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Abstract

Large Language models (LLMs) suffer from forgetting of upstream data when
fine-tuned. Despite efforts on mitigating forgetting, few have investigated whether,
and how forgotten upstream examples are associated with newly learned tasks.
Insights on such associations enable efficient and targeted mitigation of forget-
ting. In this paper, we empirically analyze forgetting that occurs in N upstream
examples (of language modeling or instruction-tuning) after fine-tuning LLMs
on one of M new tasks, and visualize their associations with a M × N matrix.
We empirically show that the degree of forgetting can often be approximated by
simple multiplicative effects of the upstream examples and newly learned tasks.
We also reveal more complicated patterns where specific subsets of examples are
forgotten. Following our analysis, we predict forgetting that happens on upstream
examples when learning a new task with matrix completion over the empirical
associations, outperforming prior approaches that rely on trainable LMs. Replaying
predicted examples can statistically significantly improve over random examples
for alleviating forgetting.

1 Introduction

There has been a growing need for long-term usability of LLMs. While fine-tuning allows incremental
adaptation of models, it risks catastrophic forgetting [23] of upstream knowledge learned in the pre-
training phase, causing unintended prediction changes over known information. This is problematic
for stability of online deployed LLM systems, limiting the practical feasibility of continual fine-tuning.

Extensive works have studied algorithms to mitigate forgetting [33]. Some works analyze patterns of
frequently forgotten examples [39, 22, 46] or effects of models and hyperparameters [25, 15, 27, 11].
However, not many have explored how the associations between learned tasks and upstream examples
inform forgetting. Theoretical and empirical study reveals associations between learned and forgotten
tasks in shallower neural networks [19, 6, 28], but such associations are under-explored in LLMs, or
measured for upstream data of language modeling or instruction-tuning.

In this paper, we empirically study associations between learned tasks and forgotten upstream
examples (of language modeling or instruction-tuning). We preform statistics of forgetting (in log
perplexity increase) over N upstream examples, after fine-tuning the model on one of the M new
tasks, represented in a M ×N matrix. We experiment with OLMo-1B, OLMo-7B and OLMo-7B-
Instruct [8] models where upstream data is released open-source. We fine-tune LLMs on diverse and
unseen instruction-tuning tasks and measure forgetting on upstream data. Afterwards, we visualize
the matrices and fit the observations with statistical models to analyze the associations.

Our findings suggests that approximating forgetting with a simple multiplicative scalar effects
of learned tasks and upstream examples in LLMs results in decent R2 between 0.49 and 0.76
depending on the models and data. More complicated associations are revealed through visualization
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(a) OLMo-1B; forgetting over Dolma after fine-tuning on FLAN and Tulu.
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(b) OLMo-7B; forgetting over Dolma after fine-tuning on FLAN and Tulu.
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(c) OLMo-7B (LoRA); forgetting over Dolma after fine-tuning on FLAN and Tulu.
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(d) OLMo-7B-Instruct (LoRA); forgetting over Tulu after few-shot fine-tuning on MMLU, BBH, and TruthfulQA.

Figure 1: Visualized matrices of assoications between learned tasks and forgotten examples. We plot
forgetting (log-perplexity increase) that occurs on an upstream example (in x-axis) after learning a
new task (in y-axis). Log-perplexity increase can be zero or negative, indicating no forgetting.

and statistics. We see the associations are more complicated in OLMo-7B than OLMo-1B under
identical training configurations; the associations also become simpler as we perform LoRA [10]
fine-tuning compared to full-parameter tuning. Following our analysis, we propose to predict example
forgetting on unseen tasks as a matrix completion problem over the association matrices analogical to
collaborative filtering [30] in recommender systems, achieving efficiency and interpretability. Our
k-nearest neighbor (KNN) model outperforms prior approaches that learns semantic relations of
two examples with LMs [14] . We verify the benefit of prediction by upweighting examples with
higher predicted forgetting during replay as we fine-tune LLMs on new instruction-tuning tasks,
achieving statistically significant improvement in alleviating forgetting compared to replaying random
examples.

To summarize, the contributions of this paper are (1) empirical analysis on how forgotten examples are
associated with learned tasks in representative 1B and 7B LLMs, and (2) a novel view of predicting
example forgetting as a matrix completion problem, and (3) a practical algorithm to mitigate forgetting
during LLM fine-tuning.

2 Problem and Experiment Setup

We define forgetting zij as degradation (increase) in log perplexity on an upstream example xj ∈
x1..N after a LM learns a new task (set of examples) Ti ∈ T1..M . We evaluate forgetting on N
upstream examples when the model learns M tasks separately and record forgetting zij in a matrix
Z ∈ RM×N . We experiment with OLMo-1B, OLMo-7B and OLMo-7B-Instruct where pre-training
data for language modeling and instruction-tuning is released.

OLMo-1B and 7B. OLMo models are pre-trained on Dolma [34], a massive collection of documents.
We fine-tune LMs over separate tasks from FLAN-V2 and Tulu V2 instruction data [13], obtaining 77
fine-tuned models. We then evaluate log perplexity increase on a 1% subset of Dolma-v1.6-Sample.
Each upstream example is a maximum 2,048-token document from Dolma, resulting in 141,816
examples. We used the same training configurations for fine-tuning 1B and 7B models.

OLMo-7B-Instruct. OLMo-7B-Instruct models are instruction-tuned on Tulu V2. In our experi-
ments, we few-shot fine-tune OLMo-7B-Instruct over new task data from MMLU [9], BBH [35], and
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Table 1: R2 of fitting the association matrices Z of forgetting with simple models.

OLMo-1B (Full) OLMo-7B (Full) OLMo-7B (LoRA) OLMo-7B-Instruct (LoRA)

Upstream x only 0.5219 0.3070 0.3423 0.5837
Task T only 0.0835 0.1488 0.2700 0.0751
Additive Linear 0.5985 0.4518 0.6123 0.6588
Multiplicative 0.6083 0.4970 0.6537 0.7418

Table 2: Performance of predicting example forgetting. We report standard deviation over different
sets of upstream examples with known ground truth forgetting (S) beforehand.

Model OLMo-1B OLMo-7B OLMo-7B (LoRA) OLMo-7B-Instruct (LoRA)

Task FLAN FLAN FLAN MMLU+BBH

Metrics RMSE (10−2) ↓ RMSE (10−2) ↓ RMSE (10−2) ↓ RMSE (10−2) ↓ F1 ↑
Additive 2.81±0.01 7.40±0.03 3.50±0.01 6.12±0.05 54.83±2.92

SVD 2.88±0.03 7.53±0.04 3.49±0.00 6.24±0.05 51.91±2.27

KNN 2.79±0.02 7.33±0.07 3.45±0.04 5.54±0.15 70.52±0.20

Rep-Dot 3.84±0.00 9.29±0.00 5.45±0.00 6.19±0.00 61.50 ±0.00

TruthfulQA [21], and evaluate log perplexity increase over a stratified sample of 10,718 examples
from Tulu v2 as upstream examples.

3 Associations between Learned and Forgotten Examples

We visualize the association matrices Z in Figure 1 for 4 different combinations of model and training
setups (full parameter fine-tuning or LoRA). Each item zij denotes forgetting that happens on an
upstream example xj after fine-tuning on the new task Ti. The visualization indicates a mixture
of simple (e.g. most columns being multiplication of the others) and more complicated patterns in
associations. We quantitatively measure how well Z can be approximated with simple regression
models with different inductive bias.

Models. We consider (1) additive linear models, where zij = b+ αi + βj + ϵ, where αi and βi are
learnable parameters associated with each new task or upstream example. (2) multiplicative models
(SVD with rank r=1), where zij = sαiβj + ϵ.

Metrics. We measure R2, a common metric for determining how well a regression model fits data.
Let fij be the fitted value, R2 is defined as 1−

∑
i,j(zij − fij)

2/
∑

i,j(zij − Z̄)2.

Results. We report R2 of different models in Table 1. In all the setups, the multiplicative model
achieves better fit than additive models at the same number of trainable parameters. We note that
multiplicative models are more suitable for situations where some upstream examples or new tasks
almost never experience or inflict perplexity changes (αi, βj ≈ 0), which is indeed a predominant
pattern from the visualization. The models achieve R2 between 0.497 to 0.742 in different setups.
Notably, OLMo-7B (Full) achieves a clearly lower R2 of 0.497 than OLMo-1B (Full) of 0.608,
indicating more complicated associations between learned tasks and forgotten examples for larger
models. Similarly, on OLMo-7B, LoRA fine-tuning achieves a R2 (of 0.654) higher than that of full
fine-tuning, implying simpler associations compared to full fine-tuning.

In Appendix, we examine more complicated associations between learned tasks and forgotten
examples with SVD of the association matrices Z.

4 Predicting Example Forgetting with Association Matrix Completion

Our analysis suggests a novel view of predicting example forgetting as a matrix completion problem.
This is useful for targeted mitigation of forgetting as we replay predicted examples. Unlike prior
works [14] that rely on an LM to encode contents of upstream examples and new tasks for prediction,
we attempt to rely solely on example associations in Z without utilizing the contents in examples.
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Table 3: Log perplexity over a held-out (never
replayed) subset of upstream data from Dolma af-
ter full-parameter fine-tuning OLMo-7B on FLAN
tasks. p-value is computed against replaying ran-
dom examples (paired t-test on 20 tasks from the
test split).

Log PPL p-value

Before Fine-Tuning 2.2787 -

No Replay 2.3511 -
Replay Random 2.3041 -
Replay w/ KNN 2.3016 0.024

Replay w/ Ground Truth 2.3007 0.005

Our goal is to accurately predict forgetting zij
over upstream examples x1..M when the model
learns an unseen task without running expen-
sive LLM inference on all x1..M . To evaluate
this, we create training and test splits by par-
titioning FLAN (OLMo) or MMLU and BBH
(OLMo-Instruct) tasks. We assume knowing
the ground truth forgetting zij of a tiny random
set S (|S| = 30) of upstream examples for a
fine-tuned model, which takes seconds to ob-
tain; our goal is to predict forgetting of the rest
10k− 100k upstream examples. Details such as
train-test splits are discussed in Appendix C.

Methods. We run matrix completion algorithms
including additive linear, SVD, and k-nearest
neighbors (KNN) models. We also compare with Rep-dot [14] which maps inner products of learned
LM encoding of upstream and learned examples to forgetting.

Results of Predicting Example Forgetting. Table 2 summarizes the in-domain results of predicting
example forgetting. We report Root Mean Squared Error (RMSE) of predicting the log-perplexity
increase zij . For OLMo-Instruct, we additionally report F1 score of predicting whether zij > 0. We
see KNN models consistently outperforms additive linear, SVD, and trainable representation-based
prediction methods across different models and setups.

Mitigating Forgetting with Predicted Forgetting. We empirically verify the practical utility of
predicting forgetting on OLMo-7B. As the model learns new tasks, we replay a small subset of
upstream examples sparsely, prioritizing those with higher predicted forgetting, based on exp(zij/τ)
given by the KNN model, where τ is the temperature hyperparameter. Table 3 summarizes the log
perplexity on a held-out subset of Dolma before and after full-parameter fine-tuning for measuring
forgetting. As a reference, replaying with known ground truth forgetting achieves significantly
(p = 0.005) lower log perplexity of 2.3007 compared to replaying random examples. Replaying
with KNN predicted forgetting achieves log perplexity of 2.3016, significantly lower than random
examples with p = 0.024.

5 Related Works

Related to our work, data attribution study faithful algorithms to find examples or tasks that account for
a prediction [17, 12] when models are trained jointly on multiple examples or tasks. We instead focus
on analysis of affected upstream example predictions when news tasks are learned. [5, 38, 4, 44, 36]
identify memorized, important, or forgetful training data, but few analyze how these statistics depend
on the learned tasks. [45, 43, 31] study prediction of task performance from training setups; we
perform prediction at the example-level which is more fine-grained and under-explored. [26] study
relationships between task similarity and forgetting in foundation models over a sequence of newly
learned tasks; our work instead focus on forgetting of upstream data of LLMs. Prior works represented
by [1, 40, 2] study selection strategies of examples for replay-based continual learning algorithms.
We focus on analyzing patterns of forgetting and leave more comprehensive comparison to existing
continual learning algorithms as future work.

6 Conclusions

In this paper, we empirically analyzed the associations between learned and forgotten examples
in LM fine-tuning. We showed forgetting can be well-approximated with multiplicative effects
of upstream and learned examples and visualized more complicated associations. We showed the
example associations alone offer useful information to predict example forgetting when fine-tuning
LMs on new tasks. We demonstrated practical utility of our analysis by showing reduced forgetting
as we replay examples with predicted forgetting. We expect our results can inspire future study in a
more practical online continual learning setup where tasks are learned sequentially.
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A Discussions and More Related Works

In this paper, we primarily focused on analyzing the association between learned and forgotten
examples. We list factors that are known to affect forgetting in prior study: (1) type and size
of the LM [24, 32, 15, 25] (2) trainable parts of the model (e.g., LoRA, soft prompts, or full-
model tuning) [3, 29] (3) hyperparameters such as learning rate [11, 41], dropout [7], number of
training steps [4, 16] (4) optimizer [20] and training algorithms (e.g., various continual learning
algorithms) [33, 42].

Mechanical Interpretation of Example Associations. We focused on empirical statistics of for-
getting in this paper while treating the LLM as a black box. We believe research on mechanical
interpretation of forgetting such as [37, 47, 18] is complementary to ours and can potentially explain
in the future why the associations in Z are often simple, and in which circumstances the associations
become more complicated.

Limitation of Replaying with Forgetting Prediction. We note that our current practice requires
two runs of fine-tuning: a replay-free run of fine-tuning for which model the forgetting will be
evaluated and predicted, and another run while replaying examples with the predicted forgetting. The
practice is still efficient given the relative small training set of fine-tuning. In the continuing work,
we will develop methods to predict forgetting on-the-fly during fine-tuning, mitigating the overhead
of fine-tuning the model twice.

B Dataset, Model, and LM Training Details

Models. We use OLMo-7B1 of the version pretrained on Dolma v1.6; and OLMo-7B-Instruct2,
which is tuned on Tulu v2 and other human feedback datasets.

Upstream Examples. We summarize the list of upstream datasets in Table 4. We also include the
number of training examples in each dataset, initial log perplexity, and average forgetting occured on
these datasets.

We examine forgetting on Dolma in our OLMo-1B and OLMo-7B experiments. We sample 1% of
text chunks of length 2,048 from v1.6-sample version of the dataset, resulting in 141,816 chunks of
length 2,048. We compute log perplexity over all 2,048 tokens in each example.

We examine forgetting on Tulu V2 in our OLMo-7B-Instruct experiments. We randomly sample an
approximately balanced number of examples from each task in Tulu, and filter out examples with
input length that exceeds 2,048 (the limit of OLMo models) after tokenization. This results in 10,718
examples. We compute log perplexity on ground truth output tokens only.

Learned New Tasks. We summarize the list of newly learned tasks in Tables 5 and 6 for OLMo-1B,
7B and OLMo-7B-Instruct experiments. We also include the number of training examples and
forgetting caused by each task averaged over all upstream examples.

Training and Evaluation Details. For full-parameter fine-tuning of OLMo-1B and 7B, we train the
model for 1,000 steps with an effective batch size of 8 and a linearly decaying learning rate of 2e−6.
For LoRA fine-tuning, we set rank=64 in all our experiments and use a constant learning rate of
10−4. We train the models for 625 steps with an effective batch size of 8. For OLMo-7B-Instruct and
MMLU, BBH, TruthfulQA, considering the small size of the training sets, we train the models only
for 37 steps with an effective batch size of 8. We use HuggingFace Transformers library for training
and VLLM library for efficient inference. The statistics of forgetting are obtained in a single run.

Dataset Licenses and Safety. MMLU and BBH are released under MIT license. Truthful QA,
Dolma, and OLMo models are released under Apache 2.0 license. Tulu V2 is released under ODC-By
license. We thank [34] for removing personally identifiable information from the massive corpus,
Dolma, before release as described in the original manuscript. The other datasets do not contain
personally identifiable information according to our inspection.

1https://huggingface.co/allenai/OLMo-7B
2https://huggingface.co/allenai/OLMo-7B-Instruct
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Table 4: Upstream tasks used in our experiments where forgetting is evaluated. We also report the
number of training examples, log perplexity of these examples before fine-tuning (Init. Log PPL) and
averaged forgetting happened on these examples averaged after learning different new tasks when
performing LoRA fine-tuning on OLMo-7B models (Avg. Forgetting).

Task #. Examples Init. Log PPL Avg. Forgetting

flan_v2 995 0.506 -0.006
cot 1000 0.347 -0.001
oasst1 1000 1.117 -0.043
lima 946 1.931 -0.045
gpt4_alpaca 1000 0.693 -0.018
code_alpaca 1000 0.402 -0.073
sharegpt 976 0.940 -0.049
wizardlm 1979 0.693 -0.025
open_orca 995 1.004 -0.080
science 687 0.322 -0.021
hard_coded 140 2.682 -0.353

Dolma 141816 2.283 0.035

C Details of Forgetting Prediction and Replay

Data Splits for Predicting Example Forgetting. We mark the tasks used as in-domain test splits for
predicting example forgetting (Sec. 4) in Tables 5 and 6.

Training and Evaluation Details. We use Surprise Library 1.1.33 for additive linear, SVD, and KNN
prediction models. For SVD, we set the dimension of the learnable features as 5. KNN aggregates
the forgetting of other upstream examples based on the similarity between forgetting patterns of a
seen task and the unseen task over a small subset with known ground truth forgetting.

For in-domain test splits, we randomly sample 30 upstream examples and assume the ground truth
forgetting is known for these examples. This is required for predicting forgetting on the rest of
upstream examples by additive linear, SVD, and KNN methods. We repeat the experiment 10 times
and report the mean and standard deviation in Table 2.

We used OLMo-1B models as the trainable example encoders in the implementation of the prediction
method by [14] (Rep-dot) that relies on inner products of trained example representations. We notice
these models trained with mean squared error objective perform poorly on F1 metrics. Therefore, for
F1 metrics reported for Rep-dot in Table 2, we used a variant using cross-entropy as the optimization
objective. At inference, given an upstream example, we compute the averaged dot-product with
all examples in the learned task. We note that at inference time Rep-dot does not require ground
truth forgetting of a small number of examples. For a fair comparison with other matrix completion
methods, we replace the prediction of Rep-dot with ground truth forgetting on these examples.

Replaying Upstream Examples in Fine-Tuning. We sparsely replay 1 mini-batch of 8 upstream
examples every 32 steps of model update while fine-tuning on new tasks. Given predicted or
ground truth forgetting zi,1..J on upstream examples x1..J when learning a new task Ti, we sample
upstream examples to replay from a categorical distribution where p(xj) ∝ exp(zi,j/τ), where τ is
a temperature hyperparameter set as 0.1. The hyperparameter τ is tuned on a single validation task
by using ground truth forgetting Z.

D Additional Results about Example Associations

We visualize progressive reconstruction with k-th singular value and singular vectors for OLMo
experiments in Figure 2. We see when k = 2, there is a single row and column with significantly
larger forgetting than the others. This pattern exemplifies a complicated association that is not
captured by the simple multiplicative model (k = 1).

We further show the distribution of singular values and R2 of reconstruction of Z in our OLMo and
OLMo-Instruct experiments in Figure 4.

3https://github.com/NicolasHug/Surprise/tree/v1.1.3
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Full

k=1
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(a) OLMo-7B (Full)

Full

k=1

k=2

k=3

k=4

(b) OLMo-7B (LoRA)

Figure 2: Reconstruction of Z in OLMo-7B experiments with k-th singular value and vectors. Higher
values of k capture finer-grained details in Z.
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Figure 3: Reconstruction of Z in OLMo-7B-Instruct experiments with k-th singular value and vectors.
Higher values of k capture finer-grained details in Z.
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(c) OLMo-7B (LoRA)
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(d) OLMo-7B-Instruct (LoRA)

Figure 4: Singular values (bars) and R2 (dash lines) of reconstruction of Z with up to k-th singular
value and singular vectors.
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Task Category Task #. Examples Avg. Forgetting Caused Task Category Task #. Examples Avg. Forgetting Caused

FLAN V2 aeslc 28860 0.012 quac 60000 0.070
ag_news_subset 60000 0.020 record 60000 0.030
anli_r1 33880 0.018 rte 4580 0.034
anli_r2 60000 0.022 samsum 29460 0.016
anli_r3 60000 0.023 sentiment140 60000 0.012
arc_challenge* 1820 0.027 snli 59900 0.027
arc_easy* 4080 0.027 squad_v1 60000 0.067
bool_q 18440 0.056 squad_v2 60000 0.148
cb* 400 0.037 sst2 60000 0.024
cnn_dailymail 60000 0.007 story_cloze 3340 0.032
cola 16700 0.040 stsb 11280 0.031
common_gen 60000 0.037 trec* 10500 0.026
copa 700 0.043 trivia_qa* 60000 0.018
coqa* 14180 0.134 true_case 58520 0.053
cosmos_qa 50120 0.046 web_nlg_en 60000 0.048
dart 60000 0.033 wic* 10440 0.046
definite_pronoun_resolution* 2240 0.015 wiki_lingua_english_en 60000 0.015
drop 60000 0.045 wmt14_enfr 60000 0.017
e2e_nlg* 60000 0.046 wmt16_translate_csen 60000 0.009
fix_punct* 56140 0.046 wmt16_translate_deen 60000 0.011
gigaword 32240 0.011 wmt16_translate_fien 60000 0.013
glue_mrpc 6920 0.059 wmt16_translate_roen 60000 0.015
glue_qqp* 60000 0.032 wmt16_translate_ruen* 60000 0.014
hellaswag 60000 0.027 wmt16_translate_tren* 60000 0.017
imdb_reviews 49600 0.013 wnli 1200 0.024
math_dataset* 60000 0.043 word_segment 60000 0.107
mnli_matched 60000 0.057 wsc* 1000 0.016
mnli_mismatched 60000 0.066 yelp_polarity_reviews* 60000 0.013
multi_news 60000 0.010 Tulu open_orca 29683 0.009
multirc 54080 0.058 oasst1 7331 0.005
natural_questions* 60000 0.010 lima 1018 0.194
openbookqa* 9900 0.046 code_alpaca 20016 0.015
opinion_abstracts_idebate* 3300 0.024 gpt4_alpaca 19906 0.016
opinion_abstracts_rotten_tomatoes 6260 0.008 cot 49747 0.019
para_crawl_enes 60000 0.018 science 7468 0.022
paws_wiki 60000 0.063 sharegpt 111912 0.010
piqa 32020 0.037 hard_coded 140 0.056
qnli* 60000 0.043 wizardlm 29810 0.019

Table 5: The list of learned tasks in our experiments on OLMo-7B. We also include the number
of training examples in each task (#. Example) and forgetting caused by each learned task after
LoRA fine-tuning averaged over all upstream examples as a reference. * notes for tasks used as the
in-domain test split in forgetting prediction experiments in Sec. 4.

13



Task Category Task #. Examples Avg. Forgetting Caused Task Category Task #. Examples Avg. Forgetting Caused

MMLU abstract_algebra 11 -0.030 BBH boolean_expressions* 125 -0.095
anatomy 14 -0.076 causal_judgement 93 -0.119
astronomy 16 -0.074 date_understanding 125 -0.122
business_ethics 11 -0.042 disambiguation_qa 125 -0.086
clinical_knowledge 29 -0.093 dyck_languages* 125 -0.090
college_biology* 16 -0.069 formal_fallacies* 125 -0.087
college_chemistry 8 -0.088 geometric_shapes 125 -0.045
college_computer_science 11 -0.057 hyperbaton* 125 -0.093
college_mathematics 11 -0.065 logical_deduction_five_objects* 125 -0.092
college_medicine* 22 -0.072 logical_deduction_seven_objects 125 -0.089
college_physics 11 -0.058 logical_deduction_three_objects 125 -0.116
computer_security 11 -0.080 movie_recommendation* 125 -0.068
conceptual_physics* 26 -0.087 multistep_arithmetic_two 125 -0.081
econometrics 12 -0.043 navigate 125 -0.067
electrical_engineering 16 -0.108 object_counting* 125 -0.106
elementary_mathematics 41 -0.098 penguins_in_a_table 73 -0.122
formal_logic 14 -0.039 reasoning_about_colored_objects 125 -0.134
global_facts* 10 -0.012 ruin_names 125 -0.098
high_school_biology* 32 -0.098 salient_translation_error_detection 125 -0.077
high_school_chemistry 22 -0.096 snarks 89 -0.125
high_school_computer_science 9 -0.059 sports_understanding 125 -0.113
high_school_european_history* 18 -0.084 temporal_sequences 125 -0.099
high_school_geography 22 -0.090 tracking_shuffled_objects_five_objects 125 -0.049
high_school_government_and_politics 21 -0.057 tracking_shuffled_objects_seven_objects 125 -0.100
high_school_macroeconomics 43 -0.111 tracking_shuffled_objects_three_objects 125 -0.091
high_school_mathematics 29 -0.075 web_of_lies 125 -0.066
high_school_microeconomics 26 -0.070 word_sorting 125 -0.124
high_school_physics* 17 -0.067 TruthfulQA Nutrition 16 0.078
high_school_psychology 60 -0.085 Stereotypes 24 -0.044
high_school_statistics 23 -0.063 Confusion 46 -0.109
high_school_us_history* 22 -0.085 Psychology 19 0.018
high_school_world_history 26 -0.070 Language 21 -0.058
human_aging* 23 -0.046 Sociology 55 -0.147
human_sexuality* 12 -0.081 Finance 9 0.096
international_law 13 -0.050 Indexical Error 57 -0.107
jurisprudence 11 -0.088 Science 9 0.171
logical_fallacies* 18 -0.024 Misconceptions 104 -0.124
machine_learning 11 -0.072 Economics 31 -0.061
management* 11 -0.062 Education 10 0.103
marketing* 25 -0.043 Proverbs 18 -0.029
medical_genetics 11 -0.029 Conspiracies 25 0.058
miscellaneous 86 -0.128 Religion 15 -0.029
moral_disputes 38 -0.101 Statistics 5 0.240
moral_scenarios* 100 -0.068 Misquotations 16 0.077
nutrition 33 -0.098 Subjective 9 -0.017
philosophy* 34 -0.063 Law 64 -0.125
prehistory 35 -0.093 History 24 -0.026
professional_accounting 31 -0.075 Fiction 30 -0.096
professional_law 170 -0.157 Mandela Effect 6 0.008
professional_medicine* 31 -0.087 Politics 10 -0.037
professional_psychology 69 -0.117 Misinformation 12 -0.030
public_relations* 12 -0.073 Logical Falsehood 14 -0.028
security_studies 27 -0.109 Distraction 14 -0.091
sociology* 22 -0.075 Weather 17 0.006
us_foreign_policy* 11 -0.050 Myths and Fairytales 21 0.068
virology 18 -0.079 Superstitions 22 -0.064
world_religions 19 -0.049 Advertising 13 -0.078

Paranormal 26 -0.074
Health 55 -0.137

Table 6: The list of learned tasks in our experiments on OLMo-7B-Instruct. We include the number
of training examples in each task (#. Examples), and forgetting caused by each learned task after
LoRA fine-tuning averaged over all upstream examples (Avg. Forgetting Caused) as a reference. *
notes for tasks used as the in-domain test split in forgetting prediction experiments in Sec. 4.
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