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ABSTRACT

Multi-task reinforcement learning (MTRL) promises unique strengths against
single-task RL because of generalization across tasks through parameter sharing
and composition. Existing methods rely on local routing or static compositional
weights in Mixture-of-Experts (MoE) without the ability to adapt to evolving tem-
poral context. To improve the inherently temporal and dynamic systems in MTRL,
we introduce a global recurrent inhibition network (GRIN) that performs dynamic
gating across time, selectively modulating expert activations based on temporally
accumulated context. Our formulation propagates information across time steps
to preserve global activation information across the model. Notably, using the gat-
ing approach, we found statistically significant improvements over state-of-the-art
MTRL methods, with an empirical +3.7% improvement on the Metaworld MT50
benchmark.

1 INTRODUCTION

Deep reinforcement learning has demonstrated the capacity to acquire complex behaviors across
diverse domains Mnih et al. (2013); Gu et al. (2017); Kalashnikov et al. (2018); Lillicrap et al.
(2015). The human ability to leverage similar tasks to learn to perform many tasks inspires multi-
task reinforcement learning (MTRL), which offers a path toward more general agents. To enable
sharing of knowledge and parameters, Mixture-of-experts and compositional parameter-sharing ap-
proaches Hendawy et al. (2023); Sun et al. (2022) have shown promise by enabling task-specific
specialization within unified architectures. However, these methods typically rely on local routing
or static compositional weights, limiting adaptability as temporal context evolves during an episode.

Gating mechanisms have proven effective for controlling information flow in neural networks, such
as LSTMs Hochreiter & Schmidhuber (1997) and notably, to modern attention and LLM architec-
tures Qiu et al. (2025). Recent work Qiu et al. (2025) demonstrates that dynamic, input-dependent
gating applied across time enhances nonlinear expressivity and improves optimization stability. We
investigate whether these benefits extend to the complex temporal dynamics of MTRL, where agents
must continuously adapt behavior based on evolving task demands. We introduce a global recurrent
inhibition network (GRIN) that performs dynamic gating across time steps, selectively modulating
feature activations based on temporally accumulated context.

A key challenge in applying gating to model-free deep RL is that feedforward networks restrict
gating inputs to preceding layers within the current forward pass, forfeiting access to global in-
formation. Our formulation addresses this by propagating activations forward across time steps,
enabling the gate to leverage any activation from the previous step and preserve global context.
This mechanism directly parallels cortical inhibitory neurons that integrate diverse synaptic inputs
to orchestrate neural computation.

We show that in multi-task settings, global network gating with input access to Q-value and task-
specific signals enhances model performance. GIN achieves 90.0% on the Metaworld MT10 bench-
mark, and demonstrates a statistically significant +3.7% improvements with our reproduced results
on the challenging MT50 benchmark. These results demonstrate that temporal gating yields im-
provements over state-of-the-art MTRL methods, establishing dynamic gating across time as an
effective mechanism for multi-task policy learning.
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(a) Illustration of GRIN inhibition head module which takes
in all global activations and dynamically changes the MoE
weights and architecture.
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Figure 1: Model Architecture

2 BACKGROUND AND RELATED WORK

A rich body of work in MTRL has explored diverse strategies for achieving effective generaliza-
tion across tasks. The paper D’Eramo et al. (2024) established theoretical foundations showing
that MTRL yields increasing benefits as the number of tasks grows, whileTeh et al. (2017) propose
learning individual task policies that share a common prior. The Meta-World benchmark Yu et al.
(2020b) has become a standard testbed for robotic manipulation, typically trained with Soft Actor-
Critic Haarnoja et al. (2018). However, naive parameter sharing can induce negative transfer when
task gradients conflict. The paper Yu et al. (2020a) address this through gradient projection meth-
ods that orthogonalize task gradients, though such approaches can be sensitive to gradient variance.
Modular architectures offer an alternative: Yang et al. (2020) introduce routing networks that gen-
erate task-specific parameters from a shared base model, and Devin et al. (2017) decompose policy
responsibilities across robot-specific and task-specific modules. More recent work conditions shared
representations on task context: Sodhani et al. (2021) learn a mixture of state encoders using task
metadata, producing diverse and interpretable representations, while Perez et al. (2018) leverages
feature-wise linear modulation for task conditioning.

Deep learning has designed adaptation and inhibitive mechanisms through learnable gating architec-
tures that selectively amplify or suppress features. These appear in LSTMs (Hochreiter & Schmid-
huber, 1997), Highway Networks (Srivastava et al., 2015), and Gated Linear Units (GLUs) (Dauphin
et al., 2017b; Shazeer, 2020), where they prevent gradient vanishing, and enhance network sparsity.
The mechanism mirrors biological cortical inhibition, where diverse inhibitory neurons modulate ex-
citatory activity to maintain network stability and sharpen signal selectivity (Isaacson & Scanziani,
2011; Klausberger & Somogyi, 2008; Tremblay et al., 2016). Studies reveal remarkable diversity in
inhibitory connectivity patterns inhibition(Gidon & Segev, 2012; Markram et al., 2004; Chini et al.,
2022).

Dropout and its variants (Ba & Frey, 2013; Kingma et al., 2015; Ghiasi et al., 2018; Liu et al., 2022;
Zhao et al., 2022; Li et al., 2023) demonstrate the effectiveness of stochastic adaptation during
training. Capsules (Hinton et al., 2011; Sabour et al., 2017; Hinton et al., 2018) leverage dynamic
routing at the unit and layer level, and remains an area of novel active research. In comparison, we
focus on a global approach to improve existing ML models and MoE.

Different from prior work, we propose a global approach across the model. The propagation across
time builds a global, dynamic adaptation module. This module aggregates signals from any part of
the neural network and modulate MoE pathways. This design enables GRIN to provide a general
mechanism for dynamic modulation. We demonstrate its effectiveness in multi-task reinforcement
learning, as well as in computer vision and limited-scale language models.
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3 ALGORITHM AND METHODS

3.1 PRELIMINARIES

Mixture of Experts (MoE) (Shazeer et al., 2017) architectures dynamically route inputs through
specialized sub-networks. A standard MoE layer transforms an input representation (IR) xIR ∈
Rd. In an MoE without a router model (Sun et al., 2022), xIR is transformed by the experts then
aggregated by mixture weights (MW) which could be either fixed or learned. In a gated MoE,
xIR is put to a router model that computes mixture weights wMW = Router(xIR), and wMW =
[w1, w2, ...] where wi represents the contribution of the i-th expert out of N experts. After xIR
is propagated through the expert models, an aggregation step combines expert outputs. The final
output representation (OR) is computed as: yOR =

∑N
i=1 wi · Ei(xIR), where Ei denotes the

i-th expert network and N is the total number of experts. Variants include mixed MoE where all
experts process inputs with soft weights from a softmax router, gated MoE that adds learnable gates
to modulate expert contributions, and sparsely-gated MoE that selects only the top-k experts for
efficiency.

To enable precise control over network modulation, we design the GRIN head module to dynami-
cally regulate MoE architectures. Generic MoE leverages three key representations: the input rep-
resentation (IR), the mixture weights (MW), and the output representation (OR). The GRIN head
module generates gating masks through sigmoid non-linearity (Dauphin et al., 2017a), directly mod-
ulating these representations.

3.2 GRIN ARCHITECTURE WITH THE HEAD MODULE

The limitation of existing MoE approaches is that gating decisions are made locally based solely
on the current input representation xIR, without considering global network activation patterns or
interactions between experts. We propose Global Recurrent Inhibition Networks (GRIN) that mod-
ulate the MoE architecture at three critical locations1—input representations (IR), mixture weights
(MW), and output representations (OR)—using inhibition masks (s) derived from global network
activations:

ãl = sl ⊙ al, for l ∈ {lIR, lMW, lOR} where slIR , slMW , slOR = σ(G(aglobal)). (1)

Here al denotes the original activation at location l, sl denotes the inhibition mask computed by the
GRIN head G from global activations aglobal with the ending sigmoid non-linearity σ, ⊙ denotes
element-wise multiplication, and ãl denotes the gated activation. This formulation enables dynamic,
globally-aware modulation that considers the full network state when making modulation and gating
decisions.

As shown in Figure 1a and Figure 1b, the GRIN head model operates as a modulator and controller,
taking in the global activations and producing the inhibition masks. The inhibition masks are applied
to elements of the MoE model, on mixture weights (lMW) of the MoE model, which determines
the weighting or selection of each expert. The other category of gating for the GRIN head is to
modulate and modify the input representation (lIR) as well as the output representation (lOR) of the
MoE model.

For a base model with MoE architecture, GRIN is defined as Γ = (X ,M,G,A,S,L), where X
denotes input data, M is the base MoE model, G is the GRIN head, A represents base model
activations, S are the inhibition masks (gating masks), and L specifies gating target locations, and
L = {lIR, lMW, lOR}. The system evolves through discrete time steps with state representations
D = {(xt,at,ht, st)}, where xt ∈ Rn, at ∈ Rm, ht ∈ Rk, and st ∈ Rp.

1We define a location to be one or more layers, units or connections in the network.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 GRIN Forward Pass
Require: Input xt, Number of recurrent steps T , GRIN head G, base model
M

1: for iter = 1 to N do
2: Initialize s0 ← 1, h0, h−1

3: for t = 1 to T do
4: ht−1 ← fRNN(ht−2, ãt−1) ▷ Update hidden state
5: slIRt , slMWt , slORt ← σ(WGRINht−1 + b) = σ(G(ht−2, ãt−1))

6: alIR
t ,apretext

t ←MPretext(xt) ▷ Forward pretext model
7: ãlIR

t ← slIRt ⊙ alIR
t ▷ Modulate input repres.

8: wt ← Router(ãlIR
t ) ▷ Compute mixture weights

9: w̃t ← slMWt ⊙wt ▷ Modulate mixture weights
10: alOR

t ←
∑N

i=1 w̃i,t · Ei(ã
lIR
t ) ▷ Aggregate outputs

11: ãlOR
t ← slORt ⊙ alOR

t ▷ Modulate output
12: apost

t ←Mpost(ã
lOR
t ) ▷ Forward post model

13: ãt ← {apretext
t , ãlIR

t , ãlOR
t ,apost

t } ▷ Aggregate activations
14: Compute losst
15: BackProp losst
16: θ ← θ +∆θ
17: end for
18: end for

Figure 2: Recurrent network
for GRIN with respect to acti-
vations, hidden states, and in-
hibition masks.

3.3 GRIN RECURRENT FORMULATION

GRIN employs a recurrent formulation where the inhibition masks are iteratively refined over T time
steps, allowing the network to observe and respond to its own activation patterns. As shown in Fig-
ure 2, at each timestep t, the GRIN head processes the current gated activations ãt, the hidden state
ht, and the previous hidden state ht−1 to compute updated inhibition masks st+1, which modulate
the network’s forward pass. This recurrent mechanism enables the network to iteratively refine the
modulation of expert weights and representations by incorporating feedback from previous choices.
The state evolution is governed by the following dynamics:

ht = fRNN(ht−1, ãt)

st+1 = σ(WGRIN · ht + b) = σ(G(ht−1, ãt))

ãlORt+1 = MMoE(xIR ⊙ slIRt ,wMW ⊙ slMWt )⊙ slORt

(2)

where fRNN can be any recurrent cell (LSTM, GRU), st = {slIRt , slMWt , slORt } are the inhibition
masks at timestep t, and MMoE(·) denotes the modulated MoE forward pass using inhibition masks
st. During training, gradients flow through all timesteps via backpropagation through time, jointly
optimizing the base model and GRIN head. Algorithm 1 presents the full GRIN recurrent algorithm.

3.4 TRAINING, OPTIMIZATION, AND INFERENCE

During training and across recurrence steps, the gradient computation graph is kept and we perform
gradient back-propagation across time to optimize the recurrent neural network. We note that in
the case of GRIN, when the data input is non-sequential, we choose to use the same x to propagate
multiple time-steps. This simulates the dynamic changes in the base-model with the same data input,
but across different time steps. When we use GRIN to recurrently forward propagate T steps, it is
a choice to back-propagate at each time step, and sum the gradients over time. This offers a higher
quality gradient for the optimization. At inference time, the pretex inhibition and GRIN models can
operate on the data points sampled from the test set.

4 EXPERIMENTS ON MULTI-TASK REINFORCEMENT LEARNING

We evaluate the GRIN algorithm on the MetaWorld benchmark with the multi-task reinforcement
learning (MTRL). MetaWorld offers a suite of reinforcement learning environments comprising up
to 50 robotic manipulation tasks. In our RL model, both the actor and critic networks employ
Mixture-of-Experts (MoE) architectures with orthogonalization, while the mixture-weight encoder
is conditioned solely on the task-ID.

4
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Table 1: MT10 Average Success Rate (%): comparison of GRIN with prior methods

Method Epoch 1 % Epoch 2 % Epoch 3 % Epoch 5 % Epoch 10 % Epoch 15 % Epoch 20 %
(1M) (2M) (3M) (5M) (10M) (15M) (20M)

SAC (Yu et al., 2019) 10.0±8.2 17.7±2.1 18.7±1.1 20.0±2.0 48.0±9.5 57.7±3.1 61.9±3.3
MTSAC (Yu et al., 2019) 34.9±12.9 49.3±9.0 57.1±9.8 60.2±9.6 61.6±6.7 65.6±10.4 62.9±8.0
SAC+FiLM (Perez et al., 2017) 32.7±6.5 46.9±9.4 52.9±6.4 57.2±4.2 59.7±4.6 61.7±5.4 58.3±4.3
PCGrad (Yu et al., 2020) 32.2±6.8 46.6±9.3 54.0±8.4 60.2±9.7 62.6±11.0 62.6±10.5 61.7±10.9
Soft-Module (Yang et al., 2020) 24.2±4.8 41.0±2.9 47.4±5.3 51.4±6.8 53.6±4.9 56.6±4.8 63.0±4.2
CARE (Sodhani et al., 2021) 26.0±9.1 52.6±9.3 63.8±7.9 66.5±8.3 69.8±5.1 72.2±7.1 76.0±6.9
PaCo (Sun et al., 2022) 30.5±9.5 49.8±8.2 65.7±4.5 64.7±4.2 71.0±5.5 81.0±5.9 85.4±4.5

MOORE (Hendawy et al., 2024) 36.4±7.8 64.4±5.5 72.1±6.5 74.8±4.0 80.1±6.1 84.8±4.3 88.4±3.4
MOORE (IQM±std) 33.5±4.3 65.0±4.0 72.8±4.0 74.2±3.3 79.8±0.4 84.8±4.3 89.5±0.3

GRIN (Ours) 45.7±9.1 63.7±3.0 68.3±5.3 78.4±5.8 83.0±4.4 87.7±3.5 89.4±1.0
GRIN (Ours, IQM±std) 45.4±5.0 63.3±0.4 69.0±1.7 78.3±0.4 81.5±2.6 89.4±0.9 90.0±0.04

Aligned with the experiment procedures of the previous work, we use the soft-actor-critic (SAC)
model with a 3-layer fully connected neural network each with 400 hidden units and tanh non-
linearity. We use 4 experts MoE model for the MT10 experiment and 6 experts MoE for the MT50
experiment. The multi-head architecture is used after the MoE. Our experiments are performed with
GRIN gating on both lMW, and lOR locations, and implemented in the MoE algorithm with task-
encoder (Sun et al., 2022) and orthogonalization (Hendawy et al., 2023). The MoE architecture and
GRIN are used for both Actor and Critic networks, but GRIN does not have connections across the
two network. In each epoch we run the soft-actor-critic algorithm with GRIN for 100,000 iterations,
with batch size of 128. For evaluation, we follow Agarwal et al. (2021) to compute the interquartile
mean (IQM) of success rates across random seeds for both MT10 and MT50. Robust to outlier
scores, the IQM computes the mean on the middle 50% of combined runs, after ranking the random
seeds with their success rates. For the standard deviation calculation in the IQM column of the
tables, the bottom and top 25% of the data are excluded. For both MT10 and MT50 comparison
against MOORE Hendawy et al. (2023), we report the success rate metrics obtained by reproducing
the authors results by running their open-source code.2.

4.1 GRIN SHOWS BEST IQM RESULTS METAWORLD MT10

In Table 1, we report the evaluation success rates for MT10 in the MetaWorld environment. The
mean and standard deviation of the success rate are computed across 10 random seeds. The GRIN
algorithm consistently improves upon the MoE-based MTRL algorithm, despite the performance
plateauing effect in MT10 also reported in (Hendawy et al., 2023). In Table 1, we also compare
selected epochs with prior algorithms, including the recent PaCo (Sun et al., 2022) and MOORE
approaches (Hendawy et al., 2023). We further note the MT10 success rate of 0.8923 ± 0.0112
reported in the recent work (Kong et al., 2025). GRIN (ours) surpasses this result, while we note
that (Kong et al., 2025) reported using only 3 random seeds 3.

4.2 GRIN SHOWS SIGNIFICANT IMPROVEMENT OVER PRIOR ART ON METAWORLD MT50

We evaluate GRIN on the MetaWorld MT50 benchmark (MT50) with 50 distinct tasks. Our im-
plementation builds upon the orthogonalized mixture-of-experts (MOORE) framework proposed by
Hendawy et al. (Hendawy et al., 2023), employing six experts for both actor and critic networks with
global activation intake and a recurrence depth of 1, as determined optimal in our ablation studies.

Table 2 presents the success rates and the IQM results comparing GRIN against MOORE, the current
state-of-the-art method. Our results demonstrate that GRIN achieves substantial improvements over
MOORE, with notable performance gains at 50M, 100M, and 175M environment steps. These
results suggest that the global gating and modulation mechanism in GRIN effectively enhances
the model’s ability to handle the diverse task distribution in MT50. We note that although our
reproduction results with open-source code didn’t reach the reported numbers in Hendawy et al.
(2023), the statistically significant improvement are clearly shown in the results. GRIN algorithm
improved IQM results by +3.7% at 100M env. steps, shown in Table 2. This improvement sustains
even as we continue to run the algorithms to 175M env. steps, as shown in Table 3.

2We used: https://github.com/AhmedMagdyHendawy/MOORE.
3Appendix B5 of (Kong et al., 2025)
4The success rate data for random seeds excluding bottom 25% and top 25% are all 90%.
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Algorithm Env. st. Ave. suc. IQM

MTSAC (Yu+ 19) 100M 49.3±1.5% –
SAC+FiLM (Perez+ 17) 100M 36.5±12.0% –
CARE (Sodhani+ 21) 100M 50.8±1.0% –
PaCo (Sun+ 22) 100M 57.3±1.3% –

MOORE (Our repro.) 50M 51.2±2.1% –
GRIN (Ours) 50M 55.7±2.9% –

MOORE (Our repro.) 100M 55.7±2.8% 56.1±0.9%
GRIN (Ours) 100M 59.9±1.6% 59.8±0.2%

Table 2: Metaworld MT50 results.

Algorithm Env. st. IQM

MOORE (Our repro.) 175M 62.1±0.5%
GRIN (Ours) 175M 63.4±1.0%

GRIN (Ours) 250M 64.4±1.0%

Table 3: Extended run on MT50.

Figure 3: MT50 tasks success rate comparison GRIN compared with MOORE, reported at 50M env.
steps.5

In Figure 3, we show the per-task performance of GRIN compared with the prior MOORE algorithm.
Several tasks exhibit significant improvements. Out of 36 tasks with non-zero success rates, GRIN
achieves higher success rates than MOORE on 22 tasks (61%). In contrast, MOORE outperforms
GRIN on 8 tasks (17%).

4.3 ANALYSIS WITH OFF POLICY EVALUATION

In the MetaWorld MT10 environment, we perform off-policy evaluation by collecting 150,000 tran-
sitions in offline trajectories across tasks.

For each transition, Q values for GRIN, and MOORE as baseline, are computed with Q =
Fcritic(st, a

∗
t ) where st is the transition state, and a∗t = Factor(st). During the forward compute,

we collected the output representation (OR) inhibition masks, the mixture weight (MW) inhibition
masks, which are used to compute average inhibition levels. Table 4 shows OR inhibition levels
correlates the most with the Q value. In comparison the inhibition levels on mixture weights are less
significant. This finding indicates GRIN’s modulation may play a larger role compared to routing
data in MTRL. Across data in all transitions, we fit Gaussian distributions to the baseline model’s
and GRIN’s Q values for a Fitted Q Evaluation (FQE) analysis. Figure 4 shows the Q value im-
provement with GRIN is on average 8.5, and 93.5% of the samples observed improvement in Q
with GRIN. Finally, we present a segment analysis. The data is segmented by the median in actor
inhibition level6. On the top of Figure 5 we show histogram plot of Q values of transitions with
more actor OR inhibition (above median), and on the bottom we show the plot for transitions with
less. With more inhibition, we observe more improvement (+10.2) across the median of GRIN Q
values vs baseline. This value is smaller (+9.5) in the opposing segment. The value distributions are
visibly different across more vs less inhibition. The result shows the effectiveness and significance
of modulation from the GRIN head model.

4.4 ABLATION STUDIES

6We compute the average across the hidden units for ActorOR inhibition masks, and find the median across
the transitions. The median value is 0.105.
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Table 4: Inh. corr. & Q improve-
ments

Metric Value Desc.
OR Inhibition Corr.
Actor→ GRIN Q +0.47 +ve
Actor→ Q impr. +0.31 +ve
Critic→ GRIN Q +0.19 Weak +ve
Critic→ Q impr. +0.14 Weak +ve
MW Inhibition Corr.
Actor→ Q −0.08 Slight -ve
Critic→ Q – Negligible
Q-Value Performance

Improved samples 93.5% –
Mean impr. 8.5± 7.0 –

Figure 4: FQE Gaussian fit of
GRIN Q values vs Baseline.

Figure 5: Segment Analysis for transitions with More OR in-
hibition (inhibition mask mean level is below the data median
0.105) vs Less.

Setting Succ. rate (%)

Number of Recursion Steps

1 step (baseline) 91.3 ± 8.4
2 steps 76.7 ± 2.5
3 steps 78.0 ± 2.8

Number of Experts

3 Experts (baseline) 91.3 ± 8.4
4 Experts 78.7 ± 0.9
6 Experts 82.0 ± 4.3

Modulation and Gating Location

OR+MW (baseline) 91.3 ± 8.4
OR only 90.7 ± 7.7
MW only 80.7 ± 5.2

Table 5: MT5 Ablation with
GRIN

Recurrent depth. We conduct ablation studies on the Meta-
World MT5 benchmark comprising five tasks to evaluate GRIN
with recurrence depths ranging from 1 to 3. The recurrent im-
plementation follows Algorithm 1. As shown in Table 5 and
Figure6, a recurrence depth of 1 yields optimal success rates in-
dicating a single recurrence step is typically sufficient for less
complex MTRL tasks. Number of experts. We evaluate GRIN’s
effectiveness by varying expert capacities across 3, 4, and 6 ex-
perts, keeping other parameters constant. Results in Figure 6
show that for the MT5 task, expanding the expert pool didn’t
significantly improve the results. We also perform the experi-
ment on Minigrid Chevalier-Boisvert et al. (2023) MT77 shown
in Table 6 and observe similar results. Although increasing the
number of experts offered less improvements, the ablation aligns
with results with the MT10 Q-value correlation in Table 4, and
verifies that GRIN contributes more through modulation on the
representations.

Selectivity from global inputs. Global activations make the
inhibition head effective for modulation the network. While since there is a variety of base
model architectures, the selection of inputs may be needed. We offer an ablation using Min-
igrid, which uses a convolutional net. In the base GRIN setting, we connect the 2-D struc-
tured pretext layers to the inhibition head, while in GRIN light, we only connect the post
model and the MoE output to the inhibition head. Interestingly, the light version performs
well. So it may be effective to perform input selection from a global set of network activations.

Algorithm 4 Experts 6 Experts 8 Experts

MOORE 74.4± 7.1 71.5± 9.3 78.1± 3.9
GRIN 73.1± 5.2 78.3± 6.5 73.4± 8.3
GRIN light 76.3± 5.4 76.7± 7.6 76.6± 5.4

Table 6: Minigrid MT7 succ. rate (%)

Gating mask location L. We investigate the optimal
point of intervention for GRIN’s inhibition signal by
applying the gating mask at three distinct locations
in the MoE architecture: (a) the mixture weights that
determine expert contributions (lMW), and (b) the
combined output representation after expert aggre-

7Experiments were run with 10 random seeds across 50 epochs.
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gation (lOR). We observe the inhibition mechanism is most effective at the output representation
(lOR) by selectively suppressing patterns in the aggregated output. The result aligns with the corre-
lations in Table 4, and is helpful to inform optimal architectural integration of recurrent inhibition
mechanisms.

5 GENERALIZING TO ML DOMAINS

The primary application of GRIN on MTRL shows its capability for state-space models. We make
efforts to generalize GRIN to other ML domains. To ensure it is efficient to grow GRIN’s parameter
size, we explore a cascade of progressively increasing input diversity.

5.1 CASCADING INPUT DIVERSITY

Inhibitory neurons constitute a small portion of the neural population (Swanson & Maffei, 2019),
and they exhibit remarkable diversity (Hofer et al., 2011; Pfeffer et al., 2013; Kajiwara et al., 2021).
We focus on the diversity of input connections to translate this connection diversity to the GRIN
head module (G):

Pretext Inhibition (PRE): The gating mechanism operates on incomplete forward-pass informa-
tion, using the activations available up to the current layer (the pretext). Gated Linear Unit (GLU) is
a special instance.

Cross-iteration Global Inhibition (CIGI): We processes all activations from the previous stochas-
tic optimization batch through a dedicated inhibition head to generate gating masks. Pooling opera-
tions are applied across the batch, producing sample-agnostic inhibition masks to gate the activations
of the current iteration.

Global Recurrent Inhibition Network (GRIN): GRIN algorithm was described in Section 3 which
not only can produce specific masks per data sample, but also refine the adaptive gating decisions
iteratively.

The inhibition head model combines information from multiple sources to compute the inhibition
masks:

st+1 = σ(G(aglobal)) = σ(IPREWPRE · fPRE(at) + ICIGIWCIGI · fCIGI(a
∗
t−1) + IGRINWGRIN · ht + b)

(3)
Algorithm Acc. Std.

Baseline model 81.4% 1.7e-2

MoE 3/5 experts 92.3% 5.6e-2
Random (dropout 0.25) 94.9% 2.0e-2
Random (dropout 0.5) 95.1% 1.9e-2
Random (dropout 0.75) 95.9% 8.1e-3
One-layer I. (GLU) 95.2% 5.1e-3
PRE 95.3% 8.4e-3
CIGI 94.9% 2.3e-3
GRIN 96.3% 1.0e-2

Table 7: Results on mixed-numbers
dataset

where I are indicator functions to select the existence of
the connection; a∗t−1 represents pooled activations from
the previous batch in CIGI. At training time for CIGI,
the inhibition head and base model are jointly optimized.
At inference time, when evaluating a new data point, we
sample a batch of test data to simulate its prior iteration,
producing the pooled inhibition masks.
5.2 HAND-WRITTEN
DIGITS AND NUMBER OF SQUARES

To generalize to the vision domain, we built a bi-modal
simulated dataset comprising 120,000 samples, com-
posed of half MNIST handwritten digits and half syn-
thetic number patterns(Stoianov & Zorzi, 2012). Each
sample is labeled with its numeric value (0-9). We use a convnet with a sparsely gated MoE with
fully connected layers(Shazeer et al., 2017).

Algorithm 300K data 1M data

Baseline model 3.69e-6 1.17e-8

MoE 3/10 experts 3.68e-6 2.52e-10
PRE 3.37e-6 1.82e-10
CIGI/GRIN 3.31e-6 1.81e-10

Table 8: WMT English mono-
lingual dataset (normalized log-
likelihood loss)

Results in Table 7 show that MoE models benefit from global
inhibition gating. While dropout improves performance, it re-
quires careful hyperparameter tuning. In contrast, adaptive in-
hibition methods automatically determine appropriate signal
suppression levels, with performance scaling with connection
diversity.

5.3 LANGUAGE MODEL EXPERIMENT

We experiment with the transformer language model Vaswani
et al. (2017); Shazeer et al. (2017); Du et al. (2022) with GRIN.
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The MoE is applied on the fully connected layers of the trans-
former model, and gating heads is applied on the input of the MoE. The LM task is applied on WMT
English monolingual dataset (Maillard et al., 2024) with one smaller set containing 300K sentences
(7.5M words) and a larger one with 1 million sentences (25M words). Following the pre-processing,
we train transformers. Table 8 shows test set normalized log-likelihood on next word prediction.
The baseline MoE without gating performs similar to standard models, indicating less optimized
routing and gating. Global inhibition yields visible improvements across both datasets, confirming
its effectiveness for LM’s.

6 CONCLUSION

We introduced the Global Recurrent Inhibition Network (GRIN), a novel architecture that enhances
dynamic routing in Mixture of Experts models. GRIN implements a global inhibition head that
recurrently processes diverse network activations and generate targeted gating signals. Our evalu-
ation demonstrates improvements across tasks, particularly MTRL. For future work, we study the
input spaces to GRIN with architecture specific designs and apply GRIN to more domains and in the
multi-modal space. These directions enable learned optimization of gating strategies that surpass
our current architectural design.
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Figure 6: Ablation on MetaWorld MT5(a) Recurrent steps (b) Number of experts (c) Gating location.
Task success rates (%) ± std bars for tasks R: Reach, Ps: Push, PP: Pick Place, DO: Door Open, Dr:
Drawer

A APPENDIX

A.1 EXTENDED BACKGROUND AND LITERATURE REVIEW

Extensions to dropout and dynamic architectures include adapting parameters through additional
network models in Hypernetworks (Ha et al., 2016) and HyperNEAT (Stanley et al., 2009). Neural
architecture search uses reinforcement learning to choose network architectures (Pham et al., 2018;
Zoph & Le, 2017; Zoph et al., 2018).

Related to Capsules, (Wang & Liu, 2018) offers an optimization perspective, (Kosiorek et al., 2019)
proposes autoencoders with capsules, and (Rajasegaran et al., 2019) builds a deeper network.

Related to MTRL, multi-task learning exists in other domains such as supervised learning (Han
et al., 2025) and recommender systems (Ma et al., 2018).

A.2 MTRL GRIN IMPLEMENTATION DETAILS

We implement GRIN in pytorch using two system generalizations. First, we leverage the forward
hook registered in pytorch nn.Module that triggers automated storing of any activations a and their
gradient computation graph. This enables the storage of activations in efficient hash data-structures.
Second the pytorch module traversal is used to search global and diverse sets of inputs for the
inhibition head. For efficiency, we cache the activations before l for the recurrent iterations, where
l is the earliest point of dynamic modulation and gating. The caching can be done for cases where
inputs are non-sequential and identical.

A.3 ABLATION BAR CHARTS ON METAWORLD MT5 (FIGURE. 7)

A.4 MIXED-NUMBERS AND LANGUAGE MODEL DATA AND IMPLEMENTATION DETAILS

The data set is composed of 60,000 MNIST handwritten digits and 60,000 synthetic square number
patterns following (Stoianov & Zorzi, 2012). The baseline architecture employs a two-layer con-
volutional network with max-pooling, augmented with a sparsely gated Mixture-of-Experts layer
containing 5 experts (128-unit MLPs each). K=3 experts are selected per sample via a learned
router. Results in Table 7 show that MoE models benefit from global inhibition gating for handling
multi-modal inputs, models with more global inhibitory connections outperform those with local
inhibition on this recognition task on multi-modal vision data.

Pre-processing details for the WMT dataset: we perform lower-casing, Porter stemming, digit re-
placement, contraction expansion, and punctuation removal. Transformer architecture: two-layers,
embedding, hidden dimension is 50, 2 heads. We use vocabulary sizes of 8,500 and 15,000 for the
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respective datasets (300k, 1m) and models are trained with Adam with a learning rate of 0.001 and
batch size of 256. For each MoE we use 10 experts and each data points assigns K=3 experts.

A.5 EXPERIMENTS AND ABLATION ON MINIGRID

Table 9: MiniGrid MT7 Results at Epoch 46: Average Return across 10 random seeds

Algorithm 4 Experts 6 Experts 8 Experts

MOORE 0.7501 ± 0.0604 0.7746 ± 0.0606 0.7831 ± 0.0413
GRIN 0.7530 ± 0.0545 0.7523 ± 0.0490 0.7449 ± 0.0761
GRIN light 0.7759 ± 0.0612 0.7754 ± 0.0535 0.7657 ± 0.0543

Table 10: MiniGrid MT7 Performance Comparison at Epoch 46

Experts MOORE GRIN GRIN light

4 0.7501 0.7530 0.7759
6 0.7746 0.7523 0.7754
8 0.7831 0.7449 0.7657

Table 11: MiniGrid MT7 Detailed Results at Epoch 46

Experiment Algorithm Experts Seeds Average Return

GRIN with 4 experts GRIN 4 10 0.7530 ± 0.0545
GRIN with 6 experts GRIN 6 10 0.7523 ± 0.0490
GRIN with 8 experts GRIN 8 10 0.7449 ± 0.0761
GRIN light with 4 experts GRIN light 4 10 0.7759 ± 0.0612
GRIN light with 6 experts GRIN light 6 10 0.7754 ± 0.0535
GRIN light with 8 experts GRIN light 8 10 0.7657 ± 0.0543
MOORE with 4 experts MOORE 4 10 0.7501 ± 0.0604
MOORE with 6 experts MOORE 6 10 0.7746 ± 0.0606
MOORE with 8 experts MOORE 8 10 0.7831 ± 0.0413

MOORE Average MOORE All - 0.7693
GRIN Average GRIN All - 0.7612

A.6 DETAILED EXPERIMENT RESULTS
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Table 12: MT50 Results Comparison at Epoch 4: MOORE Baseline (10 seeds) vs MOORE with
GRIN (10 seeds)

Task Success Rate Mean J (reward) Discounted Mean J
Baseline GRIN Baseline GRIN Baseline GRIN

Overall Average 0.4650 ± 0.4769 0.4848 ± 0.4764 - - - -

Assembly 0.0000 ± 0.0000 0.0000 ± 0.0000 231.23 ± 153.79 360.68 ± 185.50 109.23 ± 64.05 164.93 ± 77.42
Basketball 0.0000 ± 0.0000 0.0000 ± 0.0000 3.51 ± 0.74 5.40 ± 1.54 1.81 ± 0.36 2.69 ± 0.72
Bin Picking 0.0000 ± 0.0000 0.0000 ± 0.0000 3.88 ± 1.59 4.35 ± 1.60 1.98 ± 0.75 2.19 ± 0.74
Box Close 0.0000 ± 0.0000 0.0000 ± 0.0000 184.02 ± 21.20 195.41 ± 17.73 101.25 ± 10.36 106.43 ± 8.01
Button Press Topdown 0.8500 ± 0.3074 0.8600 ± 0.3007 794.87 ± 154.44 829.03 ± 116.02 323.64 ± 58.20 337.73 ± 42.97
Button Press Topdown Wall 0.7000 ± 0.4583 0.6600 ± 0.4363 728.81 ± 174.50 764.72 ± 122.01 298.81 ± 62.66 313.97 ± 45.32
Button Press 0.5400 ± 0.4055 0.6800 ± 0.4468 586.69 ± 267.03 666.91 ± 257.10 262.04 ± 112.79 295.88 ± 108.60
Button Press Wall 0.9500 ± 0.0671 0.8100 ± 0.3113 705.39 ± 143.22 703.72 ± 178.43 311.79 ± 59.57 308.64 ± 71.96
Coffee Button 0.9300 ± 0.1100 0.9700 ± 0.0900 856.20 ± 99.27 959.09 ± 80.96 392.75 ± 41.87 431.45 ± 35.74
Coffee Pull 0.0000 ± 0.0000 0.0000 ± 0.0000 7.30 ± 1.43 27.00 ± 51.27 3.74 ± 0.70 11.87 ± 20.81
Coffee Push 0.0000 ± 0.0000 0.1000 ± 0.3000 7.17 ± 0.98 77.27 ± 207.91 3.71 ± 0.42 29.56 ± 76.40
Dial Turn 0.7400 ± 0.1855 0.8600 ± 0.1114 802.69 ± 220.18 961.19 ± 103.92 358.42 ± 91.33 423.90 ± 47.50
Disassemble 0.0000 ± 0.0000 0.0000 ± 0.0000 59.09 ± 6.78 58.36 ± 1.64 31.18 ± 3.57 30.78 ± 0.87
Door Close 1.0000 ± 0.0000 1.0000 ± 0.0000 1029.50 ± 8.42 1025.88 ± 18.68 403.54 ± 5.19 401.60 ± 11.22
Door Lock 0.9800 ± 0.0600 0.9100 ± 0.1814 1000.94 ± 40.38 1009.83 ± 83.52 459.33 ± 22.30 467.73 ± 40.71
Door Open 0.3500 ± 0.4365 0.6700 ± 0.4428 631.00 ± 220.49 778.03 ± 189.37 272.43 ± 77.71 326.51 ± 64.03
Door Unlock 0.9800 ± 0.0600 0.9700 ± 0.0458 1163.95 ± 59.79 1180.55 ± 42.04 528.65 ± 28.07 537.89 ± 22.02
Drawer Close 1.0000 ± 0.0000 1.0000 ± 0.0000 1319.57 ± 71.68 1338.39 ± 28.96 625.54 ± 31.42 633.60 ± 12.69
Drawer Open 0.5800 ± 0.4750 0.8800 ± 0.2960 994.69 ± 192.38 1117.33 ± 112.02 467.22 ± 81.23 519.12 ± 47.54
Faucet Open 0.0000 ± 0.0000 0.0000 ± 0.0000 601.44 ± 8.63 610.43 ± 4.87 302.26 ± 4.04 306.25 ± 1.97
Faucet Close 0.8900 ± 0.2982 0.8900 ± 0.2982 1176.43 ± 189.00 1169.61 ± 204.14 537.53 ± 77.54 533.20 ± 83.86
Hammer 0.0900 ± 0.2119 0.1800 ± 0.3059 285.55 ± 211.38 507.40 ± 298.91 132.69 ± 86.29 225.14 ± 120.50
Hand Insert 0.2300 ± 0.2326 0.5300 ± 0.3926 162.31 ± 137.83 635.83 ± 367.14 64.69 ± 53.82 276.98 ± 160.43
Handle Press Side 1.0000 ± 0.0000 1.0000 ± 0.0000 1343.77 ± 12.74 1340.83 ± 5.25 634.97 ± 10.03 632.45 ± 4.03
Handle Press 1.0000 ± 0.0000 1.0000 ± 0.0000 1371.56 ± 15.18 1352.68 ± 27.42 659.50 ± 12.77 645.93 ± 17.97
Handle Pull Side 0.6000 ± 0.4899 0.4000 ± 0.4899 620.08 ± 506.85 404.53 ± 500.30 247.21 ± 203.04 167.70 ± 205.71
Handle Pull 0.3000 ± 0.4583 0.2300 ± 0.3951 660.42 ± 237.34 615.60 ± 213.67 295.31 ± 75.76 279.21 ± 70.74
Lever Pull 0.0000 ± 0.0000 0.0000 ± 0.0000 177.44 ± 6.72 174.44 ± 4.89 89.73 ± 2.79 88.60 ± 2.38
Peg Insert Side 0.0000 ± 0.0000 0.0000 ± 0.0000 4.61 ± 3.55 35.14 ± 92.28 2.24 ± 1.44 14.83 ± 38.07
Peg Unplug Side 0.0000 ± 0.0000 0.3100 ± 0.4346 5.24 ± 1.36 257.79 ± 387.04 2.77 ± 0.67 102.86 ± 153.54
Pick Place Wall 0.0000 ± 0.0000 0.0000 ± 0.0000 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Pick Out Of Hole 0.0000 ± 0.0000 0.0000 ± 0.0000 2.68 ± 0.43 2.86 ± 0.22 1.38 ± 0.22 1.48 ± 0.11
Pick Place 0.0000 ± 0.0000 0.0000 ± 0.0000 2.47 ± 0.78 3.65 ± 0.86 1.28 ± 0.39 1.89 ± 0.43
Plate Slide 0.9800 ± 0.0400 0.9300 ± 0.1418 1075.83 ± 83.20 1044.71 ± 83.52 455.12 ± 38.62 445.87 ± 32.55
Plate Slide Side 0.9200 ± 0.1470 0.9100 ± 0.1814 914.24 ± 132.92 1009.38 ± 128.67 422.18 ± 53.74 457.21 ± 40.24
Plate Slide Back 0.9900 ± 0.0300 1.0000 ± 0.0000 1240.71 ± 47.59 1258.33 ± 50.87 562.90 ± 28.33 574.76 ± 22.92
Plate Slide Back Side 1.0000 ± 0.0000 0.8100 ± 0.2809 1252.73 ± 14.69 1127.90 ± 222.28 567.86 ± 9.06 510.63 ± 97.01
Push Back 0.0100 ± 0.0300 0.0100 ± 0.0300 7.88 ± 2.29 11.29 ± 6.97 3.79 ± 1.10 5.29 ± 3.00
Push 0.2450 ± 0.2307 0.1850 ± 0.2098 299.74 ± 244.55 329.69 ± 212.78 133.77 ± 108.93 150.47 ± 95.01
Push Wall 0.0100 ± 0.0300 0.0000 ± 0.0000 185.91 ± 266.21 363.38 ± 258.71 85.37 ± 116.02 168.76 ± 115.87
Reach 0.9400 ± 0.0663 0.9600 ± 0.0490 1342.59 ± 12.75 1346.45 ± 7.40 641.34 ± 7.54 642.01 ± 4.92
Reach Wall 0.9700 ± 0.0458 0.9600 ± 0.1200 1318.39 ± 14.23 1315.76 ± 30.08 622.43 ± 5.93 621.07 ± 14.27
Shelf Place 0.0000 ± 0.0000 0.0000 ± 0.0000 0.01 ± 0.03 0.06 ± 0.16 0.01 ± 0.02 0.03 ± 0.07
Soccer 0.4300 ± 0.3848 0.4600 ± 0.3262 427.37 ± 363.84 419.29 ± 252.71 180.68 ± 153.76 180.90 ± 105.18
Stick Pull 0.0000 ± 0.0000 0.0000 ± 0.0000 4.75 ± 1.59 5.31 ± 0.83 2.46 ± 0.75 2.75 ± 0.40
Sweep Into 0.5800 ± 0.4771 0.7300 ± 0.4051 785.79 ± 387.01 1001.91 ± 305.98 358.69 ± 169.19 457.60 ± 134.81
Sweep 0.0000 ± 0.0000 0.0000 ± 0.0000 168.00 ± 72.12 256.93 ± 171.44 79.93 ± 33.35 117.49 ± 68.80
Window Open 1.0000 ± 0.0000 0.9900 ± 0.0300 1016.99 ± 41.21 1022.67 ± 50.52 410.08 ± 20.59 411.92 ± 24.61
Window Close 1.0000 ± 0.0000 0.9000 ± 0.3000 1045.53 ± 79.82 929.26 ± 269.54 427.96 ± 40.67 379.61 ± 106.33

Table 13: MT3 Results (3 Tasks) - Mean ± Std across 5 seeds

Experiment Task Success Rate Mean J (Reward) Discounted Mean J

MT3 Baseline
(256hd, 2 layers)

Reach-v2 1.000 ± 0.000 1336.18 ± 16.97 631.05 ± 13.89
Push-v2 0.100 ± 0.200 45.86 ± 60.89 26.69 ± 35.61
Pick-Place-v2 0.000 ± 0.000 2.15 ± 1.43 1.17 ± 0.74

MT3 Pretext Inhi.
(weights only,
256hd, 2 layers)

Reach-v2 1.000 ± 0.000 1346.20 ± 14.14 642.27 ± 10.18
Push-v2 0.100 ± 0.200 62.23 ± 55.93 29.98 ± 23.95
Pick-Place-v2 0.000 ± 0.000 1.67 ± 0.36 0.96 ± 0.19
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Table 14: MT5 Results (5 Tasks) - Mean ± Std across 5 seeds

Experiment Task Success Rate Mean J (Reward) Discounted Mean J

MT5 Baseline
(256hd, 2 layers)

Reach-v2 1.000 ± 0.000 1350.54 ± 15.72 644.56 ± 12.72
Push-v2 0.000 ± 0.000 33.10 ± 25.92 20.36 ± 16.97
Pick-Place-v2 0.000 ± 0.000 1.85 ± 0.44 1.06 ± 0.28
Door-Open-v2 0.000 ± 0.000 458.59 ± 44.02 215.29 ± 21.55
Drawer-Open-v2 0.000 ± 0.000 738.09 ± 25.11 358.31 ± 9.54

MT5 Pretext Inhibition
(weights + features,
256hd, 2 layers)

Reach-v2 1.000 ± 0.000 1340.13 ± 15.30 636.03 ± 11.92
Push-v2 0.000 ± 0.000 17.82 ± 17.18 8.86 ± 7.57
Pick-Place-v2 0.000 ± 0.000 1.46 ± 0.49 0.87 ± 0.28
Door-Open-v2 0.000 ± 0.000 439.82 ± 120.14 203.16 ± 47.28
Drawer-Open-v2 0.000 ± 0.000 675.73 ± 110.36 331.72 ± 48.61

MT5 Pretext Inhibition
(weights only,
256hd, 2 layers)

Reach-v2 1.000 ± 0.000 1351.29 ± 16.27 648.46 ± 7.86
Push-v2 0.000 ± 0.000 10.97 ± 8.08 6.31 ± 5.08
Pick-Place-v2 0.000 ± 0.000 1.68 ± 0.38 0.94 ± 0.33
Door-Open-v2 0.000 ± 0.000 457.90 ± 85.74 213.64 ± 34.67
Drawer-Open-v2 0.000 ± 0.000 716.92 ± 30.14 349.03 ± 14.12

MT5 GRIN (rec=1)
(weights + features,
256hd, 2 layers)

Reach-v2 1.000 ± 0.000 1311.13 ± 50.76 624.66 ± 19.35
Push-v2 0.000 ± 0.000 43.07 ± 18.62 21.90 ± 10.27
Pick-Place-v2 0.000 ± 0.000 2.02 ± 1.07 1.18 ± 0.59
Door-Open-v2 0.000 ± 0.000 459.95 ± 33.94 217.50 ± 12.51
Drawer-Open-v2 0.000 ± 0.000 718.56 ± 21.37 350.56 ± 8.39

MT5 GRIN (rec=3)
(weights + features,
256hd, 2 layers)

Reach-v2 0.900 ± 0.200 1306.11 ± 72.21 627.65 ± 28.29
Push-v2 0.000 ± 0.000 36.23 ± 22.20 18.57 ± 10.37
Pick-Place-v2 0.000 ± 0.000 2.37 ± 1.56 1.26 ± 0.80
Door-Open-v2 0.000 ± 0.000 409.93 ± 91.58 195.16 ± 40.73
Drawer-Open-v2 0.000 ± 0.000 733.90 ± 48.66 356.60 ± 23.27

MT5 GRIN (rec=1)
(weights only,
256hd, 2 layers)

Reach-v2 0.900 ± 0.200 1313.09 ± 58.16 626.27 ± 24.21
Push-v2 0.000 ± 0.000 26.70 ± 7.30 15.13 ± 3.82
Pick-Place-v2 0.000 ± 0.000 1.95 ± 0.59 1.06 ± 0.23
Door-Open-v2 0.000 ± 0.000 461.62 ± 17.06 217.69 ± 7.55
Drawer-Open-v2 0.000 ± 0.000 722.52 ± 17.35 351.05 ± 9.82

Table 15: MT10 Results Comparison at Epoch 20: MOORE Baseline (9 seeds) vs MOORE with
GRIN (10 seeds)

Task Success Rate Mean J Discounted Mean J
Baseline GRIN Baseline GRIN Baseline GRIN

Overall Average 0.8844 ± 0.3137 0.8820 ± 0.3135 - - - -

Reach 0.9778 ± 0.0629 0.9700 ± 0.0900 1350.86 ± 9.58 1351.25 ± 12.89 643.48 ± 7.06 645.07 ± 9.72
Push 1.0000 ± 0.0000 0.9500 ± 0.1025 1165.10 ± 92.92 1180.19 ± 94.50 507.36 ± 61.12 526.68 ± 53.01
Pick Place 0.0000 ± 0.0000 0.0000 ± 0.0000 2.78 ± 0.84 4.83 ± 2.01 1.42 ± 0.43 2.45 ± 0.92
Door Open 1.0000 ± 0.0000 1.0000 ± 0.0000 1067.50 ± 21.55 1043.79 ± 45.21 445.38 ± 12.66 432.47 ± 21.60
Drawer Open 0.8778 ± 0.3119 1.0000 ± 0.0000 1203.17 ± 165.46 1266.55 ± 22.76 562.34 ± 71.38 587.66 ± 11.94
Drawer Close 1.0000 ± 0.0000 1.0000 ± 0.0000 1359.86 ± 4.67 1354.25 ± 4.49 647.33 ± 4.10 642.47 ± 3.87
Button Press Topdown 1.0000 ± 0.0000 1.0000 ± 0.0000 906.88 ± 14.24 880.70 ± 25.45 372.22 ± 7.41 358.76 ± 12.05
Peg Insert Side 0.9889 ± 0.0314 0.9000 ± 0.3000 1096.05 ± 30.69 1037.75 ± 144.47 453.41 ± 13.36 423.62 ± 59.19
Window Open 1.0000 ± 0.0000 1.0000 ± 0.0000 1083.37 ± 17.57 1078.88 ± 22.52 443.51 ± 11.29 446.55 ± 13.32
Window Close 1.0000 ± 0.0000 1.0000 ± 0.0000 1063.78 ± 45.47 1082.34 ± 21.52 435.26 ± 23.63 444.50 ± 13.98
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