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Abstract

Given an untrimmed video and a language query depict-
ing a specific temporal moment in the video, video ground-
ing aims to localize the time interval by understanding the
text and video simultaneously. One of the most challenging
issues is an extremely time- and cost-consuming annotation
collection, including video captions in a natural language
form and their corresponding temporal regions. In this pa-
per, we present a simple yet novel training framework for
video grounding in the zero-shot setting, which learns a net-
work with only video data without any annotation. Inspired
by the recent language-free paradigm, i.e. training with-
out language data, we train the network without compelling
the generation of fake (pseudo) text queries into a natural
language form. Specifically, we propose a method for learn-
ing a video grounding model by selecting a temporal inter-
val as a hypothetical correct answer and considering the
visual feature selected by our method in the interval as a
language feature, with the help of the well-aligned visual-
language space of CLIP. Extensive experiments demon-
strate the prominence of our language-free training frame-
work, outperforming the existing zero-shot video ground-
ing method and even several weakly-supervised approaches
with large margins on two standard datasets.

1. Introduction

In our daily life, we surf, think, and learn through loads
of videos. By extension, we wish to search for the informa-
tion we want in the videos. Video grounding (also called
video moment retrieval) with natural language query aims
to help such video search by automatically localizing a tem-
poral moment for various applications such as video surveil-
lance [[7]] and smart video search [37} 3§].

A major challenge of video grounding is the exorbi-
tant cost of constructing time interval annotations aligned
to a given text that is also collected. Although recent
fully-supervised video grounding (FSVG) methods [24]
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Figure 1. Given a video and a language query, video grounding
aims to retrieve the time interval corresponding to the language
query in the video. In this paper, we address the zero-shot video
grounding (ZSVG) problem which is the most challenging setting
and cannot use any annotations for training.

have shown remarkable performance on the limited size of
datasets [19], there is still room for improvement with
scale-up training. Especially in such a field, large-scale
training data is required to cover numerous video domains
(e.g., instructional videos, movies, and so forth). How-
ever, building massive annotations as more billion scales
like image-language datasets, such as LAION-5B [33]], in
video scale is an impractical solution.

To address the burden of annotations, researchers have
proposed weakly-supervised video grounding (WSVG)
methods [13] which use only coarse video-level de-
scriptions for training. But they still require paired video-
language data, showing limited applicability in the open
world. Recently zero-shot video grounding (ZSVG) has
been proposed in [30]]. As illustrated in Fig.[I] ZSVG uti-
lizes only videos to learn the video grounding model in the
training stage. To learn the localizing capability in a semi-
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supervised manner, [30] generates pseudo temporal event
regions and corresponding pseudo sentence queries by ex-
amining noun-verb statistical co-occurrence patterns. How-
ever, pseudo sentences are built upon the composition of
nouns and verbs (e.g., ‘flip person switch door’), which
is naturally different from the form of natural language
query (e.g., ‘person flipped the light switch near the door.”).
Namely, contrived sentences with the simple composition
of nouns and verbs break the structural and compositional
generalization inherent in natural language that might harm
the performance [22].

In this paper, we propose a novel language-free training
framework for zero-shot video grounding. Our solution is to
treat the visual feature as pseudo textual information while
being flexible in responding to the act of forcing sentences
to generate pseudo forced sentences. Specifically, we lever-
age an image-language pretraining model (i.e., CLIP [33]))
trained on large-scale web-collected data that have revealed
a breakthrough in the multi-modal research field. We con-
jecture that text and visual features can replace each other
without trouble in that CLIP provides a well-aligned visual-
language semantic space.

To this end, we first generate temporal proposals that
contain meaningful events from a given untrimmed video.
With the visual encoder of CLIP, visual features are ex-
tracted from all the frames in the proposal. Then our learn-
able selection transformer takes a dominant feature that has
a role of the pseudo language feature in a video ground-
ing model instead of generating a natural sentence from the
proposal. Therefore, our method is free to generate high-
quality natural language form from the proposal. More-
over, since the dominant visual feature is directly used for
the pseudo textual feature, our method has no need to pro-
duce textual embedding from a pseudo text label, which is
a time-consuming yet necessary step for the training of the
previous method [30]. Finally, the whole model is learned
to predict time intervals corresponding to pseudo sentence
features with generated temporal proposals as ground-truth.
Our contributions are summarized three-fold:

e We introduce a language-free framework for video
grounding that can be an affordable solution to effec-
tively reduce the annotation cost.

* We validate the applicability of the pretrained visual-
language model to the video-language task by provid-
ing extensive experimental analysis.

* Our language-free training framework outperforms
the existing method, achieving state-of-the-art per-
formance, and even shows comparable performance
with weakly-supervised approaches on the Charades-
STA [[14]] and ActivityNet Captions [19] datasets.

2. Related Work
2.1. Video Grounding

Video grounding is a recently proposed task [1} [14],
which aims to find the best moment in a video grounded
on language queries. Most of the existing methods followed
fully-supervised setting [9} 22} [24)[29] 1341144151} 152} 153}, 154,
57, 159] to model fine-grained semantic relations of video
and language. However, since such a setting requires pre-
cise annotations for the start and end timestamps, manual
annotations of the temporal boundary were required, which
also led to subjectivity across different annotators.

Weakly-supervised video grounding has been introduced
to alleviate this burden. Existing works can be catego-
rized into two groups. 1) Multi-instance learning [8] (MIL)
based methods [[15, 16, 27, 28, 41}, 56]] utilized similar-
ity scores by maximizing scores between positive samples
and minimizing scores between negative samples. 2) The
reconstruction-based method [10, 23} 40, |50, 58|] used the
assumption that the video segment that best reconstructs the
text query is close to the ground-truth.

However, while weakly-supervised approaches were
successful in lowering the cost of temporal annotation, the
cost of text query remains problematic. Several works [25]
30] considered an unsupervised setting that does not access
the paired annotations. [25] proposed a deep semantic clus-
tering network, which first aggregates distinct semantic fea-
tures from the whole query set and then generates pseudo la-
bels to provide pseudo supervision for training. [30] gener-
ated pseudo labels of temporal boundaries and correspond-
ing query sentences. They first utilized a temporal similarity
matrix to find temporal event proposals, then used an off-
the-shelf object detector and fine-tuned RoBERTa [26] to
make a structure-less pseudo query. However, a structure-
less pseudo query, especially composed of nouns and verbs,
can be interpreted in several meanings, due to systematic
compositionality [5) [13] of natural language. In addition,
the existence of the uninformative word in the query makes
it hard for the model to distinguish the exact meaning of
what the query originally intended to mean. Furthermore,
inferred verbs from detected objects are loosely bonded in
the sense that the verbs are not predicted directly from the
video, which leads to the generation of inaccurate pseudo
queries.

2.2. Language-free Paradigm

As recent trends shift from uni-modal learning to multi-
modal learning, vision-language related tasks have attracted
attention. Since the modality to be processed has dou-
bled, it becomes difficult to obtain high-quality vision-
language training pairs. Several works [30} [60] proposed a
so-called ‘language-free paradigm’ to address this problem,
which means training without language data in the vision-
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Figure 2. The overall framework of our language-free video grounding framework. In (a) training, we generate a pseudo temporal interval
and corresponding pseudo language feature from the visual encoder of CLIP [33] and selection transformer to train the video grounding
model. In (b) inference (test) phase, we use the video grounding model only with text encoder of CLIP.

language tasks. time stamps) representing the content corresponding to the
One line of work [12, [17, 20, 130] presented a visual query. In the zero-shot video grounding (ZSVL), the model
object-based approach, which utilizes an off-the-shelf ob- is not allowed to access any language query and ground-
ject detector to make text-related pseudo labels based on truth time stamps during training. To achieve this goal, the
detected objects. Unsupervised image captioning [12} [20] prior work [30] generated a pseudo sentence query using a
utilized an object detector to explore visual concepts in an pretrained object detector and noun-verb statistics from text
image from unpaired image and text information. Unsu- corpora. While they have successfully presented a baseline
pervised visual grounding [[17]] used detected objects as the for zero-shot video grounding, there are still problems to
first object proposals and then generated pseudo language be tackled: (1) they generated nouns for the pseudo query
queries with a pseudo-query generation module. Zero- by heavily relying on the capacity of the pretrained object
shot video grounding [30] first detected objects from tem- detector, which may have encoded inappropriate biases and
poral event proposal as nouns, second utilized fine-tuned has a limited number of object categories; (2) they trained
language model as verbs, and finally generated simplified the sentence query generation network and video ground-
sentence as pseudo query by composing nouns and verbs. ing network separately, making the training procedure in-
However, the above methods heavily rely on the quality of efficient; (3) They assumed that simplified sentences con-
recognized visual objects from object detectors, which has sisting of nouns and verbs whose structural characteristics
a large domain gap between the target dataset and the train- and compositional generalization inherent in natural lan-
ing dataset that the object detector has trained on. Further- guage are ignored could be substitutes for natural language
more, since the object categories were limited to the trained queries.
dataset, it was impossible to scale a wide variety of ObjeCtS To solve the aforementioned problems’ we propose a
and rich expressions inherent in natural language [61]. language-free framework for ZSVL, which skips doubt-
Another line of work [47, 160, 61] utilized well- ful sentence generation for performance improvement and
aligned multi-modal semantic space of the pretrained lightweight training. As shown in Fig. 2(a)] the training
visual-language model.  [61] presented prompt-based pipeline of our framework is (1) constructing temporal pro-
learning method for unpaired image captioning model, posals using a pretrained video encoder, (2) generating the
which utilizes the vision-language alignment established by pseudo language feature with a selection transformer among
CLIP [33]. [47,160] proposed language-free text-to-image the frame-wise visual features from pretrained CLIP, and
generation model using pretrained CLIP. Specifically, they (3) training a video grounding model that will be used to
generated a pseudo text feature directly from an image using inference.
CLIP, assuming that CLIP has learned image-text feature
alignment in the joint embedding space. While we share 3.2. Temporal Proposal Generation
the same spirit as the language-free text-to-image genera-
tion [60], our work is the first attempt to introduce language- As a first step toward language-free video grounding, we
free training for video grounding. should generate temporal event proposals from a video that
we regard as temporal ground-truth. To detect events hap-
3. Language-free Video Grounding pening in the videos, we leverage a characteristic of visual

similarity of consecutive frames. Specifically, a temporal
similarity matrix is constructed to segment videos where

Given an untrimmed video and a language query, video visually similar frames are activated. Since the temporal
grounding aims to localize a time interval (start and end similarity matrix reflects the temporal structure of the given

3.1. Problem Statement and Motivation
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video [[11} 31} 32], we utilize this information to find possi-
ble events occurring in the video.

Similar to [30]], given raw video frames, we first extract
the video feature from the sequence of segments using a
pretrained video encoder F,,. After obtaining extracted fea-
tures f which encode the temporal structure of each seg-
ment, we construct a self-similarity matrix R of the given
video as follows:

R;j = cos(fi, f;) fi I

AT .
where R;; is the cosine similarity score between pairs of
segment features f; and f;. Then we group the segments
into £ dominant events by clustering the features using k-
means algorithm. Also, consecutive events are merged to
deal with more complex events.

3.3. Pseudo Language Feature Generation

Candidates of a language feature. To train the video
grounding model, we need language queries correspond-
ing to the generated temporal proposals. However, as men-
tioned in Sec. [3.1] creating a language query in a natu-
ral language form can neglect the natural property of the
language and be erroneous and time-consuming. Instead,
motivated by the recent success of the zero-shot text-to-
image generation [60], we employ the visual encoder of
the vision-language model (i.e. CLIP [33]]) trained on large-
scale image-language data using contrastive loss. Since the
visual and language features are well-aligned in the seman-
tic space, we can use the visual feature as the pseudo lan-
guage feature.

Specifically, we randomly sample /N frames denoted by
{v; };VZI in each temporal proposal and encode frame-wise
features using the pretrained visual encoder Fime. Thus, a
set of candidates q for the pseudo language feature

q= {qlv "'7qN} - {-Fimg(vl)y "'»-/_'.img(UN)}a (2)

where ¢,, denotes the visual feature corresponding to v,,.
However, directly using the visual feature may not be
enough to represent the real language features. To this end,
we intentionally perturb the features from the pretrained vi-
sual encoder using random noise following [60]:

Qn < qn + &ellgnll2/|€l]2; 3
an < qn/|lqnll2; 4)

where € ~ A(0,1) is the Gaussian noise, £ > 0 denotes a
hyperparameter to control the degree of noise, and || - ||2 is
Lo normalization. We note that ViT/B-32 of CLIP image
encoder is used as Fiy, in this work.

Pseudo language feature selection. Given encoded
pseudo language feature candidates, we select a single dom-
inant feature that is the most informative to represent the

corresponding temporal proposal. While it is natural to en-
code temporal information in video-language tasks, we se-
lect the pseudo language feature without the temporal mod-
eling. Our observation is that a single dominant visual fea-
ture can be more informative to represent the corresponding
query for two main reasons: 1) A video consists of consec-
utive frames that usually contain similar semantics from a
continuous scene so that sampling a superior frame already
contains important information of the video [2,121]]; 2) since
avideo is a collection of noisy frames due to the existence of
background clutter or camera motion blur, the combination
of sampled frames may contain uninformative information
and be computationally inefficient.

Moreover, inappropriate temporal modeling harms the
vision-language semantic space, leading to an unreliable
performance at inference time where a real language query
is given. One alternative solution is leveraging a pre-
trained video-language model (e.g. VideoCLIP [49])). How-
ever, the video-language model is usually pretrained on a
smaller number of video-language pairs (1.1M videos in
VideoCLIP [49]) than the visual-language model (400M
image-text pair in original CLIP [33]]). Furthermore, video-
language models typically require high computation and
memory costs. Therefore, we insist that incorporating the
visual-language model into our work efficiently leverages
the confident visual-language semantic space. We will ver-
ify this observation in Sec. 4.5

Concretely, we formulate a selection transformer that has
only simple two transformer layers for a frame selection
process such that:

ST({Qlaq27"'an})HQa (5)

where ST is the selection transformer and ¢ denotes the
pseudo language feature. To ensure the back-propagation
of such transformer for an end-to-end training, we employ
gumbel softmax similar to [2].

3.4. Video Grounding Model

In this section, we describe our video grounding model
consisting of a video encoder and a cross-modality fusion
module that learns to fuse two distinct modality features.

Video encoding. We reuse the obtained video feature f in
the video grounding model with temporal positional encod-
ing. As our goal is to regress the temporal boundaries, it is
important to embed the position information.

To explicitly model the position information of each
video, we apply temporal positional encoding e, of each
segment as done in [43]]. Then we apply bi-directional GRU
[6] to further encode temporal information. A final repre-
sentation of the video s is obtained by aggregating the vec-
tor that concatenates the last hidden layer of bi-directional
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Method Sup Charades-STA ActivityNet Captions

" | R@0.3 R@0.5 R@0.7 mloU | R@0.1 R@0.3 R@0.5 R@0.7 mloU
LGI [29] FS 7296 5946 3548 51.38 - 58.52 4151 23.07 41.13
CTRL [14] FS - 21.42 7.15 49.1 28.70 14.00 - 20.54
TGA [28] WS | 29.68 17.04 6.93 - - - - -
CTF [4] WS 39.8 27.3 12.9 27.3 74.2 443 23.6 - 322
SCN [23] WS | 4296  23.58 9.97 7448 4723 29.22 - -
WSTAN [45] | WS | 4339 2935 12.28 79.78 5245  30.01 - -
BAR [48] WS | 4497  27.04 12.23 - 49.03  30.73 - -
MARN [40] WS | 4855 3194 14.81 - 47.01 29.95 - -
CCL [56] WS - 33.21 15.68 - 50.12  31.07 - -

LoGAN [41] | WS | 51.67 34.68 14.54
CRM [16] WS | 53.66 34.76 16.37

81.61 55.26 32.19 - -

VCA [46] WS | 58.58 38.13 19.57 3849 | 6796  50.45 31.00 - 33.15
LCNet [50] WS | 59.60  39.19 18.87 38.94 | 7858 4849 2633 - 34.29
RTBPN [55] | WS | 60.04  32.36 13.24 73.73 49.77 29.63 - -
CNM* [58]] WS | 60.39 35.43 15.45 78.13 55.68 33.33 - -
DSCNet [25] | US 44.15 28.73 14.67 - 4729  28.16 -

PSVL* [30] A 46.17 31.29 14.17
Ours* ZS 52.95 37.24 19.33

31.24 -
36.05 | 61.35 47.61

44.74 30.08 1474 29.62
32.59 1542 31.85

Table 1. Performance comparison with other methods on the Charades-STA and the ActivityNet Captions dataset. ‘Sup.” refers to super-
vision level: WS (Weakly-supervised setting), US (Unsupervised setting, where query information utilized but not paired to videos), ZS
(Zero-shot setting, where any annotation are not exploited including query information) * These works use pretrained models: ours and

[58]] use frozen CLIP, and [30] fine-tune RoBERTa [26].

GRU and the positional encoded video feature as follows:

s = MLP[Bi-GRU(f) @ f], (6)

where @ is a concatenation operation and f = f+eposisa
video feature that combines positional embeddings.

Cross-modality fusion module. Given obtaining the
pseudo language feature ¢ and the encoded whole video fea-
ture s, video grounding aims to find the most related parts
in the video corresponding to the given language feature.
To achieve the goal, we leverage an attention mechanism
proposed in [43] to enable the multi-modal interaction of
the two modalities. Specifically, we obtain language-guided
video feature s,y using multi-head attention where we de-
note query () as the video feature f, key K and value V as
the pseudo language feature g:

QK"
V).
Vg )
™)

where dj; is the dimension of K. Then, to capture more
global context across the video, we additionally apply a
self-attention layer after the cross-attention layer. We care-
fully note that cross-attention and self-attention have differ-
ent roles in the fusion module, where key, query, and value
in the self-attention layer are the video attention feature, and
the key and value of the cross-attention layer is the pseudo

Cross-Attention(Q, K,V) = softmax(

language feature. Finally, with an MLP layer, we predict
the start and end time stamps of the most relevant temporal
region from the condensed video feature. This process is
summarized as follows:

(ts,t.) = MLP(Self-Attention(say)), 8)

where (fs,%,.) is the predicted start and end time, respec-
tively.

3.5. Model Training and Inference

Since our method performs video grounding in the zero-
shot setting, the training and inference processes are differ-
ent as illustrated Fig. 2] Next, we describe training objec-
tives to learn the video grounding model with the pseudo
temporal proposal and the pseudo language query, and the
inference process with the given video and real language

query.

Training. Our training objective includes two loss func-
tions, the temporal regression loss L,.., and the temporal
attention calibration loss L ;:

L= Lreg + )\Latt- (9)

To balance each objective term, the hyper-parameter A is
used. Note that we empirically select A to 1, which has
shown less effect on training.
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Lieg Layw | R@03 R@0.5 R@0.7 mloU
v X 45.16  30.40 14.88  30.33
X 4 12.81 8.71 3.99 8.71
v v 5295 37.24 19.33  36.05

Table 2. The ablation study of different losses. v/ means the loss
term used in training.

Following previous works [29} [51]], we adopt temporal
regression loss L., as a smooth L1 loss between model
prediction and target interval, which is given by

—te), (10)

where (£,,t.) and (£, t.) denotes pseudo temporal ground-
truth and model prediction, respectively.

We also adopt temporal attention calibration loss Ly
to increase the accuracy of temporal attention since we di-
rectly regress the time intervals from temporally attended
video features following [S1]:

S, dilog(ay)

Lyeyg = smoothy, (ts — ts) + smoothr,, (t.

Latt = - T - ) (11)
Zt:l ag
where
1, ift, <t<t,
=4 Uh=ts (12)
0, otherwise.

Inference. Different from the training process, in the in-
ference stage, an input is a video and its corresponding
complete sentences from the test set. To deal with this
difference, we extract text features from the text encoder
of the pretrained vision-language model, i.e. text encoder
of CLIP [33]. In other words, the pseudo language fea-
ture ¢ is replaced with the real language feature ¢ from
the real language query. Hence, our proposal generation
step in Sec.|3.2|and pseudo language feature generation step
in Sec. [3.3]are only leveraged to train the video grounding
model.

4. Experimental Results
4.1. Datasets

In order to verify the effectiveness of our method, we
conduct experiments on two datasets: Charades-STA [14]
and ActivityNet Captions [19]. Since we formulate the
video grounding task as a language-free setup, any anno-
tations related to the videos have not been utilized while
training, but in the test only.

Charades-STA Charades-STA was introduced by [14]
from the Charades dataset [36] with the purpose of eval-
uating on video grounding task by annotating in a semi-
automatic way. The dataset contains 12,408/3720 segment-
sentence pairs and 5338/1334 videos in training and test set,
respectively.

Model R@03 R@0.5 R@0.7 mloU

Ours 52.95 37.24 19.33  36.05

Ours + temporal GT | 54.00 3991 19.46  36.29
Table 3. Upper bound analysis using ground-truth temporal bound-

aries (temporal GT). With temporal GT, we directly generate the
pseudo language features corresponding to GT time intervals.

Frame Selection | R@0.3 R@0.5 R@0.7 mloU
Random 50.2 34.84 15.66 33.49
ST 52.95 37.24 19.33  36.05

Table 4. The ablation study of frame selection strategies. ‘ST’
denotes the proposed selection transformer.

ActivityNet Captions ActivityNet Captions was origi-
nally collected by [19] for evaluating dense video cap-
tioning, which contains 37,417/17,505/17,031 segment-
sentence pairs and 10,009/4917/5044 videos in training,
val_1 and val_2, respectively. Following previous works
[29! 30], we evaluate our performance on the validation set
since the annotation of the test set is unavailable.

4.2. Evaluation Metric

To evaluate the performance of our model, we adopt
R@tIoU and mloU (mean averaged tloU) following previ-
ous works [14} 23] for a fair comparison. Specifically, given
predicted boundaries, we compute temporal intersection
over union (tloU) with ground-truth boundaries. R@tloU
is the percentage of the predictions which are larger than
the thresholds, i.e. {0.3, 0.5, 0.7}. mIoU is the average IoU
of all the predictions.

4.3. Implementation Details

For a fair comparison, we employ I3D [3] and C3D [42]
networks as video feature extractor for the Charades-STA
and ActivityNet Captions datasets, respectively, following
previous works [29} 30]. We set the maximum length T’
of the video features to 128 in both datasets. For gener-
ating pseudo language features, we use pretrained CLIP-
ViT/B-32. We set N = 9 for frame sampling and use a
low-capacity transformer [43] with 2 layers and 2 attention
heads for the frame selection process, making it computa-
tionally efficient. The bidirectional GRU layers in the video
encoder are 2 layers architecture with a hidden size of 256.
For the cross-modality fusion module, we use multi-head
attention with 3 layers and 4 heads. The dimension of their
hidden state is 256. For the hyperparameters, we empiri-
cally set £ = 5, & = 0.0001 and A = 1. In all experi-
ments, we train our models with a batch size of 256 using
Adam [18]] with a fixed learning rate of 0.0004. We provide
more details in supplementary material and the code will be
publicly available soon.
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Figure 3. The ablation study of the number of frame embeddings
used in frame selection process.

4.4. Comparisons to the State-Of-The-Art

Tab. [T] shows the results of our model compared to pre-
vious works in fully-supervised, weakly-supervised, unsu-
pervised, and zero-shot conditions. The weakly-supervised
(WS) methods are trained with costly annotated sentence
queries, whereas the unsupervised (US) method leverages
the unpaired data of videos and sentence queries in the
dataset. However, zero-shot methods, including ours, lever-
age only videos in the dataset for training. On both
Charades-STA and ActivityNet Captions datasets, we can
observe that our method outperforms PSVL in all met-
rics by large margins, demonstrating the robustness of the
proposed method. Furthermore, even though our method
does not use a bunch of language queries of the dataset,
our method outperforms the unsupervised method [23]] by a
large margin. The comparisons with the weakly-supervised
methods show that our method achieves comparable or even
superior performance to several approaches [4} 23] 28|
48.156].

4.5. Analysis

To prove the excellence of our methods, we perform ab-
lation studies and analysis from various perspectives on the
Charades-STA.

Effects of different losses. We first investigate the effec-
tiveness of using different loss terms, L,., and Lq. As
shown in Tab. 2| our model performs best when we used all
loss terms, which demonstrates that using two losses is crit-
ical for training our network. We also find that the regres-
sion loss L4 had a more influence on overall performance,
however, training with only regression loss L,., find to be
inferior to the performance of baseline.

Upper bound analysis. In Tab. 3] we give the upper
bound analysis to our model by replacing the pseudo tem-

Query: a person wearing a blue sweater opens a coat closet.
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Figure 4. Qualitative comparisons corresponding to the language
feature encoders on the Charades-STA dataset.

poral proposals (%, 1.) into temporal ground-truth (¢, t.).
Replacing with temporal ground-truth leads to perfor-
mance improvement which outperforms most of the exist-
ing weakly-supervised video grounding methods. However,
the gain was not significant because we obtained a pseudo
language feature by selecting one of the frames within the
generated temporal boundaries. We carefully assume that
the precise temporal location has a limited impact.

Effectiveness of the selection transformer. To investi-
gate the importance of using the selection transformer in
the pseudo language feature generation process, we replace
it with a random selection module. In this analysis, we ran-
domly sample a feature from extracted visual features in the
proposal as a pseudo language feature. As shown in Tab. [}
we observe that using a selection transformer can boost the
performance, suggesting the selection transformer’s capa-
bility of selecting a dominant feature.

Effect of the number of frame embeddings. As shown
in Fig. 3] we evaluate the effectiveness of the number of
frame embeddings used in the selection transformer. We
can see that the more we sample the frame embeddings, the
higher the tloU scores until the 9 frames. So, we set the
N = 9 in all experiments. More results for the recall at
different tloU are shown in the supplementary material.
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Query: A person in their bedroom is running towards their cabinet.

InDUt _

GT

PSVL

1.5s 9.43s

Ours

Input

GT

PSVL

Ours

Figure 5. Qualitative comparisons between ours and PSVL on the
Charades-STA dataset.

Effectiveness of the image-based vision-language model.
In this section, we investigate the effectiveness of the
image-based vision-language model for the video-language
task. For this experiment, we employ pretrained video-
language model [49], which has established fine-grained as-
sociations between video and text with contrastive loss, to
generate a pseudo language feature. The pseudo language
feature is directly obtained from the video-language model
extracted from the proposal. Fig. @] shows some qualita-
tive results for the comparison between our method with
CLIP and with its counterpart (i.e., VideoCLIP). As shown
in Fig. 4] our model with CLIP can localize the better mo-
ment than with VideoCLIP, regardless of whether the given
query is more static or dynamic. We observe that using
an image-language model can capture semantic information
from a single frame comparable to or better than the video-
language model.

4.6. Qualitative Results

Fig. [5] shows some qualitative results comparing our re-
sults with the previous method [30] on the Charades-STA
dataset. This example presents the temporal ground-truth
boundaries and model predictions of PSVL [30] and ours,
given a pair of a video and a query. The results show that
the proposed method covers more of the video content re-
lated to the query, which effectively shows that our model

Query: A female child is playing with a hula hoop.

Ours u‘?" Lﬂ‘ r_‘?-' 0“~3—! r—.s-l -‘n?J t‘--?-l

0.0s 10.0s

Query: The boy brushes his tongue.

- Mo BV :m g

16.5s 21.2s

'37‘» "; 1 :
Ours ol Bt e ﬂ i
I W - AA.‘

13 1s 22.0s

Figure 6. Qualitative comparisons between ground-truth intervals
and ours on the ActivityNet Captions dataset.

is qualitatively better than PSVL. Also, Fig.[f]illustrates the
qualitative results on the ActivityNet Captions dataset. The
more qualitative results are in the supplementary material.

5. Conclusion and Future Work

In this work, we present a novel method to train a
video grounding model in a zero-shot manner without us-
ing any annotation related to paired video-sentence data.
We achieve the goal by generating pseudo ground-truth of
temporal locations and corresponding text features with the
language-free paradigm. Primarily, we obtain a pseudo
language feature from a generated proposal leveraging the
well-aligned visual-language semantic space of CLIP. In
contrast to the previous method of trying to make pseudo
text queries into contrived language formats, we preserve
the structural characteristics and compositional generaliza-
tion inherent in natural language. Moreover, we develop a
video grounding model based on cross- and self-attention
transformers to effectively model the relationship between
two modalities and the context of attended features. The
experimental results demonstrate the efficacy of language-
free training, achieving remarkable performances on two
datasets and reducing the cost of data collection.

However, the temporal modeling is not designed in this
work due to the aforementioned reasons in Sec. 3.3l As
shown in the experimental results, current datasets show a
limitation for temporal reasoning in the settled query. As
the next step, we will investigate the new benchmark for
video grounding, which should include more hard examples
of causal and temporal understanding as well as more long-
term videos for practical usage.
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