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Abstract
Large Language Models (LLMs) offer trans-
formative potential for Software Requirements
Engineering (SRE), yet critical challenges, in-
cluding domain ignorance, hallucinations, and
high computational costs, hinder their adop-
tion. This paper proposes a conceptual frame-
work that integrates Small Language Mod-
els (SLMs) and Knowledge-Augmented LMs
(KALMs) with LangChain to address these
limitations systematically. Our approach com-
bines: (1) SLMs for efficient, locally deploy-
able requirements processing, (2) KALMs en-
hanced with Retrieval-Augmented Generation
(RAG) to mitigate domain-specific gaps, and
(3) LangChain for structured, secure workflow
orchestration. We identify and categorize six
technical challenges and two research gaps
through a systematic review of LLM applica-
tions in SRE. To guide practitioners, we distill
evidence-based prompt engineering guidelines
(Context, Language, Examples, Keywords)
and propose prompting strategies (e.g., Chain-
of-Verification) to improve output reliability.
The paper establishes a theoretical foundation
for scalable, trustworthy AI-assisted SRE and
outlines future directions, including domain-
specific prompt templates and hybrid validation
pipelines.

1 Introduction

Incomplete or ambiguous requirements result in
28% of software defects as per (Mogyorodi [43]).
In today’s rapidly evolving software landscape,
where development cycles are compressed and busi-
ness needs change constantly, this requirements gap
poses significant risks to project success and com-
petitiveness (Umar and Lano [54]). Effective re-
quirements engineering serves as the critical foun-
dation for software quality, with Business Analysts
playing a pivotal role in bridging the stakeholder
needs and their technical implementation (Wiegers
and Beatty [59]). Software Requirements Engineer-
ing (SRE) systematically transforms stakeholder

inputs into complete and consistent specifications
through elicitation, analysis, specification, valida-
tion, and management (Project Management Insti-
tute (PMI) [46]), (International Institute of Busi-
ness Analysis (IIBA) [28]). However, the natural
language nature of requirements introduces chal-
lenges in precision and scalability that traditional
methods struggle to address. These challenges can
now be addressed by the evolution of Large Lan-
guage Models (LLMs), which leverage advanced
NLP techniques to automate requirements engineer-
ing tasks.

Large Language Models (LLMs) present a trans-
formative opportunity for SRE. Their advanced
natural language capabilities enable automation of
requirements elicitation (Hey et al. [23]), ambigu-
ity detection (Sainani et al. [50]), and specification
generation (Dalpiaz and Niu [10]). Practical appli-
cations like GitHub Copilot (Ronanki et al. [48])
and ChatGPT-4 (Brown et al. [6]) demonstrate their
potential in understanding linguistic context and
stakeholder intent (Kaur et al. [30], Winkler and
Vogelsang [60]). LLMs can simulate user roles
(Wei [56]), analyze requirement quality (Ferrari
et al. [18]), and even suggest improvements (Luo
et al. [35], Alhoshan et al. [1]).

However, LLM adoption faces significant chal-
lenges. Output quality concerns include potential
inaccuracies, biases, and lack of transparency (Mar-
ques et al. [38], Zhen et al. [62]). The effective uti-
lization of LLMs requires sophisticated prompt en-
gineering techniques (Sahoo et al. [49]) that under-
stand model behavior and task requirements (Fan
et al. [17]). Current research provides frameworks
for prompt design (Liu and Chilton [34], Hao et al.
[21], Maddigan and Susnjak [36]) and commercial
implementations (OpenAI [44]), with emerging ap-
plications specifically for requirements engineering
(Bang et al. [3], Arora et al. [2]).

This paper investigates the application of Large
Language Models (LLMs) in Software Require-
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ments Engineering (SRE), analyzing current tech-
nical and methodological challenges while project-
ing future directions for LM integration. Building
upon foundational survey research in LLMs and
prompt engineering, we systematically synthesize
existing knowledge to: (1) identify key challenges
in LLM-SRE adoption, (2) propose a conceptual
framework for addressing these challenges, and (3)
establish evidence-based prompting guidelines for
requirements engineering tasks. While this study
establishes a theoretical foundation for integrating
LLMs into SRE workflows, the technical imple-
mentation and empirical validation remain impor-
tant directions for future research. Our work pro-
vides a structured framework to bridge the critical
gap between cutting-edge language model capabil-
ities and rigorous requirements engineering prac-
tices, offering reproducible methodologies for both
researchers and practitioners.

2 Background and related works

2.1 Software Requirements Engineering

Software requirements define the framework and
primary objectives that guide the development of a
software application (International Institute of Busi-
ness Analysis (IIBA) [28]). The process of crafting,
documenting, and managing these requirements is
known as requirements engineering (Bencheikh
and Höglund [4]). As a disciplined and struc-
tured approach, software requirements engineer-
ing focuses on consistently defining, documenting,
and maintaining requirements throughout the soft-
ware development life cycle (Wiegers and Beatty
[59]). SRE can be decomposed into 2 main areas,
which are requirements development and require-
ment management (Marques et al. [38]) (Westfall
[58]). The development involves requirements elic-
itation, analysis, and specifications, while manage-
ment is a continuous process over the development
life cycle that covers change requests, documents,
and tracing the history of the requirement.

Since software requirements are being written
and communicated in a natural language, this drove
the extensive research on the usage of NLP tech-
niques and approaches in the SRE field (Dalpiaz
et al. [9]). A common approach for supporting
RE tasks would be the usage of Language Models
to facilitate the management of various RE activ-
ities by reducing time consumption, complexity,
and human effort (Kaur et al. [30]), (Winkler and
Vogelsang [60]). NLP, powered by AI and compu-

tational techniques, enables interaction between AI
systems and humans in natural language, enhanc-
ing the efficiency of these tasks. However, for large
language models (LLMs) to be effectively applied
within RE, they must gain a contextual understand-
ing of RE activities and acquire domain-specific
knowledge.

2.2 Language Models
Language Models (LMs) trace their origins to early
efforts in natural language processing (NLP), but it
wasn’t until the emergence of neural networks and
deep learning that LLMs began to gain Significance.
Early developments like Word2Vec (Mikolov et al.
[41]) laid the groundwork by allowing models to
learn word representations from large datasets. The
real breakthrough came with the introduction of the
transformer architecture by Vaswani et al. in their
2017 paper Attention is All You Need (Vaswani
et al. [55]). This innovation allowed models to
handle context more effectively and perform tasks
such as translation, summarization, and question
answering with higher accuracy.

The evolution of Language Models was acceler-
ated by the development of larger models trained
on massive datasets. OpenAI’s GPT (Generative
Pre-trained Transformer) series, particularly GPT-
3, showcased how scaling model size and training
on diverse textual corpora could enable models to
perform a wide range of tasks without task-specific
training (Brown et al. [6]). Similarly, BERT (Bidi-
rectional Encoder Representations from Transform-
ers) (Devlin et al. [13]) revolutionized contextual
understanding by processing text bidirectionally.
This evolution reflects a shift from task-specific
to general-purpose models capable of handling
various NLP tasks. The introduction of Meta’s
LLAMA (Large Language Model Meta AI) further
exemplifies this trend, with LLAMA being opti-
mized for research and efficiency in large-scale nat-
ural language understanding tasks. While the evo-
lution of Language Models has unlocked unprece-
dented capabilities in NLP, their effectiveness in
real-world applications depends critically on how
they are instructed, giving rise to the essential dis-
cipline of prompt engineering.

2.3 Prompt Engineering
Prompts serve as the input instructions provided
by users to large language models (LLMs), guid-
ing them toward producing desired outputs. It is
important to recognize that LLMs may generate
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varied responses based on the specific structure and
wording of a prompt. Sometimes, the responses
may be overly generic, vague, or irrelevant, a phe-
nomenon referred to as "LLM hallucinations (Ben-
der et al. [5]) and (Marcus [37]), highlighting how
these models can generate misleading or inaccurate
information due to over-reliance on probabilistic
predictions rather than factual data.

To mitigate such issues, prompt engineering has
emerged as a pivotal technique, focusing on the
strategic development and optimization of task-
specific instructions (prompts) to guide pre-trained
LLMs toward generating high-quality, relevant re-
sponses Min et al. [42]. Prompt engineering en-
ables users to control the model’s outputs by fine-
tuning the prompt’s structure, which can signifi-
cantly improve both the quality and utility of the
results. The discipline of prompt engineering has
been extensively studied and popularized in various
works, including (Liu et al. [33]), (Tonmoy et al.
[51]), and (Chen et al. [7]).

2.4 Related Work

Authors of (Marques et al. [39]) have studied the
role of LLMs in SRE by analyzing various studies
and integrating ChatGPT into the SRE process. It
showed that the SRE process improved in brain-
storming and creativity, providing real-time feed-
back, and fostering collaboration through diverse
perspectives. It reduces human errors in documen-
tation and enhances quality with accurate and un-
ambiguous outputs. LLMs resulted in cost savings,
higher productivity, and better project management
overall, however, they face limitations, including
potential biases from training data, the risk of hal-
lucinations, and difficulties in explicability. Lack
of contextual understanding necessitates human
oversight to clarify requirements and prevent over-
reliance on generated outputs. The authors dis-
cussed some future directions, including the ex-
ploration of new prompt construction techniques
tailored for each stage of software requirement de-
velopment, and the usage of external knowledge
bases, or human-in-the-loop verification, can help
ensure logical and factual accuracy in generated
outputs.

According to a survey (Hemmat et al. [22], on
the usage of LLMs in SRE, covering the limitations
and challenges faced.

1. Domain Understanding Limitations: LLMs
frequently exhibit deficiencies in domain-

specific knowledge, resulting in misinterpre-
tations of requirements. Key issues include
failure to incorporate organizational policies
and insufficient contextual awareness for spe-
cialized tasks.

2. Output Reliability Deficits: Studies doc-
ument persistent quality concerns, such as
vague or incomplete outputs and factual hallu-
cinations, wherein models generate plausible
but incorrect information, necessitating rigor-
ous manual validation.

3. Prompt Engineering Constraints: Effective
prompt design remains nontrivial due to to-
ken limitations and sensitivity to input phras-
ing. Domain-agnostic prompts often yield ill-
formed requirements, underscoring the need
for context-aware structuring.

4. Methodological Limitations: Experimental
reproducibility is hampered by ad hoc hyper-
parameter selection and unoptimized setups,
potentially compromising model adaptability
and performance in RE contexts.

5. Structural Inconsistencies: LLMs fre-
quently produce syntactically flawed outputs,
including type mismatches in formal specifi-
cations and erroneous operator usage in code
generation, demanding post-hoc correction.

Through an analysis of 28 studies, Green and
Taylor [20] derived 36 prompt engineering guide-
lines for LLM use in SRE. The study found that
LLMs are helpful for tasks like requirements ver-
ification and consistency checks, where template-
based prompts enhance traceability and usabil-
ity. However, significant limitations persist, par-
ticularly in requirements analysis and elicitation.
LLMs struggle with ambiguous terminology (e.g.,
vague "context" definitions), circular contextual de-
pendencies, and output instability—generating in-
consistent or oversimplified results even with fixed
inputs. Their validation capabilities are inherently
limited, as they cannot objectively assess correct-
ness and falter in late-stage technical assessments.
While templates provide structure, they fail to ad-
dress core challenges like restricted reasoning abil-
ities, low feedback confidence, and reproducibil-
ity issues, which hinder complex analysis. Fur-
ther, LLMs often misalign with stakeholder needs
due to inadequate domain adaptation, superficial
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reasoning patterns, and systemic mismatches be-
tween generated outputs and implementation reali-
ties. These constraints suggest that domain-specific
fine-tuning or hybrid approaches (e.g., integrating
general guidelines with domain-oriented prompts)
may be necessary to improve LLMs’ reliability in
SRE, particularly for nuanced tasks like analysis
and elicitation, where current performance remains
inconsistent.

In the paper (Sahoo et al. [49]), the authors ex-
plore prompt engineering as a means of enhanc-
ing the capabilities of pre-trained large language
models (LLMs). This approach focuses on strate-
gically designing task-specific instructions, known
as prompts, to guide model behavior without the
need to update model parameters. The paper cate-
gorizes 29 distinct prompt engineering techniques
according to their targeted functionalities, shedding
light on the strengths and limitations of each tech-
nique. Despite significant successes, challenges
such as biases, factual inaccuracies, and gaps in
interpretability persist, highlighting the need for
continued investigation and the development of ef-
fective mitigation strategies. Looking ahead, the
authors pointed to some directions, addressing new
tasks without additional training data, enhancing
reasoning and logic, reducing hallucinations, opti-
mizing user interaction, and ensuring consistency,
coherence, and efficiency through self-reflection.

3 Language Model Challenges in SRE

We have identified different challenges for us-
ing LLMs in Software Requirements Engineering,
some were related to the LLMs themselves, others
were related to the prompts, and some were related
to the nature of SRE tasks. It’s not in the scope
of this paper to discuss the internal structure or
architecture of the LLM itself, nor the NLP or AI
algorithms used within it. A total of 6 technical
and 2 research limitations were identified, among
others, as to why SRE practitioners are reluctant to
adopt LLM in the field. Moving forward, we will
use (TL) to refer to technical limitations and (RL)
for research limitations.

3.1 Technical Issues

1. TL1: Security & Privacy Risks

This is the most critical issue and threat men-
tioned, as using LLMs poses inherent data
exposure risks through data leakage and un-
secured API integrations, particularly when

handling sensitive requirements. These vul-
nerabilities may violate compliance regimes
and erode stakeholder trust in regulated do-
mains.

2. TL2: Unreliable Output Quality & Format-
ting

LLM models frequently generate incorrect
statements or structurally flawed technical
specifications or documentation. Such defi-
ciencies necessitate rigorous manual valida-
tion, increasing the need for manual verifica-
tion costs and risking defective system deploy-
ments.

3. TL3: Context & Domain Understanding
Gaps

LLMs lack mechanisms to internalize orga-
nizational policies or domain-specific con-
straints during requirements generation. This
often produces non-compliant outputs requir-
ing substantial post-hoc revision, delaying de-
velopment cycles. This is one of the most
painful points to any LLM usage since they
are trained on a very large corpus.

4. TL4: Computational & Operational Costs

The resources needed to create or educate
LLMs can not be supported by the SRE prac-
titioners. The resource intensity of fine-tuning
and inference creates prohibitive scalability
challenges for many teams. These economic
barriers limit practical adoption despite the
technology’s theoretical benefits.

5. TL5: Prompt Engineering Challenges

Model performance exhibits extreme sensi-
tivity to minor prompt phrasing variations,
demanding specialized expertise. This de-
pendency introduces implementation delays
and organizational reliance on scarce LLM-
proficient personnel.

6. TL6: Reasoning & Analysis Limitations

LLMs can not perform deductive reasoning or
rigorous analysis comparable to formal meth-
ods. Consequently, their utility remains re-
stricted to supplementary tasks rather than
critical decision-making processes. This is
due to the lack of specific training given to
the LLM since it needs to be of a general use
case.
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3.2 Research Issues

1. RL1: Dataset availability

Our literature review reveals that existing stud-
ies in this domain lack experimentation with
dedicated datasets for requirement engineer-
ing tasks. However, through examination of
open-source repositories, we identified spe-
cialized datasets (OpenScience Community
[45], Dalpiaz et al. [11]) that have been ex-
clusively utilized for requirement elicitation
using NLP techniques. This presents both an
opportunity to validate prior work and a limi-
tation in current research methodologies.

2. RL2: Evaluation Methods

The assessment of LLM applications in Soft-
ware Requirements Engineering faces sig-
nificant methodological challenges due to
three interrelated constraints: the absence of
standardized benchmark datasets with expert-
validated ground truth annotations for most
SRE tasks, the lack of established quantitative
metrics to objectively measure output quality
beyond subjective expert judgment, and an
over-reliance on limited-scale human evalua-
tions that incur substantial costs while poten-
tially introducing individual biases and failing
to represent the full spectrum of SRE scenar-
ios. These limitations collectively undermine
the reproducibility, scalability, and objective
validation of research findings in this domain.

These challenges open the way for the following
research questions:

1. RQ1: How can language models (LMs) over-
come computational, domain, and reliability
limitations in Software Requirements Engi-
neering (SRE)?

2. RQ2: How can modular frameworks enhance
the security and scalability of LM-augmented
SRE workflows?

3. RQ3: What prompting strategies ensure accu-
rate, context-aware requirements generation
and analysis?

Our analysis reveals a clear dichotomy in LLM
challenges: constraints and restrictions (TL1, TL4)
versus inherent model capabilities (TL2, TL6). Fur-
thermore, we identify two critical dimensions of

human-LLM interaction – effective communica-
tion through prompt engineering (TL5) and do-
main knowledge limitations (TL3) – that collec-
tively shape the practical utility of these systems.
These findings are further contextualized by two un-
resolved research issues: the absence of dedicated
datasets for requirement engineering tasks (RL1)
and fundamental limitations in current evaluation
methodologies (RL2). By analyzing established
research in language modeling and prompt-based
interaction paradigms, we propose a conceptual
framework for potential LM applications in Soft-
ware Requirements Engineering. This theoretical
investigation establishes foundational insights to
guide future empirical validation in SRE contexts.
Systematic incorporation of existing datasets with
preliminary ground truth annotations and estab-
lished NLP evaluation metrics, particularly for re-
quirement elicitation tasks. These datasets will be
extended and adapted to ensure comprehensive cov-
erage of SRE scenarios. Implementation of multi-
modal validation strategies, beginning with expert
assessments of framework-generated outputs. Veri-
fied results will be archived as refined ground truth
datasets, creating a cyclical process that enhances
both current validation rigor and future research
reproducibility.

4 Conceptual Framework for Language
Models in SRE

Building on the identified challenges of applying
Language Models (LMs) to Software Requirements
Engineering (SRE) (Section 3), this section for-
malizes a conceptual framework to address these
limitations through structured theoretical integra-
tion. By synthesizing foundational LM architec-
tures (Section 2.2), prompt engineering paradigms
(Section 2.3), and SRE-specific task requirements,
we propose a 4 parts model that: (1) maps LM
constraints to SRE problem categories (TL1, TL4),
(2) systematic strategies to address LLM halluci-
nations and capability gaps (TL2, TL6), (3) formu-
late prompts (TL5) to reduce hallucinations and
reach more desired output, and (4) incorporates
domain-knowledge adaptation mechanisms (TL3).
The framework explicitly avoids empirical valida-
tion, instead providing a scaffold for future applied
research.
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4.1 Addressing LM constrains

To address Language Models constraints for LLM
mentioned in (TL1 and TL4), which are related
to the security concerns and cost of training and
operations. We searched for approaches that keep
the LM locally controlled to reduce the risk of data
exposure to external parties, as well as a model that
can be easily trained and operated without consum-
ing vast resources or cost. This highlights the need
to shift focus toward developing smaller, yet pow-
erful, language models that are more efficient and
feasible to deploy (Hu et al. [27]). Small Language
Models (SLMs) offer a lightweight yet capable
alternative to large language models (LLMs), bal-
ancing efficiency and accessibility with typically
under 7 billion parameters, enabling deployment
on personal devices without GPUs like tinyLlamma
(Zhang et al. [61]). Unlike LLMs, which rely on
massive scale, SLMs democratize NLP by reduc-
ing costs, lowering resource demands, and allowing
faster experimentation for specialized applications.
Their practicality makes them ideal for everyday
use as well as locally deployed, while maintaining
strong language understanding.

SLMs achieve strong performance by training
smaller models on more tokens than traditional scal-
ing laws suggest (Hoffmann et al. [25]), emphasiz-
ing optimized data utilization over sheer model size,
as demonstrated in works like (Touvron et al. [53]).
Researchers have also explored fine-tuning or dis-
tilling LLMs into task-specific Small Language
Models (SLMs) (Fu et al. [19], Ho et al. [24], Hsieh
et al. [26]). By focusing on inference constraints
and efficient data allocation, SLMs bridge the gap
between compact design and robust functionality,
enabling their integration into resource-constrained
environments while retaining competitive NLP ca-
pabilities. Despite their efficiency, SLMs still face
two critical gaps: (1) weaker complex reasoning
abilities compared to LLMs, and (2) limited ca-
pacity for knowledge-intensive tasks due to their
smaller parameter size. Addressing these gaps re-
quires innovations in both model architecture and
training methodologies to enhance performance
without sacrificing efficiency (Kang et al. [29]).

4.2 Incorporating Domain Knowledge to LM

LLMs are trained over a large language corpus
with a lot of human knowledge, reducing the focus
and increasing the possibilities of hallucinations.
Knowledge-Augmented Language Models (LMs)

boost Small Language Models (SLMs) by dynami-
cally retrieving relevant information from external
knowledge bases (e.g., Wikipedia), enabling factu-
ally grounded responses without requiring memo-
rization. Approaches like Knowledge-Augmented
Reasoning Distillation (KARD) (Kang et al. [29])
further enhance SLMs by fine-tuning them with
LLM-generated rationales and task-specific exter-
nal knowledge, combining parametric reasoning
skills with non-parametric memory, allowing effi-
cient, accurate performance in knowledge-intensive
tasks despite smaller parameter counts.

4.3 Extending LM cababilities
While language models excel at processing natu-
ral language inputs, their ability to generate struc-
tured outputs or manage complex, multi-step tasks
remains limited without explicit guidance. This
necessitates a systematic approach to control out-
put formatting and orchestrate intricate workflows
effectively.

LangChain is a modular framework designed to
streamline the development of scalable, context-
aware applications powered by language models
(LMs). By seamlessly integrating external data
sources, retrieval-augmented generation (RAG),
and secure API interactions, it bridges the gap be-
tween LM capabilities and real-world deployment,
addressing critical challenges like state manage-
ment, contextual understanding, and security. The
framework provides comprehensive tools for di-
verse use cases, including autonomous agents, chat-
bots, data extraction, and structured data analysis,
empowering developers across various domains
to build adaptable and secure LLM-driven solu-
tions with efficiency (Topsakal and Akinci [52],
Mavroudis [40], Duan [16]). Despite its advan-
tages, LangChain’s reliance on external integra-
tions introduces critical security considerations,
particularly data exposure and dependency risks,
which demand rigorous safeguards in sensitive do-
mains like healthcare or finance. While modularity
enables flexibility, it also amplifies system com-
plexity, necessitating robust security protocols to
ensure data integrity and privacy without compro-
mising functionality (Topsakal and Akinci [52]).

4.4 Prompts formulation
To enable users to leverage language models (LMs)
effectively for Software Requirements Engineering
(SRE) tasks, we systematically investigated and de-
veloped structured prompt engineering techniques
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to optimize LM interactions and outputs.

4.4.1 Prompt Guidelines
Building on the work of (Green and Taylor [20]),
which outlined 36 prompt engineering guidelines
to use in SRE, we identified a condensed set of four
primary guideline categories to optimize prompt de-
sign in software requirements engineering. These
guidelines need to be followed in any usage of
LLM for SRE tasks.

1. Context: Providing relevant context in the
prompt is essential for enhancing result qual-
ity and reducing instances of hallucinations.

2. Language: Using clear, concise, and gram-
matically correct English, along with short,
focused sentences, improves the LLM’s com-
prehension and response accuracy.

3. Examples: Including examples in prompts
aids in guiding the LLM, particularly when
tasks are ambiguous, and strengthens the ef-
fectiveness of zero-shot prompts.

4. Keywords: Some keywords can enhance the
LLM’s ability to process complex queries and
maintain logical coherence.

These four categories encompass the broader
guideline defined in (Green and Taylor [20]). Con-
text and language are fundamental to any prompt
strategy, they can change the scope of the result
and guide to different outputs. Using examples can
help in fine-tuning the LLM by teaching it how
to handle the task, This was elaborated more in
(Brown et al. [6]) paper, which discussed the few-
shot prompt and how the example can enhance the
prompt’s result. Keywords like “think step by step”
and others can greatly impact how the LLM will
work out the result.

4.4.2 Prompt Strategies
Improving Large Language Model (LLM) prompt
performance can be broadly categorized into two
approaches: (1) human-side prompt engineering,
which focuses on optimizing the input prompts pro-
vided by users, and (2) model-side architectural
enhancements, which modify the LLM’s internal
mechanisms, Figure- 1. In this work, we focus on
the former, specifically, how to enhance prompts
from the human (sender) side to maximize LLM ef-
fectiveness. Prompting strategies can be further
divided into manual and automatic approaches:

Figure 1: Prompt Strategies categories

Manual prompts are crafted directly by humans,
often through iterative testing (e.g., zero-shot or
chain-of-thought prompting). Automatic prompts
leverage LLMs themselves to generate or refine
inputs. This includes methods like: Active Prompt-
ing (Diao et al. [15]), Automatic Prompt Engineer
(APE) (Zhou et al. [64]), Take Step Back (TSB)
(Zheng et al. [63]), or Rephrase and Respond (RaR)
(Deng et al. [12]), where LLMs suggest improve-
ments to manually drafted prompts.

Another dimension of prompting involves in-
tegrating external knowledge sources. For in-
stance, Retrieval-Augmented Generation (RAG)
(Lewis et al. [31]), Chain of knowledge (CoK)
(Li et al. [32]) dynamically pulls information from
external databases to ground responses in factual
data. They use external repositories not only as
sources but also for real-time validation of LLM
outputs. To mitigate errors, recent work has in-
troduced validation-focused prompting strategies:
Chain of Verification (CoVe) (Dhuliawala et al.
[14]) and Contrastive Chain-of-Thought (CCOT)
(Chia et al. [8]), that embed self-checking mecha-
nisms within prompts, forcing the LLM to validate
its output. Traditional methods like direct (zero-
shot) prompting (Radford et al. [47]) or Chain-
of-Thought (CoT) (Wei et al. [57]) remain foun-
dational. CoT, for example, explicitly structures
the LLM’s reasoning process into step-by-step se-
quences, significantly improving performance on
complex tasks. However, the field is rapidly evolv-
ing toward hybrid approaches that combine manual
craftsmanship, automated optimization, and exter-
nal knowledge integration to address the limitations
of any single method.
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4.5 Takeaways

Based on the above findings, we can summarize
the difference between the different approaches of
LM as well as the prompt design as follows.

Large Language Models (LLMs) excel in com-
plex reasoning and versatility but are costly and
environmentally intensive, making them impracti-
cal for many applications. Small Language Mod-
els (SLMs) address these issues with efficient,
lightweight designs suitable for edge deployment,
though they lag in reasoning and knowledge reten-
tion. Knowledge-Augmented Language Models
(KALMs) bridge this gap by integrating external
knowledge bases, enhancing domain-specific accu-
racy without sacrificing efficiency. LangChain, as
a framework, complements all three by enabling
modular, context-aware applications through tools
such as RAG, memory, and agents, although it in-
troduces added complexity and security considera-
tions. Together, these technologies form a spectrum
of solutions balancing performance, cost, and de-
ployability, with SLMs and KALMs democratizing
access to advanced NLP and LangChain streamlin-
ing real-world integration.

Prompt construction for language models fol-
lows three primary approaches: (1) manual user
input, (2) retrieval from template repositories, or
(3) automatic generation using auto-prompting
strategies (e.g., Active Prompting, APE, TSB,
RaR). For specialized applications like SLMs or
Knowledge-Augmented LMs, techniques such as
RAG and Chain-of-Knowledge (CoK) prove es-
sential by enabling dynamic data retrieval and in-
tegration. Foundational prompting methods like
zero-shot and Chain-of-Thought can be augmented
through example-based refinement, while verifica-
tion frameworks like CoVe and CCOT provide criti-
cal output validation across all prompting strategies,
serving as universal safeguards for LM reliability.

5 Limitations and future directions

The current study only proposes a hypothetical
framework without a practical implementation to
prove the concept. In our research above, we stud-
ied only existing research, overlooking existing
commercial tools that may exist to support the SRE
process. Future work should focus on the follow-
ing:

1. Expanding the KALM knowledge base to
cover additional SRE subdomains.

2. Developing standardized prompt templates for
industry-specific use cases.

3. Optimizing the auto-prompting pipeline for
complex, multi-stage SRE workflows.

4. Compare our proposed framework to any ex-
isting commercial tools.

6 Conclusion

This paper provides an insight into current research
on Language Models (LMs) in the Software Re-
quirements Engineering (SRE) domain. Key chal-
lenges, such as security, cost, relevance, control,
and domain knowledge, hamper the effective usage
of Large Language Models (LLMs) in SRE. Addi-
tionally, limitations related to datasets and evalua-
tion metrics present obstacles for researchers, often
necessitating reliance on expert judgment rather
than established ground truths.

To address these challenges and limitations, we
propose a conceptual framework to mitigate these
issues while serving as a reference for future re-
search. The framework integrates multiple spe-
cialized Knowledge-Augmented Language Models
(KALMs) with Small Language Models (SLMs)
within a LangChain ecosystem, offering a compre-
hensive solution that will mitigate security risks,
optimize operational costs, enhance contextual rel-
evance, and ensure output control.

By implementing knowledge-augmented
prompting techniques, such as Retrieval-
Augmented Generation (RAG) and Chain-
of-Knowledge, alongside KALMs, and by
maintaining a repository of fine-tuned, auto-
generated prompt templates for common SRE
tasks, the framework significantly improves system
reliability. Furthermore, incorporating validation
strategies (e.g., Chain-of-Verification, CCOT) as a
mandatory output-checking layer ensures robust
and verifiable results.

This approach establishes a foundation for trust-
worthy, efficient, and scalable AI-assisted SRE
practices while overcoming the limitations of cur-
rent LLM applications. Beyond serving as an ana-
lytical tool, the proposed framework also facilitates
the generation of standardized evaluation resources,
contributing to methodological consistency in fu-
ture research.
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