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ABSTRACT

Stereo image compression (SIC) has become increasingly vital with its applications
surging in fields such as 3D reconstruction and autonomous navigation. Previ-
ous methods leverage cross-attention to model inter-view redundancy and employ
autoregressive entropy models to predict probability distributions, achieving im-
pressive rate-distortion performance. However, they suffer from slow coding speed
due to the quadratic complexity of cross-attention mechanisms and the spatial
autoregressive iterations of the entropy models. To address these limitations, we
propose MambaSIC, which introduces two key innovations. First, we propose a
Mamba-based stereo visual state space block (stereo VSSB) that leverages its linear
complexity and long-range modeling capabilities to more rapidly and efficiently
capture redundancy information between the two views. Second, to accelerate
the compression process and enhance the accuracy of probability distribution esti-
mation, we introduce a bi-directional multi-reference entropy model that utilizes
a checkerboard partitioning strategy and the stereo VSSB to get rich inter-view
priors. Experimental results demonstrate that our MambaSIC outperforms the
state-of-the-art methods in both rate-distortion performance and coding efficiency.
Moreover, it achieves the smallest inter-view PSNR discrepancy, resulting in more
balanced reconstruction quality.

1 INTRODUCTION

Stereoscopic image processing leverages binocular vision to simulate the human ability of perceiving
depth and creating a holographic viewing. This technique plays a crucial role in applications such as
virtual reality (Fehn, 2004), autonomous navigation (Duba et al., 2024), and 3D reconstruction (Fu-
jimura et al., 2018), therefore resulting in a surging demand for efficient transmission and storage
of high-quality stereo images in recent years. This underscores the importance of stereo image
compression (SIC), which aims to reduce storage overhead without compromising visual quality.

Stereo images, presenting content captured from two different viewpoints, exhibit strong inter-view
correlations and provide critical spatial information. Traditional stereo image compression methods,
such as MVC (Vetro et al., 2011) and MV-HEVC (Tech et al., 2015), use predictive coding, where
one view serves as a reference to estimate the other view, and the estimation differences are encoded.
However, these methods depend on handcrafted prediction modules, which struggle to effectively
capture intricate inter-view correlations in complex scenes. Recent learning-based single-image
compression methods (Ballé et al., 2017; 2018; Jiang & Wang, 2023) have made notable progress by
introducing advanced nonlinear transforms and entropy models, motivating the application of deep
learning to stereo image compression. Early efforts to apply convolutional neural networks (CNNs)
and hyperprior models in stereo image compression primarily relied on dense distortion fields (Liu
et al., 2019; Zhai et al., 2022) or rigid homography transformations (Deng et al., 2021; 2023) to model
disparity. While efficient, their performance is constrained by limited receptive fields and simplistic
entropy models. Moreover, unidirectional frameworks often cause imbalanced reconstruction quality
between views. Recent advances (Liu et al., 2024c; Zhang et al., 2023) leverage cross-attention
and bi-directional autoregressive entropy models to improve rate-distortion performance, but at the
cost of significantly increased computational complexity. As illustrated in Fig. 1, achieving high
compression performance with reduced coding time remains a critical challenge.
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Figure 1: BDBR for PSNR (lower is better) vs coding latency
on Instereo2K (Bao et al., 2020). MambaSIC achieves the
best trade-off between compression performance and latency.

Recently, Mamba has demonstrated
stronger global modeling capability
than attention mechanisms in vision
tasks (Liu et al., 2024b; Qin et al.,
2024) while maintaining linear com-
plexity, pointing to a promising direc-
tion for improvement. However, its
inability to capture inter-view corre-
lations and its limited local modeling
capacity hinder its application to SIC.
To address the above limitations, we
propose stereo visual state space block
(stereo VSSB), which enables both lo-
cal and global context transfer across
views. In stereo VSSB, we enhance
the local and global features of the
two views using CNN-based networks
and the stereo visual state space layer
(stereo VSSL), respectively. Within
stereo VSSL, the stereo gating mechanism and cross-view matrix capture inter-view redundancy. This
design avoids the quadratic complexity of cross-attention while fully exploiting Mamba’s strengths in
long-range dependency modeling and representation learning.

In addition to the type of the neural network, the design of entropy model is also an important tech-
nique in SIC. We develop a bi-directional multi-reference entropy model to accelerate entropy coding
and enhance contextual conditioning. Our entropy model adopts a checkerboard pattern to partition
latent representations, enabling it to achieve remarkable inference efficiency compared to spatial
auto-regressive iterations (Lei et al., 2022; Liu et al., 2024c). Notably, instead of adopting convolution
or attention modules in previous methods, we adopt stereo VSSB to fuse the information of left-view
priors and right-view priors to generate abundant inter-view priors, which effectively exploits the
correlation between stereo views and enhances the probability estimation for entropy coding. The
entire procedure is designed to be fully symmetric and bidirectional, preventing significant quality
discrepancies between the reconstructed left and right view images.

Building on the above improvements, we propose MambaSIC, a powerful and efficient stereo image
compression framework that achieves an optimal balance between efficacy and efficiency. In summary,
our contributions are as follows:

• We design a Mamba-based stereo context transfer module, stereo VSSB, as non-linear transform
to better eliminate redundancy between the stereo views while maintaining linear complexity.

• We introduce a bi-directional multi-reference entropy model that leverages a spatial checkerboard
pattern and the stereo VSSB to achieve efficient and compact entropy coding.

• On standard benchmark datasets, MambaSIC surpasses current state-of-the-art SIC baselines in
both compression performance and speed, while also achieving more balanced reconstruction
quality with the smallest inter-view PSNR discrepancy.

2 RELATED WORK

2.1 STEREO IMAGE COMPRESSION

Single image compression performs poorly on stereo images because it ignores inter-view correlations.
This motivates stereo image compression research. Traditional methods, such as MVC (Sullivan
et al., 2012) and MV-HEVC (Tech et al., 2015), use hand-crafted disparity compensation. Recent
learning-based methods improve performance and fall into unidirectional and bi-directional coding.
Unidirectional methods (Deng et al., 2021; 2023; Liu et al., 2019; Wödlinger et al., 2022; Zhai et al.,
2022) predict a disparity-compensated view and encode residuals to reduce redundancy. Bi-directional
methods (Lei et al., 2022; Liu et al., 2024c) use cross-attention to exploit mutual information and
balance quality. Other works (Huang et al., 2023; Mital et al., 2023; Zhang et al., 2023; Xia et al.,
2023) explore distributed multi-view coding with independent encoders and a joint decoder. However,
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all above SIC methods primarily rely on convolutional networks or cross-attention mechanisms for
alignment, which fails to capture long-distance spatial dependencies. Therefore, we explore to apply
the Mamba architecture in stereo image matching.

2.2 VISUAL STATE SPACE MODEL

State Space Models (SSMs) are efficient alternatives to Transformers for sequence modeling, with
linear complexity in capturing long-range dependencies. Recent works like S4 (Gu et al.), S5 (Smith
et al.), and Mamba (Gu & Dao, 2023) improve SSM architectures and achieve strong results across
domains. This drives interest in applying SSMs to vision, where spatial structures also show sequential
dependencies. Vision Mamba (Zhu et al.) uses bi-directional scanning for inter-patch relations, and
VMamba (Liu et al., 2024b) extends it with four-directional scanning. SSMs are also applied to
segmentation (Xing et al., 2024; Zhang et al., 2024a), super-resolution (Guo et al., 2024; Xiao
et al., 2024), and remote sensing (Chen et al., 2024; Liu et al., 2024a), offering lower cost with
strong performance. Building on this progress, we introduce Mamba into the field of stereo image
compression and propose a Mamba-based stereo matching method.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

Fig. 2(a) shows the network architecture. Given stereo images xl,xr ∈ R3×H×W , the encoder
ga produces latent representations yl,yr ∈ RM× H

16×
W
16 . These are quantized to ŷl, ŷr. The joint

decoder gs then reconstructs stereo images x̂l, x̂r. Since quantizer Q is non-differentiable, we use
mixed quantization (Minnen & Singh, 2020) in training. Latents are perturbed with uniform noise
for bitrate estimation, while rounded latents use straight-through gradients for reconstruction. The
compression process can be written as follows:

yl,yr = ga(xl,xr;ϕ),

ŷl = Q(yl), ŷr = Q(yr),

x̂l, x̂r = gs(ŷl, ŷr; θ).

(1)

where ϕ and θ are learnable parameters of the encoder ga and decoder gs.

To reduce the statistical redundancy of the quantized representation ŷl, ŷr by entropy coding, each
element ŷl,i, ŷr,i is modeled as a univariate Gaussian random variable with mean µl,i, µr,i and
standard deviation σl,i, σr,i, where i denotes the position of each element in a vector-valued signal.
We propose a bi-directional multi-reference entropy model to predict the probability distribution
parameters µl,σl and µr,σr, with more details provided in Section 3.3.

3.2 STEREO CONTEXT TRANSFER WITH VISUAL STATE SPACE

The core challenge in SIC lies in effective transfer of the shared information between the two views.
To address this, we propose methods that focus on three key aspects: the utilization of local and
global information, the information fusion within the gated network, and the state update process in
the state space model. These are discussed in Sections 3.2.1, 3.2.2, and 3.2.3, respectively.

3.2.1 STEREO VISUAL STATE SPACE BLOCK

Mamba (Gu & Dao, 2023) has a larger receptive field than Transformers and captures information
from distant regions. (Liu et al., 2023) shows that combining local and global information improves
performance. Based on this, we design the Stereo Visual State Space Block (Stereo VSSB), which
uses Mamba for global information transfer and convolution for local information transfer.

The structure of our Stereo VSSB module is illustrated in Fig. 2(b). The input stereo features
fl,fr ∈ RN×Hf×Wf first pass through a 1 × 1 convolutional layer without changing the chan-
nel dimension. Next, the convolved features are then split along the channel dimension into
fLocal
l ,fGlobal

l ,fLocal
r ,fGlobal

r ∈ RN
2 ×Hf×Wf , respectively. Through this operation, the local

and global features of the left and right views are separated and transferred individually. Then we

3
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Figure 2: (a) Overall architecture of our proposed method MambaSIC. AE and AD are arithmetic
encoder/decoder for entropy coding. Q denotes quantization. (b) Stereo Visual State Space Block, (c)
Residual block, (d) Stereo Visual State Space Layer and (e) Stereo 2D Selective Scan. The blue and
green lines represent features extracted from the left view and right view, respectively. The red line
indicates that the matrix C from another view is weighted and integrated into the current view.

concatenate the two local features fLocal
l ,fLocal

r sequentially and process them as follows:

f̂Local
l = CLR(Cat(fLocal

l ,fLocal
r )) + fLocal

l ,

f̂Local
r = CLR(Cat(fLocal

r ,fLocal
l )) + fLocal

r ,
(2)

where CLR denotes a network composed of convolutional layers and leaky ReLU activations. For
the global features fGlobal

l ,fGlobal
r , they are input into a stereo visual state space layer (discussed in

Section 3.2.2) and obtain the fusion features f̂Global
l , f̂Global

r . Finally, we concatenate the local and
global features along the channel dimension and pass them through a 1× 1 convolution to fuse local
and non-local information. A skip connection is used between these combined/fused features and the
input features fl,fr. This process is expressed as follows:

f̂l = Conv1×1(Cat(f̂
Local
l , f̂Global

l )) + fl,

f̂r = Conv1×1(Cat(f̂
Local
r , f̂Global

r )) + fr.
(3)

The Stereo VSSB are inserted after the first three downsampling blocks in the encoder ga and the
first three upsampling blocks in the decoder gs, as shown in Fig. 2(a). This placement ensures the
complementary fusion of the left and right perspective information across multiple dimensions.

3.2.2 STEREO VISUAL STATE SPACE LAYER

Selective state space and gating are two key parts of Mamba (Gu & Dao, 2023). The first enables
information interaction, and the second controls information flow. Based on them, we propose a stereo
2D selective scan and stereo gating connection to control information transfer across dimensions, as
shown in Fig. 2(d).

Specifically, the global features fGlobal
l ,fGlobal

r are first passed through layer normalization and a
linear layer, after which they are decomposed into main branch features fmain

l ,fmain
r ∈ RN

4 ×Hf×Wf

and gating branch features fgate
l ,fgate

r ∈ RN
4 ×Hf×Wf along the channel dimension. Next, fGlobal

l

and fGlobal
r are sequentially processed through a depthwise separable convolution layer and a SiLU

activation function, and then undergo an information transformation in the Stereo 2D Selective
Scan (discussed in Section 3.2.3) to obtain f̂main

l and f̂main
r . Meanwhile, the gating features fgate

l

and fgate
r are activated by the SiLU function to produce f̂gate

l and f̂gate
r , which serve as spatial

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

importance maps indicating regions that require stronger information propagation. Finally, we use
the stereo gating connection to further transfer the processed features as follows:

f̂Global
l = Linear(Cat(f̂l→l, f̂r→l)) + fGlobal

l ,

f̂Global
r = Linear(Cat(f̂r→r, f̂l→r)) + fGlobal

r ,
(4)

where f̂l→l = f̂main
l × f̂gate

l , f̂r→r = f̂main
r × f̂gate

r represent the important information in the
current image that requires processing, f̂r→l = f̂main

r × f̂gate
l , f̂l→r = f̂main

l × f̂gate
r represent the

information from the other image that matches the perspective of the current image.

3.2.3 STEREO 2D SELECTIVE SCAN

In the selective state space, the input-dependent parameter matrix C maps the hidden state ht to the
output, dynamically adjusting which features of the hidden state are amplified or suppressed based on
the current input. Building on this concept, we introduce control information from the other view
through matrix C and propose a novel module called Stereo 2D Selective Scan. Specifically, following
Vmamba (Liu et al., 2024b), we first unfold the image features f̂Global

l , f̂Global
r ∈ RN

2 ×Hf×Wf into
one-dimensional sequences wl,wl ∈ RN

2 ×HfWf through four-directional scanning. For a scanned
feature in a specific direction, we first obtain the hidden states as follows:

Al
′, Bl

′ = e∆lAl ,∆lBl, hl
t = Al

′hl
t−1 +Bl

′wl
t,

Ar
′, Br

′ = e∆rAr ,∆rBr, hr
t = Ar

′hr
t−1 +Br

′wr
t,

(5)

Next, we perform a weighted summation of the control parameter C from the other view using a
learnable parameter α, initially set to 0, and obtain the hidden states output:

vl
t =(Cl + αCr)hl

t +Dlwl
t,

vr
t =(Cr + αCl)hr

t +Drwr
t,

(6)

where wt
l , w

t
r represent the input at time step t, and vtl , v

t
r denote the selective scan output. In this way,

we explicitly introduce information from the other view with negligible computational and storage
overhead. Meanwhile, α is a learnable parameter, allowing the model to determine the amount of
information to incorporate from the other perspective.

3.3 BI-DIRECTIONAL MULTI-REFERENCE ENTROPY MODEL

The spatial autoregressive entropy model significantly improves the performance of LIC but introduces
prohibitive computational overhead. Recent single-image compression study (Jiang & Wang, 2023)
proposes checkerboard-pattern multi-reference entropy models as a promising remedy. However,
directly extending this approach to SIC is non-trivial, as it captures only intra-view priors and
overlooks the critical inter-view dependencies inherent in SIC. This omission results in inaccurate
probability estimation and compromises entropy coding performance. To address this challenge, we
develop a novel bi-directional multi-reference entropy model based on our proposed Stereo VSSB,
which facilitates effective inter-view contextual references and provides efficient fast coding speed.

As shown in Fig. 3, the proposed bi-directional multi-reference entropy model consists of intra-view
prior prediction and inter-view prior prediction, which integrates the spatial-wise checkerboard
context and channel-wise auto-regressive context. The conditional dependencies of our model are
expressed as follows:

Intra-view Inter-view

Inter-viewIntra-view

pŷac
l
(ŷac

l,i |Φh
l ,Φ

ch
l,i ,Φ

ter
l,i ,Φ

iac
l,i ) ∼ N (µac

l ,σ2
l
ac
),

pŷac
r
(ŷac

r,i|Φh
r ,Φ

ch
r,i,Φ

ter
r,i ,Φ

iac
r,i ) ∼ N (µac

r ,σ2
r
ac
),

}
Anchor

pŷna
l
(ŷna

l,i |Φh
l ,Φ

ch
l,i ,Φ

ter
l,i ,Φ

lc
l,i,Φ

tra
l,i ,Φ

inc
l,i ) ∼ N (µna

l ,σ2
l
na
),

pŷna
r
(ŷna

r,i |Φh
r ,Φ

ch
r,i,Φ

ter
r,i ,Φ

lc
r,i,Φ

tra
r,i ,Φ

inc
r,i ) ∼ N (µna

r ,σ2
r
na
),

}
Non-anchor

(7)

where ŷac
l and ŷna

l denote the anchor and non-anchor elements of ŷl, respectively, as shown in Fig. 3
(a). i indicates the index of the channel slices. For the left-view priors, we use the anchor/nonanchor
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Figure 3: (a) The proposed bi-directional multi-reference entropy model. This figure illustrates the
checkerboard-pattern entropy coding for a single slice. (b) Anchor bi-directional multi-reference
network. (c) Nonanchor bi-directional multi-reference network. (d) Anchor/Nonanchor entropy
parameter estimation network.

bi-directional multi-reference network in (Jiang & Wang, 2023) to generate a series of intra-view
priors {Φh

l ,Φ
ch
l,i ,Φ

ter
l,i ,Φ

lc
l,i,Φ

tra
l,i }, which represent the hyperprior Φh

l from ẑl, the channel-wise
auto-regressive prior Φch

l,i from ŷ<i
l , the local spatial context Φlc

l,i from ŷac
l,i , the intra-slice global

spatial context Φtra
l,i from {ŷi−1

l , ŷac
l,i}, and the inter-slice global spatial context Φter

l,i from ŷ<i
l . Φiac

l,i

and Φinc
l,i denote the proposed inter-view priors for ŷac

l and ŷna
l . This stereo multi-reference entropy

model establish a strong prior for probability estimation, while the adopted checkerboard structure
facilitates a faster processing than repeated spatial auto-regressive, which caters for both effectiveness
and efficiency. We refer readers to Jiang & Wang (2023) for a detailed definition of intra-view priors.

Given the significant overlap and correlation between the left and right views, it is essential to
introduce inter-view priors to establish the mutual interactions between views and progressively
enhance the probability distribution estimation accuracy. Therefore, we apply our Stereo VSSB in
Section 3.2.1 to generate the abundant inter-view priors {Φiac

l,i ,Φ
iac
r,i } and {Φina

l,i ,Φina
r,i } as follows:

Φiac
l,i ,Φ

iac
r,i = V ac

i (Φac
l,i,Φ

ac
r,i),

Φina
l,i ,Φina

r,i = V na
i (Φna

l,i ,Φ
na
r,i),

Φac
l,i = Φh

l ⊕ Φch
l,i ⊕ Φter

l,i ,Φ
na
l,i = Φac

l,i ⊕ Φlc
l,i ⊕ Φtra

l,i ,

Φac
r,i = Φh

r ⊕ Φch
r,i ⊕ Φter

r,i ,Φ
na
r,i = Φac

r,i ⊕ Φlc
r,i ⊕ Φtra

r,i ,

(8)

where V ac
i and V na

i indicate the Stereo VSSB functions for the anchor and non-anchor views, respec-
tively. ⊕ denotes the concatenation operation. Finally, we use intra-view priors {Φac

l,i,Φ
ac
r,i,Φ

na
l,i ,Φ

na
r,i}

and inter-view priors {Φiac
l,i ,Φ

iac
r,i ,Φ

ina
l,i ,Φina

r,i } to effectively improve the estimation probabilities
{pŷac

l
, pŷac

r
, pŷna

l
, pŷna

r
}.

3.4 LOSS FUNCTION

Following the previous work, We employ the commonly used rate-distortion (RD) optimization
framework to train our model. The overall loss function is defined as follows:

L =
1

2

∑
l,r

(λ · D(xi, x̂i) + (R(ŷi) +R(ẑi))), (9)

where lagrange multiplier λ controls the R-D tradeoff. D(·, ·) denotes the distortion function as MSE
or the MS-SSIM. R(·) calculates bit-per-pixel using the entropy estimation as follows:

R(ŷl) = ΣL
i=0(Rŷac

l,i
+Rŷna

l,i
),

R(ŷr) = ΣL
i=0(Rŷac

r,i
+Rŷna

r,i
),

(10)

where Rŷac
l,i
,Rŷac

r,i
and Rŷna

l,i
,Rŷna

r,i
represent the anchor and non-anchor rates of the i-th slice for

the left and right views, respectively. L is the number of slices.
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Figure 4: Rate-distortion curves in terms of PSNR and MS-SSIM on the InStereo2K and Cityscapes
datasets. Our method outperforms pervious methods with a significant gap, benefiting from its
superior stereo context fransfer method and entropy model.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets and Baselines. We follow previous works (Liu et al., 2024c; Zhang et al., 2024b) to ensure
a fair comparison and train our models on two widely used stereo image datasets, InStereo2K (Bao
et al., 2020) and Cityscapes (Cordts et al., 2016). We compare MambaSIC with the hand-crafted
coding standards BPG (Bellard, 2018), MV-HEVC (Tech et al., 2015) and H.266/VVC (Bross et al.,
2021) as well as recent learning-based stereo image compression methods including HESIC+ (Deng
et al., 2021), SASIC (Wödlinger et al., 2022), BCSIC (Lei et al., 2022), LDMIC (Zhang et al.,
2023), ECSIC (Wödlinger et al., 2024), DispSIC (Zhai et al., 2022), BiSIC (Liu et al., 2024c) and
CAMSIC (Zhang et al., 2024b). BPG encodes each view of the stereo pair independently, while
MV-HEVC and H.266/VVC compress the left and right view images jointly.

Implementation details. We set the number of channels to N = 128 and M = 320, and con-
figure the number of Stereo VSSB as (n1, n2, n3) = (1, 1, 1). We use Adam optimizer and
optimize the network with the initial learning rate 1e − 4 for 2M steps and then decreased to
1e − 5 for another 0.8M steps and 1e − 6 for the last 0.2M steps. For the first 1M steps, the
batch size is set to 4, while for the remaining steps, it is set to 8. We set the rate-distortion trade-
off multiplier in Eq. 9 as λ ∈ {0.0035, 0.0067, 0.0130, 0.0250, 0.0483, 0.0650} for MSE loss and
λ ∈ {4.58, 8.73, 16.64, 31.73, 60.5, 90.5} for MS-SSIM loss.

4.2 EXPERIMENTAL RESULTS

Compression Performance. Fig. 4 and Table 1 reports the RD curves of all methods and BDBR
results relative to BPG on InStereo2k and Cityscapes. MambaSIC reduces BDBR by 9.08% on
InStereo2K and 8.94% on Cityscapes. Compared with unidirectional codecs, MambaSIC saves more

Table 1: BDBRPSNR, BDBRMSSSIM , BD-PSNR and BD-MSSSIM values of different compression
methods. Bold indicates best results, and underlined values are the second-best ones.

Method InStereo2K Cityscapes

BD-PSNR BDBRP BD-MSSSIM BDBRM BD-PSNR BDBRP BD-MSSSIM BDBRM

MVHEVC 0.14dB -7.69% -0.13dB 2.14% 0.73dB -18.02% 0.62dB -17.13%
VVC 0.84dB -35.31% 0.92dB -31.05% 2.98dB -56.25% 1.92dB -44.04%
HESIC+ 0.39dB -14.96% 1.79dB -43.22% 0.99dB -23.83% 2.69dB -50.79%
DispSIC 0.68dB -26.62% 2.03dB -47.89% 1.47dB -42.62% 3.12dB -59.06%
SASIC 0.52dB -18.40% 0.74dB -23.87% 0.91dB -21.47% 1.38dB -29.78%
BCSIC 1.25dB -41.22% 2.45dB -54.67% 2.07dB -42.62% 3.50dB -60.72%
LDMIC 1.32dB -41.95% 2.71dB -58.98% 2.01dB -41.92% 3.55dB -61.90%
ECSIC 1.38dB -43.71% 2.44dB -55.65% 2.84dB -52.06% 3.93dB -64.96%
BiSIC 1.63dB -48.07% 2.95dB -61.13% 3.34dB -57.49% 4.21dB -67.98%
CAMSIC 1.46dB -45.92% 2.57dB -55.20% 2.28dB -47.89% 3.80dB -65.16%

MambaSIC 1.92dB -57.15% 2.99dB -62.89% 3.75dB -66.43% 4.40dB -72.45%
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bits by observing a holistic view and mutually sharing features between stereo views, which facilitates
removing redundancies in each view. Compared with bi-directional codecs, it achieves 15.93% to
9.08% extra BDBR reduction. This sugguests our entropy model aggregates more dependencies, and
our stereo VSSB captures more inter-view correlations than 2D/3D convolutions.
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PSNR 39.665 dB

PSNR 37.971 dB

PSNR 39.139 dB

PSNR 39.473 dB
Discrepancy 1.874 dB Discrepancy 0.334 dB

Ground Truth

Average BPP: 5.5269

VVC BiSIC
Average BPP: 0.0951 

Average PSNR: 38.818 dB

Average BPP: 0.0934 

Average PSNR: 39.306 dB

PSNR 39.473 dB

PSNR 39.530 dB
Discrepancy 0.057 dB

MambaSIC (Ours)
Average BPP: 0.0718

Average PSNR: 39.501 dB

PSNR 37.788 dB

PSNR 38.189 dB
Discrepancy 0.401 dB
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Average BPP: 0.1188 

Average PSNR: 37.988 dB
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PSNR 39.072 dB
Discrepancy 0.670 dB

ECSIC
Average BPP: 0.0903 

Average PSNR: 38.737 dB

Figure 5: Qualitative comparison on reconstructed image across various codecs. Our MambaSIC
achieves the lowest bit rate, the highest reconstruction quality, and the least PSNR discrepancy.

Fig. 5 presents a subjective comparison of our MambaSIC against various codecs on a stereo image
pair from the Cityscapes dataset. It is demonstrated that our method not only exhibits superior
reconstruction quality at a similar or lower bitrate, but also maintains consistent PSNR across

Table 2: Computational complexity of differ-
ent methods on InStereo2K datasets.

Method Latency (s)↓

Encode Decode Total

SASIC 4.7316 4.6964 9.4280
BCSIC 13.1341 29.9768 43.1109
LDMIC 11.3812 27.8496 39.2308
ECSIC 5.7061 5.3096 11.0157
BiSIC 32.8206 45.7868 78.6075
CAMSIC 0.9385 0.8116 1.7501

MambaSIC 0.6067 0.6558 1.2625

stereo views due to its bi-directional architecture. In
particular, the VVC codec compresses images in a
predictive manner, resulting in an even larger PSNR
gap of 1.874 dB between views. Meanwhile, the
PSNR discrepancy between the two perspectives of
BiSIC, which also has a bi-directional structure, is
six times that of MambaSIC.

Coding Latency. We provide the coding latency
analysis on the InStereo2K dataset in Table 2. All
methods are tested on a single NVIDIA RTX 3090
GPU. Our method achieves the fastest encoding
and decoding, being 62× faster than BiSIC. This
stems from our entropy model’s adoption of a stereo-
checkerboard instead of a spatial auto-regressive con-
text, which simplifies the structure within the latents.

4.3 ABLATION STUDY

Different cross-view matrix. In Stereo 2DSS, we use matrix C from both views for cross-view
information transform. For comparison, we test using B, ∆, and output v, as shown in Table 3.
Adding cross-view control to B gives decent results but is slightly worse than C, since C is closer to
the output in Eq. 5 and Eq. 6, giving it stronger influence on the final reconstruction. Using ∆ or v
performs poorly, which further confirms that focusing on C is the most effective design.

Performance gain for efficacy and efficiency. As shown in Table 4, we evaluate the speed perfor-
mance of our proposed modules. V1 replaces 2D convolution and Stereo VSSB with 3D convolution
and Mutual Attention Block from BiSIC. V2 replaces our entropy model with BiSIC’s Cross-
Dimensional Entropy Model. V3 only replaces Stereo VSSB with the Mutual Attention Block. Switch-
ing from a spatial autoregressive entropy model to a checkerboard model gives large speed gains.

Table 3: Comparison of cross-view matrix used
in Stereo 2DSS. The first row is set as the anchor
to measure BD-PSNR.

Cross-view matrix InStereo2K Cityscapes

C 0 0

B -0.058dB -0.091dB
∆ -0.100dB -0.114dB
v -0.107dB -0.012dB

Table 4: Comparison of coding latency with dif-
ferent modules. We substitute the corresponding
parts with the modules from BiSIC.

Variant Coding Latency (s)

Ours 1.26

(V1) w/ BiSIC codec backbone 3.58
(V2) w/ BiSIC entropy model 75.19
(V3) w/ BiSIC mutual attention 2.64
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Table 5: Ablation studies for different components. The first
row is set as the anchor to measure BDBR on PSNR.

Variant InStereo2K Cityscapes

Ours 0% 0%

(V1) w/o cross view matrix αC 3.86% 3.19%
(V2) w/o stereo gating connection 6.98% 7.64%
(V3) w single VSSB 10.13% 12.67%

(V4) w/o inter-view priors 11.67% 13.01%
(V5) w/ BCSIC entropy model 9.79% 10.11%
(V6) w/ BiSIC-fast entropy model 8.39% 6.16%
(V7) w/ BiSIC entropy model 4.05% 2.98%

(V8) w/ BCSIC Bi-CTM 8.81% 9.26%
(V9) w/ BiSIC Mutual Attention 13.59% 15.74%

Stereo VSSB runs faster than mutual
attention, and 2D convolutions are
more efficient than 3D convolutions.
Overall, inter-view priors improve
compression, the checkerboard en-
tropy model boosts speed, and Stereo
VSSB balances efficiency and rate-
distortion well.

Intra-module ablation. We assess
the effectiveness of each component
in our stereo context transfer, with re-
sults shown in Table 5. Removing
the cross view matrix (V1) increases
BPP by 3.86% and 3.19% at the same
PSNR. Removing the stereo gating
connection (V2) raises BPP by 6.96%
and 7.64%. Further replacing the en-
tire stereo VSS block with a single-
view version (V3) leads to a 10.13% and 12.67% BPP increase. Fig. 6 further demonstrates that the
two branches in Stereo VSSB respectively enhance local texture information and global structural
information. For more details, please refer to the section A.

L
ef

t
R

ig
h

t

GT Local feature residual Global feature residual Bit allocation w/ inter-

view priors

Bit allocation w/o 

inter-view priors

Figure 6: Examples from the InStereo2K demonstrate that the different paths in Stereo VSSB enhance
local and global information, and incorporating inter-view priors leads to reduced bit allocation.

Different entropy models. We conduct ablation studies by replacing our entropy model with
alternatives from BCSIC (V5), BiSIC (V6), and BiSIC-fast (V7), and by removing inter-view priors
while using only the original model of MLIC++ (V4), as shown in Table 5. Compared with MLIC++,
our model achieves a 13.01% bitrate reduction. As shown in Fig. 6, by incorporating inter-view priors,
our method clearly allocates fewer bits. Compared with BCSIC and BiSIC variants, our entropy
model better fuses left-right priors, further improving coding efficiency and reducing overhead.

Inter-view fusion. To evaluate the effectiveness of the proposed Stereo VSSB, we consider two
baselines for comparisons. We replace Stereo VSSB with the mutual attention block in BiSIC (Liu
et al., 2024c) and Bi-CTM in BCSIC (Lei et al., 2022) as variant V8 and V9. As shown in Table 5,
Our proposed model outperforms all baselines by a large margin, which demonstrates its significance.

5 CONCLUSION
In this paper, we introduce MambaSIC, a novel stereo image compression framework differs fun-
damentally from previous CNN-based and attention-based approaches. To address inter-view re-
dundancy, we introduce a Mamba-based stereo transfer module that leverages visual state-space
modeling for efficient long-range dependency capture with linear complexity, enabling faster and
richer latent representation. Furthermore, we develope a bidirectional multi-reference entropy model
based on a checkerboard strategy and the proposed stereo transfer module, which achieves accurate
probability estimation and faster entropy coding. Experiments demonstrate that MambaSIC outper-
forms state-of-the-art methods in both rate-distortion performance and speed, offering a practical
solution for real-time and large-scale stereo compression tasks.
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A MORE DETAILS ABOUT SECTION 4.3

Owing to space constraints, Section 4.3 presents a concise summary of the results. In this section, we
conduct an in-depth analysis of each component.

Intra-module ablation. Variant V1 removes the cross-view control matrix C and modulation
parameter α in Stereo 2DSS. V2 builds on V1 by removing stereo gating, relying only on f̂l→l

and f̂r→r without cross-view interaction—essentially reducing to the VSSL used in Vmamba Liu
et al. (2024b). V3 extends V2 by eliminating the context transform, where each view’s features are
split by channel and independently processed through convolutional layers and VSSL, without any
cross-view interaction. Among them, V3 shows the largest performance drop, while V1 shows the
least, confirming the importance of each component.

We also ablate local and global modeling by removing the convolutional branch and retaining only
the Stereo VSSL. This results in BDBR increases of 8.57% and 3.48% on two benchmarks, verifying
the benefit of combining local and non-local features.

Different Entropy Models. In V4, we replace our entropy model with that of single image com-
pression (Jiang & Wang, 2023), which only models multi intra-view priors for both anchor and
non-anchor parts, without leveraging inter-view priors from the Stereo VSSB. Compared with our full
model, V4 leads to bitrate increases of 11.67% and 13.01%, the most significant performance drop
among all variants. These results underscore the importance of incorporating inter-view priors, which
enable more accurate probability estimation and more efficient entropy coding. We also evaluate
entropy models from state-of-the-art SIC methods (Lei et al., 2022; Liu et al., 2024c). As shown
in Table 5, the proposed entropy model achieves better rate-distortion performance than baselines
(V5,V6 and V7) This suggests that our model provides more accurate probability estimations, which
in turn minimizes the coding overhead.

Inter-view Fusion. To evaluate the effectiveness of the proposed Stereo VSSB, we consider two
baselines for comparisons. We replace the Stereo VSSB with the mutual attention block in BiSIC (Liu
et al., 2024c) and Bi-CTM in BCSIC (Lei et al., 2022). We apologize for the mistake in Table 5—val-
ues for V8 and V9 were inadvertently swapped. The correct results should indicate that V8 yields
bit rate increases of 13.59% and 15.74% on the two datasets, while V9 results in increases of 8.81%
and 9.26%, respectively. We will correct this in the final version. As shown in Table 5, our proposed
model outperforms all baselines by a large margin.
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B EXPERIMENTAL DETAILS

All training and testing settings strictly follow prior works (Liu et al., 2024c; Wödlinger et al., 2022;
2024; Zhang et al., 2023), to ensure fair comparisons. Specifically, each image in the InStereo2K
dataset is pre-processed so that its dimensions are divisible by 64. For the Cityscapes dataset,
rectification artifacts and the self-vehicle are removed by cropping 64 pixels from the top, 256 pixels
from the bottom, and 128 pixels from each side of every image. During testing, we evaluate on
images with resolutions of 1,024×832 from InStereo2K and 1,792×704 from Cityscapes.

For traditional codec baselines, BPG (Bellard, 2018) is evaluated using the YUV 4:4:4 format to
retain high visual quality. HEVC and VVC are implemented using the JVET standard. Stereo image
pairs are first converted into YUV 4:4:4 videos via ffmpeg, where the left image is encoded as an
I-frame and the right as a P-frame. It is worth noting that MV-HEVC only supports YUV 4:2:0, which
leads to degraded PSNR performance at higher bitrates. Additionally, we reproduce BCSIC (Lei
et al., 2022) and evaluate it using the same image settings as in (Liu et al., 2024c; Wödlinger et al.,
2022; 2024; Zhang et al., 2023), instead of the original 512×512 resolution used in (Lei et al., 2022),
to ensure comparability. The original setup in (Lei et al., 2022) yields significantly lower RD values,
hence we report all results under a unified and fair evaluation protocol.

C ADDITIONAL VISUALIZATION RESULTS

We visualize the qualitative results in Fig.5, Fig.7, Fig.8, Fig.9, Fig.10 and Fig.11, to demonstrate
the effectiveness of the proposed method compared with baseline models, including VVC(Bross
et al., 2021), BCSIC (Lei et al., 2022), LDMIC (Zhang et al., 2023), SASIC (Wödlinger et al., 2022),
ECSIC (Wödlinger et al., 2024), CAMSIC (Zhang et al., 2024b) and BiSIC (Liu et al., 2024c).
Our proposed MambaISC achieves higher PSNR at lower BPP for both the left and right views,
outperforming the compared methods. Besides, the reconstruction details and texture of BiSIC are
closer to the ground truth. Notably, thanks to our bidirectional design, the image qualities of the
left and right views remain consistent, effectively mitigating the imbalance issue often observed
in unidirectional approaches. In contrast, VVC adopts a predictive compression framework where
one view is encoded independently, and the other is generated based on the disparity between the
predicted and actual views. This unidirectional approach results in a PSNR gap between stereo
views. ECSIC compresses the right image using spatial context from the left image, yielding higher
quality on the right view. SASIC uses the left image as a shift to assist the compression of the right
image, which also results in a similar phenomenon. Compared with BiSIC, which also adopts a
bidirectional structure, our method achieves a smaller PSNR discrepancy between views, indicating
that the proposed Stereo VSSB is more effective than the mutual attention block in maintaining
balanced reconstruction quality across views.
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Figure 7: Qualitative comparison on reconstructed image across various codecs.
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Figure 8: Qualitative comparison on reconstructed image across various codecs.
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Figure 9: Qualitative comparison on reconstructed image across various codecs.
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Figure 10: Qualitative comparison on reconstructed image across various codecs.
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Figure 11: Qualitative comparison on reconstructed image across various codecs.
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