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Abstract

Knowledge base embeddings are a widely applied technique, used for instance to improve
link prediction tasks on knowledge graphs by using the geometric regularities occurring dur-
ing learning. Techniques where ontological concepts are interpreted as boxes have shown
to be particularly useful in this context, as they are both suitably expressive and of low
computational complexity. However, to use those regularities for learning, it is necessary
to determine and understand the possible biases in the approach: how do we distinguish
what is learned due to regularities in the data from what is simply based on the repre-
sentational limitations of the embedding? In this paper, we establish that there are some
severe limitations in expressivity when modeling description logic ontologies with box em-
beddings in intended target languages such as ELHO(0)*. We illustrate that, under some
weak assumptions, box semantics always satisfy Helly’s Property, and is thus too weak to
semantically capture ELHO(0)* in an adequate way. We then characterize how so-called
Helly-satisfiable ELHO(0)* ontologies can be determined. We discuss the implications of
this result with respect to existing box embedding approaches and real-world use cases.

1. Introduction

Knowledge Graphs (KGs)(Hogan et al., 2021) are a widely used representation of diverse
knowledge in form of (subject,predicate,object)-triples, e.g., (alice,loves,bob). As KGs
tend to be highly incomplete, it is necessary to predict missing triples. For this task,
Knowledge Graph Embedding (KGE) has turned out to be useful, as it allows for using
geometric regularities for learning. Though these approaches showed a promising result
quality, they do not incorporate background knowledge. Several techniques have been
proposed to include background knowledge in form of an ontology. Approaches are, e.g.,
based on sequence modeling, graph propagation and Knowledge Base Embeddings (KBEs)
(see (Chen et al., 2025) for a survey). The basic idea of KBE is to model individuals as
points in a geometric space, concepts as convex sets and relations and logical operations as
geometric operations between the individuals or concepts. Subconcept relations are modeled
as subset relations and an individual belongs to a concept if its representation is a member
of the respective convex set, mimicking the set-based Tarskian semantics. This ensures
that newly inferred triples adhere to the background knowledge. There are many different
KBE approaches, varying in the choice of the representations of concepts and relations. For
instance, they can be based on representing concepts as spheres (Kulmanov et al., 2019),
closed convex cones (Ozcep et al., 2020) or boxes (Peng et al., 2022; Xiong et al., 2022; Yang
et al., 2025). To gain a trustworthy result for link prediction, it is necessary to determine
whether the ontology has been modeled correctly. Additionally, it is necessary to ensure
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that the embedding represents the geometric regularities of the training data, and not a bias
imposed by possible restrictions of the embedding approach. This leads us to two questions
that need to be answered for every KBE approach:

(1) Is the training procedure of the approach able to find an embedding where geometric
regularities precisely reflect the information of the knowledge base?

(2) Does such an embedding always exist? If not, under what conditions does it exist?

We will focus here on the more general question (2), which is a basis for particular improve-
ments in the training procedure considered in (1). These questions have been discussed for
some specific KBE approaches, by Lacerda et al. (2024) in the context of the description
logic ELH and convex sets and by Ozcep et al. (2020) in the context of closed convex cones.
Abboud et al. (2020) and Boratko et al. (2021) considered the expressivity of box embed-
dings, however, boxes were used to model relations and not concepts. Here, we are following
the lines of Lacerda et al. (2024) but focusing on embeddings based on boxes. They are
widely used as they exhibit a low computational cost and are able to represents various
fragments of the description logic ELHO(0)* (the exact expressivity varies for different
approaches). However, their expressivity has not been thoroughly examined.

Though, Bourgaux et al. (2024) pointed out that box embedding approaches exhibit
problems. For instance, some approaches are not able to model consequences of axioms.
This means that whilst an axiom might hold in a geometric representation, its consequences
might not necessarily be satisfied (thus it is not a full model of the knowledge base). These
problems are, however, problems exhibited by specific box embedding approaches. We want
to dig deeper into this problem and extend the work of Bourgaux et al. (2024) by under-
standing the general pattern. Assume we are given an optimal box embedding approach,
based on some basic assumptions about box semantics. It is assumed to be optimal in
the sense that, first, we do not consider its learnability but assume that the embedding is
findable. Second, it only imposes restrictions that all box embedding approaches have. Is it
then possible to model each ELHO(o)*-ontology such that the ontology is satisfiable if and
only if there is a box model of it? In other words, are the limitations of current box embed-
ding approaches based only on the specific (learning) approach used, or are these limitations
based on general properties of box semantics? We show in the following that, in addition
to restrictions imposed by specific box embedding techniques, also the second is the case.
Thus it is in fact not possible to find a correct box embedding for each £ELHO(o)*-ontology
under some weak and widely accepted assumptions on box semantics.! This result is based
on an analysis of Helly’s Property (going back to Helly (1923)), a well-known fact about
intersections of convex sets that can be applied to box semantics. Based on this property,
we define the notion of Helly-satisfiable ontologies. We then illustrate the relevance of this
result for real-world use cases, namely that it leads to unwanted inferences in the embedding
space.

The paper is structured as follows: After discussing the preliminaries on description
logics, boxes and box embeddings in Sec. 2, Sec. 3 discusses the expressivity of box embed-
dings. In Sec. 4, the implications of this result to real-world use cases are discussed. The
paper ends with a short conclusion. The proofs can be found in the appendix.

1. These general standard assumptions on box embeddings, outlined in more detail below, include that
conjunction is modeled as set-intersection and that the bottom concept is modeled as the empty set.
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Name Syntax Semantics

top T A

bottom 1 %)

nominal {a} {a®}

conjunction cnD ctnD?

existential restriction R.C {reA|TyeA:(z,y)e R AyeCT)
role concatenation (RioRo)* | {(a,c)|TbeA:(a,b)eRE,(b,c) e RS}

Table 1: Syntax and semantics of ELHO(o)* (Baader et al., 2005)

2. Preliminaries

In the following, description logics are introduced in Sec. 2.1, the definition of boxes in
Sec. 2.2 and box embeddings in Sec. 2.3.

2.1. Description Logics

Ontologies are widely used to represent structured information of the world. One way of rep-
resenting ontologies is with the help of Description Logics (DL) (Baader et al., 2007). We are
focusing here on the ELHO (o) -fragment of the well-known description logic £L£*"(Baader
et al., 2005) due to its computational advantages, as subsumption is polynomial. Promi-
nent examples for ontologies in ELHO(0)* are, e.g., SNOMED (Donnelly, 2006) for clinical
documentation and the Gene Ontology (Ashburner et al., 2000) for modeling genes.

A DL vocabulary is given by a set of individual names I, a set of role names R and
concept names C. The ELHO(o)* concepts over CUR are described by the grammar

C— Al|{a}|L|T|CNC|3IRC

where A € C is an atomic concept, a € I is an individual name, R € R is a role symbol,
and C' stands for arbitrary concepts. {a} denotes a nominal concept. An ontology O is
defined as a pair O = (T,.A) of a terminological box (Tbox) T and an assertional box (Abozx)
A. A Tbox consists of general inclusion azioms (GCIs) C & D (“C' is subsumed by D”)
with concept descriptions C, D, role inclusions Rio---o R; © R and role hierarchies Ry € R.
Each ontology can be translated adhering to the following normal forms: all general concepts
inclusions can be represented as follows (for C,D e C,E € Cu{L})

CcFE Cci3iR.D CnDcE JR.CcEFE

and all role inclusions can be represented as R; & R or Ry o Ro £ R for R, R1, Ry € R.

An Abox consists of a finite set of assertions, i.e., facts of the form C(a) or of the form
R(a,b) for a,beI,C e C and R e R. An interpretation is a pair (A,-T) consisting of a set
A, called the domain, and an interpretation function - which maps individual names to
elements in A, concept names to subsets of A, and role names to subsets of A x A. The
semantics of arbitrary concept descriptions for a given interpretation Z is given in Table 1.
A concept inclusion C € D is represented as CT ¢ D, a role inclusion Ry o---0o Rj, € R as
Rfo...0 Rf ¢ RT. An interpretation Z models an Abox axiom C/(a), for short Z = C(a), iff
a? € CT and it models an Abox axiom of the form R(a,b) iff (a®,b?) € RZ. An interpretation
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Figure 1: (a) Example for an embedding with TransBox; (b) project management triangle
(Van Wyngaard et al., 2012)

is a model of an ontology (T,.A) iff it models all axioms appearing in 7 U.A. An ontology
O entails a (Thbox or Abox) axiom az, for short O k az, iff all models of O are also models
of ax. In this paper, the focus lies on finite ontologies.

2.2. Boxes

Boxes are chosen as a basis for many embeddings due to their good computational properties
and simple representation. A box in some R"™, for n € N, is defined as an axis-aligned
hyperrectangle. It can be represented by its lower corner [. € R" and upper corner u. € R",
with I, < u., where < is applied element wise. Then, Box(C) = {z e R" | l. < x < u.}. Let
BoxHull(A) be the smallest box containing all elements of a set A. This can be defined as

BoxzHull(A) ={(z1,...,2,)" | x; e ConvHull({a; | a € A}) for 1 <i<n}

where ConvHull(X) is the convex hull of X and a; is the value at the i-th dimension of
vector a. The set B" = {Box Hull(X) | X € R"}, thus the set of all boxes in R” including the
whole space R" and the empty set, is closed under set intersection. Properties of boxes are
widely researched, e.g., in the context of intersection graphs and bozicity (Roberts, 1969).

2.3. Box Embeddings

KBE is a technique for using geometric regularities for learning purposes, especially for
link prediction. It is based on the core idea of modeling concepts as convex regions in
a low dimensional vector space. Then, individuals are interpreted either as points or as
nominal concepts, and logical operations are modeled as some geometric operations in the
space. For instance, the conjunction of two concepts can be represented as the intersection
of the regions representing the respective conjuncts. We are focusing here on representing
these convex sets as boxes, as they show a good tradeoff between expressivity and compu-
tational properties. Especially, they are closed under intersection (in contrast to spheres)
and easy to be handled computationally (in contrast to cones). Box embedding approaches
in the context of KBE are BoxEL (Xiong et al., 2022), ELBE (Peng et al., 2022), Box’EL
(Jackermeier et al., 2024) and TransBox (Yang et al., 2025), which mainly differ in the
representation of relations. Some represent individuals as points, some as nominals (thus as
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small boxes), and TransBox interprets conjunction as approximation of intersection. They
are considering ELHO(o)* or a fragment of it. An example for a box embedding based on
TransBox can be seen in Fig 1 (a). It is based on the idea of modeling relations also as
boxes and states that a triple (a,r,b) holds if a € box(r) + b. In the example, the concept
“Pizza” and the role “eats” are represented as boxes, the individual “alice” as a point in
the space. Then it is the case that “Alice eats pizza” if the point representing Alice is part
of the box representing Jeats.Pizza. This box is determined by adding up the centers resp.
the offsets of the boxes of “Pizza” and “eats”.

Box embeddings are also of interest in other areas, e.g., probabilistic embeddings (Vilnis
et al., 2018) and query embedding (Ren et al., 2020). Boxes are also used for modeling
relations without considering concepts (Abboud et al., 2020).

As discussed by Bourgaux et al. (2024), KBE approaches need to fulfill the following
properties: An embedding £ resulting of the application of a KBE approach is called entail-
ment closed if every GCI, Abox and role assertion entailed by the ontology is also entailed
by the embedding. This clearly implies that £ also satisfies O. It is weakly faithful if the
set of all GCI, Abox and role assertion that holds in the embedding model is consistent
with the ontology. If these two are fulfilled, it remains to be shown that the existence of
an embedding of O implies that O is satisfiable and that for every satisfiable ontology O
an embedding can be found. Thus, the embedding should actually behave like a Tarskian
model of the ontology and for each satisfiable ontology O, it should be possible to find an
embedding that is a model of O. As argued by Bourgaux et al. (2024), these features are
necessary in order to obtain an expressive and well-behaved embedding approach. However,
they are not fulfilled for most of the existing box embedding approaches.

As the aim of this work is not to discuss the expressivity of one specific box embedding
approach and as all of the existing approaches have some limitations regarding their expres-
sivity, we present a generic box embedding approach as a basis for the examination of the
expressivity. Based on some basic assumptions on the embedding, we show that it is not
possible to express all ELHO(0)* -ontologies correctly, independently of the box embedding
approach used. After considering those general limitations in the next section, we come
back to the discussion of box embedding approaches in practice in Sec. 4.

3. The Expressivity of Box Embeddings

In the following, first a generalized box interpretation is presented that is used afterwards
to discuss limitations of box embeddings.

3.1. A Generalized Box Interpretation

In the following, the general expressivity of box embeddings is considered. Therefore, we first
determine basic properties of box embedding approaches and use them to define a common
notion of box interpretation that is used as basis for further considerations. Classically,
all concepts are interpreted as boxes: the top concept as the whole space R", the bottom
concept as the empty set, and other concepts as specific boxes. Furthermore, conjunction
of concepts is typically defined as set-intersection, with the exception of TransBox (Yang
et al., 2025) where an approximated intersection is considered. We use here the classical
intersection. The main difference between the various approaches lies in the definition of
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relations used. To define a well-behaved semantics for relations, we interpret them as sets
over R" x R™, however with the added condition that existential role restrictions always
transform boxes into boxes. We arrive at the following definition.

Definition 1 A box interpretation ¢ is a structure (Z,-%), where = = R"™ for some n € N,
and where ¢ maps each concept name A € C to some box in B, each individual name c €1
to a point & € Z, each nominal concept {c} to the box {c¢}, and each role R € R to a subset
RS ¢ Ex E such that for every B € B*: R™'(B) € B". A box interpretation for arbitrary
ELHO(o)*-concepts is defined recursively as

(T)¢ =% (1) =0 (CnD)*=C*nD"
(3R.C)* = {z € 2| there is y € = with (x,y) € R® and y € C%}
(RoS)*={(a,c)|IbeE:(a,b) e RS, (b,c)e St}

A box interpretation € models an Abox aziom C(a) for short & IF C(a) iff a¢ € C¢ and it
models an Abox axiom of the form R(a,b) iff (a%,b) € RE.

This interpretation is inspired by classical interpretations as defined in Table 1. It differs
only in the fact that classical interpretations consider concepts as arbitrary sets whereas
in a box interpretation each concept is represented as a box. The definition of the roles
ensures that each (3R.C)* results in a box, independent of the choice of C.

Example 1 This box interpretation is general in the sense that it allows for interpreting
some of the existing box embedding methods as special cases. Consider, e.g., TransBox and
especially the example mentioned in Fig. 1 (a). There, individuals are defined as points in
R"™, concepts as bozxes, and L and T can be interpreted as the empty space and R™, resp. A
direct translation of R*® to RS is the following: R® = {(a,b%) | a® € R*"+b¢ and b € Z}. As
R s a boz, also RP®+b¢ is a box. As translation with RP* is linear, also each translation
of an arbitrary box results in a box. With C = {Pizza}, R = {eats} and I = {alice}, this
definition leads to the example mentioned in Fig. 1 (a).

In contrast to other approaches, the box interpretations of Def. 1 can be interpreted as a
special type of classical interpretation in the following sense:

Proposition 2 Let & be a box interpretation of an ELHO(o)*-ontology O such that & - O.
Then (1) £ is entailment closed, (2) & is weakly faithful, and (3) O is satisfiable in standard
DL semantics.

Note that KBE approaches are loss-based. Thus, the satisfaction of axioms is optimized
in a step-wise fashion. Due to local minima, it is possible that an embedding that in fact
satisfies the ontology is not found even though it exists. We assume here, for simplicity,
that if such an embedding exists it can also be found.

In contrast to classical interpretations, the box interpretation allows for the notion of
convexity and dimensionality. These geometric regularities ease the training but come to
the prize of a restricted expressivity, as not every satisfiable ELHO(o)*-ontology has a box
interpretation that satisfies O: there is a satisfiable ELHO(0)* -ontology not having any
box interpretation. The problem can be visualized with the following example:



EXPRESSIVITY OF BOXES

?
2N )

Figure 2: (a) a classical interpretation not fulfilling Helly’s property; (b) a box interpretation
not modeling AnBnC = 1 (as the shaded region represents A¢ 0 B¢ n C¢)

Example 2 Given the ontology O = (T, A) with T = {AnBnC =1} and A = {A(a1),
B(ay),B(az2),C(a2),C(as),A(as)}. O is satisfiable and a possible DL-interpretation can
be seen in Fig. 2 (a). However, the attempt to find a model based on boxes leads to inter-
pretations such as the one shown in Fig. 2 (b). With boxes, it is necessary to dismiss either
the axiom An BnC =1 or to model one of the individuals incorrectly.

This restriction of boxes is in fact a classical result in the study of the properties of box
intersections, called Helly’s Property (HP).

Definition 3 (Helly’s Property) (adapted from (Eckhoff, 1988)) A family B fulfills
Helly’s Property if it is the case that: Nyep b # @ if and only if for all by, by € B: bynbe #+ @.

Proposition 4 (adapted from (Eckhoff, 1988)) Each finite family B c B" of axis-parallel
bozxes in R™ fulfills Helly’s property, for any n € N.

HP is a common and natural restriction, based on the well known Helly’s Theorem (Helly,
1923) about the intersection of convex sets in R™ and can be found in many real world
problems, e.g., in project management (Van Wyngaard et al., 2012). There, it is not possible
to optimize production cost, production time and scope (thus, the number of features of the
product) at the same time, however, each two of them can be optimized (see Fig. 1 (b)).
It is, e.g., possible to produce a product cheap and fast, then, however, it is simple.

HP can be directly applied to box interpretations:

Proposition 5 There exists a classically satisfiable ELHO(o)*-ontology O such that no
box interpretation in R™, for arbitrary n € N, satisfies O.

It is especially the case that this property is independent of the definition of the relations, as
it also holds if R = @, thus if relations are not considered at all. Thus the specific definition
of the relations in Def. 1 does not influence this result.

This leads to several questions: (i) Is it possible to effectively check, for a given ontology
O, whether it has one (resp. has only) interpretation(s) fulfilling Helly’s Property, thus
whether it has a box interpretation satisfying O7 (ii) When it exists, can we effectively
construct a Helly-satisfying interpretation? (iii) What is the influence on the embedding of
real-world ontologies?
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Example 3 First, question (iii) is considered. Many real-world ontologies such as GALEN
(Rector et al., 1996) and SNOMED (Donnelly, 2006) are not modeling disjointness azioms
at all and therefore always have a Helly-satisfiable model. Howewver, there are still unwanted
conjunctions that should be avoided. One especially fatal problem appearing due to Helly’s
property is the consideration of contraindications of drugs. Thus, there could be three drugs
being all pairwise compatible having severe side effects given all together. Note that this
argument is valid also for an empty Abox.

3.2. ELHO(o)* under HP-Semantics

There are two possible outcomes for checking an ontology in regard of HP. As proven in
Prop. 5 an ontology could be not satisfiable by a box interpretation at all. Thus a learning
approach for such an ontology leads necessarily to an erroneous result as explained in Ex. 2.
Therefore, in such a case, either the ontology needs to be adapted, e.g., based on axiom
weakening, or an approach not based on boxes needs to be considered. However, even if an
ontology has a box interpretation fulfilling HP, it is not necessarily the most preferable one
based on the geometric regularities. The box model is enforced to have certain properties
and is therefore biased and less based on geometric regularities. Thus, a first idea would
be to consider only ontologies as suitable for box embeddings of which every interpretation
fulfills HP. This is, however, a severe restriction as depicted in the following example.

Example 4 (An ontology having only interpretations fulfilling HP) Consider an
ontology O = (T, A) with T = {} and A = {(A(a),B(a),B(b),C(c)}. It has a model not
fulfilling HP as, e.g., the one in Fig. 2 (a). An ontology modeling this Aboxr and being
restricted to having only interpretations fulfilling HP would either need a new individual d
with {(AnBnC)(d)} € A or an additional Thox azxiom, e.g., {BnC=1}eT or {AnC =
L} € T. Therefore, considering only ontologies satisfied only by HP-interpretations though
would prevent from a bias, but would decrease the applicability of embedding approaches.
The embedding would be restricted to ontologies where not too many inferences are possible.
This would, however, contradict the main aim of KBE approaches.

Therefore, we put up with the bias introduced due to the fact that only interpretations
fulfilling HP can be represented. However, we want to find a restriction to circumvent
cases where only an inconsistent interpretation can be found. Thus, we want to determine
whether an ontology does not have an interpretation fulfilling HP at all. This is independent
of the box interpretation but asks quite general on whether it is possible to find an ade-
quate restriction for ELHO(0)* so that there is at least one interpretation fulfilling Helly’s
property. This leads to the notion of Helly-satisfiability.

Definition 6 An ELHO(o)*-ontology O is Helly-satisfiable if it has a model T that fulfills
Helly’s property (Def. 3) for the set of definable concepts DC(% in L.

DCE={AcA|TE=O,A=y" for some p e ELHO(0)')

Note that it is not sufficient to test HP for all representations of concept symbols but all
concept representations need to be considered. Next, it is shown that if an ontology has an
interpretation fulfilling HP, that it has a finite interpretation (thus it is constructable). This
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is especially of importance, as the existence of an interpretation fulfilling HP is only useful if
an embedding approach is (at least in theory) able to find it. First, note that Helly’s property
relies on the Abox-level: Consider an ontology O = (T, A) with T = {AnBnC =1}, A={}.
It has an Helly-satisfiable interpretation, however, has the same Thox as the ontology in
Ex. 2. Therefore, it is not possible to define a rule on Thox-level to capture this restriction.
Therefore, an Abox closure rule is defined as an one-step closure procedure.

Definition 7 (Helly-Abox closure rule) For all concept descriptions A, B,C: if A
contains {A(a), B(a), B(b),C(b), A(c),C(c)} but there is no individual d with {A(d), B(d),
C(d)} € A. Then, add a new individual e and A" = Au{A(e),B(e),C(e)}.

This rule basically checks whether there is a case where three concepts are pairwise in-
tersecting. Then a new individual is added at the intersection of all three to circumvent
contradictions to HP. If an ontology O is Helly-satisfiable, then with the help of this Abox
closure rule, a finite model fulfilling HP can be found.

Proposition 8 Given a Helly-satisfiable ELHO(o)*-ontology O, a finite model fulfilling
HP can be found in finite time.

Next we show that the Abox closure rule can be used to encode Helly-satisfiability in the
notion of a Helly-companion, a materialization of HP in an extension of the ontology.

Definition 9 (Helly-companion) An ontology (T',A") =O' 20 = (T,.A), with the sets
T' and A’ finite, is a Helly-companion of O if

1. (0 21(0),C(O") =C(0),R(O") =R(0); (Signature extends only ind. names)

2. If for some concept C' we have O'U{C € 1} is inconsistent, then there exists a d € I(O")
such that O £ C(d); (Every necessarily non-empty concept is witnessed.)

3. A" is Helly-closed for I(O"). (All Helly scenarios are witnessed.)

Observe that the ontology constructed in the proof of Prop. 8 defines a satisfiable finite
Helly-companion. Therefore:

Proposition 10 A satisfiable ELHO(o)*-ontology O = (T,.A) is Helly-satisfiable if and

only if there exists a consistent Helly-companion O" of O.

This shows that it is (i) possible to determine whether an ontology is not Helly-satisfiable,
thus whether there can’t be a box embedding approach relying on the standard assumptions
correctly modeling this ontology. (ii) it shows that if an ontology is Helly-satisfiable then a
finite Helly-satisfiable model exists, thus there is (at least a theoretical) possibility to find
this model. In the following, the influence of this result to box embeddings is discussed.

4. Helly in the Wild: Implications for Learning

The results of Sec. 3 show which types of ELHO(o)*-ontologies are embeddable using box
interpretations. Learning approaches based on boxes either implicitly apply some sort of
closure rules, as non-HP-interpretations are not representable, or first the Helly-companion
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is determined and this is then embedded. However, then question (1) from the introduction
comes into play: the existence of an interpretation does not imply that it is found in
practice. This is based on two factors: first, the dimensionality of the embedding and
second the increased complexity of the companion (or any interpretation fulfilling HP) in
contrast to an arbitrary interpretation not necessarily satisfying . The complexity of the
training procedure increases in higher dimensions and the curse of dimensionality especially
complicates the modeling of intersections of boxes. Therefore, it is not possible to chose
an arbitrarily high embedding dimension for learning. This is a severe restriction, as not
all Helly-satisfiable ELHO(o)*-ontologies can be represented in a fixed dimension. This
problem is heavily discussed in the context of boxicity (see, e.g., (Roberts, 1969)). Now,
assume that the dimension of the embedding is appropriate and the learning approach
actually finds a correct interpretation. Even then it is the case that only one possible
interpretation of the ontology is modeled. Ideally, this interpretation is based on geometric
regularities of the data, thus potentially newly inferred assertions are justified by the data.
In box interpretations this is however not the case, due to HP: the interpretation fulfills HP
due to the restrictions of box embeddings, not because the data suggests it. Therefore, it
is especially of importance to determine the influence of HP to a specific ontology: which
part of the embedding is solely based on the restriction of boxes to HP and which part
is actually learned due to geometric regularities? Ideally, it should be possible to find an
interpretation of the ontology such that all axioms and facts entailed by the interpretation
are also entailed by the ontology. Thus, such an interpretation, in case it exists, can be
considered ‘the most general one’. The existence of such an interpretation can be read as
implying a general ability for bias-free learning. For boxes, such a representation can only
be found for a small fraction of ontologies (as discussed in Ex. 4).

5. Conclusion

KBE approaches are useful tools for inference tasks. However, a KBE approach is only
usable if the bias of the approach is known, thus whether an inference is based on regularities
in the data or restrictions of the model. We showed that KBE approaches based on boxes
introduce a bias in form of Helly’s property on the learned embedding. This bias both has
influence on whether the interpretation is consistent and whether the inferences are based
on geometric regularities. For future work, it is necessary to consider the dimensionality of
interpretations further to determine whether an ontology can not only be modeled in theory
but also in a restricted environment. Additionally, the faithfulness needs to be considered
in more detail: is it possible to de-bias the embedding? Another interesting question is
whether there are axioms that are preferably learned: for disjointness of concepts, it is,
e.g., enough if the two respective boxes are disjoint in one dimension. In contrast, for non-
disjointness, it is necessary that two boxes intersect in every dimension. However, there
are use cases where it is appropriate to search for interpretations that only partially model
the given ontology. Examples can include cases where the ontology is inconsistent, contains
‘non-essential’ axioms, or idiosyncratic individuals that could be omitted. Thus it will be
essential to understand the deeper interplay between constraints imposed by the embedding
semantics, restrictions imposed by the learning approach, and requirements imposed by the
ontology languages.
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Appendix A. Proofs of Sec. 3.1

Proof [Proof of Proposition 2] Let O be an ELHO(o)* -ontology. Let £ & T U A. First, it
is shown that each concept in & actually is a box. Each concept symbol is interpreted as
a box. (IR.C)¢ is defined as R™1(C¢) and as C¢ is a box, by definition also (IR.C)¢ is a
box. Boxes are closed under intersection. Therefore, also (C'm D) is a box for arbitrary
concepts C,D. Note that @ € B", thus by definition (C'n D)¢ = @ also results in a box.
15, 7¢ and {c}¢ for nominals {c} are boxes by definition.

In the following, it is shown that the box interpretation is a special case of a classical
interpretation. As classical interpretations are entailment-closed and weakly faithful, the
proposition follows.

Let Z be a classical interpretation and let & be a box interpretation that models all
Thox and Abox axioms. Let A =2, ¢& = ¢* for ceI. Let CF = {a|a e C¢} for C e C and
RT = {(a,b) | (a,b) € RS} for R e R. Thus, T & az iff £ I az for all assertions az. Therefore,
& can be interpreted as classical interpretation and thus is entailment closed and weakly
faithful. As 7 is a classical interpretation, (3) follows trivially. [ |

Proof [Proof of Prop. 5] Let C={A,B,C} and I = {a1,a2,a3} and let T ={AnBnC =1}
and A ={A(a1),B(a1),B(az),C(az2), C(as),A(as)}.

Now, it is shown that for this ontology, it is not possible to construct a box interpretation
satisfying O. Assume by contradiction that such an interpretation exists in some R™. Thus,
there are boxes A%, B¢, C¢ and points a?,ag,ag with ASn B¢ £ @, ASnC¢ £ @, BEnC¢ # o,
thus all elements of a set B = {A5 , B¢, C¢ } are pairwise intersecting, and therefore with
Prop. 4 it follows that A¢ n BSn C¢ # @, a contradiction. Therefore, & does not satisfy O,
a contradiction. |

Appendix B. Proofs of Sec. 3.2

The basic idea is to define an algorithm that constructs a Helly-companion by iteratively
extending the Abox of the ontology with the concepts that need to be populated in every
model of the ontology. This is done based on a construction principle similar to a tableau-
algorithm. Therefore, first, the transformation rules are given. They are adapted from the

13
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ALC-tableau, see, e.g., (Baader and Sattler, 2001). Assume in the following for simplicity
that the ontology is given in normal form.

The —n-rule
Condition: A contains (Cy 1 Cy)(x), but not both C;(z) and Cs(x).
Action: A" := Au{Ci(x),Cs(x)}.

The —c-rule
Condition: 7 contains C' © D, A contains C(z) (resp. Ci(z) and Cy(x) if C =
C1nCy), but not D(x).
Action: A" = Au{D(z)}.

The —3c-rule
Condition: 7 contains 3R.C € D, A contains R(zx,y),C(y), but not D(x).
Action: A" = Au{D(z)}.

The —gcg-rule
Condition: 7 contains Rc S, A contains R(zx,y), but not S(z,y).
Action: A" = Au{S(z,y)}.

The —,-rule
Condition: 7 contains Ry o Ry © S, A contains Ry(z,y), R2(y, z), but not S(z, z).
Action: A" = Au{S(z,2)}.

The —3-rule
Condition: A contains (3R.C)(z), but there is no individual name z such that C'(z)
and R(z,z) are in A.
Action: A" := Au{C(y),R(x,y)} where y is an individual name not occurring in A.

With these transformation rules, a tableau-inspired algorithm can be defined.

Definition 11 (Adapted tableau algorithm for ELHO(0)*) Let O = (T, A) be an
ELHO(o)*-ontology. Apply the transformation rules iteratively to A by preferring all other
rules over the —3-rule. The blocking condition is defined as usual (see (Baader and Sattler,
2001)): the application of the rule -3 to an individual z is blocked by an individual y in an

Abox A iff {D| D(z)e Ay ={D"| D'(y) € A}.

Based on classical tableau algorithms and due to the simplicity of ELHO(o)*, it can be
proven that the algorithm terminates and that O’ = (T,.A’) is satisfiable if O is satisfiable.
The tableau algorithm allows for constructing a canonical interpretation.

Definition 12 (Baader and Sattler (2001)) The canonical interpretation Z4 of A is
defined as follows:

o the domain ATA consists of the individual names occurring in A
e for all concept names P we define PTA := {z | P(z) ¢ A}

e for all role names R we define R4 := {(z,y) | R(x,y) € A}

14
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This algorithm is now extended by including the Abox closure rule of Definition 7. There-
fore, first the application of the Abox closure rule is considered independently of the tableau.
Observe that for a given interpretation Z all concepts in Z (thus DC(IQ) need to fulfill HP.
Therefore, it is not sufficient to test only for concepts occurring in A. Especially, it is neces-
sary to construct a Helly-companion for O that fulfills HP. Special problems arise due to the
consideration of roles: If R(a,a) € A, then it is necessary to test HP for each 3R.T,3R.3IR.T
etc. To circumvent this problem, a graph-based view is applied to the concepts.

Definition 13 Let O = (T,.A) be a ELHO(o)*-ontology. Let a be an individual in A. For
a, a directed graph G, = (Vy, E,) representing its relations is modeled as follows:

V' = {ao}
E? = {(ag,z) | R(a,z) € A for Re R}

If VI7Y ESY are given, construct Vi, EL as follows:

Vi=\J{y|3z:(z,y) e B and y ¢ VI for some 0<j<i and Re R}
E: = J{(z,y) | R(z,y) e A and x € V'}

The procedure stops when V! = @ thus no new nodes are added. Then V, =\U; Vi, E, =U; E.
This construction terminates, as I and A are finite and it is checked for duplicates.

Note that such a graph can be directly translated into an assertion by considering the
paths in the graph. For example let there be a v € V, with (a,v) € E, and C € C(v) for
C(v) ={A| A(v) € A} uT (thus C(v) represents the concepts asserted to v in the Abox).
Then, O £ 3R.C(a).

With the help of this graph, the Abox closure rule can be applied.

Definition 14 Let O = (T,.A) be a satisfiable ELHO(o)*-ontology. The Abozx closure rule
as defined in Def. 7 is applied to ontology O for all individual names a,b, c occurring in A
as follows:

First, create for each of a,b,c the relation graph G, Gy, G, as defined in Def. 13. For
each v,w € {a,b,c} now the combined relation graph Gyny, is defined, thus the graph repre-
senting only concept representations asserted to both v and w. Let Gyow = (Vonw, Evow) -

Virw = {{vo,wo}}
Egmw = {({v07w0}7 {l‘,y}) | R(v,x),R(w,y) €A for Re R}

The rest is defined analogously to Def. 13. Based on the same argument as above, Gyny 1S
finite.

If for some v,w Eyny = @ and C(v) nC(w) = T, then there is no non-trivial concept
description A with A(v),A(w) € A and no R € R with R(v,z), R(w,y) € A for some
individuals x,y. Thus, the closure rule is trivially fulfilled in this case.

Therefore, assume that for each of v,w € {a,b,c}, Eynw # @ or C(v)NC(w) > {T}. Then,
the premise of the Abox closure rule is non-trivially fulfilled and the conclusion needs to be
tested and possibly a new individual needs to be added.

Thus, test whether there is an individual d such that:

15



LeeMmHUIS KuTZ

e (C(a)nC(b))u(C(b)nC(c))u(C(a)nC(c))cC(d) (thus d shares all concepts that a,b

and b,c and a,c respectively share) and

e for eachv,w € {a,b,c}: Iteratively test for each edge and each node in Gyny whether an
individual mimicking the modeled relation can be found. Therefore, construct the graph
G4 and find for each edge in G4 matching edges in Gyny. Start with edges (d, z) € Ey.
(d, z) can be matched with ({v,w},{z,y}) € Eyaw, if R(v,2)nR(w,y) € R(d, z) where
R(a,b) ={R| R € R and R(a,b) € A} and if C(x) nC(y) < C(z). Thus, (d,z) needs
to have all relations that (v,z) and (w,y) share and z needs to have all concepts that
x and y share. This procedure is continued stepwise (thus, e.g., for edges (z,u) € Ey
as match with all ({x,y},{s,t}) € Eynw for which in the last step a match has been
found). If for all edges in Eyny a match is found, then d has also a witness for each
concept that v and w share.

If this is the case, then the Abox closure rule does not need to be applied. Otherwise, new
individuals need to be defined Add a new individual d; for 0 < i < |Vamp| + |[Vinel + [Vane] — 3
for each node in Gunp, Gone and Gane except for the root nodes. For the root nodes add one
individual do. For each d; add the corresponding concepts and roles to the Abox. For a d;
corresponding to node {x,y} of the graph, let C(d;) = C(x) nC(y) and add C(d;) to A for
all C C(dl) For d() add HAG(C(a)mC(b))U(C(b)mC(b))U(C(a)mC(c)) A(do) to A. For i,j 2 0, add
R(d;,dj) to A if the corresponding {x,y},{t,u} have R(z,t) and R(y,u) in A. Now, as
new individuals have been added, the process is started again. This is repeated until nothing

18 added.

Note that this construction is highly inefficient, as many individuals are added unnecessarily.
These are, however, only finitely many and therefore not problematic as will be proven
later on. This construction does not only apply the Abox closure rule but additionally
considers the relational part. The relational part is, however, necessary to consider to gain
an interpretation actually fulfilling HP. The process of Def. 14 is applied to all individuals
in A, thus also to the individuals newly added during the process. Therefore, it needs to
be proven that this process terminates.

Corollary 15 The application of the (extended) Abox closure rule as stated in Def. 14 to
an Abox A of an ELHO(o)*-ontology O terminates.

Proof

1. First, consider the case where E,np = &, Epne = B, Fane = @ for all individuals a, b, ¢
considered during the process. In this case only concepts are considered. Assume
n is the number of different concepts occurring in A, as A is finite by definition.
Then, there are worst-case 2" individuals to be added, as worst-case only 2" different
concept combinations are possible. If worst-case 2" individuals have been added,
then for each case when the premise of the Abox closure rule is fulfilled, there is an
individual fulfilling the conclusion.

2. Now, consider the case where at least one of Eynp # &, Epne # D, Eane # @ for some
individuals a, b, c.
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Observe the following facts: for each group of newly added individuals d;, all of these
elements except dy are not able to introduce new situations on which the Abox closure
needs to be applied. This is the case, as each d; mimics the concepts represented in
some subgraph of Gunp, Gpne OF Gane-

Thus, only dy needs to be considered. Note that dy does not have an incoming edge.
Therefore, the same argument as for the case solely based on concepts can be used:
There are finitely many graphs G, one for each individual in A. There are only finitely
many variants to combine these graphs. Therefore, only finitely many individuals can
be added.

Until now, the process applies the Abox closure only to a given Abox.

As HP needs to be valid not only for the Abox but for an interpretation, it is additionally
necessary to consider HP for concepts not present in the Abox but present in each possible
interpretation satisfying an ontology. Thus, the Helly companion of an ontology needs to
be defined (see Def. 9).

Therefore, in the following, the tableau algorithm is combined with the Abox closure
rule to define a Helly-companion. Note that this is not the only possible Helly-companion.
After that, it is shown that this approach terminates and leads to a model that fulfills HP.

Definition 16 In the following, a tableau algorithm incorporating the Abox closure rule is
defined. Let O = (T,.A) be a satisfiable ELHO(0)*-ontology. Repeat the following two steps
until the application of the Abox closure rule does not introduce any new individuals.

1. Apply the tableau algorithm as defined in Def. 11 on O until a blocking condition is
reached. Then, materialize the blocking, thus add for each a blocked by b, for a the
successors of b.

2. Apply the Abox closure as defined in Def. 1/.

Now, it is shown that this adapted tableau algorithm terminates.
Corollary 17 The algorithm as defined in Def. 16 terminates.

Proof Each application of the tableau algorithm terminates and each application of the
Abox closure terminates. Therefore, it remains to show that the combination of both ter-
minates. It is again sufficient to consider the newly added dy. All other added individuals
represent concept descriptions that already exist in A. If these would not be complete re-
garding the application of the transformation rules, then also the concepts used to construct
the individuals would not have been complete.

However, for a new individual dy it can be the case that for (An BnC)(dy) there is a
Thox axiom AnBnC c D (in its corresponding normal form). However, the Thox is by
definition finite. Therefore, there are only finitely many axioms of this type. Therefore, the
algorithm terminates. u

Now, it can be shown that this construction leads to a Helly-companion.
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Corollary 18 Let O = (T,A) be a satisfiable ELHO(o)*-ontology. Let O' = (T', A") be
the result of the application of the modified tableau as defined in Def. 16. Then, O’ is a
Helly-companion.

Proof Let O = (T,.A) be a satisfiable ELHO(o)*-ontology. Let O’ = (T, A’) be the result
of the application of the modified tableau as defined in Def. 16. It is shown that O’ is a
Helly-companion.

1. 0O, 1(0) 21(0),C(0O") = C(O),R(0O") = R(0O) follows trivially based on the
definition.

2. Every necessarily non-empty concept is witnessed due to the transformation rules of
the standard tableau and due to the fact that the tableau is sound and complete.

3. The process of Def. 16 terminates and directly models the Abox closure rule. Addi-
tionally, it due to the graph-based view, all complex concept descriptions including
relations are considered and checked for HP. This means that A’ is Helly-closed.

Corollary 19 Let O be a Helly-satisfiable ELHO(o)*-ontology and let O be the result of
the application of Def. 16. The interpretation as defined in Def. 12 is a model of O.

Proof Let O be a Helly-satisfiable ELHO(o)*-ontology and let O’ be the result of the
application of Def. 16. Let Z 4 be the canonic interpretation of @’. Assume by contradiction
that Z4 is not a model of @. Therefore, there must be a d%4 ¢ (An B n C)%4 with
O = AnBnC = 1. When applying the standard tableau algorithm to a satisfiable ontology,
a concept description A is only added to A’ if Ou{A c 1} is inconsistent. Therefore, for
all of these added concepts and same for all added roles, the Abox closure rule needs to be
applied and thus HP needs to be tested. By definition, for fulfilling HP, always the least
specific concept is added. Therefore such a dZ4 would directly interfere with HP, thus, the
ontology can’t be Helly-satisfiable, a contradiction. |

Corollary 20 Let O be a Helly-satisfiable ELHO(o)*-ontology and let O be the result of
the application of Def. 16. The canonic interpretation 4 of O’ as defined in Def. 12 fulfills
HP.

Proof Let O be a Helly-satisfiable ELHO(o)*-ontology and let O’ be the result of the
application of Def. 16. O’ is a Helly-companion of O (see Cor. 18). Therefore, it is Helly-
closed. The canonic model of @' can be defined without the need to infer new conceptual
information and without adding new relations or individuals. Therefore, the canonic model
of @' is also Helly-closed and thus fulfills HP. [ |

Now, Prop. 8 can be proven. Thus, if an ontology is Helly-satisfiable, then there is a
construction procedure for a finite model that satisfies HP.
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Proof [proof of Proposition 8] Let O = (T,.A) be a Helly-satisfiable ontology in normal

Let Z4 be the canonic model of O constructed based on O with the adapted tableau

as defined in Def. 16.

7T 4 is constructable in finite time, as proven in Cor. 17. It is actually a model of O due
to Cor. 19 and it fulfills HP due to Cor. 20. Thus, a finite model of O fulfilling HP can be
found in finite time. [ ]

With this result, the proof of Proposition 10 follows.
Proof [Proof of Proposition 10]

— Let O = (T,.A) be a Helly-satisfiable ELHO(o)*-ontology. Then apply the adapted

tableau algorithm as defined in Def. 16 to get O’ that is a Helly-companion as proven in
Theorem 18. As proven in Cor. 19, a model can be defined, therefore, O’ is satisfiable.

Let O not be Helly-satisfiable. Consider an arbitrary Helly-companion O’ of O. It is
shown that the resulting ontology O’ is not satisfiable. As O is not Helly-satisfiable,
there is in each model Z of O, af,b%, ¢t € A with o € (An B)%, v ¢ (BnC)?,
e (AnC)T but AT n BT nCT = & for some concept descriptions A, B, C.

Assume for the sake of contradiction that the Helly-companion is satisfiable. Each
Helly-companion contains witnesses for each concept description that is known to be
non-empty. Therefore, the canonic interpretation Z4 of @" would be a model of O’
(as O' is assumed to be satisfiable). But this model fulfills by definition of the Helly-
companion HP and therefore, O would be Helly-satisfiable. A contradiction to the
assumption.
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