that explicitly models KGQA078

reasoning skills by deconstructing the KGQA079

process into three discriminative subtasks.080

• An effective corresponding discriminative081

inference strategy is designed to conduct the082

reasoning of KGQA for READS, thereby083

significantly alleviating hallucination and084

ungrounded reasoning issues.085

• Experimental results demonstrate that086

READS achieved state-of-the-art performance087

on two widely used benchmarks.088

2 Related Works089

Generative Approaches. The challenge of KGQA090

task lies in how to conduct precise reasoning on the091

knowledge graphs (Miller et al., 2016; Yasunaga092

et al., 2021; Zhu et al., 2024), early works tried093

to teach models to construct database queries094

for knowledge graphs, allowing them to directly095

retrieve answers from the graph (Gu and Su, 2022;096

Ye et al., 2022). With the advent of LLM’s long-097

horizon planning and reasoning capability (Zhong098

et al., 2024; Wang et al., 2024), the focus of KGQA099

research shifts toward leveraging the reasoning100

capabilities of a single LLM for knowledge101

inference (Jiang et al., 2022). One straightforward102

way is to directly schedule the question-related sub-103

graph using the LLM’s knowledge (Hong et al.,104

2023; Wang et al., 2023a). Typical approach105

like RoG employs chain-like subgraph planning106

and distills GPT-4’s Chain-of-Thought reasoning 107

capability to achieve reliable reasoning processes 108

over knowledge graphs, achieving state-of-the- 109

art performance (LUO et al., 2024). Despite 110

their success, one concern is that those methods 111

often provides incorrect and ungrounded reasoning 112

results due to the hallucinatory generation process. 113

Interactive and Discriminative Approaches. An 114

alternative approach is to design effective tools 115

and generation strategies to retrieve environment 116

information from the knowledge graph to enhance 117

the step-by-step reasoning process, as seen in 118

approaches such as ToG, KGAgent and GoG (Sun 119

et al., 2024a; Jiang et al., 2024; Xu et al., 2024). 120

However, these interactive generation approaches 121

cannot avoid the influence of hallucinations. Even 122

when provided with environmental information or 123

recalled subgraphs, the model may still arrive at 124

incorrect reasoning results. As claimed in PANGU, 125

using discriminative strategy can effectively 126

mitigates the hallucination problem (Gu et al., 127

2023). Despite PANGU’s success, integrating tools 128

such as search and answer retrieval within the 129

same search space may also lead the LLM to make 130

erroneous decisions. 131

In this paper, we propose to reformulate KGQA 132

into three subtasks to explicitly model the KGQA 133

skills and design discriminative strategies to 134

effectively enhance LLM’s reasoning capability on 135

the knowledge graph. 136

3 READS Framework 137

In this section, we propose a novel framework 138

that reformulates the KGQA task into three 139

discriminative subtasks, including question-related 140

subgraph searching, question-related subgraph 141

pruning, and answer inference. 142

Formulation of KGQA task. Given a question 143

Q and the knowledge graph entities E contained 144

in the question, the KGQA task asks the model 145

to recall golden answers Agold as much as 146

possible. The model has to retrieve question-related 147

subgraphs from the knowledge graph and infer the 148

right answer based on the subgraphs. 149

The knowledge graph KG used in this paper 150

is Freebase2, which consists of knowledge triplets 151

represented as t = (s, p, o) including the subject 152

entity s, the object entity o, and the predicate p that 153

connects these two entities. 154

2The two benchmarks used in this work are constructed
using Freebase (Bollacker et al., 2008).
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Figure 2: The proposed READS for KGQA. Start from the question (bottom left) with a given starting entity
"Coronation Street", READS sequentially conducts subgraph retrieval, subgraph pruning, and answer inference.
Then READS automatically uses the reasoning results to prune Gk and then retrieve the answers from it. In this
figure, the node’s color in subgraph Gk (middle center) represents its position in subgraph structure Sk (top center).

3.1 Question-related subgraph Searching155

Given the knowledge graph, the question-related156

subgraph searching subtask aims to retrieve157

the question-related subgraph Gk and thereby158

summarizes an abstract structure Sk for each159

input question. Specifically, Gk is the subgraph160

comprising only the necessary knowledge to161

correctly answer the question Q, which can be162

represented by a set of triplets:163

Gk = {ti|ti = (si, pi, oi)}. (1)164

Following UniKGQA (Jiang et al., 2022), we use165

“semantic nodes” to represent a group of entities166

sharing same structural position in the knowledge167

graph. The summarized abstract structure Sk168

groups all the entities into “semantic nodes” based169

on their position in Gk:170

Sk = {ti|ti = (sabs, pj , oabs)},
sabs, oabs ∈ Group(Gk).

(2)171

For example, if Gk includes two triples, (a,172

friend_of , b) and (a, friend_of , c), its abstract173

structure Sk is {entity1, friend_of, entity2}.174

Here both entities b and c are grouped into the175

abstract node entity_2 since they connect to the176

same entity a with the same relation friend_of .177

Note that Sk only groups the entities and keeps the178

name of the relations.179

3.2 Question-related Subgraph Pruning 180

Based on the abstract structure Sk, the question- 181

related subgraph pruning task aims to map all 182

the question-related constraint entities C to nodes 183

in Sk. C denotes the intersection of question 184

mentioned entities Equestion and all entities in 185

Freebase Efreebase: 186

C = Equestion ∩ Efreebase. (3) 187

Let Node(Sk) represents the set of nodes in Sk, the 188

mapping results between entities in C and nodes in 189

Sk is represented as: 190

{(Ci, Ni)|Ci ∈ C,Ni ∈ Node(Sk)}. (4) 191

For example, when answering the question: "What 192

is the name of the team who won the Super Bowl in 193

2011?", there are two constraint entities C1: "Super 194

Bowl" and C2: "2011". Now that the retrieved 195

subgraph Gk is always a tree rooted from the 196

starting entity, any branches contain information 197

against the the information in C1 should be pruned 198

from its root. In order to better focus on the LLM- 199

based discriminative reasoning process, we assume 200

that the entities mentioned in the questions have 201

already been linked to Freebase entities through 202

rule-based recognition methods. 203

3.3 Answer Inference 204

Given the question-related subgraph structure Sk, 205

the answer inference subtask aims to locate the 206

3



position of the answer Apos which corresponds to207

the position of Agold in Sk:208

Apos = Grouped(Agold),

Agold ∈ Node(Gk),

Apos ∈ Node(Sk).

(5)209

Once the position of the answer Apos is selected,210

the corresponding group of entities in Gk will be211

regarded as the final answers.212

4 READS Discriminative Reasoning213

After we propose the framework of READS, we214

are able to design efficient reasoning strategy to215

facilitate graph retrieval, graph pruning and answer216

inference. Based on the subtasks, we are able to217

explicitly model the KGQA process as illustrated218

in Figure 2. We design discriminative strategies to219

achieve the subtasks and construct training data to220

augment the LLM-based reasoning process.221

4.1 Searching Strategy222

Compared to previous methods that rely on agent223

toolboxes, READS opts for a discriminative224

searching approach which only observes and225

updates the subgraph structure Sk.226

In each iteration, based on the retrieved subgraph227

structure Sk, the LLM selects one option from228

the option pool (as shown in Figure 2). Each229

option includes a starting node snext in Sk and a230

neighboring relation pnext, forming the next triple231

tnext = (snext, pnext, onext). A new node onext is232

added to Sk along with its corresponding entities in233

Gk retrieved from the knowledge graph. READS234

maintains an option pool that includes all feasible235

triples for search. We can formulate each step of236

the discriminative searching strategy in READS as:237

tnext = argmax(P(t|Sk, Q), t ∈ pool), (6)238

where P represents the probability distribution over239

options provided by the LLM using a constrained240

beam search algorithm based on output logits. An241

additional option, ‘None’, is always available to242

terminate the search process.243

Retention of Node Information. READS further244

enriches the information contained within the245

subgraph structure Sk by labeling the semantic246

nodes with entity types. Entities in Freebase247

can be classified into one of the following types:248

entity, topic, date, and num (details are provided in249

Appendix A). READS will recognize the type of250

retrieved entities, and add new nodes in Sk.251

4.2 Pruning Strategy 252

After obtaining the question-related subgraph Gk 253

along with its structure Sk, READS maps all 254

constraints mentioned in the question onto Sk to 255

perform subgraph pruning. A triplet Cn = (cpos, 256

copt, ctar) has to be chosen from the option pool, 257

where ctar is the constraint entity mentioned in the 258

question, cpos is the target position for applying 259

the constraint, and copt is the operator to define 260

the type of logical resolution used for applying the 261

constraint. READS restrict the operator copt to one 262

of the seven types {=, <,≤, >,≥,min,max} and 263

combine each constraint with all possible operators 264

and positions to form the option pool. 265

Based on the question Q and Sk, READS asks 266

the LLM to iteratively select the constraints until 267

the LLM selects ‘None’ or there are no options left: 268

Cn = argmax(P(Cn|C1..., Cn−1, Sk, Q)). (7) 269

The pruning process is conducted at the level of 270

subtrees rooted from the starting node in Gk (as 271

shown in Figure 2), retaining only the subtrees that 272

meet the constraints. 273

4.3 Answering Strategy 274

When answering questions with a large number of 275

answers, previous generative methods often fail 276

to capture all the correct answers, even if the 277

reasoning steps are successfully generated. To 278

address this problem, READS focuses on locating 279

the positions of answers within the subgraph 280

structure Sk to simultaneously retrieve all possible 281

answers. Based on Sk, READS determines the 282

answer position Apos using: 283

Apos = argmax(P(n|Sk, C,Q), n ∈ Sk), (8) 284

where P is also given by the LLM based on Sk,C, 285

and Q. Positions for applying constraints can not 286

be chosen again. All entities in Gk corresponding 287

to the position Apos will be listed as the answer. 288

5 Experiments 289

5.1 Datasets and Settings 290

Data preprocessing. Based on the proposed 291

subtasks, we construct training data based on 292

the original training sets. We get 121,023 293

subgraph searching samples and 46,885 subgraph 294

pruning and answer inference samples. For more 295

details of our data preprocessing and training data 296

construction method, please refer to Appendix B. 297
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Method WebQSP CWQ
Hits@1 Recall F1 Hits@1 Recall F1

Llama2-7b zero-shot (Touvron et al., 2023)* 0.403 - 0.293 0.297 - 0.272
Llama3-8b zero-shot (Dubey et al., 2024)* 0.303 - 0.257 0.305 - 0.278
Qwen2.5-7b zero-shot (Yang et al., 2024)* 0.284 - 0.237 0.259 - 0.241
GPT-4-turbo zero-shot (Achiam et al., 2023)* 0.632 - - 0.483 - -
Llama2-7b SPARQL Generation* 0.747 - - 0.656 - -
KV-Mem (Miller et al., 2016) 0.467 - 0.345 0.184 - 0.157
GraftNet (Sun et al., 2018) 0.664 - 0.604 0.368 - 0.327
QGG (Lan and Jiang, 2020) 0.730 - 0.738 0.369 - 0.374
NSM (He et al., 2021) 0.687 - 0.628 0.476 - 0.424
SR+NSM+E2E (Zhang et al., 2022) 0.695 - 0.641 0.493 - 0.463
DECAF (DPR+FiD-3B) (Yu et al., 2022) 0.821 - 0.788 - - -
UniKGQA (Jiang et al., 2022) 0.772 - 0.722 0.512 - 0.490
PANGU (Gu et al., 2023) 0.796 - - 0.622 - -
KD-CoT (Wang et al., 2023a) 0.686 - 0.525 0.557 - -
ToG w/GPT-4 (Sun et al., 2024a) 0.826 - - 0.676 - -
KG-Agent (Jiang et al., 2024) 0.833 - 0.810 0.722 - 0.692
RoG (Top-3 relation path) (LUO et al., 2024)* 0.795 0.756 0.701 0.567 0.573 0.547
READS (Ours) 0.840 0.860 0.845 0.802 0.837 0.820

Table 1: The results of our method compared with previous approaches on WebQSP and CWQ. Asterisk (*) denotes
the results we reproduced. Note that the Hits@1 result reported in the original RoG paper (WebQSP 0.857, CWQ
0.626) is not calculated in the right way, see the author’s response here.

Benchmarks. To evaluate the knowledge graph298

question-answering capability of the proposed299

method, we choose two widely used benchmarks,300

WebQSP (Yih et al., 2016) and CWQ (Talmor301

and Berant, 2018). These two benchmarks are302

constructed based on Freebase knowledge graph.303

Metrics. We choose commonly used metrics304

Hits@1 and F1 for the evaluation process following305

previous works (LUO et al., 2024; Sun et al.,306

2024a). For detailed definition and implementation307

of the metrics, please refer to Appendix C.308

Baselines We use previous reproducible SOTA309

generation-based KGQA method RoG as our310

baseline. RoG make full use of LLM planning and311

chain-of-thought reasoning capability to achieve312

remarkable KGQA performance (LUO et al., 2024).313

We also listed typical methods like ToG and314

KGAgent with interactive reasoning strategy (Sun315

et al., 2024a; Jiang et al., 2024), PANGU with316

single-task discriminative strategy (Gu et al., 2023).317

The zero-shot performance of widely used LLMs318

is listed for comparison. We also finetuned llama2-319

7b to directly generate SPARQL queries for each320

of the question, and then execute those queries on321

Freebase to get the answer.322

Base Model. We choose Llama2-7b as the323

base model of READS following RoG. For324

implementation with GPT-4, see Section 5.7.325

5.2 Main results 326

The performance of READS on WebQSP and 327

CWQ is presented in Table 1. According to 328

the results, our porposed READS framework 329

achieves state-of-the-art performance on these two 330

benchmarks, with improvements in both Hits@1 331

and F1, indicating an enhanced capability of 332

the LLM to handle KGQA tasks. Besides, the 333

READS method abandons the use of internal 334

model knowledge, yet still achieves better KGQA 335

performance, which sufficiently demonstrates that 336

the proposed framework can effectively enhance 337

the knowledge reasoning capabilities of LLMs 338

(refer to Appendix D). We also test READS on 339

more challenging dataset GrailQA (Gu et al., 2021), 340

the results are shown in Appendix E. 341

5.3 Searching Capability Analysis 342

To validate READS’s enhancement on the 343

capability of LLM to retrieve question-related 344

subgraphs, we design two metrics, relation recall 345

and minimum graph edit distance, to measure 346

the difference between the retrieved subgraph Gk 347

and the golden subgraph Ggold extract from the 348

SPARQL query given by the benchmarks. 349

Relation recall measures the proportion of 350

golden relations edges that are successfully 351

predicted, which reflects the method’s sensitivity 352

to retrieve the most relevant relations towards the 353
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Leaf Number 2 3 4 5
Avg.

Total Hop 1 2 3 4 5 3 4 5 4 5 6 5 6 7

Relation Recall Rrel

RoG 0.853 0.644 0.381 0.280 0.254 0.429 0.266 0.270 0.286 0.179 0.169 0.186 0.266 0.283 0.339

READS 0.887 0.887 0.903 0.897 0.972 0.859 0.853 0.899 0.748 0.656 0.826 0.867 0.837 0.863 0.853

Minimum Graph Edit Distance D(Gk, Ggold)

RoG 0.479 2.494 3.929 5.462 7.727 3.071 3.746 5.394 1.760 4.780 5.681 5.441 8.100 10.438 4.893

READS 0.097 0.209 0.315 0.625 0.181 0.338 1.069 1.490 1.521 3.658 3.000 1.235 1.550 1.578 1.204

Table 2: We use relation recall and minimum graph edit distance as the metrics to measure the quality of retrieved
subgraphs with different type of structures.

given question from the knowledge graph:354

Rrel =
count({R|R ∈ Gk} ∩ {R|R ∈ Ggold})

count({R|R ∈ Ggold})
. (9)355

Minimum edit distance D(G1, G2) is defined as356

the total number of operations required to transform357

one graph G1 into another graph G2 by sequentially358

adjusting its edges one by one:359

D(G1, G2) = min
n

(Editn(G1) == G2). (10)360

The lower the distance D(Gk, Ggold) is, the361

smaller the structural difference between the362

predicted graph structure and the correct reasoning363

subgraph is. We combine the WebQSP and CWQ364

datasets and classify the test set based on the365

structure of the given golden subgraph with two366

features: number of leaf nodes and the total number367

of relations. The detailed statistic result can be368

found in Appendix G. We compare READS with369

finetuned generative method RoG to evaluate the370

method’s performance to retrieve different types of371

subgraphs, the results are shown in Table 2.372

Across all types of subgraph structures, it is evi-373

dent that our method consistently achieves higher374

relation recall and lower average edit distance,375

which demonstrates significant enhancement of the376

LLM’s capability to search for question-related377

subgraphs with our proposed searching strategy.378

5.4 Pruning-Answering Capability Analysis379

Following the analysis of searching capability, we380

move on to evaluate the pruning and answering381

capability of our proposed strategies. We calculate382

the average size of the retrieved subgraphs. As383

shown in Figure 3, there is a significant reduction384

in the average size of the retrieved subgraphs,385

indicating that the READS method effectively386

improves the efficiency of subgraph retrieval by387

recalling fewer but higher-quality subgraph triples.388

20 60 100 140 180

102

103

size of retrieved subgraphs

RoG

READS

(a) WebQSP

20 60 100 140 180

102

103

size of retrieved subgraphs

RoG

READS

(b) CWQ

Figure 3: The number of cases with the size (number of
triplets) of retrieved subgraphs.

Figure 4: The trend of average Hits@1 as the size
(number of triplets) of retrieved subgraph increases.

We analyze the impact of the size of the retrieved 389

subgraph (i.e., the number of triples included) 390

on the overall performance of the strategy (the 391

result is shown in Figure 4). In addition to using 392

RoG with finetuned chain-of-thought reasoning, 393

we implement the in-context reasoning strategy 394

proposed by ToG with the subgraphs retrieved by 395

READS. To ensure fairness, we use Llama2_7b as 396

the base model for all experiments. As shown in 397

Figure 4, as the number of recalled subgraph triples 398

increases, the performance of generative reasoning 399

methods declines, whereas the strategy adopted 400
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by READS remains more stable. Redundant401

subgraph significantly increase the context length,402

thereby affecting the performance of the generative403

reasoning process. This observation suggests that404

generation-based reasoning strategies are more405

sensitive to the size of the subgraphs compared406

to the strategy employed by READS.407

5.5 Subtask Ablation Study408

To validate the effectiveness of the reformulation409

approach adopted in READS, we ablate the410

strategies in READS one at a time and observe411

the changes in performance. The implementations412

are: 1) answer: Generate the answer based on the413

subgraph Gk rather than determining position on414

Sk; 2) pruning: Skip the pruning process and rely415

on answer generation process to filter answers; 3)416

searching: Directly generate subgraph paths based417

on the question using the strategy in RoG. 4) entity418

type: Erase the entity type on Sk, an extra ablation419

implementation to evaluate the effectiveness of420

entity information retention for LLM reasoning.421

Model WebQSP CWQ
Hits@1 F1 Hits@1 F1

READS 0.840 0.845 0.802 0.820
- answer 0.761 0.744 0.684 0.679
- pruning 0.737 0.764 0.548 0.632
- searching 0.739 0.803 0.444 0.581
- entity type 0.764 0.776 0.741 0.770

Table 3: Ablation study of the strategies in READS.

The results are shown in Table 3. Firstly, all422

three tasks experienced a performance decline423

when employing strategies similar to previous424

work, demonstrating the effectiveness of the425

task framework proposed by READS. Secondly,426

the subgraph search task showed the greatest427

performance difference before and after ablation,428

indicating that the model’s subgraph search429

capability is the most critical within the current430

framework. Lastly, entity type information has431

been proven to effectively assist large models in432

conducting more precise reasoning processes.433

5.6 Error Type Analysis434

To analyze the effect of adopting READS on435

ungrounded reasoning with hallucinatory behavior,436

we collected and examined the frequency of error437

cases in READS. Since we decompose the KGQA438

process into three subtasks executed sequentially,439

we can categorize all errors into the following three440

Figure 5: Case frequency of different types of errors,
E1 corresponds to searching subtask; E2 corresponds to
pruning subtask; E3 corresponds to answering subtask.

types: 1) E1 stands for abscense of answer in 441

the retrieved subgraph, corresponding to searching 442

subtask; 2) E2 stands for lack of filering of the 443

answer set, corresponding to pruning subtask; 3) 444

E3 stands for mistakenly chosen the position of 445

answer, corresponding to answering subtask (refer 446

to Appendix F for more details). We analyzed the 447

frequency of these different error types, and the 448

results are shown in Figure 5. 449

According to the result, compared to the 450

generation-based method, READS significantly 451

reduces the frequency of E3 errors on both 452

benchmarks and also reduces the overall frequency 453

of E2 errors, which proves that READS alleviates 454

ungrounded reasoning behaviors in most cases by 455

applying discriminative reasoning strategies. The 456

dropped case frequency of E1 is consistent with 457

our claim that the READS enhances subgraph 458

searching capability of the LLM. 459

5.7 Hallucination vs. Internal Knowledge 460

As mentioned earlier, to mitigate hallucinations, 461

READS abandons the capability of LLMs to 462

generate answers directly, focusing instead on 463

discriminative subtasks. To further analyze the 464

balance between hallucination and LLM internal 465

knowledge, we conduct experiments with a strong 466

model GPT-4 and our base model llama2-7b using 467

different answering strategies. 468

We employed three strategies: 1) Zero-shot: 469

directly listing answers based on the question; 470

2) READS: using our proposed framework; 471

3) Augmented: generating answers based on 472

subgraphs extracted by READS. Since we could 473

not fine-tune or constrain the generation process of 474

GPT-4, we presented it with a pool of options and 475

asked it to make a selection. 476
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Strategy
WebQSP CWQ

GPT-4 Llama2 GPT-4 Llama2
Zero-shot 0.632 0.403 0.483 0.297
READS 0.544 0.840 0.346 0.802
Augmented 0.856 0.791 0.792 0.632

Table 4: The Hits@1 under different strategies.

As shown in Table 4, compared to the READS477

process, GPT-4 achieves better results than Llama2478

in generating answers based on subgraphs. We479

believe this illustrates the differences in strategic480

adaptability between scaled models and 7b-size481

models. For the commonly used 7b-size models,482

applying a constrained generation framework may483

better enhance their ability to inference answers.484

5.8 Subtask Data Efficiency485

We examine the training efficiency of the READS486

subtasks. We combine subgraph pruning and487

answer inference in the figure as reasoning488

component and fine-tune two separate models from489

scratch using Llama2-7b. When evaluating the490

performance of one model, we use the other model491

in its fully fine-tuned form.492

0 10 25 50 75 100

0

0.2

0.4

0.6

0.8

proportion of training data (%)

H
its

@
1

Reason
Search

(a) WebQSP

0 10 25 50 75 100

0.2

0.4

0.6

0.8
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Figure 6: The Hits@1 performance using different
proportion of finetuning data.

As shown in Figure 6, both models require only493

about 25% of the training data to reach near the494

best performances. In terms of data requirements495

among subgraph retrieval, subgraph pruning and496

answer inference, subgraph retrieval demands more497

data and poses greater challenges to the LLM.498

5.9 Further Analysis499

Model Universality of READS. To analyze500

the model Universality of READS, we test the501

performance of the READS method based on502

different backbone models, and the results are503

shown in Table 5. The results indicate that504

changing the base model has no significant impact505

on the method’s performance, highlighting the 506

universality of the READS approach. 507

Base Model WebQSP CWQ
Hits@1 F1 Hits@1 F1

Vicuna-7b 0.809 0.828 0.778 0.794
Llama-7b 0.830 0.842 0.799 0.823
Llama2-7b 0.840 0.845 0.802 0.820
Llama3-8b 0.827 0.845 0.812 0.831
Qwen2.5-7b 0.825 0.840 0.809 0.821

Table 5: Model universality of READS.

Reasoning Cost. The interactive analysis 508

between LLMs and knowledge graphs can be 509

quite time-consuming, particularly when large 510

subgraphs introduce long contexts that further 511

hinder reasoning efficiency. However, through 512

the implementation of a highly efficient reasoning 513

strategy, READS has significantly reduced both the 514

average number of model calls per question and the 515

number of tokens per request. As demonstrated in 516

Table 6, READS has halved the cost and achieved 517

a similar average number of model calls as RoG, 518

which plans a subgraph through a single generation. 519

Method WebQSP CWQ
input output calls input output calls

RoG 343.3 47.4 4.0 490.1 42.9 4.0
ToG - - 11.2 - - 14.3
READS 178.9 10.8 3.9 206.6 12.4 5.7

Table 6: The average model calls per question and
average number of input/output tokens per request.

Case Study. We present cases of solving 520

KGQA problems using the READS method in 521

Appendix I. READS provides effective explicit 522

intermediate reasoning information, which adds 523

to the readability of the overall KGQA process. 524

6 Conclusion 525

In this paper, we propose a novel LLM-based rea- 526

soning framework READS to reformulate KGQA 527

process, aiming to alleviate the hallucination 528

issues in existing generative methods and enhance 529

the LLM’s reasoning capability. Experimental 530

results proves our claim that by decomposing 531

KGQA and adopting designed discriminative 532

strategies, we can enhances the capability of 533

LLMs to retrieve question-related subgraphs and 534

mitigate ungrounded reasoning results caused by 535

hallucinations in the generation process. 536
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Limitations537

Though our proposed READS framework has538

shown competitive KGQA performance and is539

proven to enhance the LLM’s reasoning capability,540

we identify several limitations that requires further541

improvement. In the future, we will focus on the542

following directions to extend the current work:543

1) Entity linking: Existing methods assume that544

the entity linking process is done before the KGQA545

process (LUO et al., 2024; Sun et al., 2024a); In this546

work we follow the previous works to assume that547

the entity linking has already been completed. This548

is a common issue faced by the KGQA methods,549

we will explore how to eliminate this assumption550

to achieve reliable KGQA process.551

2) Demand on labeled data: Although our552

method effectively enhances the knowledge553

reasoning capabilities of large models and554

demonstrates competitive performance across555

multiple datasets, we assume the existence of a gold556

query. Given the strong zero-shot KGQA capability557

and reasoning capability of GPT-4, works that does558

not rely on a gold query either requires GPT-4 to559

annotate the reasoning process (such as RoG) or560

combines the knowledge memory of strong models561

to improve overall performance (such as ToG, GoG,562

etc.) (LUO et al., 2024; Sun et al., 2024a; Xu et al.,563

2024). In the future works, we will explore the564

possibility of using model-generated pseudo-labels565

or constructing self-summarized memories to deal566

with this issue.567

References568

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama569
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,570
Diogo Almeida, Janko Altenschmidt, Sam Altman,571
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.572
arXiv preprint arXiv:2303.08774.573

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim574
Sturge, and Jamie Taylor. 2008. Freebase: a575
collaboratively created graph database for structuring576
human knowledge. In Proceedings of the 2008 ACM577
SIGMOD international conference on Management578
of data, pages 1247–1250.579

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,580
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,581
Akhil Mathur, Alan Schelten, Amy Yang, Angela582
Fan, et al. 2024. The llama 3 herd of models. arXiv583
preprint arXiv:2407.21783.584

Artur d’Avila Garcez, Tarek R Besold, Luc De Raedt,585
Peter Földiak, Pascal Hitzler, Thomas Icard, Kai-586
Uwe Kühnberger, Luis C Lamb, Risto Miikkulainen,587

and Daniel L Silver. 2015. Neural-symbolic learning 588
and reasoning: contributions and challenges. In 2015 589
AAAI Spring Symposium Series. 590

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate, 591
discriminate: A proposal for grounding language 592
models to real-world environments. In Proceedings 593
of the 61st Annual Meeting of the Association for 594
Computational Linguistics (Volume 1: Long Papers), 595
pages 4928–4949. 596

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy 597
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid: 598
three levels of generalization for question answering 599
on knowledge bases. In Proceedings of the Web 600
Conference 2021, pages 3477–3488. 601

Yu Gu and Yu Su. 2022. ArcaneQA: Dynamic program 602
induction and contextualized encoding for knowledge 603
base question answering. In Proceedings of the 604
29th International Conference on Computational 605
Linguistics, pages 1718–1731, Gyeongju, Republic 606
of Korea. International Committee on Computational 607
Linguistics. 608

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and 609
Ji-Rong Wen. 2021. Improving multi-hop knowledge 610
base question answering by learning intermediate 611
supervision signals. In Proceedings of the 14th ACM 612
International Conference on Web Search and Data 613
Mining, WSDM ’21. ACM. 614

Ruixin Hong, Hongming Zhang, Hong Zhao, Dong 615
Yu, and Changshui Zhang. 2023. Faithful 616
question answering with monte-carlo planning. In 617
Proceedings of the 61st Annual Meeting of the 618
Association for Computational Linguistics (Volume 619
1: Long Papers), pages 3944–3965. 620

Jie Huang and Kevin Chen-Chuan Chang. 2023. 621
Towards reasoning in large language models: A 622
survey. In Findings of the Association for 623
Computational Linguistics: ACL 2023, pages 1049– 624
1065. 625

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, 626
Chen Zhu, Hengshu Zhu, and Ji-Rong Wen. 2024. 627
Kg-agent: An efficient autonomous agent framework 628
for complex reasoning over knowledge graph. arXiv 629
preprint arXiv:2402.11163. 630

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong 631
Wen. 2022. Unikgqa: Unified retrieval and reasoning 632
for solving multi-hop question answering over 633
knowledge graph. arXiv preprint arXiv:2212.00959. 634

Yunshi Lan and Jing Jiang. 2020. Query graph gen- 635
eration for answering multi-hop complex questions 636
from knowledge bases. In Proceedings of the 58th 637
Annual Meeting of the Association for Computational 638
Linguistics, pages 969–974, Online. Association for 639
Computational Linguistics. 640

LINHAO LUO, Yuan-Fang Li, Reza Haf, and Shirui 641
Pan. 2024. Reasoning on graphs: Faithful and 642
interpretable large language model reasoning. In 643

9

https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91


The Twelfth International Conference on Learning644
Representations.645

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-646
Hossein Karimi, Antoine Bordes, and Jason Weston.647
2016. Key-value memory networks for directly648
reading documents. In Proceedings of the 2016649
Conference on Empirical Methods in Natural650
Language Processing, pages 1400–1409, Austin,651
Texas. Association for Computational Linguistics.652

Philipp Mondorf and Barbara Plank. 2024. Beyond653
accuracy: Evaluating the reasoning behavior of654
large language models–a survey. arXiv preprint655
arXiv:2404.01869.656

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen,657
Jiapu Wang, and Xindong Wu. 2024. Unifying658
large language models and knowledge graphs: A659
roadmap. IEEE Transactions on Knowledge & Data660
Engineering, (01):1–20.661

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn662
Mazaitis, Ruslan Salakhutdinov, and William Cohen.663
2018. Open domain question answering using early664
fusion of knowledge bases and text. In Proceedings665
of the 2018 Conference on Empirical Methods in666
Natural Language Processing, pages 4231–4242,667
Brussels, Belgium. Association for Computational668
Linguistics.669

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo670
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-671
Yeung Shum, and Jian Guo. 2024a. Think-672
on-graph: Deep and responsible reasoning of673
large language model on knowledge graph. In674
The Twelfth International Conference on Learning675
Representations.676

Kai Sun, Yifan Xu, Hanwen Zha, Yue Liu, and Xin Luna677
Dong. 2024b. Head-to-tail: How knowledgeable are678
large language models (llms)? aka will llms replace679
knowledge graphs? In Proceedings of the 2024680
Conference of the North American Chapter of the681
Association for Computational Linguistics: Human682
Language Technologies (Volume 1: Long Papers),683
pages 311–325.684

Alon Talmor and Jonathan Berant. 2018. The685
web as a knowledge-base for answering complex686
questions. In Proceedings of the 2018 Conference687
of the North American Chapter of the Association688
for Computational Linguistics: Human Language689
Technologies, Volume 1 (Long Papers), pages 641–690
651.691

Hugo Touvron, Louis Martin, Kevin Stone, Peter692
Albert, Amjad Almahairi, Yasmine Babaei, Nikolay693
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti694
Bhosale, et al. 2023. Llama 2: Open foundation695
and fine-tuned chat models. arXiv preprint696
arXiv:2307.09288.697

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li,698
Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang699
Xiong. 2023a. Knowledge-driven cot: Exploring700

faithful reasoning in llms for knowledge-intensive 701
question answering. Preprint, arXiv:2308.13259. 702

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 703
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 704
Xu Chen, Yankai Lin, et al. 2024. A survey on large 705
language model based autonomous agents. Frontiers 706
of Computer Science, 18(6):186345. 707

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, 708
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 709
2023b. Plan-and-solve prompting: Improving zero- 710
shot chain-of-thought reasoning by large language 711
models. In Proceedings of the 61st Annual Meeting 712
of the Association for Computational Linguistics 713
(Volume 1: Long Papers), pages 2609–2634. 714

Haoyi Xiong, Zhiyuan Wang, Xuhong Li, Jiang Bian, 715
Zeke Xie, Shahid Mumtaz, Anwer Al-Dulaimi, and 716
Laura E Barnes. 2024. Converging paradigms: The 717
synergy of symbolic and connectionist ai in llm- 718
empowered autonomous agents. arXiv preprint 719
arXiv:2407.08516. 720

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, 721
Yangqiu Song, Hanghang Tong, Guang Liu, Kang 722
Liu, and Jun Zhao. 2024. Generate-on-graph: 723
Treat llm as both agent and kg in incomplete 724
knowledge graph question answering. arXiv preprint 725
arXiv:2404.14741. 726

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 727
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 728
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 729
technical report. arXiv preprint arXiv:2407.10671. 730

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, 731
Percy Liang, and Jure Leskovec. 2021. QA-GNN: 732
Reasoning with language models and knowledge 733
graphs for question answering. In Proceedings of 734
the 2021 Conference of the North American Chapter 735
of the Association for Computational Linguistics: 736
Human Language Technologies, pages 535–546, 737
Online. Association for Computational Linguistics. 738

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, 739
and Caiming Xiong. 2022. RNG-KBQA: Generation 740
augmented iterative ranking for knowledge base 741
question answering. In Proceedings of the 60th 742
Annual Meeting of the Association for Computational 743
Linguistics (Volume 1: Long Papers), pages 6032– 744
6043, Dublin, Ireland. Association for Computational 745
Linguistics. 746

Wen-tau Yih, Matthew Richardson, Christopher Meek, 747
Ming-Wei Chang, and Jina Suh. 2016. The value 748
of semantic parse labeling for knowledge base 749
question answering. In Proceedings of the 54th 750
Annual Meeting of the Association for Computational 751
Linguistics (Volume 2: Short Papers), pages 201– 752
206. 753

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui 754
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu, 755
William Yang Wang, Zhiguo Wang, and Bing Xiang. 756
2022. Decaf: Joint decoding of answers and 757

10

https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417


logical forms for question answering over knowledge758
bases. In The Eleventh International Conference on759
Learning Representations.760

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie761
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph762
retrieval enhanced model for multi-hop knowledge763
base question answering. In Proceedings of the 60th764
Annual Meeting of the Association for Computational765
Linguistics (Volume 1: Long Papers), pages 5773–766
5784, Dublin, Ireland. Association for Computational767
Linguistics.768

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,769
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,770
Yulong Chen, et al. 2023. Siren’s song in the ai ocean:771
a survey on hallucination in large language models.772
arXiv preprint arXiv:2309.01219.773

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye,774
and Yanlin Wang. 2024. Memorybank: Enhancing775
large language models with long-term memory. In776
Proceedings of the AAAI Conference on Artificial777
Intelligence, volume 38, pages 19724–19731.778

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao,779
Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun Chen,780
and Ningyu Zhang. 2024. Llms for knowledge graph781
construction and reasoning: Recent capabilities and782
future opportunities. World Wide Web, 27(5):58.783

Type Definition Example

entity
Real entities include
person\school\events

and so on
Micheal

topic

Topic id entities which
is used to connect
entities with the
same topic, its id

has no actual meanings

m.01428y

num Numbers 240.15
date Dates 2015\08\10

Table 7: Entity types with its definition and example

A Semantic Entity Types 784

Here we demonstrate different semantic entity 785

types in Table 7. 786

B Data Preprocessing 787

Training Data for Subgraph Searching. We 788

make use of the SPARQL data available in existing 789

benchmarks to form the training data. In WebQSP 790

and CWQ, each question is associated with a 791

SPARQL query. The direct execution of this 792

query yields the answer to the open question. We 793

obtain the correct subgraph structure required to 794

solve each problem by decomposing the SPARQL 795

statements. Unlike ROG (LUO et al., 2024), 796

in finetuning process READS always presents 797

the model with the correct knowledge subgraph 798

structure rather than the shortest path starts from 799

the question entity and ends at the answer entities. 800

Training Data for Subgraph pruning and 801

answer inference. To finetune the LLMs to be 802

capable of constraint determination and answer 803

inference, we also construct constraint/answer 804

locating samples from the SPARQL queries in 805

WebQSP and CWQ. The input is a complete 806

subgraph structure with all feasible options of 807

constraints or answer positions, the golden output 808

is the correct position of the constraint and the 809

answer. 810

Freebase preprocessing. Due to the huge volume 811

of established Freebase knowledge graph, directly 812

interacting with Freebase through SPARQL is 813

inefficient and may result in unnecessary syntax 814

errors. Following UniKGQA (Jiang et al., 2022), 815

we extract subgraphs from Freebase using breadth- 816

first search for each question, which are then used 817

for the subgraph searching process. Additionally, 818

we expand these subgraphs using the SPARQL 819
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queries provided in the benchmarks to ensure the820

presence of constraint branches.821

SPARQL queries contain the subgraph infor-822

mation necessary to complete a comprehensive823

graph query. These queries are composed of824

graph structure triples and filtering conditions. In825

WebQSP, CWQ, and most KGQA datasets built on826

Freebase, each question corresponds to a specific827

SPARQL query. Therefore, the paths included in828

SPARQL effectively represent the correct subgraph829

structure required to answer the current question.830

In previous works, subgraphs obtained using831

shortest path search methods typically formed832

chain-like structures. Compared to the information833

contained in SPARQL, these structures: 1) might834

not be logically coherent search paths, and 2) could835

miss some branches on certain nodes along the836

path. To enable our method to proceed smoothly,837

we extracted additional subgraph structures with838

all possible branches related to the question839

from Freebase based on the structural information840

inherent in the SPARQL queries. These were added841

to the original dataset (for a reference to the original842

dataset, see RoG). The specific implementation can843

be found in the corresponding functions in the open-844

source code, and will not be elaborated here.845

C Metrics846

Here we outline the metrics calculation formulas847

and their corresponding meanings that were not848

detailed in the main text.849

Hits@1. Hits@1 calculates the proportion of850

questions for which the first answer given by the851

model is correct. Given Apre is the predicted list852

of answers, and Agold is the list of golden answers,853

Apre[0] as the very first answer the model predict,854

then we have:855

Hits@1 =
count(Apre[0] ∈ Agold)

count(questions)
. (11)856

For example, if the correct answer is "apple"857

and the model answers "pear, apple, banana," then858

Hits@1 for this question is 0. It is important to note859

that this metric can sometimes be miscalculated as860

follows:861

Hits@1 =
count(Apre ∩Agold ̸= ∅)

count(questions)
. (12)862

With this incorrect calculation, the Hits@1863

would be higher. For the above example, the864

Hits@1 for this question would be 1.865

Leaf Node Number 2 3 4 5

with threshold 0.847 0.741 0.625 0.604

w/o threshold 0.845 0.750 0.636 0.738

Table 8: The average Hits@1 performance on questions
with different subgraph structures. Manually add
minimum branch threshold during tree search process.
The performance drops as we manually add the
threshold.

Method GrailQA Dev
i.i.d compositional zero-shot overall

PANGU 0.844 0.746 0.716 0.754
READS 0.921 0.759 0.626 0.718

Table 9: The Hits@1 performance on GrailQA.

F1. We adopt the same calculation method as 866

previous work, using the Macro-F1 scoring method. 867

First, we calculate the precision and recall for each 868

test sample. Then, we average them based on the 869

number of samples to obtain the overall recall and 870

precision. Finally, we use the harmonic mean of the 871

overall recall and precision to calculate the overall 872

F1 score. 873

D Ungrounded Reasoning Behavior 874

The previous generation-based method can 875

sometimes provide the correct answer even when 876

the subgraph does not contain the correct answer, 877

whereas READS does not exhibit this behavior (see 878

case C2 in Table 11). 879

E Result on GrailQA 880

We test our proposed READ on more challenging 881

benchmark GrailQA’s development set (Gu et al., 882

2021), the results are shown in Table 9. Compared 883

to the previous single task discriminative method 884

PANGU (Gu et al., 2023), although not achieving 885

overall SOTA performance, READS enhanced the 886

KGQA reliability on both i.i.d and compositional 887

questions, which proves the effectiveness of the 888

reformulation strategy used in READS. 889

F Types of Errors 890

We categorize the answering process into five 891

scenarios, with three of these ultimately resulting 892

in incorrect answers. We present the overall 893

definitions in Table 10 and the frequency statistics 894

for the five scenarios in Table 10. Here we further 895

explain the definition of the three error cases. 896
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Does retrieved

subgraph contains correct answer?
Is the very first answer predicted correct? Case type

Yes

Yes C1

No, but the correct answer exist in the predicted list E2

No, and there is no correct answer in the predicted list E3

No
Yes C2

No E1

Table 10: Error Case type definitions.

Case Type CWQ WebQSP

RoG Total Seperate Total Seperate

C1 1645 1208

E2 2390 132 1363 99

E3 613 56

C2 364 78

E1
1057

693
257

179

READS

C1 2784 1342

E2 154 73

E3

3049

111

1449

34

C2 0 0

E1
398

398
171

171

Table 11: Frequency count of different cases.

Leaf Count
Edge count in the subgraph

Total Percentage
1 2 3 4 5 6 7 8

2 921 1453 1267 400 22 0 0 0 4063 0.802
3 0 0 278 217 208 5 0 0 708 0.139
4 0 0 0 71 41 44 2 3 161 0.031
5 0 0 0 0 34 40 57 0 131 0.025

Table 12: Statistics of questions with different knowledge subgraph structure. This is the statistic result combining
WebQSP and CWQ’s test set.
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Tree Search Stage Prompt Template
Below is a wikipedia question,
you can retrieve a graph to help you answer the question.
The retrieved graph information is given as information triple like (Entity1, Relation, Entity2),
or only the name of the start entity.
Decide which entity and corresponding relation to retrieve next,
response in form of ’entity+relation’.
Response ’None’ if the retrieved graph is
informative enough to answer the question.
Question:
<The Question>
Retrieved graph: <The retrieved subgraph structure Sk, in forms of triples>
Next retrieve:
Tree Pruning Stage Prompt Template
Locate Constraints:
Below is a question with a support graph presented as
triples (entity A, relation, entity B).
The entity name in the support graph is ’type_id’.
’Type’ denotes the entity type, which includes four types:
ordinary entity (entity), topic entity (topic),
number (num), and date (date).
’Id’ is an incremental identifier used to distinguish entities.
Please match all the constrains with one of the entity in the support graph.
Support graph:
<The retrieved subgraph structure Sk, in forms of triples>
Question:
<The Question>
Constraints:
<List of constraint entities>
Determine result:
Locate Answer:
Below is a question with a support graph presented as
triples (entity A, relation, entity B).
The entity name in the support graph is ’type_id’.
’Type’ denotes the entity type, which includes four types:
ordinary entity (entity), topic entity (topic),
number (num), and date (date).
’Id’ is an incremental identifier used to distinguish entities.
Please select the answer from the support graph by choosing the right entity.
Support graph:
<The retrieved subgraph structure Sk, in forms of triples>
Question:
<The Question>
Answer entity:

Table 13: Prompt Template use in READS
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E1 (failed subgraph searching) is directly related897

to the graph search ability of the model. If the898

answer is not included in the retrieved subgraph,899

the model can not actually obtain the answer900

through inference and pruning.901

We attribute E2 to lack of subgraph pruning as it902

indicates the presence of incorrect answer entities903

at the selected answer position. We detect E2904

as the cases when the first answer is wrong all905

the correct answers are listed after the The lack906

of pruning may be caused by: 1) Omission of907

branches in the structure, which means the LLM908

fails to retrieve necessary entities; 2) Failure on909

matching constraints with the correct position. To910

avoid such errors, the model should have stronger911

searching and constraint locating capabilities.912

We attribute E3 to wrong answer location913

since the answer list contains no golden answer.914

Although generation-based methods generates the915

answer rather than selecting the position, the916

inability to infer the answer from the graph917

containing the correct answer is considered as a918

similar location error. To avoid such errors, the919

model should have stronger subgraph reasoning920

and answer positioning capabilities.921

G Statistics of Subgraph Structure922

After categorizing questions based on the structure923

of their corresponding knowledge subgraphs, we924

count the number of questions in each class(see925

Figure 12), and find that there is a relative scarcity926

of graph-structured data with single or multiple927

branches.928

Many questions with leaf count 2 is free from929

constraints, while these issues make up the vast930

majority(80.2%) of the test set. This proportional931

relationship also appears in the training set, which932

means the model will see more simple graph933

structures during training process. This may934

lead the model to prematurely halt the search by935

favoring structures with fewer branches. However,936

introducing minimum branching threshold to force937

the LLM to search more branches before it938

terminates the search stage may obstacle normal939

tree search behavior (see Table 8). This remains a940

topic worth to be discussed in the future.941

H Prompt Templates942

We demonstrate all the prompt templates used in943

READS in Table 13, including the template for tree944

searching, locating constraints and the answer.945

I Case Study 946

We present two clear process examples of 947

conducting KGQA tasks using READS in Table 14. 948
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Case 1
Question:
what does jamaican people speak?
Tree search stage output Sk:
(’Jamaica’, ’location.country.languages_spoken’, ’entity_1’)
Real subgraph Gk retrieve from Freebase:
(’Jamaica’, ’location.country.languages_spoken’, ’Jamaican English’)
(’Jamaica’, ’location.country.languages_spoken’, ’Jamaican Creole English Language’)
Tree pruning stage output:
No constrain, Answer is “entity_1”
READS Output:
’Jamaican English’, ’Jamaican Creole English Language’

Case 2
Question:
who plays the voice of kitt in knight rider?
Tree search stage output Sk:
("Knight Rider", "tv.tv_program.regular_cast", "topic_1")
("topic_1", "tv.regular_tv_appearance.character", "entity_2")
("topic_1", "tv.regular_tv_appearance.actor", "entity_3")
Real subgraph Gk retrieve from Freebase:
("Knight Rider", "tv.tv_program.regular_cast", "m.03lj4m5")
("m.03lj4m5", "tv.regular_tv_appearance.character", "KITT")
("m.03lj4m5", "tv.regular_tv_appearance.actor", "William Daniels")
...
("m.02h9cb0", "tv.regular_tv_appearance.actor", "David Hasselhoff")
("m.03lj4m0", "tv.regular_tv_appearance.actor", "Edward Mulhare")
("m.03lj4lk", "tv.regular_tv_appearance.actor", "Patricia McPherson")
Tree pruning stage output:
Constraint: "entity_2= KITT", Answer is “entity_3”
READS Output:
’William Daniels’

Case 3
Question:
where did kevin love go to college?
Tree search stage output Sk:
("Kevin Love", "people.person.education", "topic_1")
("topic_1", "education.education.institution", "entity_2")
("entity_2", "common.topic.notable_types", "entity_3")
Real subgraph Gk retrieve from Freebase:
("Kevin Love", "people.person.education", "m.04ftwdc")
("Kevin Love", "people.person.education", "m.045z4gx")
("m.04ftwdc", "education.education.institution", "University of California, Los Angeles")
("m.045z4gx", "education.education.institution", "Lake Oswego High School")
("University of California, Los Angeles", "common.topic.notable_types", "College/University")
("Lake Oswego High School", "common.topic.notable_types", "School")
Tree pruning stage output:
Constraint: "entity_3 = College/University", Answer is “entity_2”
READS Output:
’University of California, Los Angeles’

Table 14: Case Study of READS
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