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Abstract

To enhance the generalization ability of graph neural networks (GNNs) in learning
and simulating physical dynamics, a series of equivariant GNNs have been devel-
oped to incorporate the symmetric inductive bias. However, the existing methods
do not consider the non-stationarity nature of physical dynamics, where the joint
distribution changes over time. Moreover, previous approaches for modeling non-
stationary time series typically involve normalizing the data, which disrupts the
symmetric assumption inherent in physical dynamics. To model the non-stationary
physical dynamics while preserving the symmetric inductive bias, we introduce
a Non-Stationary Equivariant Graph Neural Network (NS-EGNN) to capture the
non-stationarity in physical dynamics while preserving the symmetric property of
the model. Specifically, NS-EGNN employs Fourier Transform on segments of
physical dynamics to extract time-varying frequency information from the trajecto-
ries. It then uses the first and second-order differences to mitigate non-stationarity,
followed by pooling for future predictions. Through capturing varying frequency
characteristics and alleviate the linear and quadric trend in the raw physical dynam-
ics, NS-EGNN better models the temporal dependencies in the physical dynamics.
NS-EGNN has been applied on various types of physical dynamics, including
molecular, motion and protein dynamics, and consistently surpasses the existing
state-of-the-art algorithms, underscoring its effectiveness. The implementation of
NS-EGNN is available at https://github.com/MaojiWEN/NS-EGNN.

1 Introduction

Accurately simulating real-world physical dynamics is crucial in numerous fields, including molecular
dynamics, motion capture [48], drug discovery [37, 54], and protein folding [1]. The challenge lies
in capturing complex interactions among system components. However, traditional methods are
either computationally expensive (e.g., Density Functional Theory [21]) or fail to model the complex
human intention. Hence, various equivariant Graph Neural Networks (GNNs) [38, 16, 39, 18, 19, 24,
58, 26, 4, 57, 22, 5] have been developed to model such physical interactions while incorporating
fundamental symmetry constraints. Specifically, these methods ensure their outputs are equivariant
with respect to a specific group, such as E(3), any 3-dimensional translation/orientation/reflection.
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Despite their success, most existing models for physical dynamics focus on single-step frame-to-
frame forecasting. That is, they only leverage a single historical frame as input to predict the
future states. Such frameworks are insufficient to simulate physical dynamics due to the follow-
ing issues: (1) Non-Markovian. According to the Markovian assumption, future states depend
only on the current state and are independent of past states. However, a single frame of the phys-
ical dynamics does not comprehensively capture all the details of a given environment because
of hidden interactions, such as those involving the solvent; (2) Non-stationary. Non-stationarity
refers to a dynamic object whose statistical properties and joint distribution change over time.
The time-varying distribution in physical dynamics can lead to poor generalization ability in deep
learning models. More intuitively, in molecular dynamics, the potential energy of molecules are
varying, which results the mean, variance (amplitude of vibration) and covariance (the connections
between edges) change over time. Besides, in motion capture dataset, since velocity and physio-
logical state are dynamic, the trajectories of human will also exhibit strong non-stationary property.
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Figure 1: The illustration of non-stationarity and
equivariance. Non-stationarity: Applying Fourier
Transform (FT) to each period of dynamic object
will result in different frequency pattern. Invari-
ance: With rotation, translation or reflection of
physical object, the model should capture the same
frequency information.

It is non-trivial to model Non-stationary and
Non-Markovian dynamics. Previous works [28,
30, 52] for modeling non-stationary time-series
data mostly adopt normalization approaches to
stationarize the series. However, these methods
will break the symmetry in the dynamics. An
effective alternative, Fourier Transform [41] con-
verts the physical dynamics from time domain
to frequency domain, revealing the intensity of
each frequency component within the dynamics.
The frequency components and power spectrum
in the frequency domain can be used to analyze
the energy distribution of the physical dynam-
ics [52], which in turn can be used to infer time-
domain characteristics, such as variance. As
illustrated in Figure 1, the Fourier frequency,
S1, S2 and S3, are distinct over different period,
exhibiting the dynamic statistical property of
dynamics in time domain.

In this paper, to incorporate the non-stationarity
into the equivariant models, we propose Non-
Stationary Equivariant Graph Neural Network
(NS-EGNN), which adopts Fourier transform on
patched physical dynamics to capture the vary-
ing distribution throughout the entire trajectory.
Moreover, the Fourier frequency also reflects
the non-Markovian interactions inside the physical systems. Specifically, to capture the dynamic
statistical properties inside the non-stationary physical objects, NS-EGNN segments patches of tra-
jectory with overlap and applies Fourier transform to extract the time-varying frequency information
from these dynamics. Notably, the extracted frequency features are E(3)-invariant, thus preserving
the symmetric properties of the model. Subsequently, to capture the spatial relationships, NS-EGNN
employs an equivariant GNN backbone to learn these spatial connections. Moreover, since the
Patch Fourier Transform already captures the dynamic patterns, NS-EGNN does not additionally
incorporate temporal learning modules, such as attention [47], thus achieving lower computational
complexity. Finally, NS-EGNN performs multi-step prediction utilizing the updated spatio-temporal
graph through the non-stationary temporal pooling module based on the first order and the second
order differencing [32]. Our contributions are summarized as follows:

- We reveal the non-stationary property widely exists in real-world physical objects, such as
molecules, proteins and human motions, via Augmented Dickey-Fuller (ADF) [46] test.

- We design a Non-Stationary Equivariant Graph Neural Network (NS-EGNN), leveraging Patch
Fourier Transform with window function, to explicitly capture the time-varying frequency infor-
mation in the dynamic object. Moreover, we design a novel equivariant temporal pooling layer to
further alleviate the influence of non-statiaonarity.
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- We apply NS-EGNN across various applications, such as molecular-, protein- and macro-level
simulation. In the various scenarios, NS-EGNN consistently indicates performance improvements.

2 Background

2.1 Problem Definition

Notation. A physical object can be represented as a graph G = (V, E , X⃗). The node features ni ∈ V
include non-geometric features h ∈ Rd such as the types of the atoms and a 3D coordinate vector
X⃗i ∈ R3, and the edge features eij ∈ E ,∈ Re describes the connection between node i and node j.
In a historical trajectory of this object {G}Tt=0, the scalar features h and edge features e are constant
while the position vectors X⃗ change over time.

Task Definition. In the trajectory simulation task, given the past trajectory {G}Tt=0, the target is to
learn a function fθ that predicts the future trajectory {G}T+∆t

t=T+1.

{G}T+∆t
t=T+1 = fθ({G}Tt=0). (1)

Specifically, since only the position vectors are dynamic, the primary focus is on predicting X⃗.

2.2 Equivariance and Invariance

In the group of E(3), the transformation g · X⃗ can be expressed as: g · X⃗ := OX⃗ + t, where
O ∈ O(3) = {O ∈ R3×3|O⊤O = I} represents orthogonal transformations (including rotation and
reflection), and t ∈ R3 represents translations.

Given above definitions, to enhance generalization ability, when a physical object undergoes transfor-
mations within the group E(3), the equivariant model fθ should be able to produce the corresponding
prediction for the coordinates. In the context of a spatio-temporal graph, this can be formulated as:

{G = (V, E , g · X⃗)}T+∆t
t=T+1 = fθ({G = (V, E , g · X⃗)}Tt=0). (2)

2.3 Non-stationarity

A non-stationary time series exhibits dynamic statistical properties and joint distribution, resulting it
difficult to be modeled by deep learning models [51, 36]. Formally, such property can be defined as:

Definition 1. (Non-stationary) Physical dynamics {X⃗t} can be considered as non-stationary if
there exists distinct time interval t1 and t2 such that at least one of the following conditions is met:
E(X⃗t1) ̸= E(X⃗t2), Var(X⃗t1) ̸= Var(X⃗t2), or Cov(X⃗t1 , X⃗t1+k) ̸= Cov(X⃗t2 , X⃗t2+k) for any lag k.

In other words, if the mean, variance, or covariance function of a physical object evolve over time,
then the object is considered to be non-stationary. Furthermore, Fourier frequency also details how
the variance of the data is distributed across different frequencies. In the following work, we will
utilize this frequency information to model and capture the non-stationary characteristics.

3 Methodology

3.1 General Framework

As shown in Figure 2, given an EGNN backbone, NS-EGNN consists of Patch Fourier transform
(PFT) (Section 3.1.1) and non-stationary pooling layer (NS-Pooling) (Section 3.1.2) to model the
non-stationary dynamics equivariantly. Specifically, the brief procedure can be represented as:

s = PFT(X⃗(t)), (3)

h(L), s(L), (X⃗(t)(L))Tt=0 = EGNN(h, s, X⃗(t)Tt=0), (4)

X⃗∗ = NS-Pooling((X⃗(t)(L))Tt=0). (5)
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Here, h(L), s(L), (X⃗(t)
(L)

)Tt=0 denote the L-th EGNN layer output and X⃗∗ is the final pooled
trajectory. In PFT, we divide the trajectory into overlapping patches to capture the dynamic variance
from the frequency domain, and in NS-Pooling, we employ a difference-based method to minimize
the impact by dynamic mean and perform the multi-step prediction by pooling the stationarized
dynamics. PFT and NS-Pooling model the dynamics’ variance and mean, respectively. First, PFT
extracts the invariant frequency features s from the input trajectory. These features, along with
the original coordinates X⃗(t)Tt=0 and scalar features h, are fed into the EGNN [39] backbone, as
delineated in Section 3.2, which updates the node states. Finally, the NS-Pooling layer is applied
to the output coordinates (X⃗(t)(L))Tt=0 from the EGNN to stationarize the features and make the
final multi-step prediction X⃗∗. Finally, the training objective of NS-EGNN is the mean square error
(MSE) loss L =

∑T+TL

t=T

∑N
i=1 ||X⃗∗

i (t)− X⃗i(t)||.

3.1.1 Invariant Patch Fourier Transform

mik

mij

Time-varying Freqeuncy Graph

Predicted Trajectory

Temporal


Pooling

Equivariant MP

iX

jX
kX

Patches of input Trajectory

S

Patch FT Patch FT

Figure 2: The overall framework of NS-EGNN.
NS-EGNN applies window function to the input
trajectory and Fourier Transform to receive time-
varying frequency graphs. Then, the equivariant
GNN will learn from both spatial and spectral
information to update the coordinates.

Discrete Fourier Transform (DFT). DFT is a
classic algorithm that converts the trajectory from
temporal domain to frequency domain, which con-
tain the periodical information in the physical dy-
namics. Specifically, DFT F can extract the fre-
quency information s⃗i ∈ CT×3 of the physical
dynamics at node i, and be calculated as follows:

s⃗i(k) = F(X⃗i) =

T∑
t=0

e−i′ 2π
T kt ·(X⃗i(t)−

¯⃗
Xi(t)),

(6)
where i′ is the imaginary unit, k = 0, 1, · · · , T is
the frequency index and ¯⃗

Xi(t) is the average po-
sition of all nodes in the graph. Nonetheless, DFT
computes a single, global frequency spectrum for
the entire trajectory, implicitly assuming the sig-
nal’s properties are constant over time. We refer
to this as static frequency information. Due to
the inherent non-stationarity of physical dynamics,
where statistical properties (and thus frequency
components) change over time, this static spec-
trum is insufficient. Therefore, DFT cannot com-
prehensively capture the dynamic, time-varying
frequency evolution inside the physical objects.

Patch Fourier Transform (PFT). To this end, inspired by [15], we design the Patch Fourier
Transform (PFT) to extract the frequency content of an object changes over time. Our target is to
extract the Fourier frequency at each stage along the trajectory. However, directly cutting off parts
of the trajectory can result in spectral leakage [35], which means it might not properly capture the
frequency information. Therefore, PFT applies a window function w(·;ω) to accurately extract
the local frequency in the segmented trajectory, where ω ∈ R denotes window length as a hyper-
parameter, to determine the number of samples in each segment where Fourier transform is applied,
defined as:

PFT(X⃗i)(p, k) =

T∑
t=0

e−i′ 2π
T kt · (X⃗i(t)−

¯⃗
Xi(t))w(t− h× p;ω) (7)

where p ∈ R is the window index of Fourier transform applied, k ∈ R denotes the frequency
index in p-th window, and h ∈ R denotes the hop size, defined as the number of samples the
window is moved forward at each time. Specifically, we adopt the classic Hamming window [35]
w(t) = 0.54− 0.46 · cos( 2πt

ω−1 ) as the window function. We also conduct an additional experiment
in Appendix C.8 to prove the specific window function will not greatly influence the performance
of NS-EGNN. By setting h < ω, the windows overlap, allowing for more thorough capture of the
frequency information throughout the trajectory.
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Invariant Frequency Feature. To capture the entire frequency of physical dynamics, we applied
the PFT to all dimensions of coordinates. In each dimension, PFT will result frequency matrix
Si ∈ Rr×K , where r = T/h and K ≤ T is the number of frequency basis. To integrate the frequency
information from different dimensions, the frequency features will be calculated as:

s =

√√√√ n∑
i=1

(|Si|2)/n (8)

where n is the number of dimensions. We distribute the frequency feature s to each node involved
in the Fourier transform calculation. Consequently, the dimension of s is extended to RT×K ,
by repeating the feature h times. If a coordinate takes part in multiple Fourier transforms, its
corresponding frequency feature will be averaged.

Multi-Scale PFT. On the other hand, to prevent the relatively small window size ω from limiting
the ability to capture broader frequencies, we adopt a set of distinct window sizes and hop sizes in
the implementation of NS-EGNN. By applying PFT q consecutive times with these varying hyper-
parameters, NS-EGNN can effectively capture different scales of frequency, enhancing its ability to
model non-stationary trajectory. Hence, the final resulted frequency feature is given by s ∈ Rq×T×K .

Lemma 3.1. The extracted frequency feature s is E(n)-invariant.

The proof can be found in Appendix A.1. In our model, aside from using PFT, we do not incorporate
additional temporal modules such as attention mechanisms as PFT already integrates temporal
information. An ablation study is set up in Section 4.5. This further enhances efficiency, as the
complexity of Fast FT is O(N logN), while the complexity of attention mechanism is O(N2), and
this is further validated by empirical results in Appendix C.7.

3.1.2 Equivariant Non-stationary Temporal Pooling

Inspired by classical statistical algorithms [8], to reduce the non-stationary property, we propose
NS-Pooling, to involve differencing the trajectory before pooling:

∆X⃗i = [X⃗
(L)
i (1) − X⃗

(L)
i (0), X⃗

(L)
i (2) − X⃗

(L)
i (1), · · ·, X⃗(L)

i (T − 1) − X⃗
(L)
i (T − 2)] (9)

where ∆X⃗i ∈ R(T−1)×3 represents the differentiated. Furthermore, we also derive the second order
difference ∆2X⃗i = {∆X⃗i(t) − ∆X⃗i(t − 1)}T−1

t=1 . Although it is possible to derive higher-order
differences, we find that first-order and second-order differences are sufficient for pooling. The
corresponding experiments can be found in Appendix C.1. Moreover, while the previous works
focused only on predicting the next single frame, our experiments extend the framework to a more
challenge setting: forecasting the multi-step trajectory X⃗∗

i ∈ RN×∆t×3 of the physical dynamics,
where ∆t represents the length of the forecasted trajectory. The formulation can be represented as:

X⃗∗
i = [∆X⃗i,∆

2X⃗i] · γ + X⃗
(L)
i (T − 1), (10)

where γ ∈ R(2T−3)×TL is a learnable weight matrix. The differencing process removes linear and
quadratic trends, making the trajectory more stationary and easier for the model to learn underlying
patterns, rather than being distracted by absolute, non-stationary positions.

3.1.3 Equivariance Analysis

Let fθ denote the overall NS-EGNN models, we have the theorem:

Theorem 3.2. For arbitrary orthogonal transformations and translation vectors O, t ∈ E(3),
fθ({OG + t}Tt=0) = Ofθ({G}Tt=0) + t.

The proof is provided in the Appendix A.2. Since the composition of equivariant functions is again
equivariant, the PFT module extracts invariant frequency features to feed into the an equivariant
backbone. The NS-Pooling layer aggregates the first and second-order differences of the trajectory
along with the final position, which is also equivariant.
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3.2 Spatial Model Backbone

To process the spatial information in the dynamics, we leverage EGNN [39] layers µ as equivariant
backbone in NS-EGNN framework. With the time-varying frequency feature s obtained by PFT,
EGNN layers µ can iteratively update the system states as:

h(l+1), s(l+1), X⃗(l+1) = µ(h(l), s(l), X⃗(l)), (11)

where h
(l)
i , s(l)i and X⃗

(l)
i are the scalar feature, frequency feature and geometric feature of node i

at layer l, respectively. Specifically, EGNN employs relative distance ||X⃗i − X⃗j || as the invariant
features:

m
(l)
ij = fθ(h

(l)
i ,h

(l)
j , s

(l)
i , s

(l)
j , ||X⃗(l)

i − X⃗
(l)
j ||2), (12)

where fθ is an MLP and m
(l)
ij is the invariant message embedding between nodes i and j at l-th layer.

Given the invariant message embedding, the node coordinates can be updated with equivariance:

X⃗
(l+1)
i = X⃗(l) +

1

|Ni|

j ̸=i∑
j∈Ni

(X⃗
(l)
i − X⃗

(l)
j )ϕx(m

(l)
ij ), (13)

where ϕx denotes an MLP and Ni is the neighbors of node i in the physical system. In terms of
invariant features, with message embedding m, the hidden representations h and s can be updated as:

h
(l+1)
i = h

(l)
i +

j ̸=i∑
j∈Ni

ϕh(h
(l)
j ,m

(l)
ij ), s

(l+1)
i = s

(l)
i +

j ̸=i∑
j∈Ni

ϕs(s
(l)
j ,m

(l)
ij ), (14)

where fθ, ϕh and are learnable neural networks.

While we here exploit EGNN [39] as the backbone, the patched dynamics modeling we proposed
is a plug-and-play module that can be integrated into other models based on specific scenarios. For
instance, in constrained and bounded physical systems, we could develop NS-GMN from GMN [19],
and NS-DEGNN from DEGNN [58], respectively. We leave these extensions as future exploration.

4 Experiments

4.1 Experimental Settings

4.1.1 Datasets & Non-stationary Analysis

We perform experiments on three classic datasets: 1) MD17 [6], 2) CMU Motion Capture Database [7],
and 3) AdK equilibrium trajectory dataset [40]. Note that these datasets all exhibit a strong non-
stationary property. Specifically, the molecular and protein dynamics in the MD17 and AdK equilib-
rium trajectory datasets have varying potential energy, which influences the amplitude of vibration.
In the motion capture dataset, the human’s velocity and physiological state also vary over time.

Table 1: Summarized ADF test results for MD17,
CMU Motion Capture, and AdK datasets.

Subset Non-Stat. Ratio p-Value Mean ADF Mean
MD17 Dataset

Aspirin 0.8371 0.6684 -0.9185
Benzene 0.9997 0.9112 0.0896
Ethanol 0.9427 0.4841 -1.4999
Malonaldehyde 0.9972 0.7741 -0.4416
Naphthalene 0.7710 0.3050 -2.0771
Salicylic 0.9650 0.4540 -1.6494
Toluene 0.7840 0.2641 -2.2781
Uracil 0.4143 0.3161 -2.0884

CMU Motion Capture Dataset
Walk 0.9601 0.8350 1.9866
Run 0.9449 0.7884 1.0581

AdK Dataset
AdK 0.4873 0.1739 -3.0586

To confirm the non-stationary nature of the
datasets, we conduct Augmented Dickey-Fuller
(ADF) tests [10] on each dataset. The ADF test
quantifies the degree of stationarity by providing
two primary metrics: the p-value, which reflects
the significance of stationarity, and the ADF
statistic, where smaller values indicate higher
stationarity. Physical dynamics with p-values
and ADF statistics below critical thresholds are
deemed as stationarity, while higher values sug-
gest the objects possess stronger non-stationary
properties. More details can be found in Ap-
pendix B.1.

Table 1 summarizes the ADF test results for
the MD17, CMU Motion Capture, and AdK
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Table 2: Averaged prediction error for consecutive forecasts on the MD17 dataset. The reported mean
and the standard deviation (×10−3) are computed over 5 runs.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil
ST-TFN 3.631±0.136 0.823±0.007 1.457±0.083 2.573±0.071 1.171±0.061 2.491±0.198 2.078±0.097 1.753±0.037

ST-GNN 10.509±2.680 1.833±0.695 14.349±6.393 4.066±0.461 14.725±1.265 3.064±0.212 2.401±0.232 2.324±0.391

ST-SE(3)TR 3.511±0.167 0.848±0.035 1.319±0.006 3.136±0.216 1.063±0.006 2.858±0.765 2.669±0.169 1.754±0.038

ST-EGNN 3.257±0.394 0.876±0.144 0.879±0.112 1.878±0.258 0.922±0.063 1.909±0.320 1.491±0.139 1.545±0.152

EqMotion 3.790±0.018 1.166±0.279 1.882±0.011 2.793±0.013 3.201±0.008 3.258±0.004 2.917±0.056 3.288±0.002

STGCN 4.175±0.171 1.001±0.063 214.904±0.076 3.455±0.370 3.454±0.104 3.433±0.052 3.110±0.131 3.576±0.112

AGL-STAN 587.048±73.836 5.914±2.247 303.185±83.200 53.283±23.115 33.055±7.606 3.256±0.310 8.338±1.475 10.509±0.351

ESTAG 0.740±0.059 0.072±0.014 0.475±0.020 0.874±0.179 0.405±0.020 0.636±0.100 0.376±0.043 0.533±0.033

NS-EGNN 0.421±0.023 0.050±0.008 0.410±0.010 0.589±0.035 0.275±0.023 0.387±0.093 0.308±0.039 0.379±0.027

Table 3: Final prediction error for consecutive forecasts on the MD17 dataset. Bold font indicates the
best result. The reported mean and the standard deviation (×10−3) are computed over 5 runs.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil
ST-TFN 6.026±0.505 1.615±0.009 2.051±0.269 4.596±0.307 1.436±0.061 3.571±0.273 2.700±0.365 2.893±0.089

ST-GNN 20.818±7.168 3.059±0.513 16.586±6.768 8.084±1.017 8.361±5.020 4.276±1.172 3.420±0.140 3.054±0.329

ST-SE(3)TR 7.177±1.037 1.941±0.672 1.700±0.029 6.769±0.599 1.463±0.049 3.428±0.629 2.868±0.183 2.870±0.083

ST-EGNN 4.387±0.635 1.162±0.238 1.161±0.100 2.172±0.678 1.097±0.126 2.559±0.307 1.673±0.315 2.127±0.328

EqMotion 7.665±0.056 2.153±0.064 2.975±0.011 5.489±0.005 5.695±0.036 6.248±0.012 4.898±0.011 6.423±0.122

STGCN 7.628±0.037 2.008±0.037 2.957±0.015 5.516±0.047 5.659±0.038 6.253±0.040 4.880±0.006 6.354±0.004

AGL-STAN 634.663±99.469 6.028±2.081 271.624±66.230 58.795±7.170 29.899±10.410 3.798±0.491 8.418±2.263 10.085±0.350

ESTAG 1.446±0.225 0.169±0.058 0.898±0.068 1.442±0.075 0.801±0.074 1.038±0.098 0.730±0.111 1.086±0.150

NS-EGNN 0.833±0.187 0.147±0.027 0.695±0.020 0.988±0.055 0.598±0.149 0.518±0.026 0.380±0.056 0.719±0.219

datasets. For the MD17 dataset, molecules such as Benzene exhibit higher p-values and positive
ADF statistics, reflecting pronounced non-stationary behavior. The CMU Motion Capture dataset’s
walk and run subsets show high p-values and positive ADF statistics, confirming their non-stationary
nature. Lastly, the AdK dataset demonstrates substantial variability in its temporal dynamics, with
approximately half of its nodes classified as non-stationary.

4.1.2 Baselines

We compare the performance of our proposed model with several widely used baselines in spatio-
temporal trajectory modeling. STGCN [53] adopts a spatio-temporal convolutional architecture and
is adjusted to predict residual coordinates between frames rather than absolute positions, as directly
predicting the latter often leads to suboptimal performance. AGL-STAN [42], which combines
adaptive graph learning with self-attention mechanisms, is modified to handle weighted temporal ag-
gregation to better capture intra-temporal dependencies. ST-GNN [14], ST-SE(3)-Transformer [12],
denoted as ST-SE(3)TR, ST-TFN [43], and ST-EGNN [39] are included as GNN baselines. Except
for ST-GNN, which is based solely on the message passing framework, other approaches leverage
rotational and translational invariance for trajectory prediction. Another representative model, EqMo-
tion [48], integrates spatio-temporal information using attention-based fusion for modeling the object
dynamics. ESTAG [47] first models the non-Markovian nature of physical dynamics and proposes
an equivariant temporal attention module to capture the latent interaction. All baselines are modified
to process the full historical trajectory (e.g., using linear encoders or, in the case of ESTAG, its native
temporal attention) to ensure a fair comparison against our multi-step input model.

4.2 Molecular Dynamics

Setting. We evaluate the performance of our proposed model on the MD17 dataset, which includes
molecular trajectories generated by MD simulation. The length of the input time series is set to 100,
predicting the next 10 timesteps, with ∆t = 5, as time series requires more timesteps to observe
non-stationarity. We also conduct the experiments with fewer timesteps in Appendix C.5, aligning
with the setting in ESTAG, which also has satisfactory performance improvement. The dataset is split
into training, validation, and testing sets with ratios of 0.2, 0.4, and 0.4, respectively.

Evaluation Metrics. We use two standard evaluation metrics: 1) Average Displacement Error (ADE),
which measures the average ℓ2 distance between the predicted and ground truth molecular trajectories
over all timesteps. 2) Final Displacement Error (FDE), which evaluates the ℓ2 distance between the
predicted and ground truth positions at the final predicted step.

Results. Tables 2 and 3 summarize the ADE and FDE across all models. Notably, NS-EGNN emerges
as the most effective model, surpassing baseline models considerably in both ADE and FDE metrics.
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Table 4: Prediction error (MSE) for Walk (×10−1) and Run (×100) cases under different time
intervals (5ts, 10ts, 15ts, 20ts). The reported mean and standard deviation are computed over 5 runs.

Dataset Walk (×10−1) Run (×100)
Time Itv. 5ts 10ts 15ts 20ts Average 5ts 10ts 15ts 20ts Average
ST-GNN 1.121±0.159 1.224±0.100 2.615±0.478 3.359±0.601 1.941±0.335 0.560±0.107 1.160±0.166 1.538±0.234 1.779±0.278 1.259±0.196

ST-TFN 0.238±0.032 0.721±0.038 1.320±0.067 2.092±0.094 1.093±0.058 0.396±0.073 0.796±0.054 1.708±0.318 2.086±0.133 1.247±0.145

ST-SE(3)TR 0.146±0.017 0.376±0.097 0.760±0.161 1.119±0.347 0.600±0.156 0.280±0.045 0.700±0.131 1.165±0.267 1.732±0.550 0.969±0.248

ST-EGNN 0.188±0.026 0.591±0.103 1.140±0.123 2.097±0.205 0.979±0.114 0.444±0.072 1.082±0.113 2.375±0.202 3.784±0.429 1.921±0.204

EqMotion - 21.074±2.073 15.299±4.127 21.074±2.073 18.604±3.503 19.013±2.944

STGCN 0.302±0.115 0.828±0.203 1.516±0.384 1.988±0.206 1.159±0.228 0.131±0.024 0.582±0.121 1.101±0.089 1.508±0.176 0.831±0.103

AGL-STAN 1.729±0.516 1.789±0.673 2.030±0.704 2.155±0.763 1.926±0.664 0.511±0.137 0.628±0.191 0.648±0.271 0.831±0.283 0.654±0.221
ESTAG 0.054±0.004 0.213±0.012 0.530±0.038 1.085±0.070 0.471±0.031 0.041±0.002 0.250±0.019 0.771±0.050 1.767±0.251 0.707±0.081

NS-EGNN 0.051±0.002 0.166±0.006 0.397±0.037 0.775±0.085 0.347±0.033 0.033±0.002 0.187±0.009 0.584±0.076 1.226±0.215 0.508±0.076
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Figure 3: Visualization of predicted trajectories for run and walk motions at time gap = 10 and 20.
Ground truth is represented in red, and predictions are in blue.

Specifically, compared with the current state-of-the-art model, NS-EGNN achieves an impressive
relative improvement of 29.77% on ADE and 33.33% on FDE. Particularly with complex molecules
like Aspirin and Malonaldehyde, NS-EGNN delivers an even more pronounced enhancement, reach-
ing a 42.74% relative improvement for Aspirin. The second-best algorithm, which also utilizes a
spatio-temporal approach to capture physical dynamics, underscores the importance of leveraging his-
torical trajectory data. Nevertheless, NS-EGNN excels by explicitly modeling the dynamic statistical
properties of physical objects, thereby achieving the best performance. Baseline models like STGCN
and AGL-STAN exhibit high errors, as they are not equivariant. AGL-STAN’s particularly poor
performance, consistent with findings in other works [47], is due to its non-equivariant architecture
struggling to model symmetric physical dynamics. Equivariant baselines such as ST-SE(3)TR and
ST-EGNN perform better but are less robust in capturing the dynamic behaviors of larger molecules.

4.3 Motion Capture

Setting. CMU Motion Capture Database involves the trajectories of human motion under various
scenarios. For this experiment, we focus on the walk and run motions, selecting trajectories with
sufficient length. The input sequence consists of the past 10 frames used to predict the subsequent
frame, with a data frame interval of ∆t = 1. Additionally, we introduce a hyperparameter time
gap, representing the delay between the last observed frame and the target frame to be predicted.
Experiments are conducted with four values of time gap: 5ts, 10ts, 15ts, and 20ts. In run dataset, we
additionally normalize the dataset, following previous works [47].

Results. Table 4 presents MSE across different models for both walk and run motions, indicating
NS-EGNN consistently achieves the best performance in most settings. Specifically, NS-EGNN
achieves an average improvement of 21.52% in walk and 15.29% in run, leading to an overall
relative gain of 18.41% across the entire dataset. This highlights the model’s ability to capture the
temporal and spatial dependencies crucial for human motion prediction. While AGL-STAN achieves
the best performance in one case, NS-EGNN also remains highly competitive in that case. Overall,
NS-EGNN demonstrates strong performance in both short-term and long-term predictions across
different motions. Given that the motion dataset exhibits strong non-stationarity, it is not surprising
that NS-EGNN achieves superior performance.

Visualization. Additionally, we provide visualizations of the predicted trajectories compared to
the ground truth for both motions at time gap equals 10ts and 20ts, respectively. The visualiza-
tions, shown in Figure 3, include predictions from both ESTAG and our NS-EGNN. As illustrated,
NS-EGNN predictions align more closely with the ground truth trajectories compared to ESTAG,
particularly for complex joint movements. In the walk scenario, NS-EGNN exhibits smoother and
more stable predictions, with trajectory paths closely following the ground truth points. For the run
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motion, ESTAG struggles with maintaining coherence in the limb trajectories, resulting in noticeable
distortions and erratic movements. In contrast, NS-EGNN better preserves the structural integrity
of the motion, particularly in the torso and overall body posture, leading to a more realistic and
physically plausible trajectory.

Table 5: Mean Squared Error (MSE) on the AdK dataset for protein dynamics prediction. The
reported mean MSE values are computed over 5 runs. Bold font indicates the best result.

Model STGCN ST-GNN ST-EGNN ST-GMN AGL-STAN ESTAG NS-EGNN
MSE 3.007 2.267 1.751 1.743 1.853 1.758 1.738

4.4 Protein Dynamics

Setting. We evaluate our model on the AdK protein dynamics dataset, which involves predicting
protein motions. For this dataset, we disable NS-pooling because it tends to overfit to noise. The input
sequence consists of 60 timesteps used to predict the subsequent 10 timesteps, with ∆t = 5. The
dataset is split into training, validation, and testing sets with ratios of 0.6, 0.2, and 0.2, respectively.
For consistency, all models are configured with 4 layers.

Results. Table 5 presents the MSE of all models on the AdK dataset. While the overall improvement
margin is less pronounced than in previous experiments, NS-EGNN still achieves the best performance
with an MSE of 1.738. This aligns with our findings from the ADF test (Table 1), where the AdK
dataset exhibits a smaller proportion of non-stationary nodes compared to other datasets. As a
result, the impact of explicitly addressing non-stationarity is naturally less significant. This further
demonstrates NS-EGNN’s generalization ability, allowing it to make accurate predictions even in
datasets where non-stationary effects are less dominant.

Table 6: Ablation study results on the MD17 dataset. The table reports ADE values (×10−3),
averaged over three runs. Lower values indicate better performance.

Method Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average
NS-EGNN 0.421 0.050 0.407 0.600 0.270 0.387 0.308 0.379 0.353
w/ Attention 0.499 0.039 0.389 0.751 0.280 0.446 0.317 0.377 0.387
w/o Patched FT 0.948 0.076 0.547 0.876 0.360 0.499 0.431 0.504 0.530
w/o Differentiation 2.622 0.265 0.700 1.929 0.949 2.249 1.103 1.448 1.408
w/o Equivariance 225.608 655.109 220.134 871.211 1365.762 10.397 281.836 7.861 454.740

4.5 The Effectiveness of Each Component in NS-EGNN

To evaluate the contributions of key components in NS-EGNN, we conduct experiments including or
removing specific modules to analyze their impact, and results are in Table 6. From the table, we
derive the following conclusions: 1) PFT extracts expressive temporal features. Prior work [47]
introduced an equivariant temporal attention mechanism for learning physical dynamics. To explore
potential improvements, we also incorporate this module. However, the overall performance shows a
slight decline, suggesting that PFT already generates sufficiently expressive temporal features. 2)
PFT is capable of capturing the dynamic statistic property in the non-stationary trajectory. We
replace the PFT with a standard Fourier Transform applied to the entire trajectory. The observed
worse performance suggests that PFT plays a critical role in modeling the temporal variance of
non-stationary trajectories. This highlights the necessity of preserving localized frequency patterns.
3) Differentiation greatly reduces the negative impact of linear and quadric trend in the raw
physical dynamics. The removal of this module results in a noticeable decline in performance,
underscoring the critical role of differentiation in addressing mean shifts within non-stationary
dynamics. Furthermore, without this component, the model loses crucial equivariant property,
leading to suboptimal predictions. 4) Equivariant backbone enhances the generalization ability
in dynamic simulation. The standard message passing GNN struggles to capture the symmetrical
properties inherent in Euclidean space, leading to significantly poor performance. We further provide
the NS-EGNN removing Fourier Transform entirely in Appendix C.4.
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5 Related Works

Graph Neural Networks for Geometric Trajectory. TFN [43] and SE(3)-Transformer [12] employ
spherical harmonics to extract high-order geometric representations. To reduce the computation in
high-order representations, EGNN [39] updates invariant messages using relative distances and then
derives directional vectors from these messages. For specific scenarios, many variants of EGNN [27]
have been proposed, such as SGNN [17], GMN [19], DEGNN [58], EGHN [18] and EGNO [49].
EqMotion [48] and ESTAG [47] propose extracting the invariant and equivariant geometric features
from historical dynamics, capturing temporal dependencies. However, these methods overlook the
non-stationarity of physical dynamics, leading to suboptimal performance.

Non-stationarity in Time Series Forecasting. Before deep learning models, the classic ARIMA [3,
2] algorithm addressed non-stationarity by differencing the time series. The varying distribution
of non-stationary data presents additional challenges for deep models. Pre-processing offers a
straightforward and effective method to make the time series stationary. Adaptive Norm [33]
normalizes fragment of the series according to the global statistics. Moreover, DAIN [34], RevIN [20],
SAN [29], FAN [52], DDN [9] and IN-Flow [11] introduce learnable neural networks to normalize
time series data. Furthermore, Transformers [28, 23, 13, 45, 44, 56, 55, 25] have been utilized to
model non-stationary series with specialized attention mechanisms. However, direct stationarization
of physical object coordinates of physical objects will unavoidably break the symmetric property of
the deep models. To bridge this gap, NS-EGNN captures dynamic distributions while maintaining
equivariance.

6 Conclusion

We show that trajectories of physical dynamics are highly non-stationary. Our NS-EGNN framework
leverages the PFT and NS-Pooling modules to capture these patterns. By modeling non-stationary
physical dynamics with equivariance, NS-EGNN greatly outperform the SOTA methods. A limitation
is diminished gains on stationary data, where repeated FT increases computation with marginal
benefits. Future work could extend NS-EGNN to domains to various settings and explore more
spatial backbones [50] according to the specific scenarios. Furthermore, other methods for modeling
non-stationary data, such as wavelet transforms, also break the equivariance. However, the adaption
of these advanced method into equivariance also worth exploration.
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A Proofs

A.1 Proof of Lemma 3.1

Lemma 3.1 (,). The extracted frequency feature s is E(n)-invariant.

Proof. Recall Eq. 7,

PFT(X⃗i)(p, k) =

T∑
t=0

e−i′ 2π
T kt · (X⃗i(t)−

¯⃗
Xi(t))w(t− h× p;ω) (15)

After E(3) transformation, orthogonal O combined with translation t to the trajectory, the updated
Fourier frequency is denoted as Se

i :

Se
i =

T∑
t=0

e−i′ 2π
T kt · (OX⃗i(t) + t−O

¯⃗
Xi(t)− t)w(t− h× p;ω) (16)

=

T∑
t=0

e−i′ 2π
T kt ·O(X⃗i(t)−

¯⃗
Xi(t))w(t− h× p;ω) (17)

= O

T∑
t=0

e−i′ 2π
T kt · (X⃗i(t)−

¯⃗
Xi(t))w(t− h× p;ω) (18)

= OSi (19)

We denote the transformed frequency feature as se with OOT = I,

se =

√√√√ n∑
i=1

(|Se
i |2)/n (20)

=

√√√√ n∑
i=1

(|OSi|2)/n (21)

=

√√√√ n∑
i=1

(|Si|2)/n (22)

= s. (23)

A.2 Proof of Theorem 3.2

Lemma A.1. Equivariant Message Passing is E(n)-equivariant.

Proof.

m
(l)
ij = fθ(h

(l)
i ,h

(l)
j , s

(l)
i , s

(l)
j , ||(OX⃗

(l)
i + t)− (OX⃗

(l)
j + t)||2) (24)

= fθ(h
(l)
i ,h

(l)
j , s

(l)
i , s

(l)
j , ||O(X⃗

(l)
i − X⃗

(l)
j )||2) (25)

= fθ(h
(l)
i ,h

(l)
j , s

(l)
i , s

(l)
j , ||(X⃗(l)

i − X⃗j)
(l)||2) (26)

OX⃗
(l+1)
i + t = OX⃗(l) + t+
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|Ni|
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j∈Ni

(X⃗
(l)
i − X⃗

(l)
j )ϕx(m

(l)
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Lemma A.2. Equivariant Temporal Pooling is E(n)-equivariant.

Proof.

X⃗∗
i = [∆X⃗i,∆

2X⃗i] · γ + X⃗
(L)
i (T − 1). (29)

With orthogonal transformation O and translation t in E(n) group.

O∆X⃗i = {OX⃗i(t) + t−OX⃗i(t− 1)− t}Tt=1 (30)

= O{X⃗i(t)− X⃗i(t− 1)}Tt=1 (31)

O∆2X⃗i = O{∆X⃗i(t)−∆X⃗i(t− 1)}T−1
t=0 (32)

= {O∆X⃗i(t)−O∆X⃗i(t− 1)}T−1
t=0 (33)

Then, we have

OX⃗∗
i + t = [O∆X⃗i,O∆2X⃗i] · γ +OX⃗

(L)
i (T − 1) + t (34)

Theorem 3.2 (,). For arbitrary orthogonal transformations and translation vectors O, t ∈ E(3),
fθ({OG + t}Tt=0) = Ofθ({G}Tt=0) + t.

Proof. As shown in Lemma 3.1, Lemma A.1, and Lemma A.2, since extracted spectral feature is
invariant, and the rest of two components, Equivariant Message Passing and Equivariant Temporal
Pooling, are equivariant, the model, fθ(·), is equivariant as well.

B Implementation Details

B.1 More Details on ADF Test

To provide a more comprehensive view of the Augmented Dickey-Fuller (ADF) test results, we
present additional statistical measures that are omitted in the main paper for brevity.

To mitigate the influence of outliers, we exclude the top and bottom 3% of values when computing
the mean and standard deviation of the ADF test metrics. For each node’s spatial coordinates x, y, z,
we determine the stationarity individually. A node is classified as non-stationary if any of its x, y,
or z dimensions fails the stationarity test. This ensures a comprehensive evaluation of the node’s
temporal behavior across all spatial dimensions.

Table 8 provides detailed statistics for each dataset, including the total number of trajectories, the
count of non-stationary trajectories, the mean and standard deviation of the p-value, as well as the
mean and standard deviation of the ADF statistic.

Table 7: Critical values for the ADF test across different datasets. Each column represents the 1%,
5%, and 10% significance thresholds.

Dataset Mean 1% Mean 5% Mean 10%
MD17 -3.444 -2.868 -2.570
Motion Walk -5.0538 -3.5246 -2.858
Motion Run -5.0896 -3.5391 -2.8633
AdK -3.5521 -2.9144 -2.5949
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Table 7 lists the critical values used in the ADF test across different significance levels (1%, 5%, and
10%) for various datasets. If the ADF statistic of a time series is lower than the critical value at a
given significance level, the null hypothesis of non-stationarity is rejected, confirming stationarity.

Table 8: Detailed ADF test results for the MD17, CMU Motion Capture, and AdK datasets. Each
row summarizes key statistical measures for different subsets.

Subset Total Trajectories Non-Stationary Trajectories Mean p-value Std p-value Mean ADF Statistic Std ADF Statistic
MD17 Dataset

Aspirin 6500 5441 0.6684 0.2641 -0.9185 1.0372
Benzene 3000 2999 0.9112 0.1233 0.0896 0.8995
Ethanol 1500 1414 0.4841 0.3082 -1.4999 1.0187
Malonaldehyde 2500 2493 0.7741 0.2464 -0.4416 1.1369
Naphthalene 5000 3855 0.305 0.1944 -2.0771 0.5945
Salicylic 5000 4825 0.454 0.2541 -1.6494 0.7126
Toluene 3500 2744 0.2641 0.2343 -2.2781 0.8181
Uracil 4000 1657 0.3161 0.2293 -2.0884 0.7278

CMU Motion Capture Dataset
Basketball 74400 71674 0.8507 0.2811 2.0209 3.7188
Walk 71300 68452 0.835 0.2907 1.9866 3.7633
Run 17050 16110 0.7884 0.3216 1.0581 3.2393

AdK Dataset
AdK 818133 401936 0.1761 0.2493 -3.0401 1.2173

The additional data in Table 8 further supports the non-stationary characteristics observed in the
datasets. In particular, the MD17 dataset exhibits higher p-values in certain molecules (e.g., Benzene),
indicating stronger non-stationary behavior. The CMU Motion dataset also demonstrates significant
non-stationary characteristics, particularly in the basketball and walking sequences, where the mean
ADF statistics are relatively high. The AdK dataset shows a relatively low mean p-value, indicating
weaker stationarity.

The combination of these statistics and the stationarity assessment approach provides a robust
framework for analyzing non-stationary characteristics in various datasets.

B.2 Hyperparameter Settings

This section presents the hyperparameter configurations used for training on different datasets.
Table 9 summarizes the settings for MD17, CMU Motion, and AdK Protein datasets. The same
model architecture is used across all datasets, but specific training configurations, such as the number
of epochs, learning rate, and dataset splits, are adjusted to suit the characteristics of each dataset.

Table 9 presents the hyperparameter settings for each dataset. The learning rate and weight decay
values are chosen based on dataset characteristics, with AdK Protein requiring a lower learning rate
due to its complexity. The CMU Motion dataset contains different train-validation-test splits for walk
and run, which are provided separately in the table. The number of layers, hidden dimension, and
weight decay remain consistent across all datasets.

B.3 Compute Resources

All experiments reported in this paper were run on a dedicated high-performance server. The system
is equipped with a single Intel® Xeon® Platinum 8358P CPU clocked at 2.60 GHz (32 cores, 64

Table 9: Hyperparameter configurations for different datasets. The dataset splits for CMU Motion are
provided separately for walk and run.

Hyperparameter MD17 CMU Motion AdK Protein
Epochs 500 500 150
Learning Rate (lr) 5× 10−3 5× 10−3 5× 10−5

Weight Decay 1× 10−12 1× 10−12 1× 10−12

Number of Layers 4 4 4
∆ Frame 5 1 5
Hidden Dimension 16 16 16

Train/Val/Test Split [2:4:4] walk: [22:12:12] [6:2:2]
run: [5:4:2]
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threads), 251 GiB of DDR4 main memory, and four NVIDIA H20 GPUs (each with 96 GiB of
VRAM). We used NVIDIA driver version 550.120 and CUDA 12.4. This configuration remained
constant across all training and evaluation runs.

Table 10: Compute resources used for all experiments.

Resource Specification
CPU Intel(R) Xeon(R) Platinum 8358P @ 2.60 GHz

1 socket, 32 cores/socket (64 threads)
Memory 251 GiB DDR4 RAM

GPUs 4× NVIDIA H20
96 GiB HBM3 VRAM each, 4.0 TB/s bandwidth

Driver NVIDIA driver 555.50
CUDA CUDA 12.4

C More Experimental Results

C.1 Experiments on Differential Orders

We further conduct the experiments incorporating each order differences in Table 11, and higher order
information may lead potential over-fitting in the deep model and result suboptimal performance.
Hence, in ES-NGNN, we only incorporate 1st-order and 2nd-order differencing.

Table 11: The experiments on incorporating different orders while pooling.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average

None(ESTAG) 0.677 0.086 0.422 0.632 0.328 0.629 0.369 0.366 0.439
1st 0.467 0.726 0.419 0.634 0.368 0.45 0.33 0.381 0.39
2nd 0.421 0.05 0.407 0.6 0.27 0.387 0.308 0.379 0.353
3rd 0.501 0.058 0.408 0.583 0.273 0.341 0.3 0.4 0.358
4th 0.509 0.067 0.419 0.607 0.302 0.352 0.278 0.425 0.37

C.2 Ablations study that completely omitting Fourier Transform

Table 12: The ablation studies on removing PFT but keeping FT and completely omitting the FT.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average

NS-EGNN 0.421 0.05 0.407 0.6 0.27 0.387 0.308 0.379 0.353
NS-EGNN w/o PFT 0.948 0.076 0.547 0.876 0.360 0.499 0.431 0.504 0.530
NS-EGNN w/o FT 0.564 0.062 0.436 0.619 0.385 0.425 0.358 0.467 0.480

We further conduct the ablation study that completely omitting the FT. The results are shown in Ta-
ble 12. Surprisingly, we find totally remove FT even can outperform EGNN with FT, which indicates
FT cannot accurately extract the intrinsic spectral information. The experiments demonstrates this
inaccurate spectral feature also harms the convergence of the model.

C.3 Additional non-stationary and equivariant normalization baselines

C.4 Ablations study that completely omitting Fourier Transform

equivariant normalization [31]

C.5 Experiments on Original Settings in ESTAG

We further present the results of the original setting of ESTAG in Table 14. NS-EGNN still outper-
forms ESTAG in 7 out of 8 cases under the settings in ESTAG, achieving 10.3% relative performance
improvement in average.
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Table 13: The ablation studies on removing PFT but keeping FT and completely omitting the FT.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average

NS-EGNN 0.421 0.05 0.407 0.6 0.27 0.387 0.308 0.379 0.353
EGNN w/normalization 4.286 1.238 1.298 4.661 1.084 1.824 0.762 1.471 2.078
Non-stationary Transformer 773.835 351.856 526.389 853.422 1449.999 18.570 290.497 9.793 531.483

Table 14: The performance (MSE) of NS-EGNN in the setting of ESTAG.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average
ESTAG 0.063 0.003 0.099 0.101 0.068 0.047 0.079 0.066 0.068
NS-EGNN 0.052 0.003 0.097 0.100 0.059 0.057 0.065 0.058 0.061

C.6 Sensitivity of the Hyperparameters

Since the window length must be a factor of the number of past frames, and the hop length is typically
selected as half of the window length to effectively capture dynamic frequencies, we explored various
combinations of hop lengths for NS-EGNN, which applies PFT multiple times with different window
lengths. The combinations are outlined as in Table 15.

Table 15: The ADE results of NS-EGNN with different set of hop length on MD17 dataset.

Hop Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average
[2, 5, 10] 0.497 0.044 0.378 0.585 0.261 0.37 0.286 0.346 0.346
[5, 10, 20] 0.421 0.05 0.407 0.6 0.27 0.387 0.308 0.379 0.353
[10, 20, 50] 0.446 0.049 0.392 0.627 0.35 0.458 0.329 0.345 0.374

As observed in Table 15, these hyperparameters do not significantly impact the overall model
performance.

C.7 Complexity and Epoch Training Time

Theoretically, the attention mechanism requires O(N2) complexity, while the Fast Fourier Transform
(FFT) only requires O(N logN) complexity. Experimentally, we measured the average per-epoch
training time (in milliseconds) of NS-EGNN and the baselines on the MD17 dataset across seven
molecules. The results in Table 16 indicate that NS-EGNN is the most efficient algorithm compared
with the baselines.

C.8 Sensitivity of Window Function

We further conduct the experiments on Blackman and Hann window functions on MD17 in Table 17.
As observed in Table 17, NS-EGNN is insensitive to the type of window function. Additionally, the
worst performance in the Table still outperforms all the baselines.

D Limitation

On the ADK dataset, our method shows smaller improvements than on MD17 and CMU Motion.
This happens because our approach is designed for non-stationary data and is less effective when the
data are more stationary.

E Broader Impacts

Our work contributes to more accurate and efficient dynamics simulations.

Broader impacts include:

- Accelerating drug discovery: Faster, more accurate simulations can reduce time and cost in
identifying candidate compounds.
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Table 16: Average epoch training time (ms) on MD17.

Method Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average

ESTAG 40.3 21.1 12.9 17.5 32.7 32.6 23.8 21.8 25.34
Eqmotion 159.0 157.9 17.2 142.5 160.3 160.3 161.6 120.8 134.95

AGL-STAN 299.4 305.1 281.9 277.5 281.9 281.5 280.4 219.8 278.44
NS-EGNN 20.7 12.5 11.0 11.4 18.0 17.9 13.8 13.3 14.83

Table 17: The impact of different window functions on MD17 dataset.

Window Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Average
Hamming 0.409 0.038 0.389 0.584 0.32 0.338 3.291 0.331 0.337
Blackman 0.445 0.046 0.389 0.59 0.244 0.365 0.281 0.374 0.342
Hann 0.421 0.05 0.407 0.6 0.27 0.387 0.308 0.379 0.353

- Environmental chemistry: Improved modeling of reaction pathways may aid in designing
greener catalysts and processes.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

- You should answer [Yes] , [No] , or [NA] .
- [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction (Sec. 1) clearly enumerate the contribu-
tions—namely, explicit modeling of non-stationarity via Patch Fourier Transform, inte-
gration into an E(n)-equivariant GNN backbone, and extensive experiments validating
performance—which match the scope and results presented.
Guidelines:

- The answer NA means that the abstract and introduction do not include the claims
made in the paper.

- The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

- The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

- It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: See Appendices D for limitation.
Guidelines:

- The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The
authors should reflect on how these assumptions might be violated in practice and
what the implications would be.

- The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

- The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system
might not be used reliably to provide closed captions for online lectures because it
fails to handle technical jargon.

- The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

- If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

- While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All stated theoretical claims (Lemma 3.1 and Theorem 3.2) explicitly list
their E(n)-equivariance assumptions and are accompanied by full proofs in Appendix A.1
and A.2.
Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
- All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
- The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

- Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

- Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: Section 4 details datasets, splits, ADF test procedures, baselines, optimizer
settings, and hyperparameters; Appendix B.1 further describes implementation specifics
and ADF-test preprocessing.
Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

- If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

- Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

- While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Following NeurIPS instructions, we include our full codebase, detailed training
and evaluation scripts, and step-by-step run instructions in the supplemental material.
Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

- While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

- The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

- The authors should provide instructions on data access and preparation, including
how to access the raw data, preprocessed data, intermediate data, and generated data,
etc.
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- The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

- At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

- Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 and Appendix B.2 enumerate data splits, batch sizes, learning
rates, weight decay, number of epochs, optimizer choices, and layer configurations for each
experiment.
Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results tables (e.g., Table 2, Table 3 and Table 4) report mean standard
deviation over multiple runs, clearly indicating variability across seeds.
Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, con-

fidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

- For asymmetric distributions, the authors should be careful not to show in tables
or figures symmetric error bars that would yield results that are out of range (e.g.
negative error rates).

- If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: See Appendices B.3 for compute-resource details and C.7 for execution times.
Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and adhered to the NeurIPS Code of Ethics through-
out—ensuring anonymity, proper data handling, and no conflicts with ethical guidelines.
Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential benefits for drug discovery and green chemistry, as well
as minimal misuse risk, in Appendix E.
Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point
out that a generic algorithm for optimizing neural networks could enable people to
train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

- If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not involve high-risk models or datasets requiring such safe-
guards.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

- Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

- We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a

URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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- The paper should discuss whether and how consent was obtained from people whose
asset is used.

- At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work involves only physical-dynamics datasets and no human-subject
studies.
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

- Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

- According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human-subject research is conducted in this study.
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

- For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The proposed methodology does not involve any large-language models.
Guidelines:

- The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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