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Abstract

Deep neural networks often degrade under dis-
tribution shifts. Although domain adaptation
offers a solution, privacy constraints often pre-
vent access to source data, making Test-Time
Adaptation (TTA)—which adapts using only un-
labeled test data—increasingly attractive. How-
ever, current TTA methods still face practical
challenges: (1) a primary focus on instance-wise
alignment, overlooking CORrelation ALignment
(CORAL) due to missing source correlations; (2)
complex backpropagation operations for model
updating, resulting in overhead computation and
(3) domain forgetting. To address these chal-
lenges, we provide a theoretical analysis to in-
vestigate the feasibility of Test-time Correlation
Alignment (TCA), demonstrating that correlation
alignment between high-certainty instances and
test instances can enhance test performances with
a theoretical guarantee. Based on this, we pro-
pose two simple yet effective algorithms: Lin-
earTCA and LinearTCA+. LinearTCA applies
a simple linear transformation to achieve both
instance and correlation alignment without addi-
tional model updates, while LinearTCA+ serves as
a plug-and-play module that can easily boost exist-
ing TTA methods. Extensive experiments validate
our theoretical insights and show that TCA meth-
ods significantly outperforms baselines across var-
ious tasks, benchmarks and backbones. Notably,
LinearTCA achieves higher accuracy with only
4% GPU memory and 0.6% computation time
compared to the best TTA baseline. It also out-
performs existing methods on CLIP over 1.86%.
Code: https://github.com/youlj109/TCA.
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Figure 1. Illustration of key limitations in existing TTA methods.
(a) Correlation distance increases with domain shifts. (b) Computa-
tion time and peak GPU memory usage on CIFAR-10-C, showing
high overhead of existing methods. (c) Source domain perfor-
mance after test-time adaptation, revealing challenges in retaining
source knowledge.

1. Introduction
Deep neural networks (DNNs) have significantly advanced
numerous tasks in recent years (LeCun et al., 2015; Jumper
et al., 2021; Silver et al., 2016) when the training and test
data are independent and identically distributed (i.i.d.). How-
ever, the i.i.d. condition rarely holds in practice as the
data distributions are likely to change over time and space
(Fang et al., 2020; Wang & Deng, 2018). This phenomenon,
known as the out-of-distribution (OOD) problem or distri-
bution shift, has been extensively investigated within the
context of domain adaptation (DA) (You et al., 2019; Zhou
et al., 2022; Liang et al., 2024). Among various DA methods,
CORrelation ALignment (CORAL) (Sun et al., 2017; Sun &
Saenko, 2016; Cheng et al., 2021a) has been proven to be an
effective and “frustratingly simple” paradigm, which aligns
the feature distributions of the source and target domains
at a feature correlation level rather than merely aligning
individual instances.

However, DA methods are practically difficult when pre-
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trained models are publicly available but the training data
and training process remain inaccessible due to privacy and
resource restrictions (Liang et al., 2024). To address such a
source-inaccessible domain shifts task at test time, test-time
adaptation (TTA) (Gong et al., 2024; Su et al., 2024a;b; You
et al., 2025) has emerged as a rapidly progressing research
topic. Although some recent attempts have been made to
handle this task, current TTA methods still face several
limitations:

Firstly, overlooking feature correlations: Most existing TTA
methods focus on instance-wise alignment (Wang et al.,
2023; Nguyen et al., 2023; Wang et al., 2020) that only cap-
ture central of the instances while neglecting the correlations
between features. For example, relationships between edge
and texture features can vary significantly across domains.
Let’s consider a simple test on the CIFAR-10-C dataset
(Hendrycks & Dietterich, 2019) to show the relationship
between feature correlation and domain shift. As shown
in Figure 1a , the correlation distance (see Section 2.2) of
ResNet-18 (He et al., 2016) embedding are computed with
an increasing corruption level from 1 to 5. It illustrates that
as domain shifts increase, the changes in feature correlation
also increase.

Secondly, overhead computation: Current TTA methods
often rely on computationally expensive backpropagation
for each test sample to update models (Sun et al., 2020;
Wang et al., 2020; Goyal et al., 2022; Bartler et al., 2022).
However, many applications are deployed on edge devices,
such as smartphones and embedded systems (Niu et al.,
2024), which typically lack the computational power and
memory capacity required for such intensive calculations.
As a result, backpropagation-based TTA methods are limited
in their applicability on these edge devices. In Figure 1b, we
illustrate the computation time and maximum GPU memory
usage of different TTA methods on the CIFAR-10-C dataset.
Compared to the non-adaptive source model (ERM(Vapnik,
1999)), most TTA methods show a dramatic increase in both
items.

Lastly, domain forgetting: Another drawback of
backpropagation-based TTA methods is that they often lead
to model updating, which gradually loses the prediction abil-
ity of the source or training domain (Niu et al., 2024; Zhang
et al., 2023). As illustrated in Figure 1c, after adaptation
on test domain, the performance of most methods declines
when return to the source domain, indicating that existing
TTA approaches struggle to retain knowledge of the source
domain.

To address the above challenges, applying the “effective and
frustratingly simple” CORAL method to TTA appears intu-
itive—but the lack of source data makes it highly challeng-
ing. We thus explore the feasibility of Test-time Correlation
Alignment (TCA) by posing key questions: (1)Can we

construct a pseudo-source correlation that approximates
the true source correlation? (2) Can this enable effective
TTA? We provide a theoretical analysis showing that align-
ing correlations between high-certainty and test instances
improves test-time performance with guarantees. Based on
this, we propose two simple yet effective methods: Lin-
earTCA and LinearTCA+. Specifically, we first compute
the “pseudo-source correlation” by using k high-certainty
instances. Then, LinearTCA aligns correlation through sim-
ple linear transformations of embeddings without model up-
dates, resulting in minimal computation and keeping source
domain knowledge. While LinearTCA+ serves as a plug-
and-play module that can easily boost existing TTA meth-
ods.

Main Findings and Contributions: (1) We introduce a
novel and practical paradigm for TTA, termed Test-time Cor-
relation Alignment (TCA). The construction of the pseudo-
source correlation and the adaptation effectiveness are the-
oretically guaranteed. (2) Based on our analysis, we de-
velop two simple yet effective methods—LinearTCA and
LinearTCA+—to validate TCA’s effectiveness and its plug-
and-play potential with other TTA approaches. (3)We con-
duct comprehensive experiments to validate our theoretical
insights and compare performance across diverse bench-
marks, backbones, and tasks, evaluating accuracy, efficiency,
and resistance to forgetting. Results show that LinearTCA
achieves outstanding performance, while LinearTCA+ ro-
bustly boosts other TTA methods under various conditions.
(4) Further in-depth experimental analysis reveals the effec-
tive range of LinearTCA and provides valuable insights for
future work.

2. Preliminary and Problem Statement
We briefly revisit TTA and CORAL in this section for the
convenience of further analyses, and put detailed related
work discussions into Appendix A due to page limits.

2.1. Test Time Adaptation (TTA)

In the test-time adaptation (TTA) (Tan et al., 2024; Yuan
et al., 2023) scenario, it has access only to unlabeled data
from the test domain and a pre-trained model from the
source domain. Specifically, let Ds = {(xi

s, y
i
s)}

ns
i=1 ∼ Ds

represent the labeled source domain dataset, where (xi
s, y

i
s)

is sampled i.i.d from the distribution Ds and ns is the num-
ber of the total source instances. The model, trained on
the source domain dataset and parameterized by θ, is de-
noted as hθ(·) = g(f(·)) : Xs → Ys, where f(·) is the
backbone encoder and g(·) denotes the decoder head. Dur-
ing testing, hθ(·) will perform well on in-distribution (ID)
test instances drawn from Ds. However, given a set of out-
of-distribution (OOD) test instances Dt = {xi

t}
nt
i=1 ∼ Dt

and Dt ̸= Ds, the prediction performance of hθ(·) would
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decrease significantly. To this end, the goal of TTA is to
adapt this model hθ(·) to Dt without access to Ds. For each
instance xi

t ∈ Xt, let the output of encoder f(·) and decoder
g(·) be denoted as zit = f(xi

t) ∈ Rd and pit = g(zit) ∈ Rc,
respectively, where d is the dimension of the embeddings
and c is the number of classes in a classification task. When
encountering an OOD test instance xi

t, existing TTA meth-
ods (Wu et al., 2024; Sinha et al., 2023; Lee et al., 2024;
Yuan et al., 2023) typically minimize an unsupervised or
self-supervised loss function to align the embedding zit or
prediction pit, thereby updating the model parameters θ:

min
θ̃

L(zit, pit, θ), xi
t ∼ Dt (1)

where θ̃ ⊆ θ is a proper subset of θ involved in the update,
such as the parameters of the batch normalization (BN) lay-
ers (Schneider et al., 2020; Su et al., 2024c) or all parameters.
Generally, the TTA loss function L(·) can be formulated by
nearest neighbor information (Zhang et al., 2023; Hardt &
Sun, 2023; Jang et al., 2022), contrastive learning (Wang
et al., 2023; Chen et al., 2022), entropy minimization (Wang
et al., 2020; Niu et al., 2022), etc.

2.2. Correlation Alignment (CORAL)

The aim of correlation alignment (CORAL) (Sun et al.,
2017; Cheng et al., 2021a; Sun & Saenko, 2016; Sun et al.,
2016; Das et al., 2021; Rahman et al., 2020b) is to min-
imize the distance of the second-order statistics (covari-
ance) between the source and test features. Specifically, let
Zs = {zis}

ns
i=1 ∈ Rns×d denotes the feature matrix from

the source domain, and Zt = {zit}
nt
i=1 ∈ Rnt×d denotes

the feature matrix from the test domain. CORAL computes
the covariance matrices of the source features Zs and test
features Zt, and aligns correlation by minimizing the Frobe-
nius norm of their two covariance matrices. The covariance
matrix is computed as below:

Σ =
1

n− 1
(ZTZ − 1

n
1nZ

TZ1n) (2)

the correlation distance is then given by (Sun & Saenko,
2016):

d(Σs,Σt) =
1

4d2
∥Σs − Σt∥2F (3)

where Σs and Σt are the covariance matrices of the source
and test domains, respectively, and 1 is a column vector
with all elements equal to 1 to perform mean-subtraction.
∥ · ∥F represents the Frobenius norm.

2.3. Problem Statement

Existing TTA methods suffer from overlooking feature cor-
relation, overhead computation and domain forgetting. Re-
search and practice have demonstrated that CORAL is both

effective and “frustratingly easy” to implement on DA.
Since TTA is a subfield of DA, it is a natural extension
to apply CORAL within TTA frameworks. However, due
to privacy and resource constraints in TTA, it is impossible
to compute the source correlation. This limitation hinders
the application of CORAL in such real-world scenarios, i.e.
test-time correlation alignment (TCA).

3. Theoretical Studies
In this section, we conduct an in-depth theoretical analy-
sis of TCA based on domain adaptation and learning the-
ory. We focus on two key questions: (1) Can we construct
a “pseudo-source correlation” to approximate the original
source correlation? (2) Can TCA based on this pseudo-
source correlation enable effective TTA? Before discussing
the main results, we first state some necessary assumptions
and concepts. Missing proofs and detailed explanations are
provided in Appendix B.

Definition 3.1. (Classification error and empirical
error) Let H be a hypothesis class of VC-dimension
dv. The error that an estimated hypothesis hθ ∈ H
disagrees with the groundtruth labeling function l :
Xt → Yt according to distribution Dt is defined as:

ϵ(hθ, l) = Ex∼Dt
[|hθ(x)− l(x)|] (4)

which we also refer to as the error or risk ϵ(hθ). The
empirical error of hθ ∈ H with respect to a labeled
dataset Ds = {(xi

s, y
i
s)}

ns
i=1 ∼ Ds is defined as:

ϵ̂(hθ) =
1

ns

ns∑
i=1

|hθ(x
i
s)− yis| (5)

Assumption 3.2. (Strong density condition) Given
the parameters µ−, µ+, ct, c

∗
t , rt > 0, we assume that

the distribution Ds and Dt are absolutely continuous
with respect to the Lebesgue measure λ[·] in Euclidean
space. Let B(x, r) = {x0 : ∥x0 − x∥ ≤ r} denote
the closed ball centered at point x with radius r. We
further assume that ∀ xt ∼ Dt and r ∈ (0, rt], the
following conditions hold:

λ[Ds ∩ B(xt, r)] ≥ ctλ[B(xt, r)] (6)

λ[Dt ∩ B(xt, r)] ≥ c∗tλ[B(xt, r)] (7)

µ− <
∂Ds

∂λ
< µ+; µ− <

∂Dt

∂λ
< µ+ (8)

The strong density condition is commonly used when ana-
lyzing KNN classifiers (Audibert & Tsybakov, 2007; Cai
& Wei, 2021). Recently, it has also been applied in the
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test-time adaptation (Zhang et al., 2023). Intuitively, As-
sumption 3.2 requires that the divergence between Ds and
Dt is bounded. When ct = 1, for each xt ∼ Dt, the neigh-
borhood ball B(xt, r) is completely contained within Ds. In
contrast, when ct = 0, B(xt, r) and Ds are nearly disjoint.

Assumption 3.3. (L-Lipschitz Continuity) Let
hθ(·) = g(f(·)) be a estimated hypothesis on H.
We assume that there exists a constant L such that
∀ x1, x2 ∈ Ds ∪ Dt, the encoder f(·) satisfies the
following condition:

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥ (9)

The assumption of L-Lipschitz continuity is frequently em-
ployed in the analysis of a model’s adaptation capabilities
(Mansour et al., 2009). It implies that the change rate of
f(·) does not exhibit extreme fluctuations and is bounded
by the constant L at any point.

Assumption 3.4. (Taylor Approximation) Let hθ(·) =
g(f(·)) be a L-Lipschitz Continuous hypothesis on
H. z = f(x) and p = g(z). We assume that there
exists a constant r∗ such that ∀ x1, x2 ∈ Ds ∪ Dt,
if ∥z1 − z2∥ ≤ r∗, p2 = g(z2) can be approximated
using the first-order Taylor expansion at z1 as follows:

p2 = p1 + Jg(z1)(z2 − z1) + o(∥z1 − z2∥) (10)

where p1 = g(z1), Jg(z1) is the Jacobian matrix of g
evaluated at z1, and o(∥z1−z2∥) represents the higher-
order terms in the expansion.

It indicates that when the outputs z1 and z2 are close (i.e.,
their distance is within the radius r∗), the decoder can be
well-approximated by a linear function at z1.

3.1. Correlation of high-certainty test instances
approximates the source correlation

We characterize the divergence of correlation between the
pseudo-source and the source correlation in the following
Theorem 3.5.

Theorem 3.5. Let hθ(·) = g(f(·)) be an L-Lipschitz
continuous hypothesis on H. Ω :=

⋃
x∈Dt

B(x, r∗)
is the set of balls near the test data. We sample k
source instances from Ds∩Ω and k test instances from
Dt to obtain [Xs, Zs, Ps] and [Xt, Zt, Pt] by hθ(·),
respectively. Per Assumption 3.2, Assumption 3.3
and Assumption 3.4, with a probability of at least

1− exp
(
− (ctµ

−πdI
rdIns−1)2

2ctµ−πdI
rdIns

+ log k
)

, we have

∥Zt − Zs∥ ≤ ∥Pt − Ps∥+ ∥o(kr∗)∥
∥Jg(Zs)∥

(11)

where πdI
= λ(B(0, 1)) is the volume of the dI

dimension unit ball and dI is the dimension of in-
put x. Furthermore, considering the true source
correlation Σs = E[Z̃s

T
Z̃s] and the pseudo-source

correlation Σ̂s = Z̃t
T
Z̃t, where Z̃s and Z̃t are

centered. With a probability of at least min(1 −
exp

(
− (ctµ

−πdI
rdIns−1)2

2ctµ−πdI
rdIns

+ log k
)
, 1 − δ), the cor-

relation distance ∥Σs − Σ̂s∥ is bounded by:

∥Σs − Σ̂s∥F ≤

2∥Zs∥F (
∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F
) + (

∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F
)2 +B

(12)

where Ŷt is the one-hot encoding of Pt, A =
∥o(kr∗)∥+ kϵ(hθ(Xt)) + kϵ(hθ(Xs)) represents the
output error of the sampled instances, and B =√

log(2/δ)
2k is the sampling error.

Theorem 3.5 implies the followings: (1) In Eq. (12), the
terms Xs, Zs, and Jg(Zs) remain unchanged with the same
source data. The primary factor influencing the correlation
distance ∥Σs − Σ̂s∥ is prediction uncertainty ∥Ŷt − Pt∥F
and output error of the sampled instances ϵ(hθ(Xt)). (2) In-
tuitively, previous studies (Gui et al., 2024; Niu et al., 2022;
Yuan et al., 2024) empirically suggest that instances with
higher output certainty have less output error. In other words,
with a smaller divergence between the prediction Pt and its
one-hot encoding Ŷt, both uncertainty ∥Ŷt−Pt∥F and error
ϵ(hθ(Xt)) will decrease, resulting in a smaller correlation
distance. (3) Therefore, a reasonable pseudo-source con-
struction method is to select the k test instances with the
smallest ∥Ŷt − Pt∥F values (i.e. high-certainty test in-
stances) and compute their correlation matrix as pseudo-
source correlation.

3.2. Test-time correlation alignment reduces test
classification error

In this section, we establish the TTA error bounds of hypoth-
esis hθ when minimizing the empirical error in the source
data (Theorem 3.6) and examine the influence of using the
pseudo-source correlation (Corollary 3.7), which further
indicates factors that affect the performance of hθ.

Theorem 3.6. Let H be a hypothesis class of VC-
dimension dv . If ĥ ∈ H minimizes the empirical error
ϵ̂s(h) on Ds, and h∗

t = argminh∈H ϵt(h) is the opti-
mal hypothesis on Dt, with the assumption that all hy-
potheses are L-Lipschitz continuous, then ∀δ ∈ (0, 1),
with probability with at least 1 − δ the following in-
equality holds:
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ϵt(ĥ) ≤ ϵt(h
∗
t ) +O(

√
∥µs − µt∥2F + ∥Σs − Σt∥2F ) + C

where C = 2
√

dvlog(2ns)−log(δ)
2ns

+ 2γ and γ =

minh∈H{ϵs(h(t)) + ϵt(h(t))}. µs, µt, Σs and Σt de-
note the means and correlations of the source and test
embeddings, respectively. We use O(·) to hide the
constant dependence.

For fixed Ds and Dt, ϵt(h∗
t ) and C are constants, indicating

that the primary factors affecting the performance of hθ on
the test data Dt (i.e., ϵt(ĥ)) are ∥µs−µt∥2F and ∥Σs−Σt∥2F .
By aligning correlations during testing, which means reduc-
ing ∥Σs − Σt∥2F , we can effectively decrease the model’s
classification error on the test data. Combining Theorem 3.5
with Theorem 3.6, the following corollary provides a di-
rect theoretical guarantee that TCA based on pseudo-source
correlation can reduce the error bounds on test data.

Corollary 3.7. Let Σs, Σ̂s and Σt denote the source,
pseudo-source and test correlation, respectively. The-
orem 3.5 establishes the error bound between Σ̂s and
Σs, while Theorem 3.6 demonstrates that reducing the
difference between Σt and Σs can decrease classifica-
tion error on the test data. By applying the triangle
inequality, we have:

∥Σt − Σs∥F = ∥Σt − Σ̂s + Σ̂s − Σs∥F ≤
∥Σt − Σ̂s∥F + ∥Σ̂s − Σs∥F (13)

Therefore, Theorem 3.6 can be rewritten as:

ϵt(ĥ) ≤

ϵt(h
∗
t ) +O(

√
∥µs − µt∥2F + ∥Σs − Σt∥2F ) + C ≤

ϵt(h
∗
t ) +O((∥µs − µt∥2F + (2∥Zs∥F (

∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F
)

+ (
∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F
)2 +B + ∥Σt − Σ̂s∥F )2)1/2) + C

(14)

Corollary 3.7 indicates the followings: (1) Reducing the
correlation distance between the test data and the pseudo-
source, i.e., ∥Σt − Σ̂s∥2F , can reduce the test classification
error. The pseudo-source correlation Σ̂s is computed by
selecting k instances from the test data with minimal un-
certainty, measured by ∥Ŷt − Pt∥2F . (2) Updating model
parameters to decrease ∥Ŷt − Pt∥2F can further reduce the
test error. (3) Additionally, minimizing the instance-wise
distance ∥µs − µt∥22 can also contribute to reducing the test
error, which is consistent with previous studies (Niu et al.,
2022; Wang et al., 2023; 2020).
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Figure 2. The pipeline of our proposed LinearTCA method. Dur-
ing testing, we first obtain original embeddings and predictions
using the source model. Based on the certainty of the original pre-
dictions, we select a subset embeddings to form a “pseudo-source
domain”. A linear transformation is then applied to align the corre-
lations of the original embeddings with those of the pseudo-source
domain, ultimately producing the final predictions of LinearTCA.
Notably, this process does not require updating any parameters of
the original model.

Remark. Section 3.1 answers the first question that the
feature correlation of high-certainty test instances from the
pre-trained model can approximate the feature correlation
of the source domain. Section 3.2 provides a theoretical
guarantee that conducting correlation alignment between
pseudo-source correlation and test correlation during TTA
can effectively reduce the test error bound. These theoretical
findings are further validated in Section 5.2.

4. The Test-time Correlation Alignment
Algorithms

As illustrated in Figure 2, building on our theoretical find-
ings, we propose two simple yet effective TCA methods:
LinearTCA and LinearTCA+. We start with detailing the
construction of the pseudo-source correlation, followed by
the implementation of LinearTCA and LinearTCA+.

4.1. Pseudo-Source

For each instance xi
t arrives in test time, we first get em-

bedding zit = f(xi
t) and prediction pit = g(zit). Per The-

orem 3.5, we compute its prediction uncertainty ωi
t =

∥ŷit − pit∥2F , where ŷit = onehot(argmax(pit)). We then
temporarily store the pair (zit, ω

i
t) in the Pseudo-Source

bank M = M ∪ (zit, ω
i
t). Subsequently, M is updated

based on its element count and confidence. The update rule
is as follows:

M =

{
M, if |M| ≤ k

{(zit, ωi
t) | ωi

t ≤ ωk
min}, else

(15)

where ωk
min represents k-th lowest uncertainty value in M.

Finally, the Pseudo-Source correlation can be calculated as

5



Test-time Correlation Alignment

follows:

Σ̂s =
1

n̂s − 1

(
ẐT
s Ẑs −

1

n̂s
1n̂s

ẐT
s Ẑs1n̂s

)
(16)

where Ẑs = {zit|zit ∈ M} and n̂s = |M|.

4.2. Methods

LinearTCA: During testing, given the embeddings Zt and
Ẑs sampled from the test and pseudo-source domains, re-
spectively, our objective is to minimize their correlation
distance:

LLinearTCA =
∥∥∥Σt − Σ̂s

∥∥∥2
F

(17)

To achieve this alignment, we aim to obtain a suitable linear
transformation W as follows:

min
W

∥∥∥WTΣtW − Σ̂s

∥∥∥2
F

(18)

Setting WTΣtW = Σ̂s and applying eigenvalue decompo-
sition, the closed-form solution for W can be derived as
1:

W = UtΛ
1/2
t ÛT

s Λ̂−1/2
s (19)

where Ûs and Ut represent the eigenvector matrices, Λ̂s and
Λt are the corresponding diagonal eigenvalue matrices, re-
spectively. The transformed embeddings of the test domain
can then be computed as:

Z
′

t = (Zt − µt)W + µ̂s (20)

where µt and µ̂s denote the mean embeddings of Zt and
Ẑs, respectively. As shown in Eq. (20), we also align
the instance-wise shift |µs − µt| by using µ̂s. Finally, the
predictions for the test domain after adaptation through
LinearTCA are:

P
′

t = g(Z
′

t) (21)

LinearTCA+: Since LinearTCA does not require param-
eter updates to the model, it can serve as a plug-and-play
boosting module for TTA methods. Specifically, during
a TTA method optimizes the original model hθ to hθ̃ via
Eq. (1), we can obtain the resulting embeddings ZTTA and
predictions PTTA. By applying the LinearTCA on ZTTA

and PTTA with the same process from Eq. (15) to (21), the
predictions of LinearTCA+ are obtained. More details on
these methods are provided in Appendix C.

1To enhance the robustness of the results, we recommend using
torch’s automatic gradient descent method to mitigate potential
instabilities associated with eigenvalue decomposition. For the
following experiments, we implement this method with a fixed
learning rate of 1e-3.
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Figure 3. Experimental validation of theories. (a) Average uncer-
tainty and correlation distance to source domain of each group,
groups with lower uncertainty exhibit smaller correlation distances.
(b) Relationships between ACC, correlation distance to the source,
and correlation distance to the pseudo-source, both ACC and
∥Σt − Σs∥ are strongly linearly related to ∥Σt − Σ̂s∥.

5. Experiments
5.1. Experimental settings

Following previous studies, we evaluate the adaptation
performance on two main tasks: domain generalization
(PACS (Li et al., 2017), OfficeHome (Venkateswara
et al., 2017), and DomainNet (Peng et al., 2019) dataset)
and image corruption (CIFAR-10-C,CIFAR-100-C, and
ImageNet-C (Hendrycks & Dietterich, 2019)). What’s
more, we also evaluate our method on multimodal tasks
based on CLIP (Radford et al., 2021). The comparison meth-
ods include backpropagation-free (BN (Schneider
et al., 2020), T3A (Iwasawa & Matsuo, 2021), AdaNPC
(Zhang et al., 2023)) and backpropagation-based
methods (TENT (Wang et al., 2020), PLC (Lee, 2013),
EATA (Niu et al., 2022), SAR (Niu et al., 2023), TSD (Wang
et al., 2023), TIPI (Nguyen et al., 2023), TEA (Yuan et al.,
2024)). Backbone networks include ResNet-18/50 (He
et al., 2016) and ViT-B/16 (Dosovitskiy, 2020). Addi-
tionally, the evaluation encompasses multiple aspects, in-
cluding accuracy, efficiency, and resistance to forgetting.
For LinearTCA+, we report its results combined with the
best baseline. Refer to Appendix D for more implement
information. For further experimental results and analysis,
please see Appendix E.

5.2. Experimental validation of theories

For Theorem 3.5: Correlation of high-certainty test in-
stances approximates the source correlation. We divide
the test embeddings of CIFAR-10-C under ResNet-18
into 10 groups based on prediction uncertainty and calcu-
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Domain PACS OfficeHome DomainNet
Method ResNet-18 ResNet-50 ViT-B/16 AVG ResNet-18 ResNet-50 ViT-B/16 AVG ResNet-18 ResNet-50 ViT-B/16 AVG AVG

SOURCE 81.84 84.78 87.02 84.54 62.01 67.01 76.11 68.37 39.13 43.58 50.29 44.33 65.75

BP-Free
BN 82.65 84.99 - - 62.05 66.30 - - 37.93 41.94 - - -
T3A 83.20 85.71 88.06 85.66 63.26 67.85 78.87 69.99 40.62 44.92 53.94 46.49 67.38

AdaNPC 83.48 86.12 89.11 86.24 62.88 67.05 77.26 69.07 40.50 45.17 53.28 46.32 67.21

BP-Based

TENT 85.23 88.07 84.98 86.09 63.09 67.67 76.95 69.24 39.42 43.97 39.96 41.12 65.48
PLC 83.16 86.59 87.97 85.91 62.22 66.44 76.51 68.39 37.96 41.63 47.29 42.30 65.53

EATA 83.30 84.68 86.60 84.86 62.49 67.01 76.98 68.83 41.65 46.89 54.40 47.65 67.11
SAR 85.41 85.79 87.12 86.11 62.51 67.94 76.66 69.04 38.49 42.19 42.81 41.16 65.44
TIPI 87.39 88.01 87.98 87.79 63.25 68.36 77.09 69.57 36.05 44.08 39.70 39.94 65.77
TEA 87.19 88.75 87.37 87.77 63.43 68.56 76.15 69.38 39.43 43.48 48.41 43.78 66.98
TSD 87.83 89.99 83.43 87.08 62.47 68.63 75.49 68.87 38.59 42.12 48.72 43.14 66.36

LinearTCA 83.59 86.78 88.61 86.33 63.66 68.43 78.26 70.12 40.79 44.89 52.79 46.16 67.53Ours LinearTCA+ 88.77 90.68 89.30 89.58 64.27 69.32 79.02 70.87 42.20 47.17 55.49 48.29 69.58

ImgCop CIFAR-10-C CIFAR-100-C ImageNet-C
Method ResNet-18 ResNet-50 ViT-B/16 AVG ResNet-18 ResNet-50 ViT-B/16 AVG ResNet-18 ResNet-50 ViT-B/16 AVG AVG

SOURCE 50.80 50.77 71.48 57.68 31.01 34.02 51.71 38.91 14.70 18.15 39.83 24.23 40.27

BP-Free
BN 73.70 72.24 - - 48.38 48.41 - - 27.59 32.06 - - -
T3A 58.89 54.87 74.21 62.65 32.52 34.94 54.24 40.57 14.56 18.05 39.78 24.13 42.45

AdaNPC 57.72 54.75 74.60 62.36 29.70 32.27 53.21 38.39 11.93 15.62 36.78 21.44 40.73

BP-Based

TENT 75.21 72.33 71.48 73.01 50.82 50.12 52.72 51.22 35.39 41.32 48.01 41.57 55.27
PLC 73.72 72.34 71.46 72.51 48.35 48.38 51.71 49.48 27.59 32.06 38.74 32.80 51.59

EATA 73.86 72.38 73.67 73.30 49.71 49.89 62.40 54.00 39.19 48.17 64.36 50.58 59.29
SAR 73.97 73.37 71.48 72.94 51.60 50.25 54.29 52.05 38.55 46.30 57.94 47.60 57.53
TIPI 76.10 72.46 71.48 73.35 50.61 50.30 52.36 51.09 35.73 41.87 48.50 42.03 55.49
TEA 76.20 72.54 71.48 73.41 50.67 50.21 52.31 51.06 32.38 38.90 41.37 37.55 54.01
TSD 76.93 73.23 71.47 73.88 49.35 49.60 51.74 50.23 30.11 35.08 41.33 35.51 53.20

LinearTCA 60.96 60.27 77.26 66.16 35.03 37.28 55.42 42.58 16.07 19.34 41.37 25.60 44.78Ours LinearTCA+ 77.13 73.53 79.55 76.74 52.08 51.17 63.71 55.65 39.21 48.22 64.71 50.71 61.04

Table 1. Accuracy comparison of different TTA methods based on ResNet-18/50 and ViT-B/16 backbones. The upper part of the
table corresponds to the domain generalization task, while the lower part corresponds to the image corruption task. The best results are
highlighted in boldface, and the second ones are underlined. “-” indicates that ViT-B/16 does not include any BN layers.

late the correlation distance between each group and the
original source. As shown in Figure 3a, groups with lower
uncertainty exhibit smaller correlation distances, indicating
a closer approximation to the source correlation.

For Theorem 3.6 and Corollary 3.7: Test-time correlation
alignment reduces test classification error. We iteratively op-
timize W and record the correlation distances between test
domain and pseudo-source domain, ∥Σt − Σ̂s∥, as well as
the true distances between test domain and source domain,
∥Σt−Σs∥, and ACC. As shown in Figure 3b, under a linear
fit (R2 = 0.97), ∥Σt − Σ̂s∥ is strongly positively related to
∥Σt − Σs∥ (Spearman correlation coefficient = 1). Under
R2 = 0.96, it is strongly negatively related to ACC (Spear-
man correlation coefficient = -1). This further validates that
pseudo-source correlation alignment promotes alignment
with the original source. Additionally, pseudo-source corre-
lation alignment effectively reduces test classification error,
thus improving the model’s domain adaptation capability.

5.3. Comparison with TTA Methods

Accuracy. Table 1 presents ACC comparisons between
TCA methods and state-of-the-art TTA approaches across
various benchmarks, backbones, and tasks. (1) As a plug-
and-play module, LinearTCA+ consistently enhances per-
formance across all datasets and backbones, achieving
a new state-of-the-art. Notably, on the CIFAR-10-C
dataset with the ViT-B/16 backbone, LinearTCA+ shows

substantial improvements over the best-performing base-
line, with an increase of 4.95%. (2) Across datasets,
LinearTCA shows robust improvement compared to the
source model, with average gains of 1.79%, 1.75%, 1.78%,
8.48%, 3.67% and 4.51%, respectively. Particularly, on the
OfficeHome and DomainNet dataset, LinearTCA out-
performs all baseline methods. However, on datasets such
as CIFAR-10/100-C and ImageNet-C, although Lin-
earTCA yields ACC gains of 8.48%, 3.67% and 4.51%
over the source model, it falls short of some advanced
methods. (3) Across backbones, LinearTCA also demon-
strates robust improvements compared to the source model,
especially with the ViT-B/16 backbone, surpassing the
highest-performing baseline on most datasets. We provide a
detailed analysis of these experimental results in Section 5.5
to further reveal the strengths and limitations of LinearTCA.

Type Method Memory(MB) Time(s)
ResNet-18 ResNet-50 ViT-B/16 AVG ResNet-18 ResNet-50 ViT-B/16 AVG

SOURCE 920.61 878.87 917.02 905.50 3.92 9.16 3.98 5.69

BP-Free
BN +0.25 +48.57 - - +0.88 +4.80 - -
T3A +1.00 +4.43 +2.02 +2.48 +1.98 +3.62 +12.22 +5.94
AdaNPC +2.04 +8.23 +2.96 +4.41 +1.73 +2.78 +12.08 +5.53

BP-Based

TENT +1883.63 +4788.93 +5246.53 +3973.03 +3.85 +11.52 +12.27 +9.22
PLC +1934.14 +4787.26 +8624.95 +5115.45 +5.94 +9.51 +25.86 +13.77
EATA +5332.44 +10838.53 +11172.56 +9114.51 +1.76 +4.20 +22.81 +9.59
SAR +2642.82 +5380.18 +5401.31 +4474.77 +11.23 +23.31 +54.08 +29.54
TSD +2025.07 +5162.55 +9280.69 +5489.44 +4.70 +13.47 +34.68 +17.62
TEA +7316.95 +15733.10 +16082.00 +13044.02 +123.14 +278.87 +596.28 +332.76
TIPI +2520.01 +10660.83 +12542.71 +8574.52 +26.54 +49.73 +45.25 +40.51

Ours TCA +0.00 +0.00 +0.00 +0.00 +0.06 +0.07 +0.08 +0.07

Table 2. Maximum GPU memory usage and running time of dif-
ferent TTA methods on CIFAR-10-C.

Efficiency. We evaluate each method’s efficiency in terms
of peak GPU memory usage and total runtime. Table 2 re-
ports results on the CIFAR-10-C dataset across different
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Type Method PACS OfficeHome CIFAR-10-C CIFAR-100-C AVG

BP-Free

SOURCE 99.35 94.40 92.36 70.39 89.12
BN 98.90 (-0.44) 92.85 (-1.55) 62.98 (-29.38) 39.45 (-30.94) 73.55 (-15.58)
T3A 99.33 (-0.01) 93.31 (-1.09) 91.95 (-0.41) 65.66 (-4.73) 87.56 (-1.56)

AdaNPC 99.28 (-0.06) 93.31 (-1.09) 92.00 (-0.36) 63.88 (-6.51) 87.12 (-2.01)
LinearTCA 99.42 (+0.08) 93.87 (-0.53) 91.16 (-1.20) 67.35 (-3.04) 87.95 (-1.17)

LinearTCA w/o W 99.35 (0.00) 94.40 (0.00) 92.36 (0.00) 70.39 (0.00) 89.12 (0.00)

BP-Based

TENT 96.74 (-2.61) 92.79 (-1.61) 90.26 (-2.10) 67.27 (-3.12) 86.76 (-2.36)
PLC 97.12 (-2.23) 92.73 (-1.67) 63.05 (-29.31) 39.48 (-30.91) 73.09 (-16.03)

EATA 98.33 (-1.02) 93.66 (-0.74) 90.24 (-2.12) 68.52 (-1.87) 87.69 (-1.44)
SAR 97.12 (-2.23) 86.35 (-8.05) 90.31 (-2.05) 68.77 (-1.62) 85.63 (-3.49)
TSD 95.10 (-4.24) 85.37 (-9.03) 67.78 (-24.58) 39.48 (-30.91) 71.93 (-17.19)
TEA 90.22 (-9.13) 93.30 (-1.10) 90.60 (-1.76) 68.93 (-1.46) 85.76 (-3.36)
TIPI 98.15 (-1.20) 92.79 (-1.61) 70.75 (-21.61) 46.03 (-24.36) 76.93 (-12.20)

LinearTCA+ 99.03 (-0.31) 93.65 (-0.75) 90.68 (-1.68) 69.05 (-1.34) 88.10 (-1.02)

Table 4. The accuracy of different TTA methods when return-
ing to the source domain after adaptation. “BP-Free” indicates
backpropagation-free TTA methods, while “BP-Based” denotes
backpropagation-dependent ones.

backbones. TCA consistently achieves the lowest memory
and time cost. For memory, since we record peak mem-
ory consumption, LinearTCA exhibits minimal indepen-
dent memory usage (as shown in Table 3) and thus does
not impose additional memory constraints on the device.

Method ResNet18 ResNet50 ViT-B/16 AVG
LinearTCA 118.56 448.64 452.11 339.77

Table 3. Independent maximum
GPU memory usage of Lin-
earTCA on CIFAR-10-C.

In contrast, other meth-
ods are embedded within
the model’s forward and
backward propagation
processes, significantly
increasing peak memory
usage (e.g., TEA uses 15× the memory of the source
model). For runtime, with a ViT-B/16 backbone,
LinearTCA requires only 0.6% of AdaNPC’s time. These
results highlight LinearTCA’s high efficiency, making it
well-suited for resource-constrained edge deployment.

Forgetting resistance. Table 4 shows the change in ac-
curacy when each method (using ResNet-18) returns to
the source domain after adaptation. “LinearTCA w/o W ”
refers to the variant without the linear transformation, which
is equivalent to the original source model and thus retains
full source knowledge. Despite applying W , LinearTCA
demonstrates much stronger resistance to forgetting than
other methods—especially on PACS, where it even improves
source performance, showing positive backward transfer.
Moreover, LinearTCA+ further enhances the forgetting ro-
bustness of existing TTA methods.

5.4. Performance on Closed-Source Foundation Models

To validate TCA’s effectiveness on closed-source founda-
tion models, we conduct experiments with CLIP (Radford
et al., 2021) on PACS, OfficeHome, and VLCS datasets, fol-
lowing the experimental setup in WATT (Osowiechi et al.,
2024). As shown in Table 5, TCA achieving performance
improvements of 1.28%, 2.08%, and 2.85% on the three
datasets respectively. The superior results stem from our
method’s explicit alignment of embedding distributions with
the source domain, which proves particularly effective for
multi-modal models like CLIP that compute image-text sim-
ilarity directly. While LinearTCA+ holds a slight advantage,

Method PACS AVG
A C P S

CLIP† 97.44 97.38 99.58 86.06 95.12
TENT† 97.54±0.02 97.37±0.04 99.58±0.00 86.37±0.05 95.22
TPT† 95.10±0.41 91.42±0.22 98.56±0.40 87.23±0.06 93.08
CLIPArTT† 97.64±0.02 97.37±0.02 99.58±0.00 86.79±0.04 95.35
WATT-P† 97.49±0.08 97.47±0.04 99.58±0.00 89.73±0.16 96.07
WATT-S† 97.66±0.08 97.51±0.02 99.58±0.00 89.56±0.14 96.08
LinearTCA 97.80 99.39 99.94 92.32 97.36
LinearTCA+ 97.87±0.06 99.20±0.02 99.94±0.00 92.36±0.06 97.34

Method OfficeHome AVG
A C P R

CLIP† 79.30 65.15 87.34 89.31 80.28
TENT† 79.26±0.14 65.64±0.05 87.49±0.02 89.50±0.04 80.47
TPT† 81.97±0.17 67.01±0.21 89.00±0.06 89.66±0.06 81.91
CLIPArTT† 79.34±0.05 65.69±0.11 87.35±0.07 89.29±0.03 80.42
WATT-P† 80.37±0.25 68.59±0.13 88.15±0.07 90.18±0.03 81.82
WATT-S† 80.43±0.09 68.26±0.11 88.02±0.08 90.14±0.06 81.71
LinearTCA 85.55 68.70 90.26 90.58 83.77
LinearTCA+ 85.62±0.38 69.25±0.1 90.29±0.01 90.42±0.1 83.90

Method VLCS AVG
C L S V

CLIP† 99.43 67.75 71.74 84.90 80.96
TENT† 99.43±0.00 67.31±0.14 71.57±0.15 85.10±0.11 80.85
TPT† 97.62±0.12 49.77±0.03 71.56±0.86 71.17±0.70 72.53
CLIPArTT† 99.43±0.00 67.74±0.10 71.67±0.01 84.73±0.08 80.89
WATT-P† 99.36±0.00 67.55±0.39 74.75±0.07 82.53±0.10 81.05
WATT-S† 99.36±0.00 68.59±0.25 75.16±0.12 83.24±0.05 81.59
LinearTCA 99.86 73.98 78.47 84.41 84.18
LinearTCA+ 99.88±0.03 74.39±0.1 79.44±0.22 84.06±0.14 84.44

Table 5. The accuracy comparison of different methods on PACS,
OfficeHome, and VLCS datasets using CLIP-ViT-B/16. †: num-
bers are from WATT (Osowiechi et al., 2024). The best results are
highlighted in boldface, and the second ones are underlined.

both variants perform similarly, suggesting that even simple
correlation alignment can notably enhance performance on
popular models like CLIP. This underscores its effectiveness
as a versatile plug-and-play module for improving diverse
adaptation methods.

5.5. Analysis

Effective range of LinearTCA. As discussed in Section 5.3,
although LinearTCA+ significantly improves all TTA meth-
ods, LinearTCA only achieves SOTA performance on part
of datasets and backbones. The reasons may be: 1) Al-
though the highest-certainty embeddings are selected as
pseudo-source domains, if these embeddings still exhibit
substantial differences from the true source domain (or if the
backbone’s feature extraction capacity is insufficient, e.g.,
ResNet-18 vs. ViT-B/16), the performance ceiling of
LinearTCA is limited. In contrast, other TTA methods up-
date the model, thereby raising this ceiling and facilitating
easier correlation alignment for LinearTCA+. 2) We only
use a linear transformation W for alignment, which may
work well for simple shifts; however, the true distribution
shifts may not conform to linear transformations but ex-
hibit complex nonlinear relationships. We design a demo
experiment to validate this hypothesis. In Figure 4a and
b, the test domain shifts are linear and nonlinear, respec-
tively. As shown, the transformed embeddings in Figure 4a
align well with the original distribution, while the perfor-
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Figure 4. Analysis of TCA. (a) When the test domain (yellow)
undergoes a nearly linear shift from the source domain (blue),
after adaptation by LinearTCA, the transformed test domain (red)
is well-aligned with the source. (b) In the case of a nonlinear
shift, although partial alignment is achieved, it is still insufficient.
(c) and (d) Ablation study examining the effect of pseudo-source
domain size and test domain size.

Backbone Method PACS AVG OfficeHome AVG
A C P S A C P R

ResNet-18

Source 78.37 77.39 95.03 76.58 81.84 56.45 48.02 71.34 72.23 62.01
LinearTCA 80.91 81.02 95.69 76.74 83.59 59.46 50.40 72.02 72.78 63.66
LinearTCA+ 88.38 87.12 96.59 83.00 88.77 59.83 51.80 72.29 73.17 64.27

LinearTCA(MLP-2) 81.24 81.73 95.89 78.15 84.25 59.62 50.84 72.07 72.94 63.87
LinearTCA+(MLP-2) 88.68 87.15 96.68 83.19 88.93 59.83 51.80 72.79 73.46 64.47

LinearTCA(MLP-3) 81.62 81.81 96.03 79.35 84.70 59.62 50.65 72.07 73.02 63.84
LinearTCA+(MLP-3) 88.38 87.23 96.59 83.36 88.98 59.83 52.08 72.79 73.54 64.56

Table 6. Extending LinearTCA/LinearTCA+ by introducing MLP-
based transformations with two (MLP-2) and three (MLP-3) layers
The best results are highlighted in boldface, and the second ones
are underlined.

mance in Figure 4b shows partial alignment which is still
insufficient. We further explore the utilization of nonlinear
architecture (MLP) for calculating transformation W . As
shown in Table 6, incorporating nonlinear activations with
deeper architectures leads to further improvements.

Ablation study. Our method involves only one hyperparam-
eter—the number of pseudo-source embeddings k. Since
the total number of test samples is often unknown in prac-
tice, we also sample k2 embeddings from the test set to
study its impact. As shown in Figure 4c,d, LinearTCA
achieves the best accuracy on OfficeHome when k = 10
and k2 = 2400. Importantly, it consistently outperforms the
source model across a wide range of k and k2, demonstrat-
ing strong practical applicability.

Upper performance bound for TCA. To assess the upper
bound of TCA, we conduct two additional experiments in
Table 7: (a) fine-tuning directly on the target domain; (b)
applying LinearTCA and LinearTCA+ with real source dis-
tributions. Compared to the original LinearTCA+, approach
(b) further improves performance, by 0.38% on PACS and
1.03% on OfficeHome. Both (a) and (b) outperform the orig-

Backbone Method PACS AVG OfficeHome AVG
A C P S A C P R

ResNet-18

Source 78.37 77.39 95.03 76.58 81.84 56.45 48.02 71.34 72.23 62.01
LinearTCA 80.91 81.02 95.69 76.74 83.59 59.04 49.97 71.77 72.89 63.42
LinearTCA+ 88.38 87.12 96.59 83.00 88.77 59.33 51.18 72.20 71.72 63.61

TCA(a) 86.18 82.67 95.03 80.81 86.17 58.69 50.80 72.04 72.92 63.61

LinearTCA(b) 81.59 81.48 96.05 77.51 84.15 59.94 51.63 72.36 73.48 64.35
LinearTCA+(b) 88.98 87.57 96.74 83.30 89.15 60.03 52.29 72.55 73.87 64.64

Table 7. Upper performance bound for TCA. TCA(a): Fine-
tuning directly on the target distribution. LinearTCA(b) and
LinearTCA+(b): Applying LinearTCA and LinearTCA+ with real
source distributions.

Method Art Domian of OfficeHome AVG
Batch Size 1 2 4 8 16 32 64 128 256 512 1024

Estimation error 2542 2414 2434 2430 2415 2417 2437 2415 2413 2424 2427 2433
Source 56.45 56.45 56.45 56.45 56.45 56.45 56.45 56.45 56.45 56.45 56.45 56.45
TEA 0.824 18.01 40.79 49.23 55.54 55.71 57.35 58.55 57.11 57.82 57.93 46.26
LinearTCA 58.61 58.61 58.57 58.77 58.94 58.86 59.06 59.46 59.27 59.35 59.56 59.05
LinearTCA+ 0.824 18.54 41.37 51.13 56.05 58.44 59.3 59.83 59.66 59.86 59.96 47.72

Table 8. Accuracy comparisons of different TTA methods on the
Art domain of OfficeHome dataset with varying batch sizes based
on ResNet-18. The best results are highlighted in boldface, and
the second ones are underlined.

inal LinearTCA in most domains. On OfficeHome, even
the simpler LinearTCA with real source data (b) surpasses
fine-tuning (a), highlighting the importance of source distri-
bution and the effectiveness of approximating it in TCA.

Performance under difference batch sizes. To study the
impact of batch size, we evaluate TCA’s performance and
pseudo-source estimation error under varying batch sizes in
Table 8. Even with batch size 1, LinearTCA outperforms
the source model by 2.16%, and LinearTCA+ consistently
improves over TEA across all settings. This robustness
stems from TCA’s incremental estimation of test-domain
covariance, which converges over time. While small batch
sizes mainly affect early predictions, their influence dimin-
ishes as more data is seen. Moreover, the pseudo-source
estimation error remains unaffected by batch size, since it
relies on a small set of high-confidence samples (Figure 4c)
and benefits from the same incremental computation.

6. Conclusion and Future Work
In this paper, we introduce the Test-time Correlation Align-
ment (TCA) to address the chanllenges in Test-Time Adap-
tation (TTA), such as overlooking feature correlation, over-
head computation and domain forgetting. TCA is a novel
paradigm that enhances test-time adaptation (TTA) by align-
ing the correlation of high-certainty instances and test in-
stances and is demonstrated with a theoretical guarantee.
Extensive experiments validate our theoretical insights and
show that TCA methods significantly outperforms baselines
on accuracy, efficiency, and forgetting resistance across var-
ious tasks, benchmarks and backbones.

Future work may incorporate more nonlinear transforma-
tions for more effective TCA. Additionally, with the inter-
esting “positive backward transfer” phenomenon in Table 4,
we will further investigate the underlying mechanism.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix

The structure of Appendix is as follows:

• Appendix A contains the extended related work.

• Appendix B contains all missing proofs in the main manuscript.

• Appendix C details the proposed methods LinearTCA and LinearTCA+.

• Appendix D details the dataset and implementation.

• Appendix E contains additional experimental results.

A. Extended Related Work
A.1. Correlation Alignment

Correlation alignment is a crucial technique in unsupervised domain adaptation (UDA) designed to address domain shift
problems. In real-world scenarios, significant domain shifts often occur between training and test data, which can severely
degrade the performance of conventional machine learning methods. To tackle this challenge, CORrelation ALignment
(CORAL) (Cheng et al., 2021a) is introduced to align the feature-wise statistics of the source and target distributions through
a linear transformation. Similar to CORAL, Maximum Mean Discrepancy (MMD) (Gretton et al., 2006) is another technique
for mitigating domain gap by minimizing the mean discrepancy between different domains. Unlike CORAL, which focuses
on feature-wise correlations, MMD match the instance-wise statistics of the domain distribution.

Correlation Alignment has been extended and applied in several innovative ways. DeepCORAL (Sun & Saenko, 2016)
extends CORAL to deep neural networks by employing a differentiable Correlation Alignment loss function. This enables
end-to-end domain adaptation and facilitates more effective nonlinear transformations, thereby enhancing generalization
performance on unsupervised target domains. DeerCORAL (Das et al., 2021) leverages CORAL loss in combination
with synthetic data to address long-tailed distributions in real-world scenarios. High-order CORAL (Cheng et al., 2021b),
which is inspired by MMD and CORAL, utilizes third-order correlation to capture more detailed statistical information
and effectively characterize complex, non-Gaussian distributions. IJDA (Qian et al., 2023) introduces a novel metric that
combines MMD and CORAL to improve distribution alignment and enhance domain confusion.

In addition to these advancements, recent studies have explored the integration of CORAL into more complex models and
settings. For example, CAADG (Rahman et al., 2020a) presents a domain generalization framework that combines CORAL
with adversarial learning to jointly adapt features and minimize the domain disparity. Moreover, JCGNN (Wang et al., 2021)
integrates CORAL into Graph Neural Network (GNN) to generate the domain-invariant features.

Although CORAL has achieved significant success in domain adaptation (DA), its application in test-time adaptation (TTA)
is constrained by privacy and resource limitations, which make it infeasible to compute the source correlation. This limitation
significantly hampers the practicality of CORAL in more real-world scenarios, such as test-time correlation alignment
(TCA).

A.2. Test-Time Adaptation

In real-world scenarios, test data often undergoes natural variations or corruptions, leading to distribution shifts between
the training and testing domains. Recently, various Test-Time Adaptation (TTA) approaches have been proposed to adapt
pre-trained models during testing. These methods can be broadly categorized into batch normalization calibration methods,
pseudo-labeling methods, consistency training methods, and clustering-based training methods (Liang et al., 2024). For
further discussion, we classify them into two groups based on their dependence on backpropagation, as outlined in (Niu
et al., 2024).
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Backpropagation (BP)-Free TTA: This group includes batch normalization (BN) calibration methods (Wu et al., 2024;
Schneider et al., 2020) and certain pseudo-labeling methods (Zhang et al., 2023) that do not update model parameters.
BN-based methods posit that the statistics in BN layers capture domain-specific knowledge. To mitigate the domain gap,
these methods replace training BN statistics with updated statistics computed from the target domain. Some pseudo-labeling
methods such as T3A (Iwasawa & Matsuo, 2021) utilize prototype similarity and AdaNPC (Zhang et al., 2023) utilize
k-nearest neighbor (kNN) to refine predictions. Although BP-Free TTA methods are computationally efficient, their image
corruption adaptation capabilities are often limited.

Backpropagation (BP)-Based TTA: This group encompasses certain pseudo-labeling methods (Zeng et al., 2024), consistency
training methods (Sinha et al., 2023), and clustering-based training methods (Lee et al., 2024). Some pseudo-labeling
methods use filtering strategies, such as thresholding or entropy-based approaches, to generate reliable pseudo-labels, thereby
reducing the discrepancy between predicted and pseudo-labels. For instance, PLC (Lee, 2013) updates classifier layer
parameters with certain pseudo-labels during adaptation. TSD (Wang et al., 2023) filters unreliable features or predictions
with high entropy, as lower entropy correlates with higher accuracy, and applies a consistency filter to refine instances further.
Consistency training methods aim to enhance the stability of network predictions or features by addressing variations in
input data, such as noise or perturbations, and changes in model parameters. TIPI (Nguyen et al., 2023), for example,
simulates domain shifts via input transformations and employs regularizers to maintain model invariance. Clustering-based
training methods leverage clustering techniques to group target features, and reduce uncertainty in predictions and improving
model robustness. TENT (Wang et al., 2020) minimizes prediction entropy on target data, while EATA (Niu et al., 2022)
selects reliable instances to minimize entropy loss and applies a Fisher regularizer. SAR (Niu et al., 2023) removes noisy
instances with large gradients and encourages model weights to converge toward a flat minimum, enhancing robustness
against residual noise. Generally, BP-Based TTA methods demonstrate superior domain adaptation capabilities compared to
BP-Free methods, but they typically require multiple backward propagations for each test instance, leading to computational
inefficiencies.

Despite their strengths, both BP-Free and BP-Based TTA methods perform instance-wise alignment without considering
feature correlation alignment. Our proposed method, TCA, is orthogonal to most existing TTA methods. It achieves both
instance-wise and correlation alignment without backpropagation. TCA is a theoretically supported TTA paradigm that
effectively addresses the challenges of efficiency and domain forgetting. By applying a simple linear transformation, TCA
performs both instance and correlation alignment without requiring additional model updates. Moreover, it can function as a
plug-and-play module to enhance the performance of existing TTA methods.

B. Proof of Theoretical Statement
B.1. Proof of Theorem 3.5

Here, we present Theorem 3.5 again for convenience.

Theorem 3.5 Let hθ(·) = g(f(·)) be an L-Lipschitz continuous hypothesis on H. Ω :=
⋃

x∈Dt
B(x, r∗) is the set of

balls near the test data. We sample k source instances from Ds ∩ Ω and k test instances from Dt to obtain [Xs, Zs, Ps]
and [Xt, Zt, Pt] by hθ(·), respectively. Per Assumption 3.2, Assumption 3.3 and Assumption 3.4, with a probability of

at least1− exp
(
− (ctµ

−πdI
rdIns−1)2

2ctµ−πdI
rdIns

+ log k
)

, we have

∥Zt − Zs∥ ≤ ∥Pt − Ps∥+ ∥o(kr∗)∥
∥Jg(Zs)∥

(22)

where πdI
= λ(B(0, 1)) is the volume of the dI dimension unit ball and dI is the dimension of input x. Furthermore,

considering the true source correlation Σs = E[Z̃s
T
Z̃s] and the pseudo-source correlation Σ̂s = Z̃t

T
Z̃t, where Z̃s and

Z̃t are centered. With a probability of at least min(1 − exp
(
− (ctµ

−πdI
rdIns−1)2

2ctµ−πdI
rdIns

+ log k
)
, 1 − δ), the correlation
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distance ∥Σs − Σ̂s∥ is bounded by:

∥Σs − Σ̂s∥F ≤

2∥Zs∥F (
∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F
) + (

∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F
)2 +B (23)

where Ŷt is the one-hot encoding of Pt, A = ∥o(kr∗)∥+ kϵ(hθ(Xt)) + kϵ(hθ(Xs)) represents the output error of the

sampled instances, and B =
√

log(2/δ)
2k is the sampling error.

We begin by proving Equation (22). According to Assumption 3.3 and Assumption 3.4, and under the additional assumption
that Zt = Zs + dZs, where ∀zs ∈ Zs, ∥dzs∥ ≤ r∗, the function g(·) can be expressed using a Taylor series:

Pt = g(Zt) = g(Zs + dZs) = Ps + Jg(Zs)dZs + o(dZs) (24)

Pt − Ps = Jg(Zs)dZs + o(dZs) (25)

dZs =
Pt − Ps − o(dZs)

Jg(Zs)
(26)

∥dZs∥F =

∥∥∥∥Pt − Ps − o(dZs)

Jg(Zs)

∥∥∥∥
F

≤
∥∥∥∥Pt − Ps

Jg(Zs)

∥∥∥∥
F

+

∥∥∥∥ o(dZs)

Jg(Zs)

∥∥∥∥
F

≤
∥∥∥∥Pt − Ps

Jg(Zs)

∥∥∥∥
F

+

∥∥∥∥ o(kr∗)Jg(Zs)

∥∥∥∥
F

(27)

Next, we examine the probability of the distance between zs and zt satisfying ∥dzs∥ ≤ r∗ under Assumption 3.2. Following
the result from (Zhang et al., 2023), for any xt ∈ Xt, and r < rt, the probability distribution of xs falling within a ball
B(xt, r) of radius r centered at xt is given by:

Ds(xs ∈ B(xt, r)) =

∫
B(xt,r)∩Ds

dDs

dλ
(xs) dxs ≥ µ−λ(B(xt, r) ∩ Ds) ≥ ctµ

−πdI
rdI (28)

Let I(xs ∈ B(xt, r)) be an indicator function, where I(xs ∈ B(xt, r)) is independent and identically distributed Bernoulli
random variables, representing the probability Ds(xs ∈ B(xt, r)). Let Sn(xt) =

∑ns

i=1 I(xs ∈ B(xt, r)) denotes the
number of source instances xs ∈ Ds that fall within B(xt, r). Then, Sn(xt) follows a Binomial distribution. Let
W ∼ Binomial(ns, ctµ

−πdI
rdI ). By applying Chernoff’s inequality, we obtain the probability that the number of source

data points falling within B(xt, r) is less than m:

P (Sn(xt) < m) = P (W < m) ≤ exp

(
− (E[W ]−m)2

2E[W ]

)
= exp

(
− (ctµ

−πdI
rdIns −m)2

2ctµ−πdI
rdIns

)
(29)

Let x(i)
s denote the i-th nearest data point to xt within B(xt, r). The probability that the distance between x

(i)
s and xt is less

than r is given by:

P (∥x(m)
s − xt∥ ≤ r) = P (Sn(xt) ≥ m) ≥ 1− exp

(
− (ctµ

−πdI
rdIns −m)2

2ctµ−πdI
rdIns

)
(30)

For a fixed xt, it suffices to find a single nearest neighbor xs that lies within the ball B(xt, r), and thus we set m = 1. By
applying the union bound, the desired probability can be expressed as follows:
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⋂
xt∈Xt

P (∥x(1)
s − xt∥ ≤ r)

=
⋂

xt∈Xt

P (Sn(xt) ≥ 1)

= 1−
⋃

xt∈Xt

P (Sn(xt) < 1)

≥ 1− k exp

(
− (ctµ

−πdI
rdIns − 1)2

2ctµ−πdI
rdIns

)
= 1− exp

(
− (ctµ

−πdI
rdIns − 1)2

2ctµ−πdI
rdIns

+ log k

)
(31)

Thus, with at least the probability 1− exp
(
− (ctµ

−πdI
rdIns−1)2

2ctµ−πdI
rdIns

+ log k
)

, the distance satisfies ∥dxs∥ ≤ r ≤ rt.

Finally, under Assumption 3.3, let r = r∗

L , then:

∥dzs∥F ≤ L∥dxs∥F ≤ r∗ (32)

Combining the above equations, with at least the probability:

1− exp

(
− (ctµ

−πdI
rdIns − 1)2

2ctµ−πdI
rdIns

+ log k

)
we have:

∥dZs∥F ≤
∥∥∥∥Pt − Ps

Jg(Zs)

∥∥∥∥
F

+

∥∥∥∥ o(kr∗)Jg(Zs)

∥∥∥∥
F

(33)

This completes the proof of Equation (22).

Next, we prove Equation (23). Let Σ′
s denote the correlation matrix computed from k sampled source instances Zs, and let

Σ̂s denote the pseudo-source correlation matrix computed from k sampled test instances Zt. These matrices are computed
as follows:

Σ′
s = ZT

s Zs (34)

Σ̂s = ZT
t Zt = (Zs + dZs)

T (Zs + dZs) = ZT
s Zs + ZT

s dZs + (dZs)
TZs + (dZs)

T dZs (35)

The change in the correlatione matrix is:

Σ̂s − Σ′
s = ZT

s dZs + (dZs)
TZs + (dZs)

T dZs (36)

Using the Frobenius norm, we obtain:

∥Σ̂s − Σ′
s∥F ≤ ∥ZT

s dZs + (dZs)
TZs + (dZs)

T dZs∥F ≤ 2∥Zs∥F ∥dZs∥F + ∥dZs∥2F (37)

Additionally, since Σ′
s is obtained from k source domain instances and contains statistical error relative to the true covariance

matrix Σs = E[Σ′
s]. By Hoeffding’s inequality, we have:

P (∥Σ′
s − E[Σ′

s]∥2F ≥ ϵ) ≤ 2 exp

(
−2kϵ

d2

)
(38)
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Here, d denotes the range of Σ′
s, which is set to 1. Let 2 exp

(
− 2kϵ

d2

)
= σ, then:

ϵ = −
log(σ2 )

2k
(39)

With a probability of at least 1− σ, we have:

∥Σ′
s − Σs∥F <

√
ϵ =

√
log(2/δ)

2k
(40)

By combining Equations (37) and (40), we obtain:

∥Σs − Σ̂s∥F ≤ ∥Σs − Σ′
s∥F + ∥Σ′

s − Σ̂s∥F ≤
√

log(2/δ)

2k
+ 2∥Zs∥F ∥dZs∥F + ∥dZs∥2F (41)

We can further expand Equation (41) by applying Equation (33). However, since we cannot determine the true Ps in
Equation (33), we scale ∥Pt − Ps∥F as follows:

∥Pt − Ps∥F = ∥Pt − Ŷt + Ŷt − l + l − Ps∥F
≤ ∥Pt − Ŷt∥F + ∥Ŷt − l∥F + ∥l − Ps∥F
= ∥Pt − Ŷt∥F + ϵ(h(Xt)) + ϵ(h(Xs)) (42)

where l is the true labels.

Finally, combining Equations (33), (41) and (42), we derive the following proposition: with at least min(1 −
exp

(
− (ctµ

−πdI
rdIns−1)2

2ctµ−πdI
rdIns

+ log k
)
, 1− σ):

∥Σs − Σt∥F ≤ 2∥Zs∥F

(
∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F

)
+

(
∥Ŷt − Pt∥F +A

∥Jg(Zs)∥F

)2

+B (43)

where Ŷt is the one-hot encoding of Pt, A = ∥o(kr∗)∥F + ϵ(h(Xt)) + ϵ(h(Xs)) represents the output generalization error,

and B =
√

log(2/δ)
2k is the sampling error.

B.2. Proof of Theorem 3.6

Here, we present Theorem 3.6 again for convenience.

Theorem 3.6 Let H be a hypothesis class of VC-dimension dv. If ĥ ∈ H minimizes the empirical error ϵ̂s(h) on Ds,
and h∗

t = argminh∈H ϵt(h) is the optimal hypothesis on Dt, with the assumption that all hypotheses are L-Lipschitz
continuous, then ∀δ ∈ (0, 1), with probability with at least 1− δ the following inequality holds:

ϵt(ĥ) ≤ ϵt(h
∗
t ) +O(

√
∥µs − µt∥2F + ∥Σs − Σt∥2F ) + C

where C = 2
√

dvlog(2ns)−log(δ)
2ns

+ 2γ and γ = minh∈H{ϵs(h(t)) + ϵt(h(t))}. µs, µt, Σs and Σt denote the means
and correlations of the source and test embeddings, respectively. We use O(·) to hide the constant dependence.

To complete the proof, we begin by introducing some necessary definitions and assumptions.
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Definition B.1. (Wasserstein Distance (Arjovsky et al., 2017)). The ρ-th order Wasserstein distance between two
distributions Ds and Dt is defined as:

Wρ(Ds,Dt) =

(
inf

γ∈Π[Ds,Dt]

∫∫
d(xs, xt)

ρdγ(xs, xt)

)1/ρ

(44)

where Π[Ds,Dt] is the set of all joint distributions on Xs ×Xt with marginal distributions Ds and Dt, and d(xs, xu) is
the distance function between two instances xs and xu.

The Wasserstein distance can be intuitively understood in terms of the optimal transport problem, where d(xs, xt)
ρ represents

the unit cost of transporting mass from xs ∈ Ds to xt ∈ Dt, and γ(xs, xt) is the transport plan that satisfies the marginal
constraints. According to the Kantorovich-Rubinstein theorem, the dual representation of the second-order Wasserstein
distance can be written as:

W2(Ds,Dt)

=

(
inf

γ∈Π[Ds,Dt]

∫∫
d(xs, xt)

2dγ(xs, xt)

)1/2

= sup
∥f∥L≤1

(∥µs − µt∥22

+ tr(Σs +Σt − 2(Σ1/2
s ΣtΣ

1/2
s )1/2)1/2 (45)

where µs and µt are the means of f(xs) and f(xt), respectively, and ∥f∥L = sup |f(xs)−f(xt)|
d(xs,xt)

is the Lipschitz semi-norm,
which measures the rate of change of the function f relative to the distance between xs and xt. In this paper, we use W2 as
the default and omit the subscript 2. For completeness, we present Theorem 1 from (Shen et al., 2018) as follows:

Lemma B.2. (Theorem 1 in (Shen et al., 2018)) Let H be an L-Lipschitz continuous hypothesis class with VC-dimension
dv. Given two domain distributions, Ds and Dt, let γ = minh∈H{ϵs(h(t)) + ϵt(h(t))}. The risk of hypothesis ĥ on
the test domain is then bounded by:

ϵt(ĥ) ≤ γ + ϵs(ĥ) + 2LW (Ds,Dt) (46)

From Definition B.1 and Lemma B.2, the difference between the true error on the training domain ϵs(h(t)) and the true
error on the test domain ϵt(h(t)) can be obtained:

W (DS ,DU ) =

√
∥µs − µt∥22 + tr(Σs +Σt − 2(Σ

1/2
s ΣtΣ

1/2
1 )1/2) ≤

√
∥µs − µt∥2F + ∥Σs − Σt∥2F (47)

|ϵt(ĥ)− ϵs(ĥ)| ≤ γ + 2L
√

∥µs − µt∥2F + ∥Σs − Σt∥2F (48)

we use O to hide the constant dependence. Thus, we have:

|ϵt(ĥ)− ϵs(ĥ)| ≤ γ +O(
√
∥µs − µt∥2F + ∥Σs − Σt∥2F ) (49)

Then, we provide an upper bound on the difference between the true error ϵs(h(t)) and the empirical error ϵ̂s(h(t)) on the
source domain. We apply Lemma 7 of (Gui et al., 2024):

P [|ϵt(ĥ)− ϵs(ĥ)| ≥ ϵ] ≤ (2ns)
dv exp(−2nsϵ

2) (50)

For any δ ∈ (0, 1), set δ = (2ns)
dv exp(−2nsϵ

2), we have:

ϵ =

√
dv log(2ns)− log δ

2ns
(51)
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Therefore, with probability at least 1− δ, we have:

|ϵ̂s(ĥ)− ϵs(ĥ)| ≤

√
dv log(2ns)− log δ

ns
(52)

Combining Equations (49) and (52), let h∗
j (t) = argminh∈H ϵt(h), we obtain:

ϵt(ĥ(t))

≤ ϵs(ĥ(t)) + γ +O
√
∥µs − µt∥22 + ∥Σs − Σt∥2F

≤ ϵ̂s(ĥ(t)) +

√
dv log(2ns)− log δ

2ns
+ γ +O

√
∥µs − µt∥22 + ∥Σs − Σt∥2F

≤ ϵ̂s(h
∗
t (t)) +

√
dv log(2ns)− log δ

2ns
+ γ +O

√
∥µs − µt∥22 + ∥Σs − Σt∥2F

≤ ϵs(h
∗
t (t)) + 2

√
dv log(2ns)− log δ

2ns
+ γ +O

√
∥µs − µt∥22 + ∥Σs − Σt∥2F

≤ ϵt(h
∗
t (t)) + 2

√
dv log(2ns)− log δ

2ns
+ 2γ + 2O

√
∥µs − µt∥22 + ∥Σs − Σt∥2F

= ϵt(h
∗
t (t)) +O

√
∥µs − µt∥22 + ∥Σs − Σt∥2F + C (53)

which completes the proof.

C. Method Details
In this section, we describe the steps involved in the TCA algorithms used for test-time adaptation. The algorithm aligns
feature correlations between the test and pseudo-source domains, without requiring access to the source domain data. The
steps of the algorithm are outlined in Algorithm 1.

Algorithm 1 LinearTCA Algorithm
1: Input: Test instances Xt, source model hθ.
2: Output: Final predictions P

′

T .
3: If use LinearTCA+: Update θ by Equation (1)
4: Obtain embeddings and predictions:

P̂t, Zt = hθ(Xt)

5: Select k high-certainty embeddings:
Ẑs = {Zt[i] | ωi

t ≤ ωk
min}

6: Compute linear transformation matrix W :

W = argminW

∥∥∥WTΣtW − Σ̂s

∥∥∥2
F

7: Apply transformation to embeddings:
Z

′

t = (Zt − µt)W + µ̂s

8: Generate final predictions:
P

′

t = g(Z
′

t)
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D. Experimental Details
D.1. Datasets

The datasets used in this work consist of a variety of domain-shift challenges, enabling a comprehensive evaluation of
test-time adaptation methods. The primary datasets employed include:

• PACS: The PACS dataset comprises 9,991 images across 7 distinct classes: {dog, elephant, giraffe, guitar, horse,
house, person}. These images are drawn from four domains: {art, cartoons, photos, sketches }.

• OfficeHome: This dataset contains images from 4 different domains: {art, clipart, product, real-world}, with a total of
15,500 images. It includes 65 object categories, and the challenge lies in the significant domain shifts between the
different visual styles. OfficeHome is widely used for evaluating domain generalization and adaptation methods due to
its large number of categories and diverse image sources.

• DomainNet: The DomainNet dataset is a large-scale dataset used in transfer learning, consisting of 6 domains: {clipart,
infograph, painting, quickdraw, real, and sketch}. It consists of a total of 586,575 images, with each domain containing
345 classes.

• CIFAR-10/100C: CIFAR-10 and CIFAR-100 are both foundational datasets in computer vision, containing 60,000
32x32 color images across 10 and 100 classes, respectively. The CIFAR-10/100C variants introduce additional
corruptions (e.g., noise, blur, weather conditions) to simulate real-world distribution shifts, making them highly relevant
for evaluating robustness under adversarial conditions.

• ImageNet-C: ImageNet-C is significantly larger compared to CIFAR10-C and CIFAR100-C. This dataset contains
1,281,167 training images and 50,000 test images, categorized into 1,000 classes. Like CIFAR10-C and CIFAR100-C,
ImageNet-C also includes 15 types of corruptions.

D.2. Backbones

The choice of backbone models is critical for the performance of domain adaptation algorithms, as they must efficiently
extract features from images across various domains. For this work, we select the following backbone architectures:

• ResNet-18/50: ResNet-18 and ResNet-50 are used as backbone models in this study, where ResNet-18 offers a
relatively lightweight model with fewer parameters, suitable for faster training and inference, while ResNet-50, with
its deeper architecture, provides a more expressive feature representation that may improve performance on complex
datasets.

• ViT-B/16: The Vision Transformer (ViT) is a more recent architecture that has demonstrated state-of-the-art perfor-
mance in various vision tasks by treating images as sequences of patches. ViT-B/16 refers to a ViT model with a base
configuration and a patch size of 16x16 pixels. ViT models are especially useful in scenarios where large-scale data
and diverse domains are involved.

• CLIP: Contrastive Language- Image Pre-Training (CLIP), developed by OpenAI, is a cutting-edge multimodal model
that bridges visual and textual domains through contrastive learning. CLIP employs dual encoders (ResNet/ViT
for images and Transformer for text) to project both modalities into a shared semantic space, enabling zero-shot
classification by matching image features with natural language prompts.

Both ResNet and ViT backbones are well-established in the literature and serve as strong candidates for evaluating domain
adaptation techniques, with ResNet-18/50 being more computationally efficient and ViT-B/16 being particularly effective in
capturing complex relationships across domains. In this work, the zero-shot classification model CLIP is also included as a
backbone to validate the effectiveness of our proposed methods on closed-source foundation models.

D.3. Implementation Details

Consistent with prior work (Wang et al., 2020; Niu et al., 2022; 2023; Nguyen et al., 2023; Yuan et al., 2024; Iwasawa &
Matsuo, 2021; Wang et al., 2023; Zhang et al., 2023), hyperparameter tuning in our experimental setup is conducted
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across datasets. Specifically, in the Domain Generalization task, we first identify the optimal parameter set based on the
highest accuracy achieved on the default domain (art paintings in PACS, art in OfficeHome and clipart in DomainNet).
These parameters are then applied to other domains to assess their performance. Specifically, we conduct a search for the
learning rate within the range {1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1}. For methods that
include an entropy filter component (e.g., TSD), we explore the entropy filter hyperparameter in the set {1, 5, 10, 15, 20, 50,
100, 200, 300}. For AdaNPC, we explore the hyperparameter k (the number of nearest samples used for voting) over {5, 10,
15, 20, 30, 40, 50}. For the LinearTCA method, we optimized the number of pseudo-source instances k within the range
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200, 300}. For most datasets and backbones, smaller k values generally yield
satisfactory results. For datasets with a substantial number of images per class, it is advisable to experiment with larger
k values. For the LinearTCA+ method, we conducted an optimization of k values on the basis of other top-performing
test-time adaptation method and its parameter settings.

For the Image Corruption task, we experiment with each TTA method using learning rates from {1e-7, 5e-7, 1e-6, 5e-6,
1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1} and the entropy filter hyperparameter in the set {1, 5, 10, 15, 20, 50,
100, 200, 300}. The parameter range for k in AdaNPC, LinearTCA/LinearTCA+ remains consistent with their respective
selections in Domain Generalization task. The top-performing test-time adaptation approach on the Image Corruption is
selected as the base method for LinearTCA+. The best performance results obtained for each method are selected as the final
experimental outcomes. For the pre-trained model on ImageNet-C dataset, we utilize the model provided by TorchVision.

During the Test-Time Adaptation phase, both the Domain Generalization and Image Corruption tasks utilize specific batch
size for different backbones. ResNet-18 and ResNet-50 use a batch size of 128, whereas the ViT-B/16 is configured with a
batch size of 64.

For the implementation of the TCA method, we first obtain the embeddings of all test data during the testing phase. Based
on the inter-class proportion of the test data, we perform high-certainty filtering to select instances that match this proportion
to construct the pseudo-source domain. Subsequently, we use the correlation distance between the pseudo-source domain
and the test domain to compute the linear transformation matrix W . Finally, we apply this linear transformation to the
previously retained embeddings of the test data and make final prediction.

E. Additional Experimental Results
E.1. Comparison Results Details

Tables 9 to 17 provide the detailed results of our experimental results on Domain Generalization task, and Tables 18 to 26
offers a detailed overview of the outcomes from our Image Corruption task. These results demonstrate that our TCA method
consistently outperforms other state-of-the-art TTA approaches across most domians and corruption types, effectively
validating the TCA’s capability to robustly enhance accuracy performance during the test phase.

E.2. Analysis Details

Figures 5 and 6 illustrate the adaptation process of LinearTCA to datasets with linear and nonlinear shifts, respectively.
Figures (a) to (f) depict the gradual alignment process of linear and nonlinear shifts. Notably, LinearTCA demonstrates
significantly better performance in adapting to linear shifts compared to nonlinear ones, which the LinearTCA’s proficiency
in handling simpler, linear distribution shifts while revealing its limitations when addressing more complex, nonlinear
transformations.

We also provide the code for generating source and target domain features with both linear and nonlinear distribution shifts.
The features are generated using PyTorch and serve as synthetic examples. The source domain features (Xs, X(2)

s ) consist of
clusters sampled from normal distributions with fixed offsets. The target domain features (Xt, X

(2)
t ) are scaled and shifted

versions of normal distributions to simulate linear and nonlinear domain shifts. The generated features can be visualized
using 2D scatter plots for better understanding of the distributional changes.
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Linear Shift Code:
# Linear Shift

# Source domain features
X_s = torch.cat((torch.randn(30, 2),

torch.randn(30, 2) + 15,
torch.randn(30, 2) + torch.tensor([0, 10])), dim=0)

# Target domain features
X_t = torch.cat((torch.randn(250, 2) * 2 + 7,

torch.randn(250, 2) * 2.5 + torch.tensor([0, 20]),
torch.randn(250, 2) * 3 + 21), dim=0)

Nonlinear Shift Code:
# Nonlinear Shift

# Source domain features
X_s_2 = torch.cat((torch.randn(30, 2),

torch.randn(30, 2) + 10,
torch.randn(30, 2) + torch.tensor([0, 10]),
torch.randn(30, 2) + torch.tensor([-5, -10])), dim=0)

# Target domain features
X_t_2 = torch.cat((torch.randn(250, 2) * 3 + 5,

torch.randn(250, 2) + 10,
torch.randn(250, 2) * 2 + torch.tensor([0, 20]),
torch.randn(250, 2) * 2.5 + torch.tensor([-9, 1])), dim=0)

Backbone Method PACS Avg Hyper-parameters
A C P S

ResNet-18

Source (He et al., 2016) 78.37 77.39 95.03 76.58 81.84 nan
BN (Schneider et al., 2020) 80.91 80.80 95.09 73.81 82.65 nan
T3A (Iwasawa & Matsuo, 2021) 80.27 79.56 95.57 77.40 83.20 fk=50
AdaNPC (Zhang et al., 2023) 80.81 79.14 96.17 77.81 83.48 fk=100 k=5
TENT (Wang et al., 2020) 82.86 82.12 96.11 79.82 85.23 lr=5e-3
PLC (Lee, 2013) 81.69 81.36 95.87 73.71 83.16 lr=1e-3
EATA (Niu et al., 2022) 82.71 81.36 94.79 74.34 83.30 lr=1e-2
SAR (Niu et al., 2023) 83.30 82.55 95.09 80.68 85.41 lr=1e-1
TIPI (Nguyen et al., 2023) 85.50 84.90 96.05 83.13 87.39 lr=5e-3
TEA (Yuan et al., 2024) 86.47 85.79 95.69 80.81 87.19 lr=5e-3
TSD (Wang et al., 2023) 86.96 86.73 96.41 81.22 87.83 lr=1e-4 fk=100
LinearTCA 80.91 81.02 95.69 76.74 83.59 fkTCA=30
LinearTCA + 88.38 87.12 96.59 83.00 88.77 TSD fkTCA=25

Table 9. Accuracy comparison of different TTA methods on PACS dataset based on ResNet-18 backbone. The best results are highlighted
in boldface, and the second ones are underlined.
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Backbone Method PACS Avg Hyper-parameters
A C P S

ResNet-50

Source (He et al., 2016) 83.89 81.02 96.17 78.04 84.78 nan
BN (Schneider et al., 2020) 85.50 85.62 96.77 72.05 84.99 nan
T3A (Iwasawa & Matsuo, 2021) 84.86 82.47 97.01 78.52 85.71 fk=100
AdaNPC (Zhang et al., 2023) 85.11 82.85 97.13 79.41 86.12 fk=200 k=10
TENT (Wang et al., 2020) 88.09 87.33 97.19 79.69 88.07 lr=1e-3
PLC (Lee, 2013) 86.52 84.94 97.01 77.88 86.59 lr=1e-3
EATA (Niu et al., 2022) 84.72 85.20 96.35 72.46 84.68 lr=5e-5
SAR (Niu et al., 2023) 85.55 85.62 96.77 75.24 85.79 lr=1e-2
TIPI (Nguyen et al., 2023) 88.18 87.93 97.13 78.80 88.01 lr=1e-3
TEA (Yuan et al., 2024) 88.67 87.80 97.54 80.99 88.75 lr=1e-3
TSD (Wang et al., 2023) 90.43 89.89 97.84 81.80 89.99 lr=1e-4 fk=100
LinearTCA 86.28 83.92 96.95 79.99 86.78 fkTCA=30
LinearTCA + 90.92 90.10 97.84 83.86 90.68 TSD fkTCA=30

Table 10. Accuracy comparison of different TTA methods on PACS dataset based on ResNet-50 backbone. The best results are highlighted
in boldface, and the second ones are underlined.

Backbone Method PACS Avg Hyper-parameters
A C P S

ViT-B/16

Source (He et al., 2016) 86.96 84.30 98.02 78.77 87.02 nan
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 nan
T3A (Iwasawa & Matsuo, 2021) 88.23 85.96 98.86 79.18 88.06 fk=50
AdaNPC (Zhang et al., 2023) 89.01 87.37 98.98 81.06 89.11 fk=200 k=10
TENT (Wang et al., 2020) 89.60 73.08 97.90 79.33 84.98 lr=5e-3
PLC (Lee, 2013) 87.70 85.28 98.62 80.30 87.97 lr=5e-4
EATA (Niu et al., 2022) 87.45 84.17 97.84 76.92 86.60 lr=5e-3
SAR (Niu et al., 2023) 86.96 84.30 98.02 79.18 87.12 lr=5e-2
TIPI (Nguyen et al., 2023) 87.99 84.17 98.20 81.55 87.98 lr=5e-4
TEA (Yuan et al., 2024) 88.77 85.41 97.96 77.35 87.37 lr=1e-3
TSD (Wang et al., 2023) 90.72 85.41 97.96 59.63 83.43 lr=1e-5 fk=20
LinearTCA 88.57 86.52 98.26 81.09 88.61 fkTCA=15
LinearTCA + 88.96 86.90 98.26 83.05 89.30 TIPI fkTCA=30

Table 11. Accuracy comparison of different TTA methods on PACS dataset based on ViT-B/16 backbone. The best results are highlighted
in boldface, and the second ones are underlined.

Backbone Method OfficeHome Avg Hyper-parameters
A C P R

ResNet-18

Source (He et al., 2016) 56.45 48.02 71.34 72.23 62.01 nan
BN (Schneider et al., 2020) 55.62 49.32 70.60 72.66 62.05 nan
T3A (Iwasawa & Matsuo, 2021) 56.61 50.06 73.39 72.99 63.26 fk=20
AdaNPC (Zhang et al., 2023) 55.95 49.42 73.10 73.05 62.88 fk=20 k=5
TENT (Wang et al., 2020) 56.94 50.65 71.86 72.92 63.09 lr=1e-3
PLC (Lee, 2013) 55.95 49.37 70.83 72.73 62.22 lr=5e-5
EATA (Niu et al., 2022) 56.41 49.62 71.66 72.27 62.49 lr=1e-3
SAR (Niu et al., 2023) 57.15 50.31 70.24 72.34 62.51 lr=5e-2
TIPI (Nguyen et al., 2023) 57.03 50.61 72.07 73.28 63.25 lr=1e-3
TEA (Yuan et al., 2024) 58.55 50.47 71.75 72.94 63.43 lr=5e-4
TSD (Wang et al., 2023) 58.06 49.81 71.37 70.67 62.47 lr=1e-4 fk=10
LinearTCA 59.46 50.40 72.02 72.78 63.66 fkTCA=10
LinearTCA + 59.83 51.80 72.29 73.17 64.27 TEA fkTCA=10

Table 12. Accuracy comparison of different TTA methods on OfficeHome dataset based on ResNet-18 backbone. The best results are
highlighted in boldface, and the second ones are underlined.
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Backbone Method OfficeHome Avg Hyper-parameters
A C P R

ResNet-50

Source (He et al., 2016) 64.85 52.26 75.04 75.88 67.01 nan
BN (Schneider et al., 2020) 63.54 52.71 73.89 75.05 66.30 nan
T3A (Iwasawa & Matsuo, 2021) 65.02 53.31 76.10 76.96 67.85 fk=100
AdaNPC (Zhang et al., 2023) 63.74 52.33 75.72 76.43 67.05 fk=200 k=5
TENT (Wang et al., 2020) 64.65 54.85 75.04 76.15 67.67 lr=5e-4
PLC (Lee, 2013) 63.82 52.83 74.09 75.03 66.44 lr=5e-5
EATA (Niu et al., 2022) 63.95 53.95 74.57 75.56 67.01 lr=1e-3
SAR (Niu et al., 2023) 64.77 55.92 75.24 75.81 67.94 lr=1e-2
TIPI (Nguyen et al., 2023) 64.73 56.24 75.47 77.00 68.36 lr=1e-3
TEA (Yuan et al., 2024) 65.97 57.57 74.72 75.97 68.56 lr=1e-3
TSD (Wang et al., 2023) 65.51 56.54 76.17 76.31 68.63 lr=1e-4 fk=1
LinearTCA 66.50 54.39 75.76 77.07 68.43 fkTCA=5
LinearTCA + 67.16 56.22 76.86 77.05 69.32 TSD fkTCA=10

Table 13. Accuracy comparison of different TTA methods on OfficeHome dataset based on ResNet-50 backbone. The best results are
highlighted in boldface, and the second ones are underlined.

Backbone Method OfficeHome Avg Hyper-parameters
A C P R

ViT-B/16

Source (He et al., 2016) 73.51 63.18 82.68 85.06 76.11 nan
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 nan
T3A (Iwasawa & Matsuo, 2021) 77.79 65.57 85.92 86.18 78.87 fk=5
AdaNPC (Zhang et al., 2023) 75.57 63.76 84.30 85.43 77.26 fk=200 k=5
TENT (Wang et al., 2020) 74.58 64.15 83.74 85.36 76.95 lr=1e-3
PLC (Lee, 2013) 74.41 63.51 82.81 85.31 76.51 lr=1e-4
EATA (Niu et al., 2022) 74.17 64.81 83.58 85.38 76.98 lr=1e-3
SAR (Niu et al., 2023) 74.95 63.07 83.58 85.06 76.66 lr=1e-1
TIPI (Nguyen et al., 2023) 74.50 64.47 83.92 85.49 77.09 lr=1e-3
TEA (Yuan et al., 2024) 73.71 63.23 82.74 84.92 76.15 lr=1e-4
TSD (Wang et al., 2023) 75.94 55.95 84.75 85.33 75.49 lr=1e-5 fk=20
LinearTCA 76.02 67.35 84.12 85.56 78.26 fkTCA=5
LinearTCA + 77.21 68.36 84.64 85.88 79.02 TIPI fkTCA=5

Table 14. Accuracy comparison of different TTA methods on OfficeHome dataset based on ViT-B/16 backbone. The best results are
highlighted in boldface, and the second ones are underlined.

Backbone Method DomainNet Avg Hyper-parameters
C I P Q R S

ResNet-18

Source (He et al., 2016) 57.30 16.86 45.03 12.69 56.89 46.00 39.13 nan
BN (Schneider et al., 2020) 57.26 11.55 43.32 11.77 56.58 47.09 37.93 nan
T3A (Iwasawa & Matsuo, 2021) 58.44 18.57 46.80 14.54 57.66 47.72 40.62 fk=100
AdaNPC (Zhang et al., 2023) 57.61 15.83 44.89 18.44 59.72 46.53 40.50 fk=100 k=10
TENT (Wang et al., 2020) 58.41 13.09 45.17 13.02 57.89 48.94 39.42 lr=1e-4
PLC (Lee, 2013) 57.45 12.60 44.77 10.01 55.74 47.20 37.96 lr=1e-5
EATA (Niu et al., 2022) 59.18 16.22 46.65 18.04 59.59 50.21 41.65 lr=1e-3
SAR (Niu et al., 2023) 59.13 13.10 45.75 4.88 58.25 49.83 38.49 lr=5e-3
TIPI (Nguyen et al., 2023) 58.42 11.68 42.53 5.37 50.76 47.58 36.05 lr=5e-4
TEA (Yuan et al., 2024) 58.01 12.83 45.10 14.33 57.55 48.80 39.43 lr=5e-5
TSD (Wang et al., 2023) 57.73 12.19 44.58 12.78 55.94 48.31 38.59 lr=1e-5 fk=100
LinearTCA 58.67 18.60 46.85 14.88 57.93 47.80 40.79 fkTCA=10
LinearTCA + 59.95 16.89 47.68 18.35 59.67 50.66 42.20 EATA fkTCA=10

Table 15. Accuracy comparison of different TTA methods on DomainNet dataset based on ResNet-18 backbone. The best results are
highlighted in boldface, and the second ones are underlined.
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Test-time Correlation Alignment

Backbone Method DomainNet Avg Hyper-parameters
C I P Q R S

ResNet-50

Source (He et al., 2016) 63.68 20.93 50.35 12.95 62.16 51.42 43.58 nan
BN (Schneider et al., 2020) 63.30 14.84 48.54 10.83 62.02 52.12 41.94 nan
T3A (Iwasawa & Matsuo, 2021) 63.76 21.06 49.82 18.46 64.05 52.39 44.92 fk=100
AdaNPC (Zhang et al., 2023) 64.38 20.12 51.07 17.34 65.59 52.51 45.17 fk=200 k=10
TENT (Wang et al., 2020) 64.95 17.46 51.58 11.28 64.04 54.51 43.97 lr=1e-4
PLC (Lee, 2013) 63.56 14.89 49.09 8.83 60.83 52.61 41.63 lr=1e-5
EATA (Niu et al., 2022) 65.89 19.88 52.67 20.36 66.58 55.99 46.89 lr=5e-4
SAR (Niu et al., 2023) 65.44 14.63 50.68 3.94 63.94 54.49 42.19 lr=5e-3
TIPI (Nguyen et al., 2023) 64.97 17.47 51.63 11.67 64.03 54.69 44.08 lr=1e-4
TEA (Yuan et al., 2024) 64.87 16.95 51.40 11.48 61.90 54.31 43.48 lr=1e-4
TSD (Wang et al., 2023) 64.31 16.53 50.75 8.52 58.97 53.63 42.12 lr=5e-5 fk=5
LinearTCA 64.58 23.79 50.06 14.10 63.60 53.21 44.89 fkTCA=5
LinearTCA + 66.46 21.04 51.61 20.47 66.86 56.57 47.17 EATA fkTCA=5

Table 16. Accuracy comparison of different TTA methods on DomainNet dataset based on ResNet-50 backbone. The best results are
highlighted in boldface, and the second ones are underlined.

Backbone Method DomainNet Avg Hyper-parameters
C I P Q R S

ViT-B/16

Source (He et al., 2016) 71.62 25.59 57.34 18.07 71.90 57.24 50.29 nan
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan
T3A (Iwasawa & Matsuo, 2021) 73.56 26.95 59.77 27.34 75.77 60.24 53.94 fk=100
AdaNPC (Zhang et al., 2023) 73.76 25.52 59.86 24.42 75.99 60.14 53.28 fk=200 k=5
TENT (Wang et al., 2020) 72.65 18.00 35.08 4.20 74.03 35.82 39.96 lr=1e-4
PLC (Lee, 2013) 72.29 19.27 56.69 5.00 72.45 58.04 47.29 lr=5e-5
EATA (Niu et al., 2022) 73.91 28.76 61.71 24.79 75.39 61.84 54.40 lr=1e-3
SAR (Niu et al., 2023) 73.06 17.42 40.94 11.37 73.67 40.39 42.81 lr=5e-2
TIPI (Nguyen et al., 2023) 72.71 17.62 33.37 4.54 73.98 35.96 39.70 lr=1e-4
TEA (Yuan et al., 2024) 71.96 24.17 55.31 8.83 72.20 58.00 48.41 lr=5e-5
TSD (Wang et al., 2023) 72.40 23.47 59.20 4.12 73.54 59.60 48.72 lr=1e-6 fk=50
LinearTCA 73.37 28.42 60.88 20.66 73.39 60.03 52.79 fkTCA=5
LinearTCA + 75.02 30.11 63.33 25.14 76.05 63.31 55.49 EATA fkTCA=5

Table 17. Accuracy comparison of different TTA methods on DomainNet dataset based on ViT-B/16 backbone. The best results are
highlighted in boldface, and the second ones are underlined.

Method CIFAR-10-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 27.43 33.56 21.57 43.64 40.48 51.26 51.29 68.18 54.52 66.65 87.50 27.59 67.06 48.86 72.37 50.80
BN (Schneider et al., 2020) 66.05 68.22 56.83 82.34 57.86 79.78 82.32 74.99 74.30 78.85 87.22 81.80 70.31 73.61 71.00 73.70
T3A (Iwasawa & Matsuo, 2021) 44.16 50.32 29.64 56.98 49.02 60.85 62.29 70.20 60.83 70.75 87.23 37.68 71.60 58.59 73.22 58.89
AdaNPC (Zhang et al., 2023) 40.96 47.54 27.01 54.84 46.47 59.93 61.91 70.12 60.59 71.18 87.16 35.13 71.06 58.15 73.73 57.72
TENT (Wang et al., 2020) 65.09 72.78 58.93 82.78 59.02 81.01 83.92 77.82 75.83 79.34 88.10 82.77 72.10 76.47 72.26 75.21
PLC (Lee, 2013) 66.06 68.25 56.92 82.66 57.69 79.78 82.29 74.84 74.33 78.91 87.07 81.82 70.49 73.63 71.00 73.72
EATA (Niu et al., 2022) 66.89 68.21 56.76 82.49 57.59 80.10 82.09 74.90 74.35 78.82 87.13 82.04 70.66 74.16 71.73 73.86
SAR (Niu et al., 2023) 66.28 68.23 58.30 82.34 59.20 79.78 82.32 74.99 74.53 78.85 87.22 82.51 70.32 73.61 71.00 73.97
TIPI (Nguyen et al., 2023) 67.69 73.21 59.54 83.80 62.36 81.29 84.15 78.15 76.90 79.91 88.63 82.99 72.46 77.34 73.11 76.10
TEA (Yuan et al., 2024) 70.76 72.46 61.44 83.40 60.45 81.56 84.05 77.57 76.12 81.07 87.97 82.82 72.51 76.51 74.26 76.20
TSD (Wang et al., 2023) 72.33 75.73 64.84 83.24 61.45 82.49 83.92 78.29 75.79 81.96 87.55 79.43 73.07 78.48 75.36 76.93
LinearTCA 52.17 55.61 36.34 57.08 48.18 62.25 62.26 71.94 67.17 73.09 87.23 41.70 70.28 56.43 72.68 60.96
LinearTCA + 73.11 75.93 65.30 83.23 62.13 82.21 83.87 78.41 76.25 82.12 87.42 79.32 73.48 78.60 75.62 77.13

Table 18. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, based on ResNet-18 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

25



Test-time Correlation Alignment

Method CIFAR-10-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 30.81 37.09 24.71 38.07 41.66 51.97 51.17 68.49 60.52 66.79 86.19 28.25 65.19 38.95 71.66 50.77
BN (Schneider et al., 2020) 61.98 63.05 56.25 82.58 54.49 80.11 82.61 74.16 72.36 79.28 87.04 81.06 67.16 71.27 70.22 72.24
T3A (Iwasawa & Matsuo, 2021) 45.34 49.51 36.76 39.10 46.88 56.85 53.52 65.88 57.84 68.82 84.61 33.13 68.20 46.08 70.49 54.87
AdaNPC (Zhang et al., 2023) 41.93 47.29 32.50 41.60 45.70 56.09 56.38 67.25 59.62 69.90 85.51 32.24 68.27 46.08 70.88 54.75
TENT (Wang et al., 2020) 62.04 63.30 56.26 82.66 54.52 80.09 82.68 74.40 72.43 79.20 87.21 81.11 67.34 71.39 70.32 72.33
PLC (Lee, 2013) 62.35 62.71 56.09 82.57 54.07 80.24 82.91 74.54 72.26 79.37 87.20 81.09 67.62 71.39 70.71 72.34
EATA (Niu et al., 2022) 62.61 63.63 56.13 82.34 54.71 79.97 82.16 74.89 72.16 79.27 87.66 81.32 67.76 70.81 70.28 72.38
SAR (Niu et al., 2023) 65.12 66.49 58.49 82.58 55.65 80.12 82.61 75.10 73.60 79.63 87.04 81.56 68.49 72.63 71.47 73.37
TIPI (Nguyen et al., 2023) 62.02 63.61 55.37 82.80 54.43 80.29 83.11 74.81 72.77 78.96 87.52 81.35 67.49 71.72 70.70 72.46
TEA (Yuan et al., 2024) 63.92 65.15 55.73 82.32 52.34 80.54 83.14 74.99 73.17 80.08 87.58 80.90 67.57 70.47 70.26 72.54
TSD (Wang et al., 2023) 64.42 65.56 56.16 83.06 53.95 80.88 83.32 75.18 73.58 80.17 87.84 81.49 68.38 72.91 71.61 73.23
LinearTCA 52.05 55.76 43.06 51.79 49.06 61.68 62.03 71.53 67.67 72.83 86.04 37.62 69.92 50.28 72.69 60.27
LinearTCA + 65.27 66.63 59.15 82.87 56.37 80.78 82.80 75.05 72.69 79.61 86.85 80.97 69.10 72.74 72.05 73.53

Table 19. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, based on ResNet-50 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method CIFAR-10-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 37.25 44.31 39.94 83.16 70.31 83.54 85.80 87.15 85.06 79.19 92.75 29.73 84.73 84.68 84.58 71.48
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T3A (Iwasawa & Matsuo, 2021) 47.84 52.78 51.52 83.16 73.06 83.35 85.66 87.04 84.96 79.53 92.72 36.44 84.49 85.72 84.81 74.21
AdaNPC (Zhang et al., 2023) 48.70 54.14 50.95 83.31 74.10 83.46 85.86 87.20 85.31 80.09 92.70 37.92 84.70 85.84 84.70 74.60
TENT (Wang et al., 2020) 37.25 44.31 39.94 83.16 70.31 83.54 85.80 87.15 85.05 79.19 92.75 29.73 84.73 84.68 84.58 71.48
PLC (Lee, 2013) 37.18 44.27 39.84 83.15 70.31 83.54 85.77 87.15 85.07 79.19 92.75 29.72 84.74 84.69 84.59 71.46
EATA (Niu et al., 2022) 46.55 48.34 31.91 86.30 69.31 84.78 86.56 88.62 87.25 80.32 93.05 45.84 84.87 86.99 84.29 73.67
SAR (Niu et al., 2023) 37.25 44.31 39.94 83.16 70.31 83.54 85.80 87.15 85.06 79.19 92.75 29.73 84.73 84.68 84.58 71.48
TIPI (Nguyen et al., 2023) 37.24 44.32 39.93 83.17 70.30 83.55 85.77 87.16 85.07 79.18 92.74 29.73 84.75 84.69 84.58 71.48
TEA (Yuan et al., 2024) 37.23 44.31 39.92 83.17 70.30 83.56 85.79 87.15 85.06 79.20 92.75 29.73 84.74 84.69 84.58 71.48
TSD (Wang et al., 2023) 37.17 44.22 39.80 83.18 70.35 83.58 85.80 87.16 85.08 79.20 92.75 29.70 84.74 84.70 84.59 71.47
LinearTCA 56.10 60.11 55.13 85.21 76.10 84.90 87.50 87.89 87.00 82.26 92.86 45.61 85.64 87.20 85.37 77.26
LinearTCA + 64.74 64.97 54.15 87.24 75.39 85.88 88.35 88.94 88.24 83.10 93.09 60.32 85.72 88.16 84.96 79.55

Table 20. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, based on ViT-B/16 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method CIFAR-100-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 10.46 12.49 3.36 34.44 23.63 38.10 42.67 39.25 33.01 32.84 55.78 11.55 46.48 34.88 46.15 31.01
BN (Schneider et al., 2020) 39.78 39.81 29.95 56.18 40.92 54.71 58.68 48.52 49.59 46.79 61.89 48.63 50.26 54.61 45.37 48.38
T3A (Iwasawa & Matsuo, 2021) 10.51 11.59 3.93 36.77 26.94 40.54 45.08 39.49 34.68 35.63 56.05 13.23 47.61 40.63 45.15 32.52
AdaNPC (Zhang et al., 2023) 10.01 10.69 3.64 33.57 24.38 37.00 41.06 35.88 31.45 32.28 52.19 12.29 43.32 37.21 40.50 29.70
TENT (Wang et al., 2020) 43.19 44.38 31.70 58.86 43.29 56.57 61.00 51.19 50.66 50.75 64.02 47.77 52.08 57.74 49.11 50.82
PLC (Lee, 2013) 39.65 39.47 30.25 56.31 40.70 54.50 58.88 48.56 49.37 46.73 62.04 48.68 50.44 54.20 45.45 48.35
EATA (Niu et al., 2022) 41.95 41.87 31.96 57.55 42.62 55.94 59.00 49.47 50.43 48.48 62.54 49.57 51.12 55.64 47.50 49.71
SAR (Niu et al., 2023) 44.07 45.12 33.37 59.80 43.69 57.21 61.15 51.70 51.97 51.49 63.90 50.46 52.64 57.97 49.52 51.60
TIPI (Nguyen et al., 2023) 44.04 45.11 32.86 57.89 43.85 55.87 60.08 52.16 51.69 49.38 63.40 44.24 51.43 57.42 49.76 50.61
TEA (Yuan et al., 2024) 43.78 43.43 32.68 58.20 42.62 56.30 60.67 50.84 51.32 50.16 63.87 49.95 51.78 56.60 47.83 50.67
TSD (Wang et al., 2023) 41.77 42.52 32.16 57.88 41.38 56.08 59.84 49.30 50.43 49.65 62.83 43.52 50.49 55.23 47.20 49.35
LinearTCA 13.98 16.45 5.42 38.96 29.15 42.56 46.30 42.40 39.41 39.56 56.78 15.33 49.51 42.56 47.07 35.03
LinearTCA + 44.70 45.77 33.76 59.77 44.45 57.41 61.49 52.25 52.52 51.92 64.25 51.18 53.28 58.68 49.81 52.08

Table 21. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, based on ResNet-18 backbone.
The best results are highlighted in boldface, and the second ones are underlined.
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Test-time Correlation Alignment

Method CIFAR-100-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 17.23 19.42 9.77 35.34 31.87 39.15 41.98 41.99 38.68 32.00 54.56 11.18 47.57 42.51 47.02 34.02
BN (Schneider et al., 2020) 42.09 42.22 31.37 56.23 42.36 54.61 57.22 48.43 49.61 45.29 60.06 45.07 50.52 55.09 45.96 48.41
T3A (Iwasawa & Matsuo, 2021) 18.46 20.58 10.98 37.34 34.81 40.71 44.04 40.74 39.09 33.48 53.89 10.94 47.23 45.59 46.20 34.94
AdaNPC (Zhang et al., 2023) 17.41 18.85 10.53 35.26 31.43 37.49 40.99 37.25 35.78 30.65 49.75 10.68 43.74 41.78 42.53 32.27
TENT (Wang et al., 2020) 43.96 44.24 31.76 58.87 43.16 56.70 59.49 50.64 50.86 49.07 60.81 43.55 52.37 57.94 48.39 50.12
PLC (Lee, 2013) 41.80 42.50 31.57 55.98 42.62 54.60 57.27 48.35 48.83 45.28 60.03 44.77 50.47 55.23 46.34 48.38
EATA (Niu et al., 2022) 44.69 44.76 34.96 57.10 43.49 56.26 58.80 49.86 50.29 47.29 61.00 45.32 51.65 56.05 46.81 49.89
SAR (Niu et al., 2023) 44.59 44.64 34.57 58.26 43.55 56.41 58.62 50.08 50.74 47.77 61.39 46.76 51.49 56.85 48.07 50.25
TIPI (Nguyen et al., 2023) 46.12 46.31 34.13 57.48 43.46 55.63 58.51 51.32 52.45 48.56 61.05 40.80 51.28 57.93 49.48 50.30
TEA (Yuan et al., 2024) 44.64 45.79 34.71 57.63 43.66 56.11 58.37 50.18 50.21 48.86 61.11 45.59 51.21 56.46 48.61 50.21
TSD (Wang et al., 2023) 45.37 46.18 34.51 57.85 42.44 55.98 58.50 50.33 50.54 49.66 60.61 36.94 50.92 56.05 48.19 49.60
LinearTCA 21.90 24.46 12.80 39.80 36.53 42.66 45.80 43.03 42.66 36.47 55.13 12.97 49.49 47.41 48.09 37.28
LinearTCA + 47.29 48.95 36.13 57.60 44.46 55.68 58.80 53.31 52.11 48.68 61.78 41.87 51.49 58.48 50.99 51.17

Table 22. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, based on ResNet-50 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method CIFAR-100-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 21.71 24.74 19.53 62.41 43.14 61.13 67.65 66.34 67.48 54.03 77.43 33.26 60.09 60.48 56.17 51.71
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T3A (Iwasawa & Matsuo, 2021) 24.32 27.25 23.66 65.04 47.67 63.22 69.56 67.46 69.16 57.09 78.16 36.55 62.36 63.61 58.53 54.24
AdaNPC (Zhang et al., 2023) 22.75 25.77 22.65 63.54 46.46 62.02 68.99 66.78 68.50 56.45 77.60 35.34 61.63 62.87 56.82 53.21
TENT (Wang et al., 2020) 10.95 13.94 4.40 66.79 45.92 67.13 71.28 67.83 69.92 59.26 78.42 49.29 62.18 66.26 57.29 52.72
PLC (Lee, 2013) 21.66 24.71 19.49 62.42 43.16 61.15 67.61 66.34 67.53 54.04 77.44 33.29 60.10 60.49 56.17 51.71
EATA (Niu et al., 2022) 50.06 52.96 44.88 70.07 54.45 69.01 70.21 66.45 70.10 62.13 78.08 60.10 62.59 66.26 58.61 62.40
SAR (Niu et al., 2023) 16.59 18.07 9.89 67.86 47.37 67.31 71.48 67.99 70.19 60.58 78.17 52.90 61.29 66.11 58.56 54.29
TIPI (Nguyen et al., 2023) 7.95 9.85 3.77 67.08 45.89 66.96 71.98 68.01 70.63 59.47 78.24 47.70 62.37 67.37 58.17 52.36
TEA (Yuan et al., 2024) 10.99 17.39 8.09 66.54 45.55 65.24 70.78 67.06 69.09 58.30 76.44 45.15 61.60 64.82 57.56 52.31
TSD (Wang et al., 2023) 21.53 24.49 19.03 62.61 43.25 61.34 67.72 66.34 67.67 54.15 77.46 33.36 60.10 60.73 56.26 51.74
LinearTCA 27.46 30.02 25.33 65.29 47.98 64.26 69.91 68.32 70.01 58.49 78.16 39.42 62.74 65.09 58.82 55.42
LinearTCA + 51.98 54.92 46.74 71.00 56.07 69.73 71.06 67.56 71.01 63.93 78.61 62.35 63.42 67.73 59.49 63.71

Table 23. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, based on ViT-B/16 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method ImageNet-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 1.54 2.27 1.48 11.44 8.68 11.12 17.62 10.64 16.21 14.02 51.52 3.44 16.49 23.35 30.67 14.70
BN (Schneider et al., 2020) 13.65 14.84 14.17 11.95 13.04 23.34 33.89 29.18 28.42 40.80 58.11 12.09 38.92 44.35 37.08 27.59
T3A (Iwasawa & Matsuo, 2021) 1.61 2.35 1.65 10.57 8.20 10.12 17.38 11.03 16.14 15.19 49.23 3.24 18.00 23.37 30.31 14.56
AdaNPC (Zhang et al., 2023) 1.42 2.01 1.42 8.23 6.49 7.64 13.82 8.50 12.08 11.97 42.81 2.77 15.41 19.92 24.49 11.93
TENT (Wang et al., 2020) 23.45 25.71 24.08 18.79 20.90 33.54 42.85 39.64 32.95 50.36 60.13 10.68 48.81 51.96 46.98 35.39
PLC (Lee, 2013) 13.64 14.85 14.16 11.96 13.02 23.36 33.91 29.18 28.43 40.78 58.12 12.08 38.91 44.35 37.08 27.59
EATA (Niu et al., 2022) 28.24 30.16 28.88 25.30 25.74 36.61 43.71 41.80 36.42 50.87 59.12 31.75 49.10 52.33 47.82 39.19
SAR (Niu et al., 2023) 28.04 29.59 27.88 23.66 23.90 36.16 43.40 40.94 36.71 51.01 60.18 27.38 48.95 52.47 47.98 38.55
TIPI (Nguyen et al., 2023) 24.45 26.52 24.75 20.37 22.25 33.65 42.46 39.31 33.47 49.93 59.44 12.53 48.41 51.51 46.92 35.73
TEA (Yuan et al., 2024) 18.82 20.50 19.00 16.27 17.68 28.51 39.17 35.19 32.26 46.92 59.16 15.42 44.39 48.81 43.64 32.38
TSD (Wang et al., 2023) 15.60 16.99 16.13 15.59 15.41 28.69 38.07 32.92 30.01 45.90 58.69 7.62 41.06 47.47 41.52 30.11
LinearTCA 2.22 3.05 2.15 11.44 9.11 11.56 19.46 13.19 18.71 17.07 52.18 3.70 19.56 25.43 32.30 16.07
LinearTCA + 28.25 30.20 28.80 25.34 25.74 36.50 43.73 41.82 36.52 50.91 59.14 31.79 49.17 52.37 47.88 39.21

Table 24. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, based on ResNet-18 backbone.
The best results are highlighted in boldface, and the second ones are underlined.
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Test-time Correlation Alignment

Method ImageNet-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 3.00 3.70 2.64 17.91 9.74 14.71 22.45 16.60 23.06 24.01 59.12 5.38 16.51 20.87 32.63 18.15
BN (Schneider et al., 2020) 16.32 17.09 16.97 15.23 15.54 26.64 39.38 34.46 33.45 48.43 65.67 17.08 44.62 49.49 40.47 32.06
T3A (Iwasawa & Matsuo, 2021) 2.97 3.38 2.65 17.05 9.37 13.69 22.63 16.98 22.83 25.34 57.68 5.05 18.41 20.31 32.36 18.05
AdaNPC (Zhang et al., 2023) 2.61 3.00 2.36 14.19 7.92 11.14 18.88 14.22 18.65 22.08 52.65 4.21 16.57 17.73 28.04 15.62
TENT (Wang et al., 2020) 26.70 28.90 28.01 25.01 24.72 38.66 48.84 46.04 40.49 57.04 67.96 24.42 53.73 57.72 51.54 41.32
PLC (Lee, 2013) 16.32 17.09 16.96 15.24 15.54 26.64 39.39 34.44 33.45 48.44 65.66 17.07 44.61 49.50 40.47 32.06
EATA (Niu et al., 2022) 35.38 37.75 36.34 33.29 32.74 47.51 53.07 52.53 46.30 60.54 68.06 43.82 58.42 61.15 55.72 48.17
SAR (Niu et al., 2023) 34.39 35.42 35.77 32.27 31.15 45.34 51.58 50.03 44.20 59.27 68.14 35.58 56.82 60.06 54.52 46.30
TIPI (Nguyen et al., 2023) 27.96 31.36 31.37 24.74 24.39 42.68 49.93 48.01 37.40 57.94 66.51 16.66 56.19 58.94 53.90 41.87
TEA (Yuan et al., 2024) 22.51 23.94 22.70 20.70 21.00 36.06 46.93 44.91 39.37 56.06 67.01 22.79 52.65 56.86 49.99 38.90
TSD (Wang et al., 2023) 18.90 18.80 19.63 18.31 17.49 31.12 44.27 39.74 36.02 53.38 67.00 13.06 47.97 54.54 45.95 35.08
LinearTCA 3.35 4.39 3.08 17.67 10.01 15.12 22.89 19.21 25.61 27.30 59.50 5.81 20.39 21.72 34.11 19.34
LinearTCA + 35.44 37.78 36.29 33.37 32.80 47.63 53.32 52.45 46.32 60.55 68.04 43.90 58.61 61.08 55.71 48.22

Table 25. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, based on ResNet-50 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method ImageNet-C Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 35.09 32.16 35.88 31.42 25.31 39.45 31.55 24.47 30.13 54.74 64.48 48.98 34.20 53.17 56.45 39.83
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T3A (Iwasawa & Matsuo, 2021) 27.87 28.15 30.27 32.42 27.00 40.66 33.52 25.95 30.76 56.32 64.85 50.20 37.99 53.75 57.01 39.78
AdaNPC (Zhang et al., 2023) 30.01 26.86 30.98 28.19 23.40 36.38 29.65 21.18 26.59 52.78 61.24 44.53 34.44 50.50 54.98 36.78
TENT (Wang et al., 2020) 51.19 50.00 52.48 47.35 42.95 54.40 45.19 7.43 16.27 64.87 70.90 64.35 25.97 63.35 63.48 48.01
PLC (Lee, 2013) 29.10 29.61 31.58 31.19 25.10 39.33 31.45 24.58 30.18 54.33 64.47 48.44 34.17 52.52 55.11 38.74
EATA (Niu et al., 2022) 56.63 56.20 57.49 56.13 57.13 62.26 62.89 64.02 62.77 73.71 77.07 70.34 67.39 71.42 69.96 64.36
SAR (Niu et al., 2023) 54.90 55.82 56.68 55.94 55.61 62.47 58.11 17.20 34.16 71.85 77.14 63.48 65.75 71.45 68.52 57.94
TIPI (Nguyen et al., 2023) 56.76 56.70 58.45 55.90 56.10 61.75 19.67 1.88 4.51 64.18 75.91 69.24 6.37 70.05 69.97 48.50
TEA (Yuan et al., 2024) 39.46 38.72 41.90 24.47 28.03 42.01 33.46 13.43 33.46 53.89 66.09 58.66 34.95 55.65 56.41 41.37
TSD (Wang et al., 2023) 36.78 33.68 37.61 32.28 26.36 40.93 32.65 25.20 31.49 56.17 65.65 54.27 35.10 54.61 57.17 41.33
LinearTCA 30.45 30.77 32.83 33.50 27.47 42.14 34.91 26.98 32.85 57.65 64.88 56.65 38.18 54.08 57.22 41.37
LinearTCA + 56.92 56.47 57.63 56.52 57.56 62.65 63.62 64.53 63.30 74.06 77.11 70.64 67.82 71.65 70.19 64.71

Table 26. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, based on ViT-B/16 backbone.
The best results are highlighted in boldface, and the second ones are underlined.
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Test-time Correlation Alignment
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Figure 5. Adaptation process of LinearTCA to datasets with linear shifts.
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Figure 6. Adaptation process of LinearTCA to datasets with nonlinear shifts
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