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ABSTRACT

Reinforcement Learning with Human Feedback (RLHF) has been the dominant
approach for improving the reasoning capabilities of Large Language Models
(LLMs). Recently, Reinforcement Learning with Verifiable Rewards (RLVR) has
simplified this paradigm by replacing the reward and value models with rule-based
verifiers. A prominent example is Group Relative Policy Optimization (GRPO).
However, GRPO inherently suffers from a length bias, since the same advantage
is uniformly assigned to all tokens of a response. As a result, longer responses
distribute the reward over more tokens and thus contribute disproportionately to
gradient updates. Several variants, such as DAPO and Dr. GRPO, modify the
token-level aggregation of the loss, yet these methods remain heuristic and offer
limited interpretability regarding their implicit token preferences. In this work,
we explore the possibility of allowing the model to learn its own token preference
during optimization. We unify existing frameworks under a single formulation
and introduce a learnable parameter λ that adaptively controls token-level weight-
ing. We use λ-GRPO to denote our method, and we find that λ-GRPO achieves
consistent improvements over vanilla GRPO and DAPO on multiple mathematical
reasoning benchmarks. On Qwen2.5 models with 1.5B, 3B, and 7B parameters,
λ-GRPO improves average accuracy by +1.9%, +1.0%, and +1.7% compared
to GRPO, respectively. Importantly, these gains come without any modifications
to the training data or additional computational cost, highlighting the effective-
ness and practicality of learning token preferences. Our code is available at:
https://anonymous.4open.science/r/Lambda-GRPO-AD74/.
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Figure 1: The key distinction among GRPO, DAPO, and λ-GRPO lies in their token-aggregation
schemes (highlighted in the shaded region). Across Qwen2.5 models of multiple sizes (1.5B, 3B,
and 7B) and 8 benchmarks, λ-GRPO consistently outperforms others, with a learnable parameter λ.

1 INTRODUCTION

Large language models (LLMs) with o1-like systems (OpenAI, 2024; Wu et al., 2024; DeepSeek-AI,
2025) have been widely applied to complex reasoning tasks such as mathematical problem solving.
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A common approach to training long chain-of-thought reasoning is Reinforcement Learning with
Human Feedback (RLHF) (Xu et al., 2025), where models explore trajectories and are optimized
toward preferred outcomes. The most popular optimization method in this paradigm is Proximal
Policy Optimization (PPO) (Schulman et al., 2017). However, PPO training is often unstable and
computationally expensive (Zheng et al., 2023; Wu et al., 2023). To address these limitations, Group
Relative Policy Optimization (GRPO) (Shao et al., 2024) removes the need for a separate value
model and reward model, instead relying on a rule-based verifier as the training signal. This design
has proven highly effective in domains requiring verifiable reasoning, spanning mathematical prob-
lem solving (DeepSeek-AI, 2025), code programming (Liu & Zhang, 2025), search agent (Jin et al.,
2025) and even multimodal reasoning (Huang et al., 2025).

Despite these advances, modern policy and preference optimization methods for post-training almost
always exhibit a strong length bias, the tendency for models to generate unnecessarily long responses
even when concise answers would suffice. For example, Singhal et al. (2024) showed that much of
the reward gains in RLHF stem from response length increases rather than substantive improvements
in quality. Similarly, Hu et al. (2025) found that reward models and preference datasets themselves
often favor longer responses, which leads trained policies to exploit this bias by producing verbose
outputs. This issue also persists in GRPO, since the advantage is applied uniformly across all tokens
of a response (Shao et al., 2024). Recent variants address this bias by modifying how token rewards
are aggregated. DAPO (Yu et al., 2025) enforces uniform token-level aggregation so that all tokens
across responses share equal weight, while Dr. GRPO (Liu et al., 2025) aggregates token-level
gradients without variance normalization. In other words, GRPO effectively lets tokens in a long
response share one reward, DAPO spreads weight evenly across all tokens of all responses, and Dr.
GRPO further adjusts a modification to the advantage function. Although these strategies partially
mitigate length bias, they remain heuristic and lack the flexibility to adapt across tasks. These
observations raise a critical question:

Can we let the model itself decide its token preference?

In other words, rather than hard-coding whether long or short replies should be favored, can the
optimization process learn a tunable, context-aware preference over response length?

To this end, we propose a unified framework, denoted as λ-GRPO, for token-level preference op-
timization with a learnable weighting scheme. Unlike GRPO, DAPO, and Dr. GRPO that rely on
heuristics, our method introduces a parametric weighting function with a tunable parameter λ that
adapts dynamically to the distribution of response lengths. This design enables the model to de-
termine its own token preference in a context-aware manner. We summarize the main difference
in Figure 1, and highlight how existing methods arise as special cases of our formulation. Empir-
ically, we demonstrate that λ-GRPO consistently achieves stronger performance across Qwen2.5
models of multiple scales (1.5B, 3B, and 7B) on 8 reasoning benchmarks. Our main contributions
are summarized as follows:

• We propose a unified formulation that encompasses GRPO, DAPO, and Dr. GRPO as spe-
cial instances of token-level preference optimization. This approach clarifies the implicit
assumptions each method makes regarding length aggregation.

• We introduce a learnable preference framework that adaptively reweights token contribu-
tions based on response length distributions, enabling the model to learn its own preference.

• λ-GRPO is empirically validated across reasoning benchmarks, demonstrating improved
performance, reduced verbosity, and enhanced training stability compared to prior-arts.

2 METHODOLOGY

2.1 PRELIMINARY

Reinforcement Learning with Verifiable Rewards (RLVR) views text generation with an LLM
as a sequential decision process. At step t, the state is the prompt x together with the partial output
o1:t−1, and the action is to produce the next token ot ∼ πθ(· | x, o1:t−1). The policy πθ denotes
the current model we are optimizing, while πθold is the frozen policy from the previous iteration
that is used to sample trajectories for stable training. The reward function r(x, o) is defined by

2
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Figure 2: Illustration of our learnable preference design. (a) shows how the scaling factor 1/k in-
fluences the distribution of normalized lengths h. Larger scaling values produce a wider spread,
magnifying differences between long and short responses, smaller values compress the distribution
around 1, reducing sensitivity to length deviations. (b) shows how the exponent λ adjusts the direc-
tion of token preference through gi = hλ

i . When λ = 0, all responses are weighted equally; positive
λ favors longer responses, negative λ emphasizes shorter ones.

deterministic rules (e.g., correctness of an answer or validity of code), ensuring that the feedback
signal is verifiable rather than subjective. The learning objective combines two ingredients: a policy
gradient loss that increases the likelihood of outputs with higher advantage values, and a KL penalty
that keeps the updated policy not far from a fixed reference distribution πθref . The resulting objective
is:

JRLVR(θ) = Ex∼D, o∼πθold
(·|x)

[
ri,t(θ)A(x, o)

]
+ β Ex∼D

[
KL

(
πθref (·|x) ∥πθ(·|x)

)]
, (1)

where A(x, o) is the advantage function that measures how much better a completion o performs.
The KL term is optional, with a coefficient β that controls the trade-off between maximizing the
verifiable reward and staying close to the reference model. r is the importance sampling ratio com-
paring the new and old policy:

ri,t(θ) =
πθ(oi,t | x, oi,<t)

πθold(oi,t | x, oi,<t)
(2)

GRPO was proposed as a lightweight alternative to PPO that avoids learning an additional value
function while still providing a stable training signal (Shao et al., 2024). The key idea is to measure
the quality of each sampled output relative to a group of alternatives drawn from the same policy.
Rather than fitting a value baseline, GRPO defines the advantage of oi by subtracting the average
reward of the group and scaling by its standard deviation:

Âi,t =
R(x, oi)−mean({R(x, oj)}Gj=1)

std({R(x, oj)}Gj=1)
(3)

This group-normalized advantage is then assigned uniformly to all tokens in the response, leading
to the clipped surrogate loss

JGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
(4)

where G denotes the number of rollouts (i.e., sampled responses per prompt), |oi| is the length of
the i-th response.

DAPO A central feature of DAPO is that the policy gradient is applied directly at the token level
rather than treating the entire response as a single unit. This design ensures that every token within

3
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a sampled output oi contributes proportionally to the gradient update. This fine-grained token-level
optimization improves stability and provides more informative feedback for training LLMs.

Formally, the DAPO objective is defined as

JDAPO(θ) =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ′

)
Âi,t

)
(5)

Dr. GRPO (Liu et al., 2025) was proposed to address systematic biases in the original GRPO for-
mulation. In GRPO, the advantage of each response is normalized by the group’s standard deviation,
and the policy loss is further averaged across response length.

JDr.GRPO(θ) =
1

G

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
(6)

2.2 UNIFIED TOKEN PREFERENCE

The policy optimization objectives of GRPO, DAPO, and Dr. GRPO can be expressed under a
unified framework that we call Unified Token Preference. The key observation is that all three
methods share the same token-level clipped surrogate structure, but differ in the weighting function
f(oi) applied to each sampled output oi. Formally, the unified objective can be written as

J (θ) =
1∑G

i=1 |oi|

G∑
i=1

f(oi)

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
(7)

The weighting function f(oi) specifies how each output contributes to the token-level aggregation:

fGRPO(oi) =
µ

|oi|
(8)

fDAPO(oi) = 1 (9)
fDr.GRPO(oi) = µ (10)

where µ denotes the average response length across the group, i.e., µ = 1
G

∑G
i=1 |oi|.

This formulation highlights that GRPO effectively downweights long responses, DAPO treats all
responses equally at the token level, and Dr. GRPO applies a uniform length-based scaling across
responses. By casting them into the same token preference framework, we can analyze their differ-
ences in terms of how they balance output length and reward signal during optimization.

2.3 OUR LEARNABLE PREFERENCE

GRPO, DAPO, and Dr. GRPO can all be expressed in the unified token preference framework by
specifying different fixed weighting functions f(oi). However, they remain heuristic in nature and
cannot adapt to the distribution of response lengths. In particular, GRPO implicitly possesses token-
weighting bias, DAPO enforces uniform token-level normalization, and Dr. GRPO applies a global
scaling based on average length. These designs do not allow the optimization process to flexibly
balance between long and short responses across different prompts.

To overcome this limitation, we propose a learnable preference that treats response length as a
stochastic variable and derives adaptive weights through a normalized transformation. Given G
responses {oi}Gi=1, we first compute their mean and variance

µ = mean(o) (11)
σ = std(o) (12)

And then standardize the length:

zi =
oi − µ

σ
(13)

hi = 1 + r zi (14)

4
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r > 0 is a scaling factor. This construction ensures that hi is centered around 1, with deviations
controlled by r. Illustratively, about 99.7% of zi = oi−µ

σ lie within [−3, 3], implies that hi ∈
[1− 3r, 1 + 3r] for almost all responses. As shown in Figure 2a, this corresponds to hi ∈ [0.9, 1.1]
for r = 1

30 (conservative), hi ∈ [0.8, 1.2] for r = 1
15 (moderate), and hi ∈ [ 23 ,

4
3 ] for r = 1

9
(aggressive).

We then apply an exponent λ to adjust the relative contribution:

gi = hλ
i (15)

On the role of λ The exponent λ in gi = hλ
i controls how response length affects the weighting

function, and can be interpreted as a tunable token preference. Figure 2b illustrates this effect.
When λ = 0, all gi = 1, meaning that every response is treated equally regardless of its normalized
length hi. When λ > 0, gi grows with hi, which emphasizes longer responses and downweights
shorter ones. Conversely, when λ < 0, gi decreases with hi, assigning more weight to shorter re-
sponses while suppressing long ones. Thus, λ serves as a direct control knob: positive values bias
the optimization toward long outputs, negative values favor short outputs, and λ = 0 corresponds to
length-neutral weighting. This flexibility allows our method to adaptively model token preferences,
rather than fixing them by hand as in prior approaches. Overall, λ sets the direction of token pref-
erence, and scaling factor r sets its strength, offering an interpretable knob to trade off verbosity vs.
brevity without distorting the expectation across methods.

The scale of g can vary significantly across groups and across different λ values. To stabilize training
and make weights comparable, we normalize g with a softmax:

f(o) = softmax(g)×G (16)

The softmax ensures that the weights depend only on the relative differences among gi, prevent-
ing abnormally large values from dominating the gradient. Moreover, rescaling by G keeps the
total weight consistent with the unified token preference framework, ensuring fair comparison with
GRPO, DAPO, and Dr. GRPO. This design makes the training dynamics more controllable: regard-
less of the absolute scale of g, the resulting f(oi) always sums to G within each group. The detailed
derivation of the gradient with respect to λ is provided in Appendix C, offering further mathematical
insight into how the coefficient is updated during training.

Implementation Detail of λ In our proposed method, we introduce a learnable coefficient λ that
is optimized jointly with the model parameters. Specifically, λ is initialized as a trainable tensor on
the GPU, and we use stochastic gradient descent (SGD) to optimize it. The coefficient λ is initialized
with a value 0) and is treated as a learnable parameter during training. During training, gradients for
λ are accumulated together with the overall loss, and λ is updated at each optimization step.

The initialization and optimization process are as follows:

λ Parameter Optimizer

lambda = torch.nn.Parameter(
torch.tensor([val], dtype=torch.float32, device= cuda ))

lambda_opt = torch.optim.SGD(
[{ params : [lambda], lr : 1e-1, weight_decay : 0.0}])

2.4 WHY IT WORKS

We cast GRPO/DAPO/Dr. GRPO into a unified objective where all differences reduce to the sample-
level aggregation weight f(o). We replace fixed heuristics with a data-adaptive weighting: standard-
ize response lengths within the group. The sign of λ determines whether training tilts toward longer
or shorter outputs (neutral at λ = 0), while r controls sensitivity; the groupwise softmax preserves
total weight and stabilizes aggregation. Consequently, the policy learns how much gradient bud-
get each response should receive as a function of the observed length–reward relationship. This
yields a lower-variance, better-calibrated optimization signal than fixed heuristics, and adapts when
verbosity helps (or hurts) verifiable reward.

5
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3 EXPERIMENTAL SETUP

Training Datasets We follow the SimpleRL Zoo setting (Zeng et al., 2025), adopting GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) training datasets. In line with SimpleRL
Zoo’s setup, we emphasize that the difficulty of training data is crucial for the success of zero
RL, where training may start directly from the base models in a way that accords with the base
models’ natural ability to explore and discover rewardable behaviors, i.e., the capacity to sample
diverse reasoning trajectories and uncover rewardable behaviors without much guidance. The data
is partitioned into three difficulty levels: Easy (GSM8K and MATH level 1), Medium (MATH levels
1–4), and Hard (MATH levels 3–5). We use the hard level with 8, 523 problems as our training set,
and qwen-boxed as our chat template, with an example in Appendix D.

Evaluation We evaluate the performance of the fine-tuned models based on the SimpleRL (Zeng
et al., 2025) framework, using 8 widely used math reasoning benchmarks: GSM8K (Cobbe
et al., 2021), MATH500 (Hendrycks et al., 2021), Minerva (Lewkowycz et al., 2022), Gaokao
(Zhang et al., 2023), OlympiadBench (He et al., 2024b), and College Math (Innovations, 2024),
AIME24 (LI et al., 2024), and AMC23 (He et al., 2024a), relying on the Qwen Math codebase that
was also used in Zeng et al. (2025). This setup ensures consistency with prior work and allows
reproducible evaluation across multiple math reasoning benchmarks. For AMC and AIME, we re-
port Average@32: for each problem, we generate 32 independent rollouts (stochastic samples) and
compute the mean Pass@1 accuracy across these 32 attempts; the final score is the average of these
per-item means over the dataset. For the remaining six benchmarks, we report the standard Pass@1
using a single prediction per problem. The statistics of these benchmarks are listed in Appendix F.

Detail Implementation Our training is based on the VeRL framework, implementing two pro-
vided token weighting schemes: sequence-mean-token-mean (vanilla GRPO) and token-mean
(DAPO-like GRPO). We also implement our customized weighting scheme and enable the learn-
able lambda. We use a rule-based reward, adding a format penalty on the basic correctness (ground
truth) that assigns +1 for correct answers, −0.5 for incorrect answers with correct boxed formats,
and −1 for incorrect answers with incorrect formats. We fine-tune the base models Qwen2.5-1.5B,
Qwen2.5-3B, and Qwen2.5-7B for two epochs (160 steps) using 4× NVIDIA A800-SXM4-80GB
GPUs for the 1.5B/3B models and 8× NVIDIA A800-SXM4-80GB GPUs for the 7B model, with
a batch size of 1024, mini batch size of 256, micro batch size of 8, a max response length of 2048,
and a reducer (r) value of 1

9 . For λ updating, we use stochastic gradient descent with a relatively
large learning rate 1e− 1 and no weight decay.

Baselines We compare our method with vanilla GRPO and GRPO with DAPO-like token-mean
weighting variant. For simplicity, we directly refer to the latter as “DAPO” in the results. We do not
include Dr. GRPO as a separate baseline. Our comparison focuses on token-level loss aggregation.
From this angle, Dr. GRPO differs from DAPO only by multiplying a group-constant factor (the
rollout group’s mean token length, according to Eq. 2.2), and thus does not constitute a distinct
aggregation rule. To guarantee a fair comparison, we train all methods under identical datasets,
prompt templates, and model architectures.

4 EVALUATION

4.1 BENCHMARK PERFORMANCE

Key Findings

1. λ-GRPO consistently outperforms baselines (DAPO and GRPO) on mathematical reasoning tasks
across model scales from 1.5B to 7B parameters.

2. Its performance gains are more significant on smaller models and more challenging benchmarks.

Table 1 reports the performance of Qwen2.5 base models across math reasoning tasks. As expected,
the base models without RL are extremely weak, with average scores of 1.9, 38.9, and 42.6 for the
1.5B, 3B, and 7B variants, respectively. This highlights the necessity of reinforcement learning in
stimulating the reasoning potential of these models.

6
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Table 1: Performance on math reasoning using Qwen2.5 models.

Model GSM8K MATH500 Minerva Gaokao Olympiad College Math AIME AMC Avg.
Qwen2.5-1.5B

Base 8.5 1.8 1.8 1.8 1.8 1.3 0 0.3 1.9
DAPO 75.7 58.0 20.2 50.4 20.6 33.0 3.3 31.5 36.5
GRPO 75.1 57.0 21.7 49.6 20.3 32.4 4.2 26.9 35.9
λ−GRPO 77.3 59.2 21.0 50.6 21.3 35.0 3.4 34.7 37.8

Qwen2.5-3B

Base 81.6 58.8 25.0 47.0 24.1 32.8 6.5 35.8 38.9
DAPO 85.1 65.4 31.2 53.0 27.6 36.6 6.2 35.9 42.6
GRPO 85.7 64.0 31.2 53.0 27.9 37.0 7.7 36.5 42.8
λ−GRPO 85.3 67.4 32.7 54.0 27.7 37.2 7.3 38.7 43.8

Qwen2.5-7B

Base 87.8 63.6 26.8 53.5 29.9 34.6 8.0 36.6 42.6
DAPO 91.0 77.8 36.4 63.9 37.9 40.4 14.2 54.1 51.9
GRPO 89.7 77.2 40.1 62.6 35.6 38.6 17.2 52.6 51.8
λ−GRPO 92.0 75.8 40.1 66.2 38.1 41.4 15.1 58.8 53.5

Across model scales, our method consistently outperforms both GRPO and DAPO. On Qwen2.5-
1.5B, it attains an average score of 37.8, exceeding DAPO (+1.3%) and GRPO (+1.9%). This is a
notable improvement on smaller models like 1.5B, with standard training already near saturation.
These results suggest that our dynamic weighting scheme is especially beneficial for less capable
base models, providing stronger guidance than standard group-wise optimization. On the Qwen2.5-
3B base model, our method further improves the average to 43.8, showing consistent gains over
both DAPO (+1%) and GRPO (+1.2%). Notably, the improvements are concentrated on challenging
tasks such as MATH500, Minerva, and Gaokao, demonstrating that our approach leverages difficult
samples very effectively to boost complex reasoning. For the larger Qwen2.5-7B model, the base
model already exhibits stronger reasoning ability; the advantage of our method remains sufficient,
with average results of 53.5 compared to 51.9 on DAPO (+1.6%) and 51.8 on GRPO (+1.7%). This
indicates that while self-exploration already benefits strong models, our proposed approach still pro-
vides complementary improvements by balancing stability and exploration. Overall, these results
confirm that our method consistently improves reasoning performance across scales, with clear gains
on smaller models due to a more fragile optimization landscape and the benefit of adaptive weight-
ing, and steady, incremental gains on larger models through a better balance between stability and
exploration.

Analysis across the benchmarks To investigate how training progresses under different optimiza-
tion methods, we plot the accuracy curves across multiple reasoning benchmarks as a function of
training steps (Figure 3). Across benchmarks, accuracy mostly increases with training steps and
typically plateaus around step 120. λ-GRPO is consistently the best or tied for the best on GSM8K,
MATH500, Gaokao, Olympiad, College Math, AIME@32, and AMC@32. The improvements over
DAPO are most visible after step 80, e.g., College Math, AIME, and AMC, while GRPO is competi-
tive early on but generally lags by the end of training. These results indicate that, on Qwen2.5-1.5B,
our method yields steadier gains and stronger final accuracy without requiring additional schedule
tuning. We also include the training curves for Qwen2.5-3B in Appendix E.

4.2 LEARNING DYNAMICS

Key Findings

1. λ-GRPO maintains a consistently higher token-level entropy than DAPO, indicating enhanced re-
sponse diversity and training stability.

2. This higher diversity is achieved without increasing response length, demonstrating a more efficient
exploration-exploitation balance.

Entropy Entropy generally indicates the diversity and freedom of a generated response. Condi-
tional on correctness, a higher-entropy answer suggests that the model exhibits both robust, correct
reasoning and the ability to employ a variety of methods in the solving process. Thus, we encourage
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Figure 3: Training curves for the Qwen2.5-1.5B base model across benchmarks. Each panel shows
accuracy (%) versus training step for three methods (λ-GRPO, DAPO, and GRPO). Steps are {0,
40, 80, 120, 160}.
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Figure 4: Comparison of our method against GRPO and DAPO across two diagnostics: (a) entropy
and (b) response length. Both experiments are based on Qwen2.5-3B.

models with higher entropy. Previous studies have reported entropy collapse in RLHF (Cui et al.,
2025; Kirk et al., 2023), making entropy a particularly informative metric to monitor. To analyze
average token-level entropy across training, we plot entropy vs. steps, as shown in Figure 4a. As
reported by DAPO (Yu et al., 2025), DAPO exhibits higher entropy than GRPO overall. Therefore,
in Figure 4a we focus on comparing the entropy of λ-GRPO against DAPO.

Within the zoomed window (steps 80–160), all curves steadily decrease, indicating continued con-
vergence and increasingly confident outputs. The λ-GRPO curve stays consistently above the DAPO
curve, and the shaded gap remains roughly constant. At similar convergence levels, λ-GRPO keeps
higher output entropy, more diversity and exploration without drifting. This helps prevent early
collapse and keeps training stable.

Response length Another notable signal comes from response length, which reflects token-
weighting preferences rather than raw capability. We include the response length during training
in Figure 4b. All methods show an early spike and then quickly stabilize. GRPO peaks near 950
tokens in the very first steps and then settles to 680–700, indicating a stronger transient tendency
to produce longer responses. In contrast, λ-GRPO and DAPO stabilize earlier and remain close
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(660–690). Paired with Figure 4a, λ-GRPO attains the entropy advantage without systematically
inflating response length, indicating a better exploration–exploitation balance: more informative
diversity at roughly the same or lower verbosity.

5 RELATED WORK

Reinforcement Learning with Verifiable Rewards (RLVR) Recent progress in reasoning-centric
training for LLMs has been driven by the use of verifiable signals, such as correctness in math or
code, to replace costly annotations of human preferences. This paradigm, known as RLVR, has given
rise to a series of policy optimization methods. A prominent line of work is Group Relative Policy
Optimization (GRPO), used in DeepSeek-R1-Zero (Shao et al., 2024). GRPO extends Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017) by shifting from token-level advantage estimation
with a learned critic to group-based normalization: for each query, multiple sampled responses are
generated and compared, and updates are based on their relative rewards. This group-wise structure
improves sample efficiency and removes the need for a separate value network.

GRPO has inspired a number of extensions refining how the learning objective is constructed.
GMPO (Zhao et al., 2025) stabilizes training by maximizing the geometric rather than arithmetic
mean of token-level importance ratios, making the updates less sensitive to outliers. GRPO-
CARE (Chen et al., 2025) introduces a two-tier reward: in addition to correctness, it adds a con-
sistency bonus derived from a slowly updated reference model, thereby encouraging coherent rea-
soning without relying solely on KL regularization. DFPO (Jang et al., 2024) (Degeneration-Free
Policy Optimization) modifies PPO-style KL penalties with a masking mechanism that blocks harm-
ful updates, mitigating mode collapse and degeneration. GiGPO (Group-in-group policy optimiza-
tion) (Feng et al., 2025) further extends the group-crediting idea to long-horizon settings by nest-
ing groups at both episode and step levels, providing critic-free updates while incorporating finer-
grained rewards. Finally, KRPO (Wang et al., 2025) replaces the simple batch mean baseline of
GRPO with a Kalman filter that adaptively tracks latent reward statistics, yielding more stable advan-
tages. GSPO (Zheng et al., 2025) departs from token-level importance ratios altogether, performing
sequence-level clipping and reward assignment, which reduces variance and has been shown effec-
tive in scaling to larger or MoE-style models.

Token-weighting and Normalization Biases GRPO removes the critic but introduces biases in
how token-level losses are aggregated: uniform token advantages let longer responses accrue more
gradient regardless of quality, and length-based scaling can reward brevity when correct yet under-
penalize verbose errors. These length-related biases have motivated methods that explicitly reweight
or normalize token contributions. Two recent approaches illustrate this direction. Dynamic sAmpling
Policy Optimization (DAPO) (Yu et al., 2025) introduces length-aware sampling weights that rescale
token-level advantages, ensuring that both short and long responses contribute fairly and preventing
models from drifting toward neither overly short nor verbose completions. Dr. GRPO (Liu et al.,
2025) addresses a complementary issue: sensitivity to reward noise. By adopting a robust optimiza-
tion objective, it reduces the impact of outlier responses and provides more stable updates in noisy or
heterogeneous reward settings. Both methods highlight that, beyond the choice of optimization algo-
rithm, controlling how token-level signals are weighted is crucial for stable and length-robust RLVR
training. Concurrently, Token Hidden Reward (Deng et al., 2025) reweights per-token updates in
GRPO using a “hidden reward,” exposing a knob p that steers exploitation versus exploration.

6 CONCLUSIONS

In this work, we explored the feasibility of moving beyond manually designed heuristics for token
aggregation and instead allowing the model to learn its own token-level preference. We proposed a
unified framework that reformulates existing methods such as GRPO, DAPO, and Dr. GRPO, and
introduced a tunable parameter λ that explicitly encodes token preference. When λ = 0, the model
is length-neutral; when λ > 0, the optimization favors longer responses; and when λ < 0, it favors
shorter ones. This learnable preference provides a flexible mechanism to balance different response
lengths across tasks, reducing the reliance on fixed aggregation strategies. Empirical results on
multiple mathematical reasoning benchmarks demonstrate that our method consistently improves
over existing GRPO variants without introducing additional data or computational cost.
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7 ETHICS STATEMENT

All experiments were performed using publicly available datasets and models, with no involvement
of human subjects or sensitive data. The authors affirm their compliance with the ICLR Code of
Ethics and the principles of scientific integrity.

8 REPRODUCIBILITY STATEMENT

The paper specifies the GRPO, DAPO, and λ-GRPO objectives in Section 2; the training dataset,
evaluation benchmarks, and implementation details (key hyperparameters, hardware, and experi-
mental settings) are provided in Section 3 and Appendix F; the chat template is given in Appendix D.
Reproducible experimental results appear in Section 4.

As anonymized supplementary materials on OpenReview, we include core code at https://
anonymous.4open.science/r/Lambda-GRPO-AD74/ for (i) training base models with
GRPO, DAPO, and our proposed λ-GRPO, and (ii) constructing and optimizing the learnable pa-
rameter λ. We also provide configuration files (hyperparameters, seeds), run scripts, and environ-
ment specifications to facilitate exact reruns. After the anonymity period, we will release the full
source code and documentation.
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A LIMITATIONS

First, our experiments focus on Qwen2.5 base models and do not evaluate cross-family generaliza-
tion; extending to additional architectures (i.e., Llama) would test robustness and portability. Sec-
ond, we explore only a small set of reducer values, which control the post-weighting scaling range;
exploring a wider range or adaptive schedules of the reducer could potentially improve stability and
performance and reveal sensitivity to this hyperparameter.

B THE USE OF LLMS

Our use of LLMs was limited to grammar and style editing; we did not employ them for research
functions (e.g., idea generation). We supplied the original manuscript to OpenAI GPT-5 and asked
it to improve clarity and tone to make our work a more professional research paper. All generated
text was subsequently checked for factual correctness and fidelity to the source.

C DERIVATION OF THE PROPOSED OBJECTIVE FUNCTION

According to section 2.3, the objective is

J (λ−GRPO) =
1∑G

i=1 |oi|

G∑
i=1

f(oi)Li =
G∑G

i=1 |oi|

G∑
i=1

si Li
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, where

Li =

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
Here, we show the detailed gradient derivation with respect to λ.

First, we want to calculate ∂gi
∂λ , where gi = hλ

i .

We can substitute hλ
i as elnhλ

i , and

∂(elnhλ
i )

∂λ
=

∂(eλ·lnhi)

∂λ
= elnhλ

i · lnhi

Hence,
∂gi
∂λ

=
∂

∂λ

(
hλ
i

)
= hλ

i · lnhi (17)

Then, we will take softmax derivative ∂si
∂λ , where si = egi∑G

j=1 egj
.

Let

si =
egi

Z
, Z =

G∑
j=1

egj .

Then, by the quotient rule,

∂si
∂λ

=
∂

∂λ

(
egi

Z

)
=

egi ∂gi
∂λ Z − egi ∂Z

∂λ

Z2
.

Using si =
egi

Z , we rewrite

∂si
∂λ

= si

(
∂gi
∂λ

− 1

Z

∂Z

∂λ

)
.

Moreover,

1

Z

∂Z

∂λ
=

1

Z

G∑
j=1

∂egj

∂gj

∂gj
∂λ

=
1

Z

G∑
j=1

egj
∂gj
∂λ

=

G∑
j=1

egj

Z

∂gj
∂λ

=

G∑
j=1

sj
∂gj
∂λ

.

Substituting back gives the desired result:

∂si
∂λ

= si

∂gi
∂λ

−
G∑

j=1

sj
∂gj
∂λ

 (18)

Since f(oi) = Gsi,
∂f(oi)

∂si
= G (19)

Therefore, according to the Chain Rule,

∂J
∂λ

=
1∑G

i=1 |oi|

G∑
i=1

Li
∂f(oi)

∂si
· ∂si
∂λ

=
G∑G

i=1 |oi|

 G∑
i=1

Li · si
(∂gi
∂λ

−
G∑

j=1

sj
∂gj
∂λ

)
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Plugging in ∂gi
∂λ = hλ

i lnhi yields

∂J
∂λ

=
G∑G

i=1 |oi|

 G∑
i=1

Li · si
(
hλ
i lnhi −

G∑
j=1

sjh
λ
j lnhj

) (20)

D CHAT TEMPLATE

In this section, we present the chat template used during training. The template follows the format
of role-tagged messages, with system instructions, user input, and assistant output.

Chat Template

<|im_start|>system
You are a helpful assistant.
<|im_end|>

<|im_start|>user
{input}
Please reason step by step, and put your final answer within
\boxed{{}}.
<|im_end|>

<|im_start|>assistant

E 3B MODEL TRAINING CURVE

We include the training curves for the Qwen2.5-3B model in Figure 5 for additional insight. Over-
all, the 3B model shows a trend similar to the 1.5B case, with our proposed λ-GRPO consistently
outperforming GRPO and DAPO on most benchmarks. DAPO shows a similar early rise (steps
0–80) but declines around steps 120–160. By contrast, GRPO improves more slowly in early steps
yet catches up to DAPO near step 120. Compared to DAPO’s early surge and later drop, λ-GRPO
delivers steadier improvements and better late-stage accuracy on most benchmarks, while avoiding
the mid-to-late degradation seen with DAPO and the slower early progress of GRPO.

F BENCHMARK STATISTICS

The detailed statistics of the eight benchmarks is shown in Table 2, including gsm8k, math500,
minerva, gaokao, olympiad, college math, aime24, and amc23.
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Figure 5: Training curves for the Qwen2.5-3B base model across benchmarks. Each panel shows
accuracy (%) versus training step for three methods (λ-GRPO, DAPO, and GRPO). Steps are {0,
40, 80, 120, 160}.

Table 2: Different benchmarks that span diverse levels of difficulty and coverage, from grade-school
word problems to Olympiad and college-level mathematics.

Question set Description

GSM8K High quality linguistically diverse grade school math word problems
(1319)

MATH500 A representative subset from the MATH benchmark, covering challeng-
ing competition-style problems across algebra, geometry, probability, and
number theory (500)

Minerva A curated slice of the Minerva benchmark focusing on advanced STEM
reasoning problems sourced from undergraduate-level math and science
exams (272)

Gaokao Math questions from Chinese college entrance examinations, requiring
multi-step symbolic reasoning (385)

Olympiad OlympiadBench problems, emphasizing high-school Olympiad-level cre-
ative problem solving (675)

College Math Random subsamples of college-level math exam questions, selected with
random.seed(42) for reproducibility (500)

AIME24 Problems from the 2024 American Invitational Mathematics Examination,
designed for top high-school students (30)

AMC23 Problems from the 2023 American Mathematics Competition, targeting
high-school competition-level reasoning (40)
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