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Figure 1: Super-resolution with scale factors 4 and 8, using Stable Diffusion (Rombach et al., 2022), Guided Diffusion
(Dhariwal & Nichol, 2021), and our method ADIR. The adaptability of ADIR allows reconstructing finer details.

Abstract

In recent years, denoising diffusion models have demonstrated outstanding image generation per-
formance. The information on natural images captured by these models is useful for many image
reconstruction applications, where the task is to restore a clean image from its degraded observation.
In this work, we propose a conditional sampling scheme that exploits the prior learned by diffusion
models while retaining agreement with the measurements. We then combine it with a novel approach
for adapting pre-trained diffusion denoising networks to their input. We perform the adaptation us-
ing images that are “nearest neighbours” to the degraded image, retrieved from a diverse dataset
using an off-the-shelf visual-language model. To evaluate our method, we test it on two state-of-
the-art publicly available diffusion models, Stable Diffusion and Guided Diffusion. We show that
our proposed Adaptive Diffusion for Image Reconstruction (ADIR) approach achieves significant
improvement in image reconstruction tasks. Our code will be available online upon publication.

1 Introduction

Image reconstruction problems appear in a wide range of applications, where one would like to reconstruct an unknown
clean image x ∈ Rn from its degraded version y ∈ Rm, which can be noisy, blurry, low-resolution, etc. The
acquisition (forward) model of y in many important degradation settings can be formulated using the following linear
model

y = Ax + e, (1)

where A ∈ Rm×n is the measurement operator (blurring, masking, sub-sampling, etc.) and e ∈ Rm ∼ N (0, σ2Im)
is the measurement noise. Typically, just fitting the observation model is not sufficient for recovering x successfully;
thus, prior knowledge of the characteristics of x is needed.
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Over the past decade, many works suggested solving the inverse problem in Eq. equation 1 using a single execution
of a deep neural network, trained using pairs of clean {xi} images and their degraded versions {yi} obtained by
applying the forward model equation 1 on {xi} (Dong et al., 2015; Sun et al., 2015; Lim et al., 2017; Zhang et al.,
2017a; Lugmayr et al., 2020; Liang et al., 2021). However, these approaches tend to overfit the observation model
and perform poorly on setups that have not been considered in training and several methods have been proposed to
overcome that (Shocher et al., 2018; Tirer & Giryes, 2019; Hussein et al., 2020b; Ji et al., 2020; Wei et al., 2020; Wang
et al., 2021; Zhang et al., 2021b; 2022). Tackling this limitation with dedicated training for each application is not
only computationally inefficient but also often impractical.

Several approaches such as Deep Image Prior (Ulyanov et al., 2018), zero-shot-super-resolution (Shocher et al., 2018)
or GSURE-based test-time optimization (Abu-Hussein et al., 2022) rely solely on the observation image y. They utilize
the implicit bias of deep neural networks and gradient-based optimizers, as well as the self-recurrence of patterns in
natural images when training a neural model directly on the observation and in this way reconstruct the original image.
Although these methods are not limited to a family of observation models, they usually perform worse than data-driven
methods, since they do not exploit the robust prior information that the unknown image x share with external data that
may contain images of the same kind. The alternative popular approach that exploits external data while remaining
flexible to the observation model, uses deep models for imposing only the prior. It typically uses pretrained deep
denoisers (Zhang et al., 2017b; Arjomand Bigdeli et al., 2017; Tirer & Giryes, 2018; Zhang et al., 2021a) or generative
models (Bora et al., 2017; Dhar et al., 2018; Hussein et al., 2020a) within the optimization scheme, where consistency
of the reconstruction with the observation y is maintained by minimizing a data-fidelity term.

Recently, diffusion models (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Sohl-Dickstein et al., 2015; Ho
et al., 2020) have shown remarkable capabilities in generating high-fidelity images and videos (Ho et al., 2022). These
models are based on a Markov chain diffusion process performed on each training sample. They learn the reverse
process, namely, the denoising operation between each two points in the chain. Sampling images via pretrained
diffusion models is performed by starting from a pure white Gaussian noise image, then progressively denoise and
sample a less noisy image, until reaching a clean image. Since diffusion models capture prior knowledge of the
data, one may utilize them as deep priors/regularization for inverse problems(Song et al., 2021; Lugmayr et al., 2022;
Avrahami et al., 2022b; Kawar et al., 2022a; Choi et al., 2021; Rombach et al., 2022).

In this work, we propose an Adaptive Diffusion framework for Image Reconstruction (ADIR). First, we devise a
diffusion guidance sampling scheme that solves equation 1 while restricting the reconstruction of x to the range of a
pretrained diffusion model. Our scheme is based on novel modifications to the guidance used in (Dhariwal & Nichol,
2021) (see Section 3.2 for details). Then, we propose a technique that uses the observations y to adapt the diffusion
network to patterns beneficial for recovering the unknown x. Adapting the model’s parameters is based on K external
images similar to y in some neural embedding space that is not sensitive to the degradation of y. These images are
retrieved from a diverse dataset and the embedding can be calculated using an off-the-shelf encoder model for images
such as CLIP (Radford et al., 2021).

In this work, ADIR is mainly developed for image reconstruction tasks. Yet, we also showcase that the ADIR adapta-
tion strategy can be employed for text-guided image editing. Note that for the latter, we just show the potential of our
strategy and that it can be combined with existing editing techniques. We leave further exploration of the use of ADIR
to editing to a future work.

The contribution of the ADIR framework is the proposal of an adaptive diffusion approach to inverse problems. We
evaluate it with two state-of-the-art diffusion models: Stable Diffusion (Rombach et al., 2022) and Guided Diffusion
(Dhariwal & Nichol, 2021), and show that it outperforms existing methods in the super-resolution and deblurring
tasks.

2 Related Work

Diffusion models In recent years, many works utilized diffusion models for image manipulation and reconstruction
tasks (Choi et al., 2021; Rombach et al., 2022; Kawar et al., 2022b;a; Whang et al., 2022; Saharia et al., 2022b; Zhu
et al., 2023; Özdenizci & Legenstein, 2023; Delbracio & Milanfar, 2023; Garber & Tirer, 2023), where a denoising
network is trained to learn the prior distribution of the data, then at test time, some conditioning mechanism is com-
bined with the learned prior to solve very challenging imaging tasks (Avrahami et al., 2022b;a; Chung et al., 2022a).
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Figure 2: Diagram of our proposed method ADIR (Adaptive Diffusion for Image Reconstruction) applied to the super
resolution task. Given a pretrained diffusion model (ϵθ(·), Σθ(·)) and a Low Resolution (LR) image, we look for the K
nearest neighbor images to the LR image, then using ADIR we adapt the diffusion model and use it for reconstruction.

Note that our novel adaptive diffusion ingredient can be incorporated with any conditional sampling scheme that is
based on diffusion models.

In (Whang et al., 2022; Saharia et al., 2022b) the problems of deblurring and super-resolution were considered. Specif-
ically, a diffusion model is trained to perform the task. In this way, the model learns to carry out the deblurring or
super-resolution task directly. Notice that these models are trained for one specific task and cannot be used for the
other as is.

The closest works to us are (Giannone et al., 2022; Sheynin et al., 2022; Kawar et al., 2022b). These very recent
concurrent works consider the task of image editing and perform an adaptation of the used diffusion model using the
provided input and external data. Yet, notice that neither of these works consider the task of image reconstruction as
we do here or apply our proposed sampling scheme for this task.

Image-Adaptive Reconstruction Adaptation of pretrained deep models, which serve as priors in inverse problems,
to the unknown true x through its observations at hand was proposed in (Hussein et al., 2020a; Tirer & Giryes, 2019).
These works improve the reconstruction performance by fine-tuning the parameters of pretrained deep denoisers (Tirer
& Giryes, 2019) and GANs (Hussein et al., 2020a) via the observed image y instead of keeping them fixed during
inference time. The image-adaptive GAN (IAGAN) approach (Hussein et al., 2020a) has led to many follow up works
with different applications, e.g., (Bhadra et al., 2020; Pan et al., 2021; Roich et al., 2022; Nitzan et al., 2022). Recently,
it has been shown that one may even fine-tune a masked-autoencoder to the input data at test-time for improving the
adaptivity of classification neural networks to new domains (Gandelsman et al., 2022).

In this paper we consider test-time adaptation of diffusion models for inverse problems. As far as we know, adaptation
of diffusion models has not been proposed in image reconstruction tasks. Furthermore, while existing works fine-tune
the deep priors directly using y, we propose an improved strategy where the tuning is based on K external images
similar to y that are automatically retrieved from an external dataset.
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GT Bicubic Stable Diffusion ADIR

Figure 3: Comparison of super resolution (2562 → 10242) results of Stable Diffusion model(Rombach et al., 2022)
and our method (ADIR). As can be seen from the images, our method outperforms Stable Diffusion in both sharpness
and reconstructing details.

3 Method

We now turn to present our proposed approach. We start with a brief introduction to regular denoising diffusion
models. After that we describe our proposed strategy for modifying the sampling scheme of diffusion models for the
image reconstruction task. Finally, we present our suggested adaptation scheme.

3.1 Denoising Diffusion Models

Denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are latent variable generative models, with
latent variables x1, x2, ..., xT ∈ Rn (the same dimensionality as the data x ∼ qx). Given a training sample x0 ∼ qx,
these models are based on constructing a diffusion process (forward process) of the variables x1:T := x1, x2, ..., xT

as a Markov chain from x0 to xT of the form

q(x1:T |x0) :=
T∏

t=1
q(xt|xt−1), (2)

where q(xt|xt−1) := N (
√

1− βtxt−1, βtIn), and 0 < β1 < ... < βT define the diffusion variance schedule (hyper-
parameters of the model). Note that βT = 1 ensures that xT is pure Gaussian noise. Yet, as discussed in (Lin et al.,
2024), this is not strictly enforced by many models. Note that sampling xt|x0 can be done via a simplified way using
the parametrization (Ho et al., 2020):

xt =
√

ᾱtx0 +
√

1− ᾱtϵ, ϵ ∼ N (0, In), (3)
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where αt := 1−βt and ᾱt :=
∏t

s=1 αs. The goal of these models is to learn the distribution of the reverse chain from
xT to x0, which is parameterized as the Markov chain

pθ(x0:T ) := p(xT )
T∏

t=1
pθ(xt−1|xt), (4)

where pθ(xt−1|xt) := N (µθ(xt, t), Σθ(xt, t)),

µθ(xt, t) := 1
√

αt
(xt −

1− αt√
1− ᾱt

ϵθ(xt, t)), (5)

and θ denotes all the learnable parameters. Essentially, ϵθ(xt, t) is an estimator for the noise in xt (up to scaling).

The parameters θ of the diffusion model (ϵθ(xt, t), Σθ(xt, t)) are optimized by minimizing evidence lower bound
(Sohl-Dickstein et al., 2015), a simplified score-matching loss (Ho et al., 2020; Song & Ermon, 2019), or a combi-
nation of both (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021). For example, the simplified loss involves the
minimization of

ℓsimple(x0, ϵθ, t) = ∥ϵ− ϵθ(
√

ᾱtx0 +
√

1− ᾱtϵ, t)∥2
2 (6)

w.r.t. θ in each training iteration, where x0 is drawn from the training data, t uniformly drawn from {1, ..., T} and the
noise ϵ ∼ N (0, In).

Given a trained diffusion model (ϵθ(xt, t), Σθ(xt, t)), one may generate a sample x0 from the learned data distribution
pθ by initializing xT ∼ N (0, In) and running the reverse diffusion process by sampling

xt−1 ∼ N (µθ(xt, t), Σθ(xt, t)), (7)

where 0 < t ≤ T and µθ(xt, t) is defined in equation 5.

The class-guided sampling method that has been proposed in (Dhariwal & Nichol, 2021) modifies the sampling pro-
cedure in equation 7 by adding to the mean of the Gaussian a term that depends on the gradient of an offline-trained
classifier, which has been trained using noisy images {xt} for each t, and approximates the likelihood pc|xt

, where c
is the desired class. This procedure has been shown to improve the quality of the samples generated for the learned
classes.

3.2 Diffusion based Image Reconstruction

We turn to extend the guidance method of (Dhariwal & Nichol, 2021) to image reconstruction. First, we generalize
their framework to inverse problems in the form of equation 1. Namely, given the observed image y, we modify
the guided reverse diffusion process to generate possible reconstructions of x that are associated with y rather than
arbitrary samples of a certain class. Similar to (Dhariwal & Nichol, 2021), ideally, the guiding direction at iteration t
should follow (the gradient of) the likelihood function py|xt

.

The key difference between our framework and (Dhariwal & Nichol, 2021) is that we need to base our method on the
specific degraded image y rather than on a classifier that has been trained for each level of noise of {xt}. However,
only the likelihood function py|x0 is known, i.e., of the clean image x0 that is available only at the end of the procedure,
and not for every 1 ≤ t ≤ T . To overcome this issue, we propose a surrogate for the intermediate likelihood functions
py|xt

. Our relaxation resembles the one in a recent concurrent work (Chung et al., 2022b). Yet, their sampling scheme
is significantly different and has no adaptation ingredient.

Similar to (Dhariwal & Nichol, 2021), we guide the diffusion progression using the log-likelihood gradient. Formally,
we are interested in sampling from the posterior

pθ(xt|xt+1, y) ∝ pθ(xt|xt+1)py|xt
(y|xt), (8)

where py|xt
(·|xt) is the distribution of y conditioned on xt, and pθ(xt|xt+1) = N (µθ(xt+1, t+1)), Σθ(xt+1, t+1))

is the learned diffusion prior. For brevity, we omit the arguments of µθ and Σθ in the rest of this subsection.
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Under the assumption that the likelihood log py|xt
(y|·) has low curvature compared to Σ−1

θ (Dhariwal & Nichol,
2021), the following Taylor expansion around xt = µθ is valid

log py|xt
(y|xt) ≈ log py|xt

(y|xt)|xt=µθ
+ (xt − µθ)⊤∇xt log py|xt

(y|xt)|xt=µθ
= (xt − µθ)⊤g + C1, (9)

where g = ∇xt log py|xt
(y|xt)|xt=µθ

, and C1 is a constant that does not depend on xt. Then, similar to the compu-
tation in (Dhariwal & Nichol, 2021), we can use equation 9 to express the posterior in equation 8, i.e.,

log(pθ(xt|xt+1)py|xt
(y|xt)) ≈ C2 + log p(z), (10)

where z ∼ N (µθ + Σθg, Σθ), and C2 is some constant that does not depend on xt. Therefore, for conditioning
the diffusion reverse process on y, one needs to evaluate the derivative g from a (different) log-likelihood function
log py|xt

(y|·) at each iteration t.

Observe that we know the exact log-likelihood function for t = 0. Since the noise e in equation 1 is white Gaussian
with variance σ2, we therefore have following distribution

py|x(y|x) = N (Ax, σ2Im) ∝ e− 1
2σ2 ∥y−Ax∥2

2 . (11)

In the denoising diffusion setup, y is related to x0 using the observation model equation 1. Therefore,

log py|x0(y|x0) ∝ −∥Ax0 − y∥2
2. (12)

However, we do not have tractable expressions for the likelihood functions {py|xt
(y|·)}T

t=1. Therefore, motivated by
the expression above, we propose the following approximation

log py|xt
(y|xt) ≈ log py|x0(y|x̂0(xt)), (13)

where

x̂0(xt) :=
(
xt −

√
1− ᾱtϵθ(xt, t)

)
/
√

ᾱt (14)

is an estimation of x0 from xt, which is based on the (stochastic) relation of xt and x0 in equation 3 and the random
noise ϵ is replaced by its estimation ϵθ(xt, t).

From equation 11 and equation 13 it follows that g in equation 9 can be approximated at each iteration t by evaluating
(e.g., via automatic-differentiation)

g ≈ −∇xt
∥Ax̂0(xt)− y∥2

2|xt=µθ
. (15)

Algorithm 1 Proposed GD sampling for image reconstruction given a diffusion model (ϵθ(·), Σθ(·)), and a guidance
scale s

Require: (ϵθ(·), Σθ(·)), y, s
1: xT ← sample from N (0, In)
2: for t from T to 1 do
3: ϵ̂, Σ̂← ϵθ(xt, t), Σθ(xt, t)
4: µ̂← 1√

αt
(xt − 1−αt√

1−ᾱt
ϵ̂)

5: yt ←
√

ᾱty +
√

1− ᾱtAϵ̂
6: g← −2AT (Aµ̂− yt)
7: xt−1 ← sample from N (µ̂ + sΣ̂g, Σ̂)
8: end forreturn x0

Note that existing methods (Chung et al., 2022b; Kawar et al., 2022a; Song et al., 2021) either use a term that resembles
equation 15 with the naive approximation x̂0(xt) = xt (Kawar et al., 2022a; Song et al., 2021), or significantly modify
equation 15 before computing it via the automatic derivation framework (Chung et al., 2022b) (we observed that trying
to compute the exact equation 15 is unstable due to numerical issues). For example, in the official implementation
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of (Chung et al., 2022b), which uses automatic derivation, the squaring of the norm in equation 15 is dropped even
though this is not stated in their paper (otherwise, the reconstruction suffers from significant artifacts). In our case, we
use the following relaxation to overcome the stability issue of using equation 15 directly. For a pretrained denoiser
predicting ϵθ from xt and 0 < t ≤ T we have

∥Ax̂0(xt)− y∥2
2 = ∥A(xt −

√
1− ᾱtϵθ)/

√
ᾱt − y∥2

2

∝ ∥Axt −
√

1− ᾱtAϵθ −
√

ᾱty∥2
2

= ∥Axt −
√

ᾱty−
√

1− ᾱtAϵθ∥2
2

= ∥Axt − yt∥2
2, (16)

where yt :=
√

ᾱty +
√

1− ᾱtAϵθ. We further assume that ϵθ is independent of xt, which we found to be sufficient
in our use-cases. Consequently, we propose to replace the expression for g (the guiding likelihood direction at each
iteration t) that is given in equation 15 with a surrogate obtained by evaluating the derivative of equation 16 w.r.t. xt,
which is given by

g = −(2AT (Axt − yt)− 2���∇xtyt(Axt − yt))m|xt=µθ
≈ −2AT (Axt − yt)|xt=µθ

(17)

that can be used for sampling the posterior distribution as detailed in Algorithm 1.

3.3 Adaptive Diffusion

Having defined the guided inverse diffusion flow for image reconstruction, we turn to discuss how one may adapt a
given diffusion model to a given degraded image y as defined in equation 1. Assume we have a pretrained diffusion
model (ϵθ(·), Σθ(·)), then the adaptation scheme is defined by the following minimization problem

θ̂ = arg min
θ

T∑
t=1

ℓsimple(y, ϵθ, t) (18)

with ℓsimple defined in equation 6, which can be solved using stochastic gradient descent, where at each iteration the
gradient step is performed on a single term of the sum above, for 0 < t ≤ T chosen randomly. Although the original
work (Dhariwal & Nichol, 2021) trains the network to predict the posterior variance Σθ, in our case, we did not see
any benefit of including it in the adaptation loss.

Adapting the denoising network to the measurement image y, allows it to learn cross-scale features recurring in the
image, which is a well studied property of natural images (Ulyanov et al., 2018; Mataev et al., 2019; Shaham et al.,
2019; Michaeli & Irani, 2014). Such an approach has been proven to be very helpful in reconstruction-based algorithms
(Hussein et al., 2020a; Tirer & Giryes, 2019). However, in some cases where the image does not satisfy the assumption
of recurring patterns across scales, this approach can lose some of the sharpness captured in training. Therefore, in
this work we extend the approach to few-shot fine-tuning adaptation, where instead of solving equation 18 w.r.t. y, we
propose an algorithm for retrieving K images similar to x from a large dataset of diverse images, using off-the-shelf
embedding distance.

Let (ξv(·), ξℓ(·)) be some off-the-shelf multi-modal encoder trained on visual-language modalities, e.g., CLIP (Rad-
ford et al., 2021), BLIP (Li et al., 2022b), or CyCLIP (Goel et al., 2022)). Let ξv(·) and ξℓ(·) be the visual and language
encoders respectively. Then, given a large diverse dataset of natural images, we propose to retrieve K images, denoted
by {zk}K

k=1, with minimal embedding distance from y. Formally, let DIA be an arbitrary external dataset, then

{zk}K
k=1 = {z1, ..., zK |ϕξ(z1, y) ≤ ... ≤ ϕξ(zK , y)
≤ ϕξ(z, y),∀z ∈ DIA \ {z1, ..., zK}}, (19)

where ϕξ(a, b) = 2 arcsin(0.5∥ξ(a) − ξ(b)∥2
2) is the spherical distance and ξ can be either the visual or language

encoder depending on the provided conditioning of the application.

After retrieving K-NN images {zk}K
k=1 fromDIA, we fine-tune the diffusion model on them, which adapts the denois-

ing network to the context of y. Specifically, we modify the denoiser parameters θ based on minimizing a loss similar
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to equation 18, but with {zk}K
k=1 rather than y. We stochastically solve the following minimization problem

θ̂ = arg min
θ

K∑
k=1

T∑
t=1

ℓsimple(zk, ϵθ, t) (20)

We refer to this K-NN based adaptation technique as ADIR (Adaptive Diffusion for Image Reconstruction), which is
described schematically in Figure 2.

IA Iter. LR NN imag. s diff. steps
ADIR-GD 400 10−4 20 10 1000
ADIR-SD 400 10−4 50 - 50

Table 1: Configurations used for ADIR.

4 Experiments

We evaluate our method on two state-of-the-art diffusion models, Guided Diffusion (GD) (Dhariwal & Nichol, 2021)
and Stable Diffusion (SD) (Rombach et al., 2022), showing results for super-resolution, colorization and deblurring.
In addition, we show how adaptive diffusion can be used for the task of text-based editing using stable diffusion.

Guided diffusion (Dhariwal & Nichol, 2021) provides several models with a conditioning mechanism built-in to the
denoiser. However, in our case, we perform the conditioning using the log-likelihood term. Therefore, we used the
unconditional model that was trained on ImageNet (Russakovsky et al., 2015) and produces images of size 256× 256.
In the original work, the conditioning for generating an image from an arbitrary class was performed using a classifier
trained to classify the noisy sample xt directly, where the log-likelihood derivative can be obtained by deriving the
corresponding logits w.r.t. xt directly. In our setup, the conditioning is performed using g in equation 17, where A is
defined by the reconstruction task, which we specify in the sequel.

In addition to GD, we demonstrate the improvement that can be achieved using stable diffusion (Rombach et al., 2022),
where we use publicly available super-resolution and text-based editing models for it. Instead of training the denoiser
on the natural images domain directly, they suggest using a Variational Auto Encoder (VAE) and train the denoiser
using a latent representation of the data. Note that the lower dimensionality of the latent enables the network to be
trained at higher resolutions.

In all cases, we adapt the diffusion models in the image adaptive scheme presented in section 3.3, using the Google
Open Dataset (Kuznetsova et al., 2020) as the external dataset DIA, from which we retrieve K images, where K = 20
for GD and K = 50 for SD (several examples of retrieved images are shown Figure 21). Since the Nearest Neighbor
(NN) search is performed in the embedding space, we can efficiently retrieve the K images from the 1.7M images
using a K-D Tree structure. This significantly accelerates the retrieval procedure, as can be seen in Table 6. We
compare the reconstruction performance and the runtimes when using random NN images, MSE-based NN, and using
our approach. Because the MSE-based retrieval uses the whole image for the search, applying the K-D Tree structure
for such a scheme is more challenging. Instead, one may use random projection in order to decrease the representation
dimension, however, because no benefits were obtained from such retrieval without the projection, we did not explore
such a direction.

For optimizing the network parameters we use LoRA (Hu et al., 2021) with rank r = 16 and scaling α = 8 for
all the convolution layers, which is then optimized using Adam (Kingma & Ba, 2014). The specific implementation
configurations are detailed in Table 1. We run all of our experiments on a NVIDIA RTX A6000 48GB card, which
allows us to fine-tune the models by randomly sampling a batch of 6 images from {zk}K

k=1, where in each iteration
we use the same 0 < t ≤ T for images in the batch.

4.1 Super Resolution

In the Super-Resolution (SR) task one would like to reconstruct a high resolution image x from its low resolution
image y, where in this case A represents an anti-aliasing filter followed by sub-sampling with stride γ, which we refer
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SRx4 SRx8
IPT 0.237/5.02/64.19 -

USRNet 0.249/4.38/45.76 -
SwinIR 0.232/4.98/64.19 0.424/4.54/48.04
SRDiff 0.135/4.76/60.87 -

Real-ESRGAN 0.317/5.02/69.42 -
DeepRED 0.475/3.20/22.77 0.591/2.99/17.43

DDRM 0.297/3.42/28.96 0.572/3.13/20.68
GD 0.325/4.88/64.63 0.365/4.36/53.99

ADIR 0.335/5.06/66.33 0.347/4.41/55.89

Table 2: x4 Super resolution results (1282 → 5122) and 8
(642 → 5122) for the unconditional guided diffusion model
(Dhariwal & Nichol, 2021). The results are averaged on the first
50 images of the DIV2K validation set (Agustsson & Timofte,
2017). We compare ADIR to IPT (Chen et al., 2021), USR-
Net (Zhang et al., 2020), SwinIR (Liang et al., 2021), SRDiff
(Li et al., 2022a), Real-ESRGAN (Wang et al., 2021), DeepRED
(Mataev et al., 2019), the baseline approach presented in Sec-
tion 3.2(without adaptation), and DDRM (Kawar et al., 2022a).
We use the traditional LPIPS (Zhang et al., 2018) as well as the
state-of-the-art no reference perceptual losses AVA-MUSIQ and
KonIQ-MUSIQ (Ke et al., 2021) for evaluation (LPIPS/MUSIQ-
AVA/MUSIQ-KONIQ). The best results are in bold black, and
the second best is highlighted in blue.

SRx4
IPT 0.221/4.90/65.38

USRNet 0.234/4.51/59.10
SwinIR 0.218/4.88/65.08
SRDiff 0.237/4.76/62.64

DeepRED 0.405/3.25/25.26
Real-ESRGAN 0.305/4.93/69.11
Stable Diffusion 0.331/5.07/69.18

ADIR (SD) 0.213/5.51/72.56

Table 3: x4 Super resolution (2562 → 10242)
using Stable Diffusion SR (Rombach et al.,
2022). Similar to Table 2, the results are aver-
aged on the first 50 images of the DIV2K val-
idation set (Agustsson & Timofte, 2017). We
compare ADIR to IPT (Chen et al., 2021), US-
RNet (Zhang et al., 2020), SwinIR (Liang et al.,
2021), SRDiff (Li et al., 2022a), DeepRED
(Mataev et al., 2019), Stable Diffusion (without
adaptation), and Real-ESRGAN (Wang et al.,
2021). We use LPIPS (Zhang et al., 2018) as
well as AVA-MUSIQ and KonIQ-MUSIQ (Ke
et al., 2021) for evaluation (LPIPS/MUSIQ-
AVA/MUSIQ-KONIQ). The best results are in
bold black, and the second best is highlighted
in blue.

Box (256) Box (512) Gauss (256)
M3SNet 0.477/3.13/26.16 0.468/2.93/47.42 0.481/2.75/31.13

DeepRED 0.561/3.61/22.12 0.557/3.57/27.59 0.572/3.59/19.13
Restormer 0.341/3.74/40.11 0.377/4.67/55.03 0.518/3.61/36.70
MPRNet 0.395/3.08/26.90 0.429/3.63/37.87 0.491/3.01/20.96

Guided Diffusion 0.423/4.20/49.19 0.411/4.81/58.66 0.424/4.01/48.11
ADIR (GD) 0.394/4.31/55.78 0.312/4.77/60.13 0.415/4.19/51.80

Table 4: Deblurring with 10 noise levels results for the unconditional guided diffusion model (Dhariwal & Nichol,
2021). Similar to SR in Table 2, the results are averaged on the first 50 images of the DIV2K validation set (Agustsson
& Timofte, 2017). We compare our method to M3SNet (Gao et al., 2023), DeepRED (Mataev et al., 2019), Restormer
(Zamir et al., 2022), MPRNet Mehri et al. (2021) and the baseline presented in Section 3.2 (without adaptation).
We use LPIPS (Zhang et al., 2018) as well as AVA-MUSIQ and KonIQ-MUSIQ (Ke et al., 2021) for evaluation
(LPIPS/MUSIQ-AVA/MUSIQ-KONIQ).

to as the scaling factor. In our use-case we employ a bicubic anti-aliasing filter and assume e = 0, similarly to most
SR works.

Here we apply our approach on two different diffusion based SR methods, Stable Diffusion (Rombach et al., 2022),
and section 3.2 approach combined with the unconditional diffusion model from (Dhariwal & Nichol, 2021). In Stable
Diffusion, the low-resolution image y is upscaled from 256× 256 to 1024× 1024, while in Guided Diffusion we use
the unconditional model trained on 256×256 images. When adapting Stable diffusion, we downsample random crops
of the K-NN images using A, which we encode using the VAE and plug into the network conditioning mechanism.
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DDRM Guided Diffusion (GD) ADIR (GD)
4.012/53.458 4.195/56.044 4.214/58.679

Table 5: Image colorization for the unconditional guided diffusion model (Dhariwal & Nichol, 2021). The results are
averaged on the first 50 images of the DIV2K validation set (Agustsson & Timofte, 2017). We compare ADIR to the
baseline presented in Section 3.2 (without adaptation) and DDRM (Kawar et al., 2022a). We use AVA-MUSIQ and
KonIQ-MUSIQ (Ke et al., 2021) for evaluation (MUSIQ-AVA/MUSIQ-KONIQ). The best results are in bold black,
and the second best is highlighted in blue.

We fine-tune both models using random crops of the K-NN images, to which we then add noise using the scheduler
provided by each model.

The perception preference of generative models-based image reconstruction has been seen in many works (Hussein
et al., 2020a; Bora et al., 2017; Blau & Michaeli, 2018). Therefore, we chose a perception-based measure to evaluate
the performance of our method. Specifically, we use the state-of-the-art AVA-MUSIQ and KonIQ-MUSIQ perceptual
quality assessment measures (Ke et al., 2021), which are state-of-the-art image quality assessment measures. We
report our results using the two measures averaged on the first 50 validation images of the DIV2K (Agustsson &
Timofte, 2017) dataset. As can be seen in Tables 2, 3, our method significantly outperforms both Stable Diffusion
and GD-based reconstruction approaches. We compare our super-resolution (SR) results to Stable Diffusion SR and
Guided Diffusion without the adaptation component. Additionally, we benchmark our method against several other
state-of-the-art techniques; IPT (Chen et al., 2021), USRNet (Zhang et al., 2020), SwinIR (Liang et al., 2021), SRDiff
(Li et al., 2022a), DeepRED (Mataev et al., 2019), Stable Diffusion (without adaptation), and Real-ESRGAN (Wang
et al., 2021). As can be seen from the results, our method outperforms or shows competitive results compared to the
other approaches. It is worth noting that because ADIR is a generative prior-based method, it targets the perceptual
quality aspect more than the distortional aspect; a fact can be seen when comparing ADIR to task-specific approaches
using reference-based measures (e.g. LPIPS). We also compare ADIR to adaptation using random images from the
dataset, as well as MSE-based retrieval, and report the results in Table 6, as well as Figure 6, where the obvious
advantage of ADIR can be seen clearly.

Figures 1 and 3 present qualitative results. Note that our method achieves superior restoration quality. In some cases
it restores even fine details that were blurred in the acquisition of the GT image.

4.2 Deblurring

In deblurring, y is obtained by applying a blur filter (uniform blur of size 5× 5 in our case) on x, followed by adding
measurement noise e ∼ N (0, σ2In), where in our setting σ = 10. We apply our proposed approach in Section 3.2 for
the Guided Diffusion unconditional model (Dhariwal & Nichol, 2021) to solve the task.

As a baseline, we use the unconditional diffusion model provided by GD (Dhariwal & Nichol, 2021), which was
trained on 256 × 256 size images. Yet, in our tests, we solve the deblurring task on images of sizes 256 × 256
and 512 × 512, which emphasizes the remarkable benefit of the adaptation, as it allows the model to generalize to
resolutions not seen during training.

Similar to SR, in Table 4 we report the KonIQ-MUSIQ and AVA-MUSIQ (Ke et al., 2021) measures, averaged on
the first 50 DIV2K validation images (Agustsson & Timofte, 2017), where we compare our approach to the guided
diffusion reconstruction without image adaptation. Visual comparisons are also available in Figure 5, where a signif-
icant improvement can be seen in both robustness to noise and reconstructing details. We also compare ADIR to the
scenario where we adapt the denoiser on random images from the dataset, as well as MSE-based retrieval; as can be
seen in Table 6 and Figure 6.

4.3 Colorization

In colorization, y is obtained by averaging the colors of x using RGB2Gray transform. Similar to deblurring, we apply
our proposed approach in Section 3.2 to solve the task. In this case, A can be implemented by averaging the color
dimension of x, while AT can simply be viewed as a replication of the color dimension. We use the unconditional
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SRx8 Deblur
LPIPS/AVA/KONIQ runtime [sec/image] LPIPS/AVA/KONIQ runtime [sec/image]

GD (baseline) 0.365/4.36/53.99 830 0.423/4.20/49.19 425
IA w/ random images 0.430/4.14/52.89 1300 0.433/3.68/40.05 895
IA w/ MSE based NN 0.434/4.28/53.12 2700 0.428/3.62/39.13 2500

ADIR 0.347/4.41/55.89 1308 0.394/4.31/55.78 903

Table 6: Ablation study of the adaptation advantage of ADIR. We compare our method to adaptation using random
images sampled from the dataset, adaptation using MSE as a retrieval distance, and the approach from Section 3.2.
We use the traditional LPIPS (Zhang et al., 2018) as well as the state-of-the-art no reference perceptual losses AVA-
MUSIQ and KonIQ-MUSIQ (Ke et al., 2021) for evaluation. We also benchmark the runtime of each method and
report the inference time per image on a single NVIDIA RTX A6000 GPU. The best results are in bold black, and the
second best is highlighted in blue. In ADIR we achieve much smaller runtimes compared to the MSE-based retrieval
because we use an efficient K-D tree data structure on the embedding space that is much smaller than the naive pixel
domain.

Original Image Masked Stable Diffusion Stable Diffusion ADIR ADIR

Figure 4: Text-based editing comparison between Stable Diffusion and ADIR, using the prompt “Africa” for two
different seeds. Note that Stable diffusion adds partial animals while ADIR completes the scene more naturally.

diffusion model provided by GD (Dhariwal & Nichol, 2021) as a baseline for coloring 256 × 256 images. Visual
comparison of the results can be seen in Figure 7. We report the average MUSIQ (Ke et al., 2021) perceptual measure
for this case, as shown in Table 5. Note that we do not report LPIPS as there are many colorization solutions and
therefore the reconstructed image may differ a lot from the ground truth. Thus, we focus on non-reference based
perceptual measures for the colorization task.

4.4 Text-Guided Editing

Text-guided image editing is the task of completing a masked region of x according to a prompt provided by the user.
In this case, the diffusion model needs to predict objects and textures correspondent to the provided prompt, therefore
we chose to adapt the network on {zk}K

k=1 retrieved using the text encoder, i.e. by solving equation 19 using ξℓ. For
evaluating our method for this application, we use the inpainting model of Stable Diffusion (Rombach et al., 2022).
Where y encoded and concatenated with the mask resized to latent dimension, which are then plugged to the denoising
network. When adapting the network, we follow the training scheme of Stable Diffusion, where we use random masks
and the classifier-free conditioning approach (Ho & Salimans, 2022) used for training Stable Diffusion, where the text
embedding is randomly chosen to either be the encoded prompt or the embedding of an empty prompt. Notice that we
cannot compare to (Giannone et al., 2022; Sheynin et al., 2022; Kawar et al., 2022b) as there is no code available for
them. For some of them, we do not even have access to the diffusion model that they adapt (Saharia et al., 2022a). Note
though that our goal is not to show state-of-the-art editing results but rather to show here the potential contribution of
ADIR to text-guided editing. As it is a general framework, it may be used also with other existing editing techniques
in order to improve them.

Figure 19 presents the editing results and compares them to both stable diffusion and GLIDE. GLIDE is the basis of
the popular DALL-E-2 model. The images of GLIDE are taken from the paper. We use ADIR with stable diffusion
and optimize them using the same seed.

Since Stable Diffusion was trained using a lossy latent representation with smaller dimensionality than the data, it is
clear that GLIDE can achieve better results. However, because our method adapts the network to a specific scenario,
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GT Blurry Guided Diffusion ADIR
Figure 5: Image deblurring using Guided Diffusion approach from section 3.2 and ADIR, using the unconditional
model from (Dhariwal & Nichol, 2021). The degradation is performed using 5 × 5 uniform blur filter with 10 levels
of additive Gaussian noise. Note the better quality of our method.

it enables the model to produce cleaner and more accurate generations, as can be seen in Figure 19. In the first image
we see that Stable Diffusion adds an object that does not blend well and has artifacts, while when combined with our
approach the quality improves significantly. Similarly, in the second image we see that Stable Diffusion produces an
inaccurate edit, where it adds a brown hair instead of red hair. This is again improved by our adaptation method.

Limitation. One limitation of our approach is that as is the case with all diffusion models, there is randomness in the
generation process of the results. Therefore, the quality of the output may depend on the random seed being used. For
a fair comparison, we used the same seed both for ADIR and the baseline. In the appendix, we provide more examples
with different random seeds. We still find that when we compare our approach and the baseline with the same seed,
we consistently get an improvement. Another limitation of ADIR is that it works sequentially, i.e. we first look for
K-NN images and then fine-tune the denoiser network on these images, therefore, an additional run-time is added
to the standard diffusion flow. Also, in this work, we assume that the observation operator A is known (non-blind
setting), while in many real-world applications, it is usually inaccessible. As a result, one needs to run the guidance
scheme (section 3.2) with an estimated version of A, which is suboptimal. Additionally, for optimal performance,
one should use a relatively diverse dataset to retrieve images that match the degraded image context. Otherwise, the
adaptation can lead to negligible advantage. We leave exploring these questions to a future research.

5 Conclusion

We have presented the Adaptive Diffusion Image Reconstruction (ADIR) method, in which we improve the reconstruc-
tion results in several imaging tasks using off-the-shelf diffusion models. We have demonstrated how our adaptation
can significantly improve existing state-of-the-art methods, e.g. Stable Diffusion for super resolution, where the ex-
ploitation of external data with the same context as y, combined with our adaptation scheme leads to a significant
improvement. Specifically, the produced images are sharper and have more details than the original ground truth im-
age. Importantly, note that our novel adaptive diffusion ingredient can be incorporated into any conditional sampling
scheme that is based on diffusion models, beyond those that are examined in this paper. One such possible direction is
integrating our method with advanced diffusion models-based editing techniques (Meng et al., 2022; Kim et al., 2022;
Mokady et al., 2023; Bar-Tal et al., 2023; Molad et al., 2023; Wei et al., 2023; Huang et al., 2023; Qi et al., 2023;
Liu et al., 2023). Yet, we believe that our proposed novel concept can be a useful tool for improving diffusion-based
reconstruction and editing.
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Ground truth Blurry Guided Diffusion ADIR Random K-NN ADIR (ours)

Ground truth Bicubic x4 Guided Diffusion ADIR Random K-NN ADIR (ours)

Figure 6: Ablation study on the benefit of ADIR compared to adapting the denoiser on random images for deblurring
(upper row) and super-resolution (bottom row) of celebrity images. We compare ADIR applied using random images
of the celebrity from the web, to random NN images, and guided diffusion with no adaptation from section 3.2.
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Additional Results

In the following we

• Show results for super resolution with scaling factor of 8.

• Show additional results of deblurring task.

• Show more results of colorization use-case.

• Compare our method to Stable Diffusion for editing task in multiple scenarios.

• Examples of retrieved nearest neighbours images (Figure 21).

• Examine the effect of A on the K-NN retrieval (Figure 22).

20



Under review as submission to TMLR

GT Bicubic Guided Diffusion ADIR

Figure 8: Comparison of super resolution (642 → 5122) results of Guided Diffusion from section 3.2 and our method
(ADIR), using the unconditional model from (Rombach et al., 2022). As can be seen from the images, our method
outperforms guided diffusion in both sharpness and reconstruction details.
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GT Bicubic

Stable Diffusion ADIR

Figure 9: Comparison of super resolution (2562 → 10242) results of Stable Diffusion (Rombach et al., 2022) and our
method (ADIR), using the unconditional model from (Rombach et al., 2022). As can be seen from the images, our
method outperforms guided diffusion in both sharpness and reconstruction details.
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GT Bicubic

Stable Diffusion ADIR

Figure 10: Comparison of super resolution (2562 → 10242) results of Stable Diffusion (Rombach et al., 2022) and
our method (ADIR), using the unconditional model from (Rombach et al., 2022). As can be seen from the images, our
method outperforms guided diffusion in both sharpness and reconstruction details.
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GT Bicubic

Stable Diffusion ADIR

Figure 11: Comparison of super resolution (2562 → 10242) results of Stable Diffusion (Rombach et al., 2022) and
our method (ADIR), using the unconditional model from (Rombach et al., 2022). As can be seen from the images, our
method outperforms guided diffusion in both sharpness and reconstruction details.
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GT Blurry Guided Diffusion ADIR

Figure 12: Comparison of super resolution (642 → 5122) results of Guided Diffusion from section 3.2 and our method
(ADIR), using the unconditional model from (Rombach et al., 2022). As can be seen from the images, our method
outperforms guided diffusion in both sharpness and reconstruction details.
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GT Blurry Guided Diffusion ADIR

Figure 13: Deblurring (5× 5 box filter, σ = 10) results of Guided Diffusion from section 3.2 and our method (ADIR),
using the unconditional model from (Rombach et al., 2022). As can be seen from the images, our method outperforms
guided diffusion in both sharpness and reconstruction details.
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GT Bicubic Guided Diffusion ADIR

Figure 14: Gaussian deblurring (σblur = 2 and σnoise = 10) results of Guided Diffusion from section 3.2 and our
method (ADIR), using the unconditional model from (Rombach et al., 2022). As can be seen from the images, our
method outperforms guided diffusion in both sharpness and reconstruction details.
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Original Image Masked

Stable Diffusion

ADIR

Figure 15: Text-based image editing comparison between Stable Diffusion (Rombach et al., 2022) and ADIR, using
the prompt “A beautiful frozen lake between mountains in the snow” for two different seeds.
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Original Image Masked

Stable Diffusion

ADIR

Figure 16: Text-based image editing comparison between Stable Diffusion (Rombach et al., 2022) and ADIR, using
the prompt “An elephant walking” for two different seeds.
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Original Image Masked

Stable Diffusion

ADIR

Figure 17: Text-based image editing comparison between Stable Diffusion (Rombach et al., 2022) and ADIR applied
to the Stable Diffusion model, for the prompt “A fox sitting in the middle of the desert”
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Original Image Masked

Stable Diffusion

ADIR

Figure 18: Text-based image editing comparison between Stable Diffusion (Rombach et al., 2022) and ADIR applied
to the Stable Diffusion model, for the prompt “Taj Mahal”

31



Under review as submission to TMLR

“A vase of flowers on the table of a living room”

“A man with red hair”

“An old car in a snowy forest”

Figure 19: Text-based image editing comparison between GLIDE (full) (Nichol et al., 2021), Stable Diffusion (Rom-
bach et al., 2022) and ADIR applied to the Stable Diffusion model. The images are taken from (Nichol et al., 2021),
since their official high-res model was not publicly released. As can be seen, our method produces more realistic
images in cases where Stable Diffusion either was not accurate (brown hair instead of red) or in terms of artifacts.
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Original Image Grayscale DDRM Guided Diffusion ADIR
Figure 20: Image colorization results comparison between DDRM (Kawar et al., 2022a), Guided diffusion proposed
in section 3.2, and our adaptive approach ADIR. As can be seen, adapting the denoiser network to the given image can
improve the results significantly.
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Ground Truth NN-1 NN-2 NN-3

Figure 21: Examples of images retrieved from Google Open Dataset (Kuznetsova et al., 2020) using CLIP (Radford
et al., 2021) for super resolution with scale factor of 8 (642 → 5122).
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y NN-16 NN-17 NN-18 NN-19 NN-20

Figure 22: The effect of A on the K-NN retrieval: Each row represent a different blur operator A, and each column
shows the 5 least similar images from the 20 retrieved nearest images from Google Open Dataset (Kuznetsova et al.,
2020) using CLIP (Radford et al., 2021). In all cases we used a box filter with support 3 × 3, 5 × 5, 7 × 7, 9 × 9 and
11× 11, respective to the row number.
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