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Abstract
Static systems exhibit diverse structural proper-
ties, such as hierarchical, scale-free, and isotropic
patterns, where different geometric spaces offer
unique advantages. Methods combining multi-
ple geometries have proven effective in captur-
ing these characteristics. However, real-world
systems often evolve dynamically, introducing
significant challenges in modeling their temporal
changes. To overcome this limitation, we propose
a unified cross-geometric learning framework for
dynamic systems, which synergistically integrates
Euclidean and hyperbolic spaces, aligning embed-
ding spaces with structural properties through fine-
grained substructure modeling. Our framework
further incorporates a temporal state aggregation
mechanism and an evolution-driven optimization
objective, enabling comprehensive and adaptive
modeling of both nodal and relational dynamics
over time. Extensive experiments on diverse real-
world dynamic graph datasets highlight the su-
periority of our approach in capturing complex
structural evolution, surpassing existing methods
across multiple metrics.

1. Introduction
In recent years, static graph neural networks (GNNs) in dif-
ferent geometric spaces have achieved remarkable progress
in the field of link prediction (Yang et al., 2022; Chen et al.,
2023). For graphs with general structural features, GNNs
in Euclidean space demonstrate superior performance (Wu
et al., 2022), while for graphs with specialized structures,
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Figure 1: Dynamic graph requires continuous and inde-
pendent modeling of snapshots at each timestamp, and the
geometric properties of local structures may vary with link
evolution. Existing methods typically apply single geometry
analysis at static timestamps (①) or across time sequences
(②), leading to mismatches between geometric heterogene-
ity and data, causing modeling distortions. Therefore, A
temporal continuous multi geometry analysis method (③)
that selects different geometric embeddings for distinct local
structures in each snapshot is more universal and effective.

such as hierarchical structures, GNNs in hyperbolic space
emerge as the preferred choice (Peng et al., 2021). Nev-
ertheless, static GNNs are inherently limited in capturing
the evolving nature of relationships in real-world systems,
where interactions between entities—such as in social in-
teractions (Liao et al., 2018; Huang et al., 2021), scientific
collaborations (Yasunaga et al., 2019), and transportation
networks (Yu et al., 2017; Ji et al., 2023)—are dynamic
and continuously change over time, posing significant chal-
lenges for static models (Han et al., 2021). Temporal link
prediction aims to forecast the appearance of new links and
the potential disappearance of existing links based on cur-
rent and past graph states (Divakaran & Mohan, 2020). With
the expansion of network scale and increasing complexity of
link evolution, accurate temporal link prediction is crucial
not only for enhancing the understanding of dynamic net-
works but also for improving the performance and decision
quality of intelligent systems (Zhang et al., 2023).

Conventional GNN methods are designed for static graph

1



Analytical Construction on Geometric Architectures

structures and cannot adapt to the evolving nature of dy-
namic graphs (Zhu et al., 2020; Xu et al., 2022a; Sun et al.,
2024). When links appear or disappear, static models strug-
gle to dynamically adjust embeddings, resulting in limited
suitability for dynamic graph tasks. While dynamic GNNs
have been proposed to model temporal variations using a
single geometric space (Hajiramezanali et al., 2019; Pareja
et al., 2020; Bai et al., 2023), they neglect the geometric het-
erogeneity across varying local structures (Gu et al., 2018;
Bachmann et al., 2020), limiting their ability to capture di-
verse characteristics in dynamic graphs (Ravasz & Barabási,
2003; Bronstein et al., 2017). Furthermore, the evolution of
links over time alters local geometric properties, a critical
aspect overlooked by existing methods. Thus, there is a
need for approaches that integrate geometric heterogeneity
with temporal dynamics, enabling models to dynamically
select appropriate geometric embedding and adjust them in
response to link evolution (Zhou et al., 2023), thereby cap-
turing the temporal evolution of graph data more effectively.

Limitations: Drawing upon the preceding analysis, we have
identified two fundamental limitations in the existing link
prediction methods: 1) Limited Flexibility in Geometric
Representation: Existing approaches often rely on fixed ge-
ometric spaces, which may not fully accommodate the com-
plex, hierarchical, or non-Euclidean local structures present
in diverse temporal graph data. 2) Inadequate Consider-
ation of Temporal Dynamics: Many current methods fail
to effectively capture the intricate temporal dependencies
and patterns in evolving links of dynamic graphs, leading
to suboptimal predictive performance over time. Below,
we present our observations regarding these limitations: 1)
Current dynamic models predominantly embed graphs into
a single geometric space, which overlooks the geometric
diversity inherent in local structures. Hierarchical subgraphs
are better suited to hyperbolic space, while non-hierarchical
ones align more effectively with Euclidean space (Zhu et al.,
2020; Gu et al., 2019; Shang et al., 2024). 2) These models
mainly focus on macro-level changes, often overlooking
micro-level link variations across timestamps, which leads
to a lack of mechanisms to fully capture these nuances.

Schemes: To relieve the limitations mentioned above, we
propose a framework conducts dynamic analysis of tempo-
ral link prediction by integrating multiple geometric spaces.
Specifically, to integrate dynamic temporal information
into geometric analysis, it continuously extracts k-hop ego-
graphs centered on key nodes at each timestamp, adapting
the geometric representation based on the evolving local
structural patterns over time. It then aligns and optimizes
hierarchical embeddings from both non-Euclidean and Eu-
clidean spaces, using multi geometric information as graph
features for the current timestamp. Additionally, the frame-
work maps the representations from previous timestamps to
a high-dimensional space, computes attention coefficients

for each past timestamp, and aggregates them to obtain the
input hidden states for the current timestamp. Finally, a
link evolution loss function is used to capture fine-grained
link dynamics by optimizing distances between node pairs
corresponding to newly appeared and disappeared links.

The salient aspects of our contributions are as follows:

• Geometric analysis over time series characterizes intri-
cate structural evolution, capturing fine-grained topo-
logical variations and revealing the temporal transfor-
mation of geometric features.

• Building upon this more refined consciousness, a fine-
grained modeling framework for dynamic graph fea-
tures is proposed, capturing complex structural varia-
tions through state aggregation across different geomet-
ric domains. Additionally, a link evolution loss func-
tion is designed to precisely characterize link changes.

• Demonstrated the effectiveness of the dynamic geomet-
ric analysis paradigm through comprehensive evalua-
tion across datasets of varying scales and types.

2. Related Work
Geometric Graph Learning Graph-based models have
gained prominence due to their ability to represent rela-
tional data effectively (Wu et al., 2020; Cheng et al., 2023).
After the introduction of GCN (Kipf & Welling, 2017),
many message-passing based GNNs (Gao & Ji, 2019; Song
et al., 2020; Wan et al., 2021; Huo et al., 2023) were pro-
posed, achieving excellent performance across various graph
learning tasks. GAT (Veličković et al., 2018) enhances
node representation by using attention mechanisms to weigh
neighboring nodes differently. GraphSAGE (Hamilton et al.,
2017) efficiently handles large-scale graphs by sampling and
aggregating neighboring node features. Graph Transformer
(Yun et al., 2019) use self-attention to capture complex de-
pendencies in graphs. These models are all designed in
Euclidean space. To address issues related to hierarchical
and complex graph structures, some models, such as HGCN
(Chami et al., 2019), H2H-GCN (Dai et al., 2021), HAT
(Zhang et al., 2021), HypFormer (Yang et al., 2024), are
designed in hyperbolic space, allowing for more effective
representation of hierarchical and topological relationships
within graphs. In recent years, combining the advantages of
both geometries has become a new graph learning paradigm
(Zhu et al., 2020; Xu et al., 2022b; Shang et al., 2024).

Temporal Link Prediction Temporal Link Prediction fo-
cuses on forecasting the appearance of future links or the
disappearance of existing links in dynamic graphs over
time. To efficiently model temporal links, many dynamic
graph neural networks with sequential architectures have
been proposed (Skarding et al., 2021). GCRN (Seo et al.,
2018) combines graph convolution and recurrent layers (Shi
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et al., 2015) for enhanced sequence prediction. DySAT
(Sankar et al., 2020) captures node representations in evolv-
ing graphs using dynamic self-attention. VGRNN (Haji-
ramezanali et al., 2019) introduces hierarchical variational
modeling to capture topology and attribute changes in dy-
namic graphs. EvolveGCN (Pareja et al., 2020) improves
dynamic graph learning by evolving GCN parameters with
an RNN. Some methods model dynamic graphs in hyper-
bolic space, such as HTGN (Yang et al., 2021) and HG-
WaveNet (Bai et al., 2023), achieving promising results
in capturing hierarchical and complex structures. While
as dynamic graphs grow in complexity, the structural het-
erogeneity of different local structures poses challenges
for single-geometric methods. Currently, there are no ap-
proaches that utilize multiple geometries for this task.

3. Preliminaries
3.1. Problem Formulation

Given a dynamic graph Gt = (V, Et), t ∈ T, where T =
{t1, t2, . . . , tT } is a discrete timestamp set, V denotes the
set of nodes and Et ⊆ V × V denotes the set of edges
present at timestamp t. For temporal link prediction task,
we aim to predict the states of links at a future timestamp
t+ ∈ T. Predicting the appearance of an edge by estimating
the probability that an edge (u, v) exists at timestamp t+:

ŷuv(t
+) = Pr[(u, v) ∈ Et+ | G≤t], (1)

where G≤t denotes the sequence {Gt1 ,Gt2 , . . . ,Gt}. Pre-
dicting edge disappearance by estimating the probability
that an edge (u, v) does not exist at time t+:

ŷabsent
uv (t+) = Pr[(u, v) /∈ Et+ | G≤t], (2)

The overall objective is to develop a temporal link predic-
tion model f that provides a probability distribution over
the existence and non-existence of all potential edges (u, v):

f(G≤t)→ {ŷuv(t+), ŷabsent
uv (t+)}(u,v)∈V×V , (3)

3.2. Hyperbolic Geometry

Hyperbolic geometry describes spaces characterized by con-
stant negative curvature, where volume grows exponentially
with the increase in spatial dimensions. A n-dimensional
hyperbolic space is a complete Riemannian manifold with a
constant negative curvature c, denoted as (Hn

c , g
H), where

gH is the Riemannian metric. Hyperbolic space can be mod-
eled using five isometric models (Beltrami, 1868; Cannon
et al., 1997), in this paper, we adopt Poincaré disk model.

Definition 1 (Poincaré disk model) The Poincaré disk
model B is a manifold equipped with a Riemannian metric

𝒐

𝒐

ℍ

𝔹

𝔹

Geodesics

Figure 2: The poincaré disk model B is given by projecting
each point of hyperboloid model H onto the hyperplane o.

gB, which defined as:

Bn
c :=

{
x ∈ Rn : −c∥x∥2 < 1

}
,

gB = λ2
xg

E, λx =
2

1− ∥x∥2
,

(4)

where ∥ · ∥ denotes the Euclidean norm, gE denotes the
Euclidean metric, and the superscript B indicates that the
vector or matrix is in the hyperbolic space modeled using
the Poincaré disk model.

Definition 2 (Hyperbolic Operations) Given two points
x,y ∈ Bn

c , the hyperbolic distance between them is defined
by

dc(x,y) =
2√
c
tanh−1

(√
c ∥−x⊕c y∥

)
, (5)

where ⊕c denotes Möbius addition, given by

x⊕c y :=

(
1 + 2c⟨x,y⟩+ c∥y∥2

)
x+

(
1− c∥x∥2

)
y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
,

(6)
⟨x,y⟩ denotes the Euclidean inner product of x and y.

Definition 3 (Tangent Space) The tangent space at a point
x in hyperbolic space, denoted TxBn

c , approximates the
local structure of the space to first order. This n-dimensional
tangent space is isometric to Euclidean space Rn. The
mapping between hyperbolic space and the tangent space is
facilitated by the exponential and logarithmic maps, defined
as follows:

expcx(v) = x⊕c

(
tanh

(√
c
λc
x∥v∥
2

)
v√
c∥v∥

)
, (7)

logcx(y) = dc(x,y)
−x⊕c y

λc
x ∥−x⊕c y∥

, (8)

where v ∈ TxBn
c , y ∈ Bn

c and λc
x has same meaning

in Eq. (4). To ensure consistency in error metrics across
various directions, we use the origin o in hyperbolic space
as the reference point x.

4. Methodology
In this section, we introduce the key components of the
framework and its pipeline (Figure 3). We also detail the
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Figure 3: Architecture of our method. Given the graph Gt at timestamp t, the Dynamic Geometric Modeling (DGM) module
calculates each local structure’s hyperbolicity δ via a k-hop ego-graph, selecting and optimizing the appropriate embedding
space. The Temporal State Aggregator (TSA) layer then predicts the current hidden state by aggregating past representations
using high-dimensional mapping and attention coefficients. Finally, a GRU cell processes the current representation, and
link prediction is performed using the Fermi-Dirac decoder, with the model optimized via Link Evolution Loss (LEL) and
traditional link prediction loss functions.

optimization process and complexity analysis of the full
framework.

4.1. Dynamic Geometric Modeling

To capture the geometric heterogeneity inherent in differ-
ent local structures of dynamic graphs, Dynamic Geometric
Modeling (DGM) module is designed to model various local
structures of the graph at each timestamp into geometric
spaces that best align with their inherent characteristics,
thereby uncovering the latent geometric relationships and
hierarchical features. This module enhances the representa-
tion of complex structures and interactions, improving the
ability of overall model to accurately predict and analyze
dynamic link evolution over time.

Definition 4 (k-Hop Ego-Graph of Centroid v) For a
given node v ∈ V , its corresponding k-hops ego-subgraph
Gv comprises all nodes w ∈ V\{v} within a distance no
greater than k from v, along with their respective links.

Let Gt = (Vt, Et) denote snapshot of the graph at timestamp
t. According to the local subgraph preservation property
(Huang & Zitnik, 2020), the influence of neighbors on cen-
troid decays exponentially with radius increasing. The local
structural characteristics of a node can be captured by its
k-hop ego-graph. Thus, we samples k-hop ego-graphs, and
computes their hyperbolicities δi,t 1 at t.

1Gromov’s δ-hyperbolicity (Adcock et al., 2013; Gromov,

For node vi,t, its hyperbolicity δi,t can be computed by:

δi,t = max
u1,u2,u3,u4∈VGi,t

δ(u1, u2, u3, u4)

D
, (9)

where u1, u2, u3, u4 denote node quadruplets from ego-
subgraph Gi,t, D denotes the maximum shortest path length
between any two nodes among them. δ(u1, u2, u3, u4) =
ℓ(u1, u2)+ℓ(u3, u4)−ℓ(u1, u3)+ℓ(u2, u4), if shortest path
lengths between node pairs satisfy ℓ(u1, u2) + ℓ(u3, u4) ≥
ℓ(u1, u3) + ℓ(u2, u4) ≥ ℓ(u1, u4) + ℓ(u2, u3).

As illustrated in (Adcock et al., 2013), structural features of
ego-graphs become significantly apparent when the diameter
of the quadruplets exceeds 2. When the diameter increases
to 5, the resulting features become similar. Hence, to obtain
the most accurate hyperbolicity values for local structures,
we set the k value to 4.

For tree-like hierarchical local structures (δi,t ≈ 0), we first
map them into the hyperbolic space. Assuming that the fea-
tures FE

δi,t≈0 of the local structure lie in the tangent space
at the origin o of the Poincaré disk model, where the su-
perscript E denotes that the features are in Euclidean space.
The features Fo,E

δi,t≈0 are then mapped into the hyperbolic
space via exponential map:

XB
δi,t≈0 = expco(X

o,E
δi,t≈0). (10)

1987) measures a graph’s tree-like structure; lower δ values indi-
cate higher hyperbolicity, δ = 0 representing a tree.
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𝑻𝒊𝒎𝒆𝒔𝒕𝒂𝒎𝒑𝒔Lost Link New Link

Figure 4: Link Evolution Loss adjusts the distribution of
nodes based on edges added and removed between the cur-
rent and previous snapshots, dynamically capturing changes
in relationships between nodes.

Then, we process the features using HGCN (Chami et al.,
2019) to obtain the corresponding hyperbolic embeddings:

FB
δi,t≈0 = expco(W

B logco(X
B
δi,t≈0))⊕c b

B, (11)

where WB denotes weight matrix, bB denotes bias vector.

For the remain local structures (δi,t ̸≈ 0), we use GCN
(Kipf & Welling, 2017) to obtain corresponding Euclidean
embeddings:

FE
δi,t ̸≈0 = WE ·XE

δi,t ̸≈0 + bE. (12)

We approximate the optimal embedding space distribution
nonlinear optimization function using a multi-layer percep-
tron, and ultimately obtain the final cross-geometric embed-
ding for the current timestamp as:

Xt = σ⊗c

(Wf · (logco(FB
δi,t≈0) || FE

δi,t ̸≈0 + bf ), (13)

where σ⊗c

denotes geometric non-linear activation with
different curvatures.

4.2. Temporal State Aggregator

Temporal State Aggregator (TSA) is a more straightfor-
ward and efficient network layer compared to existing
methods, designed to forecast the hidden state at the sub-
sequent timestamp by synthesizing temporal information
from historical states. For a sequence of representations
{Z0,Z1, . . . ,Zt−1}, where each Zt denotes the represen-
tations of dynamic graph Gt at timestamp t. TSA initially
transforms these representations into a higher-dimensional
space using a nonlinear mapping function to enhance the
distinguishability between states at different timestamps:

Ztsa = ϕ(Wtsa · ||t−1
i=0Zi + btsa), (14)

where ϕ is a nonlinear activation function such as the hyper-
bolic tangent function, and Wtsa and btsa are the transfor-
mation matrix and bias vector, respectively.

The next step involves calculating temporal attention scores,
which assess the importance of each historical state. This is
achieved through:

α = softmax (γ(Watt · Ztsa + batt)) , (15)

where γ denotes a scalar function applied to adjust the scale
of the attention scores.

The predicted hidden state at the next timestamps t is
then derived by aggregating the historical representations
weighted by their respective attention scores:

Ĥt =
∑t−1

i=0
αi · Zi. (16)

The TSA effectively harnesses the temporal dependencies
within the data by emphasizing the most influential historical
states. This integration of significant past information facili-
tates enhanced prediction accuracy for future states while
optimizing computational efficiency through advanced ten-
sor operations.

4.3. Link Evolution Loss

To model and analyze fine-grained link dynamics, we pro-
pose the Link Evolution Loss (LEL) function, which to
optimize the spatial arrangement of node embeddings by
considering micro-level changes of edges. Specifically, LEL
obtain two edge sets, Enew and Elost, where Enew ⊆ Et and
Enew∩Et−1 = ∅, Elost ⊆ Et−1 and Elost∩Et = ∅. Let Ft and
Ft−1 denote the cross-space embedding matrices at time t
and t− 1, respectively.

For nodes pairs (u,v) of new edges in Gt, the goal of LEL
is to bring the distributions of them closer if they are newly
be connected. This is achieved by minimizing:

Lnew,t =
∑

(u,v)∈Enew

max (0, |sim(fu,t, fv,t)| − τ) , (17)

where sim(·) denotes the cosine similarity function, fu,t
and fv,t denote embeddings of u and v at timestamp t, τ
denotes penalty term, which is typically set to 0.5.

Conversely, for nodes pairs of lost edges, the objective is to
increase the distance between distributions of nodes pairs
that should no longer be connected:

Llost,t =
∑

(u,v)∈Elost

max (0, τ − |sim(fu,t, fv,t)|) . (18)

The overall loss function combines these components and
applies a sigmoid function for normalization:

LLEL,t = σ (Lnew + Llost) , (19)

where σ denotes the sigmoid function.
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4.4. Overall Framework

Workflow: With aforementioned key components, we can
construct the complete framework, as illustrated in Figure 3,
the complete algorithmic procedure can be found in Ap-
pendix C.1. At timestamp t, it inputs the node features of
the graph snapshot Gt into the DGM module, yielding the
optimized cross-space feature embedding Xt. Simultane-
ously, the TSA layer computes the current hidden state input
Ĥt based on the representations from previous timestamps
{Z0, . . . ,Zt−1}. It then feeds Xt and Ĥt into the GRU cell
to obtain the node representation Zt at time t. Building upon
this, it utilizes a Fermi-Dirac decoder for link prediction,
expressed by the following formula:

pF−D(zi, zj) =
1

exp(d(zi, zj)− r)/s
, (20)

where r and s are hyper-parameters, zi and zj denote the
representations of the two nodes for which the edge is pre-
dicted.

Optimization: Our optimization objective is to maximize
the prediction accuracy of future unobserved edges, as for-
malized in Eq. 3. At timestamp t, the loss function for link
prediction is given by:

LLP,t =
1

|Et|
(
∑

ei,j∈Et

− log (pF−D (zt,i, zt,j))

−
∑

ei′j′ /∈Et

(1− log (pF−D (zt,i′ , zt,j′))) .
(21)

In addition, the framework computes the link evolution loss
LLEL,t, which quantifies the microscopic changes in link
structure between Gt and Gt−1. Consequently, the overall
loss function at timestamp t is:

L = LLP,t + LLEL,t. (22)

By minimizing this combined loss function, the framework
simultaneously optimizes both the accuracy of edge pre-
dictions and the ability to capture evolving link patterns,
thereby enhancing its overall performance in dynamic link
prediction tasks.

4.5. Complexity Analysis

The computational complexity of our method can be sum-
marized by three modules as follows:

DGM: It calculating the hyperbolicity δi,t of k-hop ego-
graphs. The complexity of computing δi,t for each node
involves evaluating node quadruplets, which is O(k4 ·N),
where N is the number of nodes. Additionally, mapping
features to hyperbolic space and performing Euclidean or
hyperbolic embeddings requires O(N · (dE + dH)), where

dE and dH denote the dimensions of the Euclidean and
hyperbolic embeddings, respectively.

TSA: Transforming and aggregating previous states states
involves a complexity of O(T · dt), where T is the number
of time steps and dt is the dimensionality of the transformed
state representations.

LEL: It adjusts node embeddings based on newly added
and lost edges. The complexity of computing the link evo-
lution loss is O(|Enew|+ |Elost|), where |Enew| and |Elost|
represent the number of new and lost edges, respectively.

The overall complexity depends on the graph size N , num-
ber of timestamps T , embedding dimensions, and edge evo-
lution. The computational complexity is:

O(k4 ·N+N ·(dE+dH)+T ·dt+ |Enew|+ |Elost|). (23)

5. Experiments
In this section, we conducted comparative experiments, ef-
ficiency analysis, hyperparameter analysis, and ablation
studies to validate the effectiveness and advantages of our
method. Due to space limitations, only key experimental
details and results are presented here, with additional results
available in Appendix D.

5.1. Experimental Setup

Datasets. We conducted experiments on five real-world
datasets of varying scales, including the academic coauthor
networks DBLP (Hajiramezanali et al., 2019) and HepPh
(Leskovec et al., 2005), the Ia-Enron employee email
communication network (Rossi & Ahmed, 2015), the social
media user communication network LFB (Viswanath et al.,
2009), and the roll-call voting network in the United Nations
General Assembly from 1946 to 2020 UNVote (Poursafaei
et al., 2022). The statistics for these datasets are provided in
Table 3. For each dataset except UNVote and Ia-Enron,
we employed the same training and testing set splits as in
prior work (Yang et al., 2021) across multiple snapshots.
For UNVote and Ia-Enron datasets, we used a similar
split ratio as applied to the other datasets. Additionally,
we computed the global Gromov hyperbolicity δ for each
dataset, which indicates that these datasets exhibit a certain
degree of hyperbolicity.

Scale Datasets # Links # Entities # Train / Test δ

Large UNVote 1, 035, 742 201 72 / 6 0.5
HepPh 976, 097 9, 746 8 / 3 1.0

Medium LFB 180, 011 45, 435 33 / 3 2.0
la-Enron 50, 572 151 33 / 3 1.0

Small DBLP 943 315 7 / 3 2.0

Table 3: Statistics of datasets.
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Datasets DBLP Ia-Enron LFB HepPh UNVote

Metrics AUC AP AUC AP AUC AP AUC AP AUC AP

E
uc

lid
ea

n EdgeBank 19.00 ± 0.00 73.27 ± 0.00 20.41 ± 0.00 78.16 ± 0.00 13.31 ± 0.00 59.65 ± 0.00 15.68 ± 0.00 64.33 ± 0.00 22.11 ± 0.00 59.68 ± 0.00
GAE 77.54 ± 0.33 74.21 ± 0.49 85.16 ± 0.78 87.06 ± 0.21 63.07 ± 0.93 65.35 ± 0.90 69.44 ± 0.56 73.61 ± 0.58 56.98 ± 0.19 60.40 ± 0.10
GRUGCN 84.60 ± 0.92 87.87 ± 0.58 86.12 ± 0.10 87.51 ± 0.54 79.38 ± 1.02 82.77 ± 0.75 82.86 ± 0.53 85.87 ± 0.23 60.08 ± 0.27 60.75 ± 0.03
EvolveGCN 83.88 ± 0.53 87.53 ± 0.22 83.34 ± 1.33 83.64 ± 1.33 76.85 ± 0.85 80.87 ± 0.64 76.82 ± 1.46 81.18 ± 0.89 58.74 ± 0.28 58.60 ± 0.15
DySAT 87.25 ± 1.70 76.88 ± 0.08 78.16 ± 2.44 80.84 ± 1.77 76.88 ± 0.08 80.39 ± 0.14 81.02 ± 0.25 84.47 ± 0.23 59.43 ± 0.01 60.25 ± 0.05

H
yp

er
bo

lic HGCN 89.16 ± 0.16 91.63 ± 0.22 72.58 ± 0.84 72.37 ± 0.75 86.11 ± 0.13 83.74 ± 0.15 90.64 ± 0.07 88.98 ± 0.09 55.45 ± 0.14 58.54 ± 0.07
HAT 89.29 ± 0.18 90.15 ± 0.14 75.84 ± 0.69 75.36 ± 0.65 84.02 ± 0.09 83.03 ± 0.15 90.52 ± 0.04 89.53 ± 0.04 55.33 ± 0.08 58.47 ± 0.05
HTGN-B 89.26 ± 0.17 91.91 ± 0.07 85.37 ± 0.79 88.12 ± 0.70 83.70 ± 0.33 83.80 ± 0.43 91.13 ± 0.14 89.52 ± 0.28 61.40 ± 0.12 62.16 ± 0.10
HTGN-L 88.56 ± 0.06 91.05 ± 0.11 85.14 ± 0.32 87.85 ± 0.41 82.98 ± 0.11 79.95 ± 1.26 91.33 ± 0.15 89.78 ± 0.15 61.27 ± 0.31 62.10 ± 0.32
HGWaveNet 89.96 ± 0.27 92.12 ± 0.18 88.92 ± 0.70 90.70 ± 0.03 89.51 ± 0.28 86.88 ± 0.29 92.37 ± 0.04 91.48 ± 0.05 59.01 ± 0.03 60.32 ± 0.13

Ours 94.13 ± 0.46 92.52 ± 0.47 94.17 ± 0.20 94.35 ± 0.50 93.31 ± 0.32 89.58 ± 0.41 97.19 ± 0.03 94.68 ± 0.05 61.68 ± 0.31 62.43 ± 0.06
Gain (%) + 4.17 + 0.40 + 5.25 + 3.65 + 3.80 + 2.70 + 4.82 + 3.20 + 0.28 + 0.27

Table 1: AUC (↑) and AP (↑) scores (%) of temporal link prediction on real-world dynamic graphs. For all methods, the best
results are in bold, the suboptimal results are underlined, results within one standard deviation of best results are in shaded
cells. Partial results are from (Bai et al., 2023) under the same experimental setup. These annotations also apply to Table 2.

Datasets DBLP Ia-Enron LFB HepPh UNVote

Metrics AUC AP AUC AP AUC AP AUC AP AUC AP

E
uc

lid
ea

n EdgeBank 77.73 ± 0.00 52.83 ± 0.00 14.42 ± 0.00 61.69 ± 0.00 11.36 ± 0.00 56.67 ± 0.00 14.24 ± 0.00 61.33 ± 0.00 9.55 ± 0.00 54.51 ± 0.00
GAE 69.55 ± 0.57 66.11 ± 0.42 64.18 ± 4.63 66.68 ± 1.92 73.99 ± 0.21 77.56 ± 0.23 73.15 ± 0.18 79.57 ± 0.93 42.10 ± 1.84 52.78 ± 1.06
GRUGCN 75.60 ± 1.60 78.55 ± 1.05 64.39 ± 1.74 67.91 ± 1.28 77.69 ± 1.03 81.07 ± 0.77 81.97 ± 0.49 84.78 ± 0.22 53.92 ± 3.78 61.19 ± 1.26
EvolveGCN 73.49 ± 0.86 77.11 ± 0.44 67.45 ± 2.46 68.94 ± 0.90 74.49 ± 0.89 78.33 ± 0.66 74.79 ± 1.61 79.04 ± 1.02 28.49 ± 8.93 45.42 ± 5.46
DySAT 79.74 ± 4.35 83.47 ± 3.01 63.80 ± 2.13 66.38 ± 1.45 74.97 ± 0.12 78.34 ± 0.07 79.01 ± 0.26 82.53 ± 0.25 68.42 ± 0.02 60.08 ± 0.03

H
yp

er
bo

lic HGCN 81.20 ± 0.19 83.28 ± 0.23 59.74 ± 1.05 59.33 ± 2.15 81.04 ± 0.14 80.59 ± 0.13 89.64 ± 0.27 87.87 ± 0.11 46.21 ± 3.46 36.96 ± 1.28
HAT 79.29 ± 0.15 82.58 ± 0.08 61.34 ± 2.86 60.49 ± 0.34 83.05 ± 0.10 82.96 ± 0.18 89.63 ± 0.05 88.34 ± 0.04 47.13 ± 0.95 36.48 ± 0.25
HTGN-B 81.74 ± 0.56 84.06 ± 0.41 62.93 ± 1.43 70.93 ± 0.76 82.21 ± 0.41 81.70 ± 0.46 90.11 ± 0.14 88.18 ± 0.31 50.15 ± 0.52 57.13 ± 3.60
HTGN-L 81.53 ± 0.01 83.14 ± 0.22 61.73 ± 1.54 70.40 ± 0.08 81.67 ± 0.14 78.36 ± 1.03 90.34 ± 0.14 88.45 ± 0.14 52.10 ± 0.50 56.00 ± 0.60
HGWaveNet 84.26 ± 0.46 86.19 ± 0.33 69.19 ± 0.17 74.01 ± 0.03 88.59 ± 0.28 86.00 ± 0.30 91.45 ± 0.05 90.21 ± 0.04 44.11 ± 4.87 52.37 ± 5.68

Ours 93.95 ± 0.43 92.56 ± 0.42 89.68 ± 0.63 90.68 ± 0.64 93.25 ± 0.36 89.54 ± 0.47 97.18 ± 0.03 97.67 ± 0.07 68.50 ± 1.47 71.83 ± 2.40
Gain (%) + 9.69 + 6.37 + 20.49 + 16.67 + 4.66 + 3.54 + 5.73 + 7.46 + 0.08 + 10.64

Table 2: AUC (↑) and AP (↑) scores (%) of temporal new link prediction on real-world dynamic graphs.

Baselines. To comprehensively validate the superiority of
our framework, we conducted extensive experiments using
a variety of competitive baseline methods. For Euclidean
space-based methods, we selected static graph model GAE
(Kipf & Welling, 2016) and several high-performing dy-
namic graph models, including GRUGCN (Seo et al., 2018),
EvolveGCN (Pareja et al., 2020), DySAT (Sankar et al.,
2020), and EdgeBank (Yu et al., 2023), all of which exhibit
strong performance in handling dynamic graph data. For
hyperbolic space-based approaches, we chose representa-
tive static and dynamic graph models. Static graph models
include HGCN (Chami et al., 2019) and HAT (Zhang et al.,
2021), which are effective in hyperbolic space graph embed-
ding. Dynamic graph models include HTGN-B (Yang et al.,
2022), HTGN-L (Yang et al., 2022), and HGWaveNet (Bai
et al., 2023), which offer effective solutions for dynamic
graphs in hyperbolic space. By evaluating these baselines,
we aim to highlight the relative advantages of our method
and demonstrate its efficacy in processing dynamic graph
data across different geometric spaces.

Tasks and Metrics. Our downstream tasks include tem-
poral link prediction and temporal new link prediction.
Specifically, given observed snapshots of a temporal graph
G = {G1, . . . ,Gt}, the temporal link prediction task is de-

fined as predicting links in the next snapshot Gt+1 , and
the temporal new link prediction task aims to identify new
links in Gt+1 that do not exist in Gt. All methods employ
the Fermi-Dirac function (Eq. 20) to perform these two link
prediction tasks on the test sets of various datasets, and use
AUC (Area Under the Curve) and AP (Average Precision)
as evaluation metrics. To avoid errors due to randomness,
each AUC and AP score is the average of five experimental
results, with the standard deviation reported.

5.2. Experimental Results

Temporal Link Prediction. The results of temporal link
prediction experiments for our method and all baseline
methods across different-scale datasets are shown in Ta-
ble 1. Our method outperforms all baseline methods in both
AUC and AP metrics across all datasets, with particularly
notable improvements on Ia-Enron (AUC +5.25%, AP
+3.65%), LFB (AUC +3.80%, AP +2.70%), and HepPh
(AUC +4.82%, AP +3.20%). These results demonstrate
the significant advantage of our method in temporal link
prediction, showing stability and reliability across datasets
with various scales. Compared to the suboptimal results, our
method improves AUC and AP by an average of 3.66% and
2.04%, respectively. While hyperbolic methods outperform
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Figure 5: Efficiency comparison on HepPh and LFB.
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Figure 6: The influence of k on HepPh and LFB.

Euclidean methods, they still fall short of our method. This
is because our method effectively captures the geometric
heterogeneity between different local structures in graph,
thereby reducing representation distortion.

Temporal New Link Prediction. The results of tempo-
ral new link prediction experiments for all methods across
different-scale datasets are shown in Table 2. These re-
sults demonstrate that our method outperforms all baseline
methods on both AUC and AP metrics across all datasets.
Notably, it achieves a 20.49% increase in AUC and a 16.67%
increase in AP on the Ia-Enron dataset, a 9.69% increase
in AUC on the DBLP dataset, and a 10.64% increase in
AP on the UNVote dataset. On average, it improves AUC
by 8.13% and AP by 8.94% compared to the suboptimal
results. These substantial improvements validate the effec-
tiveness of our proposed link evolution loss in capturing
dynamic changes at a fine-grained link level, optimizing
the embedding distribution to better align with the potential
future distribution, and thus enhancing the performance of
temporal new link prediction.

Efficiency Comparison. We compared the training and
inference times of Euclidean SOTA GRUGCN, hyperbolic
SOTA HGWaveNet and our method on HepPh and LFB
datasets. As illustrated in Figure 5, our method achieves
the highest computational efficiency. This is because, un-
like HGWaveNet, which employs an expansion operation
for historical information and embeds the graph data into
the hyperbolic space at a coarse granularity, our method
utilizes a straightforward aggregation layer to integrate his-
torical information while leveraging complex hyperbolic
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Figure 7: The influence of embedding dimension on
HepPh.

Tasks Temporal Link Prediction Temporal New Link Prediction

Metrics AUC AP AUC AP

Full 93.31 ± 0.32 89.58 ± 0.41 93.25 ± 0.36 89.54 ± 0.47

w/o DGM 90.89 ± 0.08 87.82 ± 0.14 90.48 ± 0.10 87.07 ± 0.06
∆(%) - 2.42 - 1.76 - 2.77 - 2.47

w/o TSA 92.10 ± 0.02 88.53 ± 0.05 92.16 ± 0.05 88.38 ± 0.11
∆(%) - 1.21 - 1.05 - 1.09 - 1.16

w/o LEL 91.77 ± 0.08 88.05 ± 0.04 88.40 ± 0.02 86.05 ± 0.05
∆(%) - 1.54 - 1.53 - 4.85 - 3.49

Table 4: Ablation study.

computations only for specific local structures.

Ablation Study. To validate the effectiveness and analyze
the importance of key components in our method, we de-
signed three ablation strategies on HepPh: (i) excluding
DGM module (denoted as w/o DGM), using Euclidean em-
bedding; (ii) excluding the TSA layer (denoted as w/o TSA),
using the output representations from the previous times-
tamp as hidden state of next timestamp; (iii) excluding LEL
(denoted as w/o LEL). The results of these ablation exper-
iments conducted on LFB are presented in Table 4. The
results indicate that the DGM module plays the most critical
role, while the link evolution loss has the greatest impact
on temporal new link prediction. Additionally, the temporal
state aggregator layer also contributes to the improvement
of model performance.

Hyperparameter Analysis. We study the impact of two
hyperparameters in our method:

1) k of the k-hop ego-graph. We varied the value of k in
ego-graphs of the DGM module, ranging from 1 to 6. We
conducted temporal link prediction and temporal new link
prediction experiments on the HepPh and LFB datasets,
respectively, with the results shown in Figure 6. The results
indicate that when k is less than 4, both AUC and AP values
are suboptimal. When k is 4 or greater, these metrics ap-
proach optimal values and stabilize. This suggests that a k
value of 4 provides a comprehensive description of the local
subgraph structure, consistent with the findings of (Adcock
et al., 2013). Note that when the value of k is too large, our
method generally collapses into using only Euclidean space
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Link Prediction Task New Link Prediction Task

DBLP la-Enron DBLP la-Enron

AUC AP AUC AP AUC AP AUC AP

Clean 93.11 92.32 91.43 89.17 91.23 90.14 89.59 87.16

5% (N) 90.60 89.69 86.26 79.91 88.63 86.90 85.33 79.17
10% (N) 88.49 89.50 83.24 76.87 86.82 86.89 81.69 74.83
20% (N) 82.68 84.86 81.78 77.38 79.65 80.49 79.52 73.77

5% (M) 92.16 89.79 87.91 81.17 89.57 86.26 88.26 81.84
10% (M) 91.91 89.15 87.61 79.59 89.37 84.66 88.57 81.06
20% (M) 92.25 88.17 89.19 80.43 89.36 83.30 89.06 80.80

Table 5: Performance under varying levels of noisy edges
and missing edges on DBLP and Ia-Enron Datasets.

embeddings (as most graphs are not purely tree-like), result-
ing in performance similar to the ablation setting without
DGM, while still maintaining decent performance.

2) Embedding dimension. We varied the embedding di-
mensions to 2, 4, 8, and 16, and performed temporal
link prediction experiments with our method, Euclidean
SOTA GRUGCN, and hyperbolic SOTA HGWaveNet on
the HepPh and LFB datasets. The results, illustrated in Fig-
ure 7, demonstrate that across different embedding dimen-
sions, our method consistently outperforms both Euclidean
and hyperbolic SOTA methods. Moreover, even when the
embedding dimension is reduced to just 2, our method does
not experience a significant drop in accuracy, unlike other
methods. It is able to maintain a relatively high precision of
approximately 95%, which demonstrates the strong capabil-
ity of our approach in accurate modeling. This suggests that
our method can effectively capture geometric information,
even in lower-dimensional representation spaces. Optimal
performance is achieved when embedding dimension is 16.

Robustness Analysis. To assess the robustness of our frame-
work under more challenging conditions, we conducted addi-
tional experiments on DBLP and Ia-Enron datasets with
two types of graph corruption: (1) Noisy edges (N), where
we randomly inserted 5 %, 10 %, and 20 % of non-existing
edges into the graph; (2) Missing edges (M), where we ran-
domly deleted 5 %, 10 %, and 20 % of the original edges.
The results, presented in Table 5, show that our method
maintains high prediction accuracy across all corruption
levels. Even when 20 % of edges are added or removed, the
performance only degrades marginally. This demonstrates
that our framework exhibits strong resistance to both noise
and partial missingness in the underlying graph structure,
confirming its robustness in imperfect real-world settings.

Extension to Spherical Geometry. Hyperbolic space is a
complete, simply connected Riemannian manifold of con-
stant negative curvature. To investigate whether positive
curvature might benefit link prediction task, we replaced
the hyperbolic component of our method with a spherical

Link Prediction Task New Link Prediction Task

DBLP la-Enron DBLP la-Enron

AUC AP AUC AP AUC AP AUC AP

Euclidean 96.31 93.86 91.77 88.93 96.65 97.11 92.73 89.12
Spherical 96.60 93.49 92.40 88.62 96.30 96.72 92.95 88.97

Our 97.19 94.68 93.31 89.58 97.18 97.67 93.25 89.54

Table 6: Link prediction and new link prediction perfor-
mance under different geometric embeddings.

space of constant curvature c = +1.0, while retaining the
Euclidean component unchanged. Specifically, the entire
graph is embedded either in Euclidean space (c = 0.0) or
in spherical space, and experiments are re-run on HepPh
and LFB. Performance is evaluated in AUC and AP, and
results are presented in Table 6. The results indicate that the
spherical embedding does not improve upon either the Eu-
clidean baseline or our combined hyperbolic and Euclidean
approach. We attribute this to the fact that spherical geome-
try is most effective when the data exhibit strong periodicity
or closed-loop structures. Neither HepPh nor LFB pos-
sesses such global symmetries, so spherical embeddings fail
to capture additional relational nuances. Thus, embedding
geometry must align with graph structure.

6. Conclusion
In this paper, we propose a multi geometric dynamic frame-
work to overcome the limitations of single geometric static
or dynamic graph models. By combining Euclidean and hy-
perbolic geometries, our method effectively captures vary-
ing local structures. Additionally, the link evolution loss
enhances predictive accuracy by modeling the intricate dy-
namics of link appearance and disappearance over time. Ex-
periments show that our method significantly outperforms
existing methods, including both Euclidean and hyperbolic
models, offering a new paradigm for temporal link predic-
tion through multi geometric perspective.
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A. Notations
The descriptions of all the symbols used in the paper are provided in Table 7. In the order of appearance in the paper.

Symbols Descriptions

G Discrete dynamic graph denoted by snapshots.
V Entity set of discrete dynamic graph G.
E Link set of discrete dynamic graph G.
T Timestamp set of discrete dynamic graph G.
t Current timestamp.
Gt Snapshot of dynamic graph at timestamp t.
Et Link set of snapshot Gt.
t+ Future timestamps relative to timestamp t.
Pr(·) Probability estimation function.
ŷuv Predicted 0-1 label indicating the existence of the

link (u, v).
ŷabsentuv Predicted 0-1 label indicating the non-existence of

the link (u, v).
Bn
c N -dimensional Poincaré disk model with curvature

c.
gH Riemannian metric of manifold H.
gB Riemannian metric of manifold B.
gE Euclidean norm.
TxBn

c Tangent space at a point x in manifold Bn
c .

δi,t Hyperbolicity of entity i’s ego-graph at timestamp
t.

ℓ(u1, u2) Shortest path length between u1 and u2.

Symbols Descriptions

XB
t Embedding matrix in hyperbolic space modeled by

poincaré disk model at timestamp t.
XE

t Embedding matrix in Euclidean space at timestamp
t.

Fδi,t≈0 Feature matrix of the tree-like ego-graph centered
of entity i at timestamp t.

Fδi,t ̸≈0 Feature matrix of the non-tree-like ego-graph cen-
tered of entity i at timestamp t.

σ⊗c

Geometric non-linear activation with different cur-
vatures c.

ϕ(·) Nonlinear activation function such as hyperbolic
tangent function.

γ(·) Scalar function with default setting of f(x) = x.
α Attention vector corresponding to the set of past

timestamps.
Enew Link set satisfying Enew ⊆ Et and Enew ∩ Et−1 = ∅
Elost Link set satisfying Elost ⊆ Et−1 and Elost ∩ Et = ∅
| · | Absolute value function.
τ Penalty term, which is typically set to 0.5.

Table 7: Notations.

B. Background of Geometry
B.1. Euclidean Geometry

Euclidean geometry is a fundamental branch of mathematics that examines the properties and relationships of shapes and
spaces with zero curvature. This geometry is based on a flat, infinite plane where parallel lines never converge, and the sum
of the angles in a triangle always equals 180 degrees. It forms the basis for most classical and contemporary mathematical
modeling and neural network operations.

In Euclidean space, volume grows polynomially with the growth of radius, and the majority of neural network models are
designed to operate within this space. Operations such as convolution, pooling, and activation functions are performed using
basic arithmetic operations like addition, subtraction, multiplication, and division.

B.2. Hyperbolic Geometry

Hyperbolic geometry represents a non-Euclidean geometric model with constant negative curvature, contrasting sharply with
the zero curvature of Euclidean space. The negative curvature in hyperbolic space leads to exponential growth of volume
with respect to the growth of radius, which contrasts with the polynomial growth in Euclidean space. This characteristic
allows hyperbolic models to efficiently handle data with hierarchical or complex structures, which are difficult to represent
in Euclidean space.

Hyperbolic space can be modeled using several isomorphic representations, including the Lorentz model, Poincaré disk
model, Poincaré half-space model, and Klein model. In our study, we employ the Poincaré disk model due to its advantageous
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Parameters DBLP Ia-Enron LFB HepPh UNVote UNLegis

# Layers of Encoder 3 4 3 3 3 3
# Snapshots of Test 3 3 3 3 6 3
Learning Rate 0.0005 0.001 0.005 0.001 0.01 0.01
Weight Decay 0.0000005 0.0000005 0.0000005 0.0000005 0.0000005 0.0
Hidden Layer Dimension 16 16 16 16 16 16
Dropout Rate 0.0 0.0 0.0 0.0 0.1 0.0
Initial Curvature Setting None None None None None None
r in Fermi-Dirac Decoder 2.0 2.0 2.0 2.0 2.0 2.0
t in Fermi-Dirac Decoder 1.0 1.0 1.0 1.0 1.0 1.0

Table 8: Parameter settings.

properties for graph-based data. The Poincaré disk model Bn is defined as:

Bn = {x ∈ Rn : ∥x∥ < 1},

where ∥ · ∥ denotes the Euclidean norm.

In this model, the distance between points x and y is given by:

d(x, y) = arcosh

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
.

Key operations in hyperbolic geometry include:

• Möbius Addition ⊕:

x⊕ y =

(
1 + 2⟨x, y⟩+ ∥y∥2

)
x+

(
1− ∥x∥2

)
y

1 + 2⟨x, y⟩+ ∥x∥2∥y∥2
.

• Möbius Scalar Multiplication ⊗:

r ⊗ x =

{
tanh

(
r artanh(∥x∥) x

∥x∥

)
, if x ∈ Bn,

0, if x = 0.

• Möbius Vector Multiplication M⊗(x):

M⊗(x) = tanh

(
∥Mx∥
∥x∥

actanh(∥x∥)
)

Mx

∥Mx∥
.

These operations leverage the hyperbolic space’s properties to handle complex relationships and structures, which are
not easily manageable in Euclidean space. Our use of the Poincaré disk model aims to capture these intricate structures
effectively in our experiments.
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Tasks Temporal Link Prediction Temporal New Link Prediction

Metrics AUC AP AUC AP

E
uc

lid
ea

n EdgeBank 65.78 ± 0.00 16.30 ± 0.00 50.04 ± 0.00 19.05 ± 0.00
GAE 50.62 ± 0.53 51.81 ± 0.09 34.17 ± 1.59 39.97 ± 0.50
GRUGCN 53.26 ± 0.15 56.39 ± 0.17 33.08 ± 0.25 38.89 ± 0.45
EvolveGCN 57.55 ± 0.21 58.62 ± 0.71 39.27 ± 0.14 41.48 ± 0.38
DySAT 53.95 ± 0.28 56.69 ± 0.11 34.24 ± 0.39 39.76 ± 0.17

H
yp

er
bo

lic HGCN 51.61 ± 0.51 52.83 ± 0.45 37.36 ± 3.85 42.14 ± 2.75
HAT 53.70 ± 1.24 54.87 ± 1.08 39.31 ± 4.61 43.79 ± 0.39
HTGN-B 52.89 ± 0.50 52.88 ± 0.37 40.51 ± 0.01 43.89 ± 1.01
HTGN-L 57.87 ± 0.71 56.89 ± 0.38 39.91 ± 1.52 42.09 ± 1.22
HGWaveNet 55.63 ± 0.22 56.99 ± 0.51 32.55 ± 0.86 38.42 ± 0.25

Ours 80.07 ± 0.47 71.93 ± 0.35 74.56 ± 0.41 68.59 ± 0.44
Gain (%) + 22.2 + 13.31 + 24.52 + 24.7

Table 9: AUC (↑) and AP (↑) scores (%) of temporal link prediction and temporal new link prediction on USLegis graphs.
For all methods, the best results are in bold, the suboptimal results are underlined.

C. Experimental Details

Algorithm 1 Cross-Geometric Dynamic Link Prediction Framework
Input: Graph snapshots {Gt}Tt=0, where Gt = (Vt, Et)
Parameter: Initial hidden state H0, number of hops k for ego-graph
Output: Final graph representation HT

1: for each timestamp t = 0 to T − 1 do
2: Dynamic Geometric Modeling:
3: for each node vi ∈ Vt do
4: Compute k-hop ego-graph G(k)i,t

5: Calculate hyperbolicity δi,t of G(k)i,t

6: if δi,t ≈ 0 then
7: Map features FE

i,t into hyperbolic space
8: Generate hyperbolic embedding FB

i,t

9: else
10: Generate Euclidean embedding FE

i,t

11: end if
12: end for
13: Aggregate cross-geometric embeddings to form Xt

14: Temporal State Aggregator:
15: Map historical representations {Z0,Z1, . . . ,Zt−1} to higher-dimensional space
16: Compute attention scores αi for i = 0 to t− 1
17: Predict current hidden state Ĥt =

∑t−1
i=0 αi · Zi

18: Identify edge sets Enew and Elost
19: Compute loss Lt based on Enew and Elost
20: Optimization:
21: Update model parameters using gradient descent:
22: θ ← θ − η · ∇θ(LLEL,t + LLP,t)
23: end for
24: return Final graph representation HT

C.1. Algorithm

To clearly illustrate the workflow of our proposed method, we provide a detailed description of its core steps here. Initially, for
each timestamp, we extract the k-hop ego graph for each node from the given graph snapshot and compute its hyperbolicity
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to determine the appropriate embedding space. Subsequently, by leveraging cross-geometric embeddings and temporal state
aggregation, we generate the node representations for the current timestamp. Finally, we optimize the link evolution loss
function to enhance the accuracy of dynamic link prediction. The detailed pseudocode is provided in Algorithm 1.
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Figure 8: Efficiency Comparison on Ia-Enron and USLegis.
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Figure 9: Efficiency Comparison on UNVote and DBLP.

C.2. Data Preprocessing

Partial datasets are from (Yang et al., 2021), and thus the same dataset preprocessing methods are employed. The specific
details are as follows:

LFB (Viswanath et al., 2009) is a social network graph of Facebook Wall posts where each entity is a user and each link is
the interaction related to their wall posts. We take the activates over the last three years in the dataset as 36 snapshots. The
FB dataset is associated with a large number of users but very sparse connections.

HepPh (Leskovec et al., 2005) is a citation network related to high energy physics phenomenology, which is collected
from the e-print arXiv website. Each entity represents a paper, and an link represents one paper citing another. The data
covers papers in the period between January 1993 to April 2003 (124 months in total). It is a directed graph network, but we
learn and predict as if it was an undirected graph. According to the real physical meaning, we use three months of data per
snapshot and use the last 36 months as the full dataset in our work.

DBLP (Hajiramezanali et al., 2019) is an academic cooperation network, including the academic cooperation of 315
researchers from 2000 to 2009. Each entity on the graph represents an author, and an link denotes a co-authorship relation.
We split the dataset by year and obtain 10 snapshots.

The remaining datasets are processed using similar preprocessing methods. The details are as follows:

UNVote (Poursafaei et al., 2022) is a dataset of roll-call votes in the United Nations General Assembly from 1946 to
2020. Each entity represents a nation. If two nations both voted ”yes” for an item, then the link weight between them is
incremented by one. We split the dataset by year and obtain 78 snapshots.
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Figure 10: The influence of embedding dimension on UNVote.
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Figure 11: The influence of embedding dimension on LFB.

Ia-Enron (Rossi & Ahmed, 2015) is a dataset of edges that represent emails sent from one employee to another. There
are 50572 links, and each of them contains timestamp information. Links refer to 151 unique entity IDs in total. The dataset
comprises link data over 38 months. However, since the records for the first and last months are incomplete, they are merged
with the second month and the second-to-last month, respectively. Consequently, the dataset is partitioned into 36 snapshots
based on the months.

In the appendix, we additionally present the comparative experimental results of our method on a new dataset. The details of
this dataset are as follows:

USLegis (Poursafaei et al., 2022) is a senate co-sponsorship graph which documents social interactions between legislators
from the US Senate. The link weights specify the number of times two congress persons have co-sponsored a bill in a given
congress. The dataset contains 12 months of data, comprising 225 entities and 60,396 links. It is divided into 12 snapshots
based on the months, and split into training and test sets with a 9:3 ratio.

C.3. Environments

The hardware environment consists of an Intel Core i7-13700KF CPU with 16 cores and 24 threads, running at 3.40GHz,
paired with an NVIDIA GeForce RTX 4070Ti GPU that has 12GB of VRAM and 7680 CUDA cores. The system is
equipped with 16GB of RAM and operates on Windows 11. Programming is performed using Python 3.10, with PyTorch
1.13.1 and torch geometric 2.2.0 for deep learning, CUDA 11.7 for GPU acceleration, and package management handled by
Anaconda 3.0. For processing large datasets like UNVote and HepPh, a high-performance server is utilized, featuring 4
Intel Xeon Gold 5220 CPUs, each with 18 cores and 36 threads, clocked at 2.20GHz. This server also includes 4 NVIDIA
Quadro RTX 6000 GPUs, each with 24GB of VRAM and 4608 CUDA cores, and is equipped with 500GB of RAM. The
server runs on Ubuntu 18.04.6.
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Figure 12: The influence of embedding dimension on Ia-Enron.
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Figure 13: The influence of embedding dimension on DBLP.

C.4. Parameter Settings

Our method primarily depends on the following hyperparameters: hidden layer dimension, number of test set snapshots,
learning rate, weight decay, number of encoder layers, dropout rate, initial curvature setting (where None indicates that it is
trainable), and the parameters r and t for the Fermi-Dirac decoder. The parameter settings used for different datasets are
detailed in Table 8.

D. Supplementary Experiments
D.1. Further Performance Comparison

We conducted experiments on a new dataset, comparing the performance of various hyperbolic and Euclidean dynamic
graph models with our method on both temporal link prediction and temporal new link prediction tasks. The results, as
shown in Table 9, demonstrate that our method consistently outperforms all baseline methods. Specifically, it achieves an
AUC score improvement of 22.2% and an AP score improvement of 13.31% on the temporal link prediction task, while on
the temporal new link prediction task, the AUC score increases by 24.52% and the AP score increases by 24.7%.

D.2. Further Efficiency Comparison

Due to space limitations, only a subset of the dataset efficiency comparisons is presented in the main paper. We include
the remaining efficiency comparisons for other datasets here. Efficiency comparisons on the Ia-Enron and USLegis
datasets are shown in Figure 8, while comparisons on the UNVote and DBLP datasets are illustrated in Figure 9. The results
indicate that our method consistently demonstrates the best efficiency on USLegis datasets.
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Figure 14: The influence of embedding dimension on USLegis.

D.3. Further Hyperparameter Analysis

Due to space constraints, the main paper only presents the analysis of the hyperparameter embedding dimension on a subset
of datasets. We provide the remaining analyses here. The analysis of embedding dimension on the UNVote dataset is shown
in Figure 10, on the LFB dataset in Figure 11, on the Ia-Enron dataset in Figure 12, on the DBLP dataset in Figure 13,
and on the USLegis dataset in Figure 14. The results indicate that the embedding dimension has minimal impact on the
performance of our mehtod, with the best performance observed at a dimension of 16. Additionally, it outperforms both the
hyperbolic SOTA method HGWaveNet and the Euclidean SOTA method GRUGCN across all dimension values.
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