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Abstract

Deep neural networks often degrade under dis-
tribution shifts. Although domain adaptation
offers a solution, privacy constraints often pre-
vent access to source data, making Test-Time
Adaptation (TTA)—which adapts using only un-
labeled test data—increasingly attractive. How-
ever, current TTA methods still face practical
challenges: (1) a primary focus on instance-wise
alignment, overlooking CORrelation ALignment
(CORAL) due to missing source correlations; (2)
complex backpropagation operations for model
updating, resulting in overhead computation and
(3) domain forgetting. To address these chal-
lenges, we provide a theoretical analysis to in-
vestigate the feasibility of Test-time Correlation
Alignment (TCA), demonstrating that correlation
alignment between high-certainty instances and
test instances can enhance test performances with
a theoretical guarantee. Based on this, we pro-
pose two simple yet effective algorithms: Lin-
earTCA and LinearTCA*. LinearTCA applies
a simple linear transformation to achieve both
instance and correlation alignment without addi-
tional model updates, while LinearTCA™* serves as
a plug-and-play module that can easily boost exist-
ing TTA methods. Extensive experiments validate
our theoretical insights and show that TCA meth-
ods significantly outperforms baselines across var-
ious tasks, benchmarks and backbones. Notably,
LinearTCA achieves higher accuracy with only
4% GPU memory and 0.6% computation time
compared to the best TTA baseline. It also out-
performs existing methods on CLIP over 1.86%.
Code: https://github.com/youlj109/TCA.
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Figure 1. Illustration of key limitations in existing TTA methods.
(a) Correlation distance increases with domain shifts. (b) Computa-
tion time and peak GPU memory usage on CIFAR-10-C, showing
high overhead of existing methods. (c) Source domain perfor-
mance after test-time adaptation, revealing challenges in retaining
source knowledge.

1. Introduction

Deep neural networks (DNNs) have significantly advanced
numerous tasks in recent years (LeCun et al., 2015; Jumper
et al., 2021; Silver et al., 2016) when the training and test
data are independent and identically distributed (i.i.d.). How-
ever, the i.i.d. condition rarely holds in practice as the
data distributions are likely to change over time and space
(Fang et al., 2020; Wang & Deng, 2018). This phenomenon,
known as the out-of-distribution (OOD) problem or distri-
bution shift, has been extensively investigated within the
context of domain adaptation (DA) (You et al., 2019; Zhou
etal., 2022; Liang et al., 2024). Among various DA methods,
CORrelation ALignment (CORAL) (Sun et al., 2017; Sun &
Saenko, 2016; Cheng et al., 2021a) has been proven to be an
effective and “frustratingly simple” paradigm, which aligns
the feature distributions of the source and target domains
at a feature correlation level rather than merely aligning
individual instances.

However, DA methods are practically difficult when pre-
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trained models are publicly available but the training data
and training process remain inaccessible due to privacy and
resource restrictions (Liang et al., 2024). To address such a
source-inaccessible domain shifts task at test time, test-time
adaptation (TTA) (Gong et al., 2024; Su et al., 2024a;b; You
et al., 2025) has emerged as a rapidly progressing research
topic. Although some recent attempts have been made to
handle this task, current TTA methods still face several
limitations:

Firstly, overlooking feature correlations: Most existing TTA
methods focus on instance-wise alignment (Wang et al.,
2023; Nguyen et al., 2023; Wang et al., 2020) that only cap-
ture central of the instances while neglecting the correlations
between features. For example, relationships between edge
and texture features can vary significantly across domains.
Let’s consider a simple test on the CIFAR-10-C dataset
(Hendrycks & Dietterich, 2019) to show the relationship
between feature correlation and domain shift. As shown
in Figure 1a , the correlation distance (see Section 2.2) of
ResNet-18 (He et al., 2016) embedding are computed with
an increasing corruption level from 1 to 5. It illustrates that
as domain shifts increase, the changes in feature correlation
also increase.

Secondly, overhead computation: Current TTA methods
often rely on computationally expensive backpropagation
for each test sample to update models (Sun et al., 2020;
Wang et al., 2020; Goyal et al., 2022; Bartler et al., 2022).
However, many applications are deployed on edge devices,
such as smartphones and embedded systems (Niu et al.,
2024), which typically lack the computational power and
memory capacity required for such intensive calculations.
As aresult, backpropagation-based TTA methods are limited
in their applicability on these edge devices. In Figure 1b, we
illustrate the computation time and maximum GPU memory
usage of different TTA methods on the CIFAR-10-C dataset.
Compared to the non-adaptive source model (ERM(Vapnik,
1999)), most TTA methods show a dramatic increase in both
items.

Lastly, domain forgetting:  Another drawback of
backpropagation-based TTA methods is that they often lead
to model updating, which gradually loses the prediction abil-
ity of the source or training domain (Niu et al., 2024; Zhang
et al., 2023). As illustrated in Figure lc, after adaptation
on test domain, the performance of most methods declines
when return to the source domain, indicating that existing
TTA approaches struggle to retain knowledge of the source
domain.

To address the above challenges, applying the “effective and
frustratingly simple” CORAL method to TTA appears intu-
itive—but the lack of source data makes it highly challeng-
ing. We thus explore the feasibility of Test-time Correlation
Alignment (TCA) by posing key questions: (/)Can we

construct a pseudo-source correlation that approximates
the true source correlation? (2) Can this enable effective
TTA? We provide a theoretical analysis showing that align-
ing correlations between high-certainty and test instances
improves test-time performance with guarantees. Based on
this, we propose two simple yet effective methods: Lin-
earTCA and LinearTCA™. Specifically, we first compute
the “pseudo-source correlation” by using k high-certainty
instances. Then, LinearTCA aligns correlation through sim-
ple linear transformations of embeddings without model up-
dates, resulting in minimal computation and keeping source
domain knowledge. While LinearTCA™* serves as a plug-
and-play module that can easily boost existing TTA meth-
ods.

Main Findings and Contributions: (1) We introduce a
novel and practical paradigm for TTA, termed Test-time Cor-
relation Alignment (TCA). The construction of the pseudo-
source correlation and the adaptation effectiveness are the-
oretically guaranteed. (2) Based on our analysis, we de-
velop two simple yet effective methods—LinearTCA and
LinearTCA*—to validate TCA’s effectiveness and its plug-
and-play potential with other TTA approaches. (3)We con-
duct comprehensive experiments to validate our theoretical
insights and compare performance across diverse bench-
marks, backbones, and tasks, evaluating accuracy, efficiency,
and resistance to forgetting. Results show that LinearTCA
achieves outstanding performance, while LinearTCA* ro-
bustly boosts other TTA methods under various conditions.
(4) Further in-depth experimental analysis reveals the effec-
tive range of LinearTCA and provides valuable insights for
future work.

2. Preliminary and Problem Statement

We briefly revisit TTA and CORAL in this section for the
convenience of further analyses, and put detailed related
work discussions into Appendix A due to page limits.

2.1. Test Time Adaptation (TTA)

In the test-time adaptation (TTA) (Tan et al., 2024; Yuan
et al., 2023) scenario, it has access only to unlabeled data
from the test domain and a pre-trained model from the
source domain. Specifically, let Dy = {(x%,y%)}'s, ~ Ds
represent the labeled source domain dataset, where (%, y?)
is sampled i.i.d from the distribution D, and n is the num-
ber of the total source instances. The model, trained on
the source domain dataset and parameterized by 6, is de-
noted as hy(-) = g(f(-)) : Xs — Vs, where f(-) is the
backbone encoder and ¢(-) denotes the decoder head. Dur-
ing testing, hy(-) will perform well on in-distribution (ID)
test instances drawn from D). However, given a set of out-
of-distribution (OOD) test instances D; = {zi}"* ~ D

1=

and D; # Dy, the prediction performance of hy(-) would
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decrease significantly. To this end, the goal of TTA is to
adapt this model hy(-) to D; without access to D. For each
instance z¢ € A, let the output of encoder f(-) and decoder
g(-) be denoted as zi = f(xi) € R? and pi = g(z}) € R®,
respectively, where d is the dimension of the embeddings
and c is the number of classes in a classification task. When
encountering an OOD test instance z, existing TTA meth-
ods (Wu et al., 2024; Sinha et al., 2023; Lee et al., 2024,
Yuan et al., 2023) typically minimize an unsupervised or
self-supervised loss function to align the embedding z{ or
prediction pi, thereby updating the model parameters 6:

méinﬁ(zé,pi,@), 1’% ~ Dy ey
where 6 C 0 is a proper subset of § involved in the update,
such as the parameters of the batch normalization (BN) lay-
ers (Schneider et al., 2020; Su et al., 2024c) or all parameters.
Generally, the TTA loss function £(-) can be formulated by
nearest neighbor information (Zhang et al., 2023; Hardt &
Sun, 2023; Jang et al., 2022), contrastive learning (Wang
et al., 2023; Chen et al., 2022), entropy minimization (Wang
et al., 2020; Niu et al., 2022), etc.

2.2. Correlation Alignment (CORAL)

The aim of correlation alignment (CORAL) (Sun et al.,
2017; Cheng et al., 2021a; Sun & Saenko, 2016; Sun et al.,
2016; Das et al., 2021; Rahman et al., 2020b) is to min-
imize the distance of the second-order statistics (covari-
ance) between the source and test features. Specifically, let

Zs = {2}, € R™*4 denotes the feature matrix from
the source domain, and Z; = {z{}I*, € R™*? denotes
the feature matrix from the test domain. CORAL computes
the covariance matrices of the source features 7, and test
features Z;, and aligns correlation by minimizing the Frobe-
nius norm of their two covariance matrices. The covariance
matrix is computed as below:
1 T 1 T
X=—ZzZ'Z--1,7"271,) 2)
n—1 n

the correlation distance is then given by (Sun & Saenko,
2016):

d(%0, %) = 5 11%% - Zulld G
where Y, and X, are the covariance matrices of the source
and test domains, respectively, and 1 is a column vector
with all elements equal to 1 to perform mean-subtraction.
I - || 7 represents the Frobenius norm.

2.3. Problem Statement

Existing TTA methods suffer from overlooking feature cor-
relation, overhead computation and domain forgetting. Re-
search and practice have demonstrated that CORAL is both

effective and “frustratingly easy” to implement on DA.
Since TTA is a subfield of DA, it is a natural extension
to apply CORAL within TTA frameworks. However, due
to privacy and resource constraints in TTA, it is impossible
to compute the source correlation. This limitation hinders
the application of CORAL in such real-world scenarios, i.e.
test-time correlation alignment (TCA).

3. Theoretical Studies

In this section, we conduct an in-depth theoretical analy-
sis of TCA based on domain adaptation and learning the-
ory. We focus on two key questions: (/) Can we construct
a “pseudo-source correlation” to approximate the original
source correlation? (2) Can TCA based on this pseudo-
source correlation enable effective TTA? Before discussing
the main results, we first state some necessary assumptions
and concepts. Missing proofs and detailed explanations are
provided in Appendix B.

Definition 3.1. (Classification error and empirical
error) Let H be a hypothesis class of VC-dimension
d,. The error that an estimated hypothesis hy € H
disagrees with the groundtruth labeling function [ :
X; — Y, according to distribution Dy is defined as:

€(hg, 1) = Exnp, [|ho(w) — I(z)]] “)

which we also refer to as the error or risk €(hg). The
empirical error of hg € H with respect to a labeled
dataset Dy = {(z%,y%)}i=; ~ D, is defined as:

i 2= . ,
é(he) = — > lho(al) — vl )
8 =1

Assumption 3.2. (Strong density condition) Given
the parameters p~, u, ¢y, ¢f, ;. > 0, we assume that
the distribution D and D, are absolutely continuous
with respect to the Lebesgue measure A[-] in Euclidean
space. Let B(z,r) = {zo : ||zo — || < r} denote
the closed ball centered at point = with radius r. We
further assume that V z; ~ D; and r € (0, r¢], the
following conditions hold:

AlDs N B(ze,7)] 2 ceA[B(x, 7)) (6)

AD: N By, r)] > c; A[B(ze, )] (7)

- _ 9D, +. - 9D +
HoS oy SHET B < o< i (3)

The strong density condition is commonly used when ana-
lyzing KNN classifiers (Audibert & Tsybakov, 2007; Cai
& Wei, 2021). Recently, it has also been applied in the
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test-time adaptation (Zhang et al., 2023). Intuitively, As-
sumption 3.2 requires that the divergence between D, and
Dy is bounded. When ¢; = 1, for each =, ~ D, the neigh-
borhood ball B(z¢, r) is completely contained within D;. In
contrast, when ¢; = 0, B(zy, r) and Dy are nearly disjoint.
Assumption 3.3. (L-Lipschitz Continuity) Let
ho(:) = g(f(-)) be a estimated hypothesis on H.
We assume that there exists a constant L such that
YV x1,29 € Ds U Dy, the encoder f(-) satisfies the
following condition:

[f(21) = f@2)|| < L2y — s ©)

The assumption of L-Lipschitz continuity is frequently em-
ployed in the analysis of a model’s adaptation capabilities
(Mansour et al., 2009). It implies that the change rate of
f(+) does not exhibit extreme fluctuations and is bounded
by the constant L at any point.

Assumption 3.4. (Taylor Approximation) Let hy(-) =
g9(f(+)) be a L-Lipschitz Continuous hypothesis on
H. z = f(z) and p = g(z). We assume that there
exists a constant r* such that V x1,z0 € Dy U Dy,
if |21 — 22| < r*, p2 = g(22) can be approximated
using the first-order Taylor expansion at z; as follows:

p2 =p1+ Jg(21)(22 — 21) +o(||lz1 — 22|]) (10)

where p1 = g(z1), J,(21) is the Jacobian matrix of ¢
evaluated at 21, and o(]|z; — 22]|) represents the higher-
order terms in the expansion.

It indicates that when the outputs z; and z- are close (i.e.,
their distance is within the radius r*), the decoder can be
well-approximated by a linear function at z;.

3.1. Correlation of high-certainty test instances
approximates the source correlation

We characterize the divergence of correlation between the

pseudo-source and the source correlation in the following

Theorem 3.5.
Theorem 3.5. Let hy(-) = g(f(+)) be an L-Lipschitz
continuous hypothesis on H. Q = {,cp, B(x, ")
is the set of balls near the test data. We sample k
source instances from D N2 and k test instances from
Dy to obtain X, Zs, Ps| and (X, Zy, Py] by he(-),
respectively. Per Assumption 3.2, Assumption 3.3
and Assumption 3.4, with a probability of at least

— d 2
1 —exp (,w + log k) we have

QCtp,*TrdIrdI Ng

1Pt = Pl + [lo(kr)|

||Z - ZSH <
' [[79(Z4)

Y

where 74, = A(B(0,1)) is the volume of the d;
dimension unit ball and d; is the dimension of in-
put x. Furthermore, considering the true source

correlation X, = IE[Z~STZ~5} and the pseudo-source

correlation f)s = ZtTZt, where Zs and Zt are
centered. With a probability of at least min(1 —

eXp( + log k:) ,1 — 4), the cor-

relation distance |2, — 3| is bounded by:

_ (cep™ ma, rdng,—1)2

2ct,u*7rd1 rdIng

HZS - §AJSHF <
|Y; = Pllr+ A
[ Jg(Zs) |l 7

|Y: — P|lr + A
| Jg(Zs)||

2(|Zsll# ( )+ ( )?+B

12)

where )AQ is the one-hot encoding of P, A =
llo(kr*)|| + ke(ho(X:)) + ke(ho(Xs)) represents the
output error of the sampled instances, and B =

% is the sampling error.

Theorem 3.5 implies the followings: (1) In Eq. (12), the
terms X, Z,, and J,(Z,) remain unchanged with the same
source data. The primary factor influencing the correlation
distance |2, — 3,]| is prediction uncertainty ||Y; — P, »
and output error of the sampled instances €(hg(X:)). (2) In-
tuitively, previous studies (Gui et al., 2024; Niu et al., 2022;
Yuan et al., 2024) empirically suggest that instances with
higher output certainty have less output error. In other words,
with a smaller divergence between the prediction P; and its
one-hot encoding Y}, both uncertainty ||Y; — P, || and error
€(hg (X)) will decrease, resulting in a smaller correlation
distance. (3) Therefore, a reasonable pseudo-source con-
struction method is to select the £ test instances with the
smallest |Y; — P,||» values (i.e. high-certainty test in-
stances) and compute their correlation matrix as pseudo-
source correlation.

3.2. Test-time correlation alignment reduces test
classification error

In this section, we establish the TTA error bounds of hypoth-
esis hg when minimizing the empirical error in the source
data (Theorem 3.6) and examine the influence of using the
pseudo-source correlation (Corollary 3.7), which further
indicates factors that affect the performance of hy.

Theorem 3.6. Let H be a hypothesis class of VC-
dimension d,,. If h € H minimizes the empirical error
és(h) on D, and hi = argmingcy €:(h) is the opti-
mal hypothesis on Dy, with the assumption that all hy-
potheses are L-Lipschitz continuous, then ¥ € (0, 1),
with probability with at least 1 — J the following in-
equality holds:



Test-time Correlation Alignment

ei(h) < eulh?) + O llus — pl% + 154 — Bil12) + ©

dylog(2n,)—log(d
where C = 2 W—I—Z'yandy:

minpep{es(h(t)) + e (h(t))}. ps, e, X5 and X de-
note the means and correlations of the source and test
embeddings, respectively. We use O(+) to hide the
constant dependence.

For fixed D and Dy, €;(h}) and C are constants, indicating
that the primary factors affecting the performance of hg on
the test data Dy (i.e., €, (h)) are || 15— p1¢]|% and || S5 — 54 2.
By aligning correlations during testing, which means reduc-
ing |25 — X¢||%, we can effectively decrease the model’s
classification error on the test data. Combining Theorem 3.5
with Theorem 3.6, the following corollary provides a di-
rect theoretical guarantee that TCA based on pseudo-source
correlation can reduce the error bounds on test data.

Corollary 3.7. Let X, f]s and Y; denote the source,
pseudo-source and test correlation, respectively. The-
orem 3.5 establishes the error bound between 535 and
3.5, while Theorem 3.6 demonstrates that reducing the
difference between ¥y and ¥ can decrease classifica-
tion error on the test data. By applying the triangle
inequality, we have:
||Et - Zs”F = ”Et - Es 4 Zs - EsHF S

1t = Sallp + |2 — Zellp - (13)

Therefore, Theorem 3.6 can be rewritten as:
er(h) <
er(h?) + O(/lls — prel% + 1126 — Sel[3) + C <
I¥: = Pellp + A
17g(Zs)| 7
)+ B+ 12 - Zallp)*)?) + C
(14)

er(hi) + O((lus — mell % + (211 Zs [l ( )

|Y; — Pi|lr + A

A

Corollary 3.7 indicates the followings: (1) Reducing the
correlation distance between the test data and the pseudo-
source, i.e., |2y — 3]|%, can reduce the test classification
error. The pseudo-source correlation S, is computed by
selecting k instances from the test data with minimal un-
certainty, measured by ||V; — P;||%. (2) Updating model
parameters to decrease ||Y; — P;||% can further reduce the
test error. (3) Additionally, minimizing the instance-wise
distance ||1s — j1¢||3 can also contribute to reducing the test
error, which is consistent with previous studies (Niu et al.,
2022; Wang et al., 2023; 2020).

Test data
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Figure 2. The pipeline of our proposed LinearTCA method. Dur-
ing testing, we first obtain original embeddings and predictions
using the source model. Based on the certainty of the original pre-
dictions, we select a subset embeddings to form a “pseudo-source
domain”. A linear transformation is then applied to align the corre-
lations of the original embeddings with those of the pseudo-source
domain, ultimately producing the final predictions of LinearTCA.
Notably, this process does not require updating any parameters of
the original model.

| Decoder |

Remark. Section 3.1 answers the first question that the
feature correlation of high-certainty test instances from the
pre-trained model can approximate the feature correlation
of the source domain. Section 3.2 provides a theoretical
guarantee that conducting correlation alignment between
pseudo-source correlation and test correlation during TTA
can effectively reduce the test error bound. These theoretical
findings are further validated in Section 5.2.

4. The Test-time Correlation Alignment
Algorithms

As illustrated in Figure 2, building on our theoretical find-
ings, we propose two simple yet effective TCA methods:
LinearTCA and LinearTCA*. We start with detailing the
construction of the pseudo-source correlation, followed by
the implementation of LinearTCA and LinearTCA™.

4.1. Pseudo-Source

For each instance x% arrives in test time, we first get em-
bedding z; = f(x}) and prediction p; = g(z;). Per The-
orem 3.5, we compute its prediction uncertainty w; =
|lgi — pi||%, where §i = onehot(argmaz(p)). We then
temporarily store the pair (z},w!) in the Pseudo-Source
bank M = M U (2},w}). Subsequently, M is updated
based on its element count and confidence. The update rule
is as follows:

m-fot k

{(z,w)) wi <w

i JM| < k

(15)
else

min}7

where wk , represents k-th lowest uncertainty value in M.

Finally, the Pseudo-Source correlation can be calculated as
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. 1 | s
PO (ZSTZS — AlmZSTZslm) (16)
ng — 1 Ng ’

where Z, = {zi|z/ € M} and 7, = | M.

4.2. Methods

LinearTCA: During testing, given the embeddings Z; and
Zs sampled from the test and pseudo-source domains, re-
spectively, our objective is to minimize their correlation
distance:

7)

2
LiincarTCA = Hzt — 2 -

To achieve this alignment, we aim to obtain a suitable linear
transformation W as follows:

2

min HWTZtW _3. (18)
w F

Setting WIS, W = 3, and applying eigenvalue decompo-

sition, the closed-form solution for W can be derived as
1.

W = UAY2OTA;/? (19)

where US and U, represent the eigenvector matrices, f\s and
A are the corresponding diagonal eigenvalue matrices, re-
spectively. The transformed embeddings of the test domain
can then be computed as:

Zy = (Ze — ) W+ fis 20)

where p; and fi; denote the mean embeddings of Z; and
Zs, respectively. As shown in Eq. (20), we also align
the instance-wise shift |pus — 11t by using fis. Finally, the
predictions for the test domain after adaptation through
LinearTCA are:

P =g(Z,) @1)

LinearTCA*: Since LinearTCA does not require param-
eter updates to the model, it can serve as a plug-and-play
boosting module for TTA methods. Specifically, during
a TTA method optimizes the original model hg to hj; via
Eq. (1), we can obtain the resulting embeddings Zr74 and
predictions Prr 4. By applying the LinearTCA on Zpp 4
and Ppr 4 with the same process from Eq. (15) to (21), the
predictions of LinearTCA™* are obtained. More details on
these methods are provided in Appendix C.

'To enhance the robustness of the results, we recommend using
torch’s automatic gradient descent method to mitigate potential
instabilities associated with eigenvalue decomposition. For the
following experiments, we implement this method with a fixed
learning rate of le-3.

S ¢ 4
» > %
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(a)
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Figure 3. Experimental validation of theories. (a) Average uncer-
tainty and correlation distance to source domain of each group,
groups with lower uncertainty exhibit smaller correlation distances.
(b) Relationships between ACC, correlation distance to the source,
and correlation distance to the pseudo-source, both ACC and
|2 — ]| are strongly linearly related to || % — ]|

5. Experiments
5.1. Experimental settings

Following previous studies, we evaluate the adaptation
performance on two main tasks: domain generalization
(PACS (Li et al., 2017), OfficeHome (Venkateswara
etal., 2017), and DomainNet (Peng et al., 2019) dataset)
and image corruption (CIFAR-10-C,CIFAR-100-C, and
ImageNet—-C (Hendrycks & Dietterich, 2019)). What’s
more, we also evaluate our method on multimodal tasks
based on CLIP (Radford et al., 2021). The comparison meth-
ods include backpropagation—-free (BN (Schneider
et al., 2020), T3A (Iwasawa & Matsuo, 2021), AdaNPC
(Zhang et al., 2023)) and backpropagation-based
methods (TENT (Wang et al., 2020), PLC (Lee, 2013),
EATA (Niu et al., 2022), SAR (Niu et al., 2023), TSD (Wang
et al., 2023), TIPI (Nguyen et al., 2023), TEA (Yuan et al.,
2024)). Backbone networks include ResNet-18/50 (He
et al., 2016) and ViT-B/16 (Dosovitskiy, 2020). Addi-
tionally, the evaluation encompasses multiple aspects, in-
cluding accuracy, efficiency, and resistance to forgetting.
For LinearTCA*, we report its results combined with the
best baseline. Refer to Appendix D for more implement
information. For further experimental results and analysis,
please see Appendix E.

5.2. Experimental validation of theories

For Theorem 3.5: Correlation of high-certainty test in-
stances approximates the source correlation. We divide
the test embeddings of CIFAR-10-C under ResNet—-18
into 10 groups based on prediction uncertainty and calcu-
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I | PACS OfficeHome DomainNet
Domain Method - " - AVG
‘ ‘ ResNet-18  ResNet-50  ViT-B/16 ~ AVG | ResNet-18 ResNet-50 ViT-B/16 ~AVG | ResNet-18 ResNet-50 ViT-B/16 AVG
| SOURCE | 8184 84.78 87.02 84.54 62.01 67.01 76.11 68.37 39.13 43.58 50.29 4433 | 65.75
BN 82.65 84.99 - - 62.05 66.30 - - 37.93 41.94 - - -
BP-Free T3A 83.20 85.71 88.06 85.66 63.26 67.85 78.87 69.99 40.62 44.92 53.94 46.49 | 67.38
AdaNPC 83.48 86.12 89.11 86.24 62.88 67.05 77.26 69.07 40.50 45.17 53.28 46.32 | 67.21
TENT 85.23 88.07 84.98 86.09 63.09 67.67 76.95 69.24 39.42 43.97 39.96 41.12 | 65.48
PLC 83.16 86.59 87.97 8591 62.22 66.44 76.51 68.39 37.96 41.63 47.29 4230 | 65.53
EATA 83.30 84.68 86.60 84.86 62.49 67.01 76.98 68.83 41.65 46.89 54.40 47.65 | 67.11
BP-Based SAR 85.41 85.79 87.12 86.11 62.51 67.94 76.66 69.04 38.49 42.19 42.81 41.16 | 65.44
TIPI 87.39 88.01 87.98 87.79 63.25 68.36 77.09 69.57 36.05 44.08 39.70 39.94 | 65.77
TEA 87.19 88.75 87.37 87.77 63.43 68.56 76.15 69.38 39.43 43.48 48.41 43.78 | 66.98
TSD 87.83 89.99 83.43 87.08 62.47 68.63 75.49 68.87 38.59 42.12 48.72 43.14 | 66.36
Ours LinearTCA 83.59 86.78 88.61 86.33 63.66 68.43 78.26 70.12 40.79 44.89 52.79 46.16 | 67.53
LinearTCA* 88.77 90.68 89.30 89.58 64.27 69.32 79.02 70.87 42.20 47.17 55.49 48.29 | 69.58
CIFAR-10-C CIFAR-100-C ImageNet-C
ImgCop Method - - - AVG
ResNet-18  ResNet-50  ViT-B/16  AVG | ResNet-18 ResNet-50  ViT-B/16 AVG | ResNet-18  ResNet-50  ViT-B/16 AVG
SOURCE 50.80 50.77 71.48 57.68 31.01 34.02 S51.71 3891 14.70 18.15 39.83 2423 | 40.27
BN 73.70 72.24 - - 48.38 48.41 - - 27.59 32.06 - - -
BP-Free T3A 58.89 54.87 74.21 62.65 32.52 34.94 54.24 40.57 14.56 18.05 39.78 24.13 | 4245
AdaNPC 57.72 54.75 74.60 62.36 29.70 32.27 53.21 38.39 11.93 15.62 36.78 21.44 | 40.73
TENT 75.21 7233 71.48 73.01 50.82 50.12 52.72 51.22 35.39 41.32 48.01 41.57 | 55.27
PLC 73.72 72.34 71.46 72.51 48.35 48.38 51.71 49.48 27.59 32.06 38.74 32.80 | 51.59
EATA 73.86 72.38 73.67 73.30 49.71 49.89 62.40 54.00 39.19 48.17 64.36 50.58 | 59.29
BP-Based SAR 73.97 73.37 71.48 72.94 51.60 50.25 54.29 52.05 38.55 46.30 57.94 47.60 | 57.53
TIPI 76.10 72.46 71.48 73.35 50.61 50.30 52.36 51.09 35.73 41.87 48.50 42.03 | 55.49
TEA 76.20 72.54 71.48 73.41 50.67 50.21 52.31 51.06 32.38 38.90 41.37 37.55 | 54.01
TSD 76.93 73.23 71.47 73.88 49.35 49.60 51.74 50.23 30.11 35.08 41.33 35.51 | 53.20
Ours LinearTCA 60.96 60.27 71.26 66.16 35.03 37.28 55.42 42.58 16.07 19.34 41.37 25.60 | 44.78
LinearTCA* 77.13 73.53 79.55 76.74 52.08 51.17 63.71 55.65 39.21 48.22 64.71 50.71 | 61.04

Table 1. Accuracy comparison of different TTA methods based on ResNet-18/50 and ViT-B/16 backbones. The upper part of the
table corresponds to the domain generalization task, while the lower part corresponds to the image corruption task. The best results are
highlighted in boldface, and the second ones are underlined. “-” indicates that ViT-B/16 does not include any BN layers.

late the correlation distance between each group and the
original source. As shown in Figure 3a, groups with lower
uncertainty exhibit smaller correlation distances, indicating
a closer approximation to the source correlation.

For Theorem 3.6 and Corollary 3.7: Test-time correlation
alignment reduces test classification error. We iteratively op-
timize W and record the correlation distances between test
domain and pseudo-source domain, ||X; — 3|, as well as
the true distances between test domain and source domain,
I3 —Xs]|, and ACC. As shown in Figure 3b, under a linear
fit (R2 = 0.97), ||¢ — 3,]| is strongly positively related to
|2; — X5]|| (Spearman correlation coefficient = 1). Under
R? = (.96, it is strongly negatively related to ACC (Spear-
man correlation coefficient = -1). This further validates that
pseudo-source correlation alignment promotes alignment
with the original source. Additionally, pseudo-source corre-
lation alignment effectively reduces test classification error,
thus improving the model’s domain adaptation capability.

5.3. Comparison with TTA Methods

Accuracy. Table 1 presents ACC comparisons between
TCA methods and state-of-the-art TTA approaches across
various benchmarks, backbones, and tasks. (1) As a plug-
and-play module, LinearTCA™* consistently enhances per-
formance across all datasets and backbones, achieving
a new state-of-the-art. Notably, on the CIFAR-10-C
dataset with the ViT-B/16 backbone, LinearTCA* shows

substantial improvements over the best-performing base-
line, with an increase of 4.95%. (2) Across datasets,
LinearTCA shows robust improvement compared to the
source model, with average gains of 1.79%, 1.75%, 1.78%,
8.48%, 3.67% and 4.51%, respectively. Particularly, on the
OfficeHome and DomainNet dataset, LinearTCA out-
performs all baseline methods. However, on datasets such
as CIFAR-10/100-C and ImageNet-C, although Lin-
earTCA yields ACC gains of 8.48%, 3.67% and 4.51%
over the source model, it falls short of some advanced
methods. (3) Across backbones, LinearTCA also demon-
strates robust improvements compared to the source model,
especially with the ViT-B/16 backbone, surpassing the
highest-performing baseline on most datasets. We provide a
detailed analysis of these experimental results in Section 5.5
to further reveal the strengths and limitations of LinearTCA.

Memory(MB) Time(s)
Type Method - ResNer TS ResNetS0_ VITB/TG AVG ResNet-18_ResNet:50__ VIT-B/16 [ AVG
SOURCE | 920,61 87887 917.02 90550 392 9.16 398 569
BN 3025 448,57 B +0.88 +4.80 B
BP-Free | T3A +1.00 +4.43 £2.02 4248 +1.98 +3.62 41222 | 4594
AdaNPC_| +2.04 4823 +2.96 +441 +1.73 278 41208 | 4553
TENT 188363 +4788.03 4524653 | +3973.03 | 4385 1152 1227 | 9922
PLC +1934.14 4478726 +862495 | +511545 | +5.94 4951 42586 | +13.77
EATA 4533244 +10838.53  +11172.56 | 4911451 | +1.76 +4.20 42281 | 49.59
BP-Based | SAR 4264282 45380.18  +540131 | +447477 | +11.23 42331 +54.08 | +29.54
TSD 42025.07 4516255 +9280.69 | +5489.44 | +4.70 +1347 43468 | +17.62
TEA 4731695 41573310 +16082.00 | +13044.02 | +123.14  +278.87  +59628 | +332.76
TIPI 4252001 +10660.83 +12542.71 | +8574.52 | +26.54 +49.73 44525 | +4051
Ours TCA +0.00 +0.00 +0.00 +0.00 +0.06 +0.07 +0.08 +0.07

Table 2. Maximum GPU memory usage and running time of dif-
ferent TTA methods on CIFAR-10-C.

Efficiency. We evaluate each method’s efficiency in terms
of peak GPU memory usage and total runtime. Table 2 re-
ports results on the CIFAR—-10-C dataset across different
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Type Method PACS OfficeHome _ CIFAR-10-C___ CIFAR-100-C | AVG
SOURCE 99.35 94.40 9236 7039 89.12
BN 98.90 (-0.44)  92.85(-1.55) 62,98 (-29.38)  39.45(-30.94) | 73.55 (-15.58)
BP-Free T3A 99.33(-:0.01)  93.31(-1.09) 91.95(0.41)  65.66 (-4.73) | 87.56 (-1.56)
AdaNPC 99.28(-0.06) 9331(-1.09) 92.00(-0.36)  63.83 (-6.51) | 87.12 (-2.01)
LinearTCA 99.42 (+0.08) 9387 (-:0.53) 91.16(-120)  67.35(-3.04) | 87.95(-1.17)
LinearTCA wio W | 99.35(0.00)  94.40 (0.00)  92.36(0.00) 7039 (0.00) | 89.12 (0.00)
TENT 96.74 (-2.61) 9279 (-1.61)  90.26 (:2.10)  67.27(-3.12) | 86.76 (-2.36)
PLC 97.12(-223) 9273 (-1.67) 63.05(-29.31)  39.48 (-30.91) | 73.09 (-16.03)
EATA 98.33(-1.02)  93.66 (-0.74)  90.24 (2.12)  68.52(-1.87) | 87.69 (-1.44)
BP.Based SAR 97.12(-223)  8635(-8.05) 90.31(-2.05)  68.77(-1.62) | 85.63 (-349)
TSD 95.10 (4.24)  85.37(-9.03) 67.78 (-24.58)  39.48 (-30.91) | 71.93 (-17.19)
TEA 90.22(-9.13)  93.30(-1.10)  90.60 (-1.76)  68.93 (-1.46) | 85.76 (-3.36)
TIPI 98.15(-1.20)  92.79(-1.61) 70.75 (21.61) 46,03 (-24.36) | 76.93 (-12.20)
LinearTCA* 99.03(-0.31)  93.65(-0.75) 90.68(-1.68)  69.05(-1.34) | 88.10 (-1.02)

Table 4. The accuracy of different TTA methods when return-
ing to the source domain after adaptation. “BP-Free” indicates
backpropagation-free TTA methods, while “BP-Based” denotes
backpropagation-dependent ones.

backbones. TCA consistently achieves the lowest memory
and time cost. For memory, since we record peak mem-
ory consumption, LinearTCA exhibits minimal indepen-
dent memory usage (as shown in Table 3) and thus does
not impose additional memory constraints on the device.
In contrast, other meth-
ods are embedded within
the model’s forward and
backward propagation
processes, significantly
increasing peak memory
usage (e.g., TEA uses 15x the memory of the source
model). For runtime, with a ViT-B/16 backbone,
LinearTCA requires only 0.6% of AdaNPC’s time. These
results highlight LinearTCA’s high efficiency, making it
well-suited for resource-constrained edge deployment.

Method
LinearTCA

ResNetl18  ResNet50 VIT'B/16J AVG
118.56 448.64 452.11 339.77

Table 3. Independent maximum
GPU memory usage of Lin-
earTCA on CIFAR-10-C.

Forgetting resistance. Table 4 shows the change in ac-
curacy when each method (using ResNet -18) returns to
the source domain after adaptation. “LinearTCA w/o W”
refers to the variant without the linear transformation, which
is equivalent to the original source model and thus retains
full source knowledge. Despite applying W, LinearTCA
demonstrates much stronger resistance to forgetting than
other methods—especially on PACS, where it even improves
source performance, showing positive backward transfer.
Moreover, LinearTCA* further enhances the forgetting ro-
bustness of existing TTA methods.

5.4. Performance on Closed-Source Foundation Models

To validate TCA’s effectiveness on closed-source founda-
tion models, we conduct experiments with CLIP (Radford
et al., 2021) on PACS, OfficeHome, and VLCS datasets, fol-
lowing the experimental setup in WATT (Osowiechi et al.,
2024). As shown in Table 5, TCA achieving performance
improvements of 1.28%, 2.08%, and 2.85% on the three
datasets respectively. The superior results stem from our
method’s explicit alignment of embedding distributions with
the source domain, which proves particularly effective for
multi-modal models like CLIP that compute image-text sim-
ilarity directly. While LinearTCA* holds a slight advantage,

\ PACS

Method ‘ AVG

| A C P s
CLIPY 97.44 97.38 99.58 86.06 95.12
TENTY 97.54+0.02  97.37+0.04 99.58+0.00 86.37+£0.05 | 95.22
TPT+ 95.10+0.41 91.42+0.22 98.56+0.40 87.23+0.06 | 93.08
CLIPAITTY 97.64+0.02 97.3740.02 99.58+0.00 86.79+0.04 95.35
WATT-Pt 97.4940.08 97.474+0.04 99.58+0.00 89.73+0.16 96.07
WATT-S+ 97.66+0.08 97.51+0.02 99.58+0.00 89.56+0.14 96.08
LinearTCA 97.80 99.39 99.94 92.32 97.36
LinearTCA* | 97.87+0.06 99.204+0.02 99.94+0.00 92.36+0.06 97.34
Method ‘ OfficeHome ‘ AVG

| A C P R |
CLIP} 79.30 65.15 87.34 89.31 80.28
TENTY 79.26+0.14  65.64+0.05 87.49+0.02 89.50+0.04 80.47
TPT+ 81.974+0.17 67.01+£0.21  89.004+0.06 89.66+0.06 81.91
CLIPArTTY | 79.3440.05 65.69+0.11 87.35+0.07 89.29+0.03 80.42
WATT-P} 80.374+0.25  68.594+0.13  88.154+0.07 90.184+0.03 81.82
WATT-St 80.434+0.09 68.26+0.11 88.024+0.08 90.144+0.06 | 81.71
LinearTCA 85.55 68.70 90.26 90.58 83.77
LinearTCA* | 85.62+0.38  69.25+0.1  90.29+0.01  90.4240.1 83.90
Method VLCS | AvG

\ C L S v \
CLIP} 99.43 67.75 71.74 84.90 80.96
TENTY 99.43+0.00 67.31+0.14 71.57+0.15 85.10+0.11 | 80.85
TPT+ 97.624+0.12  49.7740.03 71.564+0.86 71.174+0.70 | 72.53
CLIPAITTY | 99.43+0.00 67.74+0.10 71.67+0.01 84.73+0.08 | 80.89
WATT-P} 99.364+0.00 67.554+0.39 74.7540.07 82.534+0.10 | 81.05
WATT-St 99.364+0.00 68.594+0.25 75.164+0.12  83.244-0.05 81.59

LinearTCA 99.86 73.98 78.47 84.41 84.18
LinearTCA* | 99.88+0.03  74.39+0.1  79.44+0.22 84.06+0.14  84.44

Table 5. The accuracy comparison of different methods on PACS,
OfficeHome, and VLCS datasets using CLIP-ViT-B/16. {: num-
bers are from WATT (Osowiechi et al., 2024). The best results are
highlighted in boldface, and the second ones are underlined.

both variants perform similarly, suggesting that even simple
correlation alignment can notably enhance performance on
popular models like CLIP. This underscores its effectiveness
as a versatile plug-and-play module for improving diverse
adaptation methods.

5.5. Analysis

Effective range of LinearTCA. As discussed in Section 5.3,
although LinearTCA™ significantly improves all TTA meth-
ods, LinearTCA only achieves SOTA performance on part
of datasets and backbones. The reasons may be: 1) Al-
though the highest-certainty embeddings are selected as
pseudo-source domains, if these embeddings still exhibit
substantial differences from the true source domain (or if the
backbone’s feature extraction capacity is insufficient, e.g.,
ResNet-18 vs. ViT-B/16), the performance ceiling of
LinearTCA is limited. In contrast, other TTA methods up-
date the model, thereby raising this ceiling and facilitating
easier correlation alignment for LinearTCA™*. 2) We only
use a linear transformation W for alignment, which may
work well for simple shifts; however, the true distribution
shifts may not conform to linear transformations but ex-
hibit complex nonlinear relationships. We design a demo
experiment to validate this hypothesis. In Figure 4a and
b, the test domain shifts are linear and nonlinear, respec-
tively. As shown, the transformed embeddings in Figure 4a
align well with the original distribution, while the perfor-
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Figure 4. Analysis of TCA. (a) When the test domain (yellow)
undergoes a nearly linear shift from the source domain (blue),
after adaptation by LinearTCA, the transformed test domain (red)
is well-aligned with the source. (b) In the case of a nonlinear
shift, although partial alignment is achieved, it is still insufficient.
(c) and (d) Ablation study examining the effect of pseudo-source
domain size and test domain size.

Backbone | Method ‘ PACS AVG OfficeHome AVG
| |"a ¢ ? s A ¢ P R

7837 77.39 9503 7658 81.84 | 5645 48.02 7134 7223 62.01
LinearTCA 8091 81.02 95.69 76.74 83.59 | 59.46 5040 72.02 7278 63.66
LinearTCA* 88.38 87.12 96.59 83.00 88.77 | 59.83 51.80 7229 73.17 64.27

LinearTCA(MLP-2) 81.24 81.73 9589 78.15 8425 | 59.62 50.84 72.07 7294 63.87
LinearTCA*(MLP-2) | 88.68 87.15 96.68 83.19 88.93 | 59.83 51.80 72.79 7346 6447

LinearTCA(MLP-3) 81.62 81.81 96.03 79.35 8470 | 59.62 50.65 72.07 73.02 63.84
LinearTCA*(MLP-3) | 8838 87.23 96.59 8336 8898 | 59.83 5208 7279 7354 64.56

Table 6. Extending LinearTCA/LinearTCA* by introducing MLP-
based transformations with two (MLP-2) and three (MLP-3) layers
The best results are highlighted in boldface, and the second ones
are underlined.

Source

ResNet-18

mance in Figure 4b shows partial alignment which is still
insufficient. We further explore the utilization of nonlinear
architecture (MLP) for calculating transformation W. As
shown in Table 6, incorporating nonlinear activations with
deeper architectures leads to further improvements.

Ablation study. Our method involves only one hyperparam-
eter—the number of pseudo-source embeddings k. Since
the total number of test samples is often unknown in prac-
tice, we also sample k; embeddings from the test set to
study its impact. As shown in Figure 4c,d, LinearTCA
achieves the best accuracy on Of ficeHome when k = 10
and ko = 2400. Importantly, it consistently outperforms the
source model across a wide range of k and k5, demonstrat-
ing strong practical applicability.

Upper performance bound for TCA. To assess the upper
bound of TCA, we conduct two additional experiments in
Table 7: (a) fine-tuning directly on the target domain; (b)
applying LinearTCA and LinearTCA* with real source dis-
tributions. Compared to the original LinearTCA™, approach
(b) further improves performance, by 0.38% on PACS and
1.03% on OfficeHome. Both (a) and (b) outperform the orig-

Backbone | Method [ PACS AVG Officetome AVG

| A c P s A c P R

7837 7739 9503 7658 8184 | 5645 4802 7134 7223 6201
8091 8102 9560 7674 8359 | 5904 4997 7177 7289 6342
8838 8712 9659 8300 8877 | 5933 5118 7220 7172 6361
ResNet.15 | TCAQ | 8618 8267 9503 8081 8617 | 5869 5080 7204 7292 6361

LinearTCA(b) | 81.59 81.48 96.05 77.51 84.15 | 59.94 51.63 7236 7348 64.35
LinearTCA*(b) | 88.98 87.57 9674 8330 89.15 | 60.03 5229 7255 7387 64.64

Source
LinearTCA
LinearTCA*

Table 7. Upper performance bound for TCA. TCA(a): Fine-
tuning directly on the target distribution. LinearTCA(b) and
LinearTCA™(b): Applying LinearTCA and LinearTCA* with real
source distributions.

Method | Art Domian of OfficeHome | avG
Batch Size | 1 2 4 8 16 32 64 128 256 512 1024 |

Estimation error | 2542 2414 2434 2430 2415 2417 2437 2415 2413 2424 2427 | 2433
Source 56.45 5645 5645 5645 5645 5645 5645 5645 5645 5645 5645 | 56.45

TEA 0.824 18.01 40.79 4923 5554 5571 5735 5855 57.11 57.82 57.93 | 46.26
LinearTCA 58.61 58.61 5857 5877 5894 5886 59.06 5946 59.27 5935 59.56 59.05
LinearTCA*® 0.824 1854 4137 51.13 56.05 5844 593 59.83 59.66 59.86 59.96 47.72

Table 8. Accuracy comparisons of different TTA methods on the
Art domain of OfficeHome dataset with varying batch sizes based
on ResNet-18. The best results are highlighted in boldface, and
the second ones are underlined.

inal LinearTCA in most domains. On OfficeHome, even
the simpler LinearTCA with real source data (b) surpasses
fine-tuning (a), highlighting the importance of source distri-
bution and the effectiveness of approximating it in TCA.

Performance under difference batch sizes. To study the
impact of batch size, we evaluate TCA’s performance and
pseudo-source estimation error under varying batch sizes in
Table 8. Even with batch size 1, LinearTCA outperforms
the source model by 2.16%, and LinearTCA* consistently
improves over TEA across all settings. This robustness
stems from TCA’s incremental estimation of test-domain
covariance, which converges over time. While small batch
sizes mainly affect early predictions, their influence dimin-
ishes as more data is seen. Moreover, the pseudo-source
estimation error remains unaffected by batch size, since it
relies on a small set of high-confidence samples (Figure 4c)
and benefits from the same incremental computation.

6. Conclusion and Future Work

In this paper, we introduce the Test-time Correlation Align-
ment (TCA) to address the chanllenges in Test-Time Adap-
tation (TTA), such as overlooking feature correlation, over-
head computation and domain forgetting. TCA is a novel
paradigm that enhances test-time adaptation (TTA) by align-
ing the correlation of high-certainty instances and test in-
stances and is demonstrated with a theoretical guarantee.
Extensive experiments validate our theoretical insights and
show that TCA methods significantly outperforms baselines
on accuracy, efficiency, and forgetting resistance across var-
ious tasks, benchmarks and backbones.

Future work may incorporate more nonlinear transforma-
tions for more effective TCA. Additionally, with the inter-
esting “positive backward transfer” phenomenon in Table 4,
we will further investigate the underlying mechanism.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix

The structure of Appendix is as follows:

* Appendix A contains the extended related work.

* Appendix B contains all missing proofs in the main manuscript.

¢ Appendix C details the proposed methods LinearTCA and LinearTCA*.
» Appendix D details the dataset and implementation.

¢ Appendix E contains additional experimental results.

A. Extended Related Work

A.1. Correlation Alignment

Correlation alignment is a crucial technique in unsupervised domain adaptation (UDA) designed to address domain shift
problems. In real-world scenarios, significant domain shifts often occur between training and test data, which can severely
degrade the performance of conventional machine learning methods. To tackle this challenge, CORrelation ALignment
(CORAL) (Cheng et al., 2021a) is introduced to align the feature-wise statistics of the source and target distributions through
a linear transformation. Similar to CORAL, Maximum Mean Discrepancy (MMD) (Gretton et al., 2006) is another technique
for mitigating domain gap by minimizing the mean discrepancy between different domains. Unlike CORAL, which focuses
on feature-wise correlations, MMD match the instance-wise statistics of the domain distribution.

Correlation Alignment has been extended and applied in several innovative ways. DeepCORAL (Sun & Saenko, 2016)
extends CORAL to deep neural networks by employing a differentiable Correlation Alignment loss function. This enables
end-to-end domain adaptation and facilitates more effective nonlinear transformations, thereby enhancing generalization
performance on unsupervised target domains. DeerCORAL (Das et al., 2021) leverages CORAL loss in combination
with synthetic data to address long-tailed distributions in real-world scenarios. High-order CORAL (Cheng et al., 2021b),
which is inspired by MMD and CORAL, utilizes third-order correlation to capture more detailed statistical information
and effectively characterize complex, non-Gaussian distributions. IJDA (Qian et al., 2023) introduces a novel metric that
combines MMD and CORAL to improve distribution alignment and enhance domain confusion.

In addition to these advancements, recent studies have explored the integration of CORAL into more complex models and
settings. For example, CAADG (Rahman et al., 2020a) presents a domain generalization framework that combines CORAL
with adversarial learning to jointly adapt features and minimize the domain disparity. Moreover, JCGNN (Wang et al., 2021)
integrates CORAL into Graph Neural Network (GNN) to generate the domain-invariant features.

Although CORAL has achieved significant success in domain adaptation (DA), its application in test-time adaptation (TTA)
is constrained by privacy and resource limitations, which make it infeasible to compute the source correlation. This limitation
significantly hampers the practicality of CORAL in more real-world scenarios, such as test-time correlation alignment
(TCA).

A.2. Test-Time Adaptation

In real-world scenarios, test data often undergoes natural variations or corruptions, leading to distribution shifts between
the training and testing domains. Recently, various Test-Time Adaptation (TTA) approaches have been proposed to adapt
pre-trained models during testing. These methods can be broadly categorized into batch normalization calibration methods,
pseudo-labeling methods, consistency training methods, and clustering-based training methods (Liang et al., 2024). For
further discussion, we classify them into two groups based on their dependence on backpropagation, as outlined in (Niu
et al., 2024).
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Backpropagation (BP)-Free TTA: This group includes batch normalization (BN) calibration methods (Wu et al., 2024;
Schneider et al., 2020) and certain pseudo-labeling methods (Zhang et al., 2023) that do not update model parameters.
BN-based methods posit that the statistics in BN layers capture domain-specific knowledge. To mitigate the domain gap,
these methods replace training BN statistics with updated statistics computed from the target domain. Some pseudo-labeling
methods such as T3A (Iwasawa & Matsuo, 2021) utilize prototype similarity and AdaNPC (Zhang et al., 2023) utilize
k-nearest neighbor (kNN) to refine predictions. Although BP-Free TTA methods are computationally efficient, their image
corruption adaptation capabilities are often limited.

Backpropagation (BP)-Based TTA: This group encompasses certain pseudo-labeling methods (Zeng et al., 2024), consistency
training methods (Sinha et al., 2023), and clustering-based training methods (Lee et al., 2024). Some pseudo-labeling
methods use filtering strategies, such as thresholding or entropy-based approaches, to generate reliable pseudo-labels, thereby
reducing the discrepancy between predicted and pseudo-labels. For instance, PLC (Lee, 2013) updates classifier layer
parameters with certain pseudo-labels during adaptation. TSD (Wang et al., 2023) filters unreliable features or predictions
with high entropy, as lower entropy correlates with higher accuracy, and applies a consistency filter to refine instances further.
Consistency training methods aim to enhance the stability of network predictions or features by addressing variations in
input data, such as noise or perturbations, and changes in model parameters. TIPI (Nguyen et al., 2023), for example,
simulates domain shifts via input transformations and employs regularizers to maintain model invariance. Clustering-based
training methods leverage clustering techniques to group target features, and reduce uncertainty in predictions and improving
model robustness. TENT (Wang et al., 2020) minimizes prediction entropy on target data, while EATA (Niu et al., 2022)
selects reliable instances to minimize entropy loss and applies a Fisher regularizer. SAR (Niu et al., 2023) removes noisy
instances with large gradients and encourages model weights to converge toward a flat minimum, enhancing robustness
against residual noise. Generally, BP-Based TTA methods demonstrate superior domain adaptation capabilities compared to
BP-Free methods, but they typically require multiple backward propagations for each test instance, leading to computational
inefficiencies.

Despite their strengths, both BP-Free and BP-Based TTA methods perform instance-wise alignment without considering
feature correlation alignment. Our proposed method, TCA, is orthogonal to most existing TTA methods. It achieves both
instance-wise and correlation alignment without backpropagation. TCA is a theoretically supported TTA paradigm that
effectively addresses the challenges of efficiency and domain forgetting. By applying a simple linear transformation, TCA
performs both instance and correlation alignment without requiring additional model updates. Moreover, it can function as a
plug-and-play module to enhance the performance of existing TTA methods.

B. Proof of Theoretical Statement
B.1. Proof of Theorem 3.5
Here, we present Theorem 3.5 again for convenience.

Theorem 3.5 Let hy(-) = g(f(-)) be an L-Lipschitz continuous hypothesis on H. Q := (J,cp, B(z,7*) is the set of
balls near the test data. We sample & source instances from D5 N  and k test instances from D, to obtain [X, Z, Ps]
and [X}, Z, P;] by hg(+), respectively. Per Assumption 3.2, Assumption 3.3 and Assumption 3.4, with a probability of

+ log k) we have

. (ctufﬂdl rdr ns—l)2

at leastl — exp (

QCtpL_TFdI rdIng

[P = Psf| + [lo(krm)|
[174(Z3)l

1Z: — Zs|| < (22)
where 4, = A(B(0, 1)) is the volume of the d; dimension unit ball and d; is the dimension of input x. Furthermore,

9 9 . = W = ) A ~T ~ =
considering the true source correlation ¥; = E[Z; Z;] and the pseudo-source correlation X3 = Z; Z;, where Z; and

+ log k) ,1 —9), the correlation

= CtlL T rd Ng— 2
Z; are centered. With a probability of at least min(1 — exp (—M

2ct,u,*7rd1 rdIng
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distance |2, — ¥,]| is bounded by:

||Es - 2SHF S
|Y: — Pillr+ A
[J9(Z3)ll P

IY: — Pllr + A

4B 23
A @3

2(|Zs]lr (

)+

where Y} is the one-hot encoding of P;, A = ||o(kr*)|| + ke(hg(X;)) + ke(hg(X)) represents the output error of the

sampled instances, and B = 4/ % is the sampling error.

We begin by proving Equation (22). According to Assumption 3.3 and Assumption 3.4, and under the additional assumption
that Z; = Z, + dZ,, where Vz, € Zs, ||dzs|| < r*, the function g(-) can be expressed using a Taylor series:

P = g(Zt) = g(Zs + dZs) =P, + Jg(Zs)dZs —+ O(dZS) (24)
P, — P, = Jg(Zs)dZs + O(dZs) (25)
P, — P, — o(dZ,)

dZ, = 26
7,(Z.) (20

P, — P, — o(dZ,) Ha—g o(dZ,) Ha—g o(kr*)
dZ = < —_— < 27
4|1 H 7 L. me . T nel. <l me ). tnz), @

Next, we examine the probability of the distance between z, and z; satisfying ||dzs|| < r* under Assumption 3.2. Following
the result from (Zhang et al., 2023), for any z; € X;, and r < r, the probability distribution of x falling within a ball
B(x,r) of radius r centered at x; is given by:

Ds(zs € B(x, 1)) = / —(xy)dzs > pm ANBlxy, ) VD) > cop” mg, v (28)
B(z¢,r)NDg dA

Let (x5 € B(x, 7)) be an indicator function, where I(z; € B(x¢,r)) is independent and identically distributed Bernoulli
random variables, representing the probability D (z, € B(zy,7)). Let Sy, (z¢) = > 12 I(zs € B(wy,r)) denotes the
number of source instances z; € Dj that fall within B(z,r). Then, S, (z;) follows a Binomial distribution. Let
W ~ Binomial(n,, c;u~m4,7%). By applying Chernoff’s inequality, we obtain the probability that the number of source
data points falling within B(x, ) is less than m:

_ (BEW]—m)*\ _ (cop™ma,r g —m)?
P(Sp(zy) <m) =P(W <m) <exp <_2E[VV]) = exp (— ST ) (29)

Let xgi) denote the i-th nearest data point to x; within B(x, 7). The probability that the distance between mgi) and x; is less

than r is given by:

(30)

- dr _ 2
(24" = a0 < 7) = P(Su(ae) = m) > 1 - exp <(Ct“ Tayl_ T m>>

2ce g, T ng

For a fixed x4, it suffices to find a single nearest neighbor x that lies within the ball B(x, ), and thus we set m = 1. By
applying the union bound, the desired probability can be expressed as follows:
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() Pl —a) <r)
T €Xy

= () P(Sn(ze) > 1)

T €Xy

=1- |J P(Sa(a) <1)

T €Xy

>1—kexp (—

- d] _ 1 2
=1—exp <— (Ctg 71'(1_17’ n; ) + log k)
cep T rng

- d 2
(Ctﬂf Td, T ng — 1)
201~ T, T g

(3D
- d 12
Thus, with at least the probability 1 — exp (—% + log k), the distance satisfies ||dzs|| < r < rq.
v Ta,rn,
Finally, under Assumption 3.3, let r = TT then:
|dzs|lp < Llldzs||p <7~ (32)
Combining the above equations, with at least the probability:
- drp. —1)2
1 —exp (— (cn”ma, n; ) + log k)
2ei ™ g, g
we have:
P, — Py o(kr*)
142,17 < H (33)
Jg(ZS) Ia Jg(Zs) F

This completes the proof of Equation (22).

Next, we prove Equation (23). Let ¥/, denote the correlation matrix computed from & sampled source instances Z, and let
3 denote the pseudo-source correlation matrix computed from &k sampled test instances Z;. These matrices are computed
as follows:

Y =217, (34)
Se =212 = (Zs +dZ)T (Zs 4+ dZ) = ZF Zy + ZVdZ, + (dZ)T Z, + (dZ,) T dZ, (35)
The change in the correlatione matrix is:
S =% =274z, + (dZ) ' Zy + (dZs)T dZ, (36)
Using the Frobenius norm, we obtain:
1S = S4lle < 121 dZs + (dZ)T Zs + (dZ:) " dZ || < 2|1 Zs |l ¢ l|dZsl| e + 142 % 37)

Additionally, since X', is obtained from k source domain instances and contains statistical error relative to the true covariance
matrix X, = E[X/]. By Hoeffding’s inequality, we have:

2k
P, - B > < 200 (- ) G8)
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Here, d denotes the range of X/, which is set to 1. Let 2 exp (f%) = o, then:

_ 710{;(]6%) (39)
With a probability of at least 1 — o, we have:
1= = 2ol < Ve= % (40)
By combining Equations (37) and (40), we obtain:
%= Sl < 1S% = Sl + 15 - Sulle <\ B oz azl - + ozl @)

We can further expand Equation (41) by applying Equation (33). However, since we cannot determine the true P; in
Equation (33), we scale || P, — Ps||# as follows:
1P, = Pl = 1P = Yy + Y, = U +1 = Py|lr
<P = Yalle + Ve = Ulle + 1 = Pollr
= |P, = Villr + e(h(X,)) + e(h(X,)) (42)

where [ is the true labels.

Finally, combining Equations (33), (41) and (42), we derive the following proposition: with at least min(l —
- d 12
exp (——(Ct” ma rns 1) + log k) ,1—o0):

2cip~wa,rin,

~ ~ 2
¥~ Pllr+ A, (I¥i= Pllr +4
185 = Zellr < 2|1 Z6|| 7 + +B (43)

t AT 17, (2T

where Y} is the one-hot encoding of Py, A = ||o(kr*)||r + e(h(X¢)) + e(h(X,)) represents the output generalization error,
and B = 4/ % is the sampling error.

B.2. Proof of Theorem 3.6

Here, we present Theorem 3.6 again for convenience.

Theorem 3.6 Let # be a hypothesis class of VC-dimension d,,. If h € H minimizes the empirical error é¢(h) on Dy,
and h} = arg minp ey €:(h) is the optimal hypothesis on D, with the assumption that all hypotheses are L-Lipschitz
continuous, then Vé € (0, 1), with probability with at least 1 — ¢ the following inequality holds:

ei(h) < ex(hf) + O lts — pel% + %0 — Zol2) + €

where O = 2,/ %xlog@n:)=108() | 9 4pq ~ = minpep{es(h(t)) + e (h(t))}. ws, 1, Xs and Xy denote the means

2N
and correlations of the source and test embeddings, respectively. We use O(+) to hide the constant dependence.

To complete the proof, we begin by introducing some necessary definitions and assumptions.
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Definition B.1. (Wasserstein Distance (Arjovsky et al., 2017)). The p-th order Wasserstein distance between two
distributions D, and Dy is defined as:

1/p
W,(Ds,Dy) = ( inf // d(ms,xt)”dv(xs,:vt)) (44)

VGH[DS 7Dt]

where II[Dg, D] is the set of all joint distributions on X; x X; with marginal distributions D and Dy, and d(xs, z,,) is
the distance function between two instances xs and x,,.

The Wasserstein distance can be intuitively understood in terms of the optimal transport problem, where d(z s, ;)? represents
the unit cost of transporting mass from x5 € D, to 2y € Dy, and y(xs, ;) is the transport plan that satisfies the marginal
constraints. According to the Kantorovich-Rubinstein theorem, the dual representation of the second-order Wasserstein
distance can be written as:

W2 (]D)Sa ]Dt)

1/2
f Sy d S
(veaﬁa,m]// (@0, dy(@ x”)

= sup (flps — pell3
Iflle<1

+ (S, + 5 — 2(BY2%,Bl/2)12)1/2 45)
where s and i, are the means of f(x) and f(x), respectively, and || f||, = sup W is the Lipschitz semi-norm,
which measures the rate of change of the function f relative to the distance between x4 and z. In this paper, we use W5 as
the default and omit the subscript 2. For completeness, we present Theorem 1 from (Shen et al., 2018) as follows:

Lemma B.2. (Theorem I in (Shen et al., 2018)) Let H be an L-Lipschitz continuous hypothesis class with VC-dimension
dy. Given two domain distributions, Ds and Dy, let v = minpc g{es(h(t)) + €. (h(t))}. The risk of hypothesis h on
the test domain is then bounded by:

e:(h) < v+ e5(h) + 2LW (D,, D) (46)

From Definition B.1 and Lemma B.2, the difference between the true error on the training domain €4(h(t)) and the true
error on the test domain €;(h(t)) can be obtained:

W(Ds, D) = e — el + (S + 20— 28288 )12) <\l — ol + 50— Sl @)

Jer(R) = ea(B)] < + 2Ly lta — el + 154 — Sell? (48)

we use O to hide the constant dependence. Thus, we have:

lee(R) = ex(W)] < 7+ O lits — pell3 + 18 — Sel13) (49)

Then, we provide an upper bound on the difference between the true error €4 (h(t)) and the empirical error é,(h(t)) on the
source domain. We apply Lemma 7 of (Gui et al., 2024):

Plles(h) — es(h)] = €] < (2ns)% exp(—2n.€?) (50)

For any 6 € (0,1), set § = (2n,)% exp(—2nse?), we have:

o \/ dy log(2n,) — log §

2ng

(S
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Therefore, with probability at least 1 — J, we have:

eu(h) — eulh)] < \/ dulog(2n,) — log

Ns

Combining Equations (49) and (52), let 4 (t) = arg minjcn €;(h), we obtain:

er(h(t)

~—

Lo dylog(2ns) —logé
< (i) w 1) 2080 1yt Ol — el 12— Sl

Y dy,log(2ns) —logé
< u(hi (1) # 1:) = 080 14 Oyl — g+ 12— Sl

dylog(2ns) — logd
2ng

< (b (1) +2\/ 5+ Oyl — ull3 + 15— Sil13

dylog(2ns) —logé
2ng

+ 27+ 204/ llus — pull3 + %, - Sil}

< e(hi(t) + 2\/

= et(hj () + O\ e — pell3 + 184 — Zel2 + C
which completes the proof.

C. Method Details

(52)

(53)

In this section, we describe the steps involved in the TCA algorithms used for test-time adaptation. The algorithm aligns
feature correlations between the test and pseudo-source domains, without requiring access to the source domain data. The

steps of the algorithm are outlined in Algorithm 1.

Algorithm 1 LinearTCA Algorithm

1: Input: Test instances X, source model hy.
2: Output: Final predictions P}.

3: If use LinearTCA*: Update 6 by Equation (1)
4: Obtain embeddings and predictions:

5: Select k high-certainty embeddings:

6: Compute linear transformation matrix W:

. 2
W = argmin,y, HWTEtW )

F

7: Apply transformation to embeddings:

/

Zt:(Zt_Mt)W+ﬂs

8: Generate final predictions:

/ ’

P, =g(Z;)
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D. Experimental Details

D.1.

Datasets

The datasets used in this work consist of a variety of domain-shift challenges, enabling a comprehensive evaluation of
test-time adaptation methods. The primary datasets employed include:

D.2.

PACS: The PACS dataset comprises 9,991 images across 7 distinct classes: {dog, elephant, giraffe, guitar, horse,
house, person}. These images are drawn from four domains: {art, cartoons, photos, sketches }.

OfficeHome: This dataset contains images from 4 different domains: {art, clipart, product, real-world}, with a total of
15,500 images. It includes 65 object categories, and the challenge lies in the significant domain shifts between the
different visual styles. OfficeHome is widely used for evaluating domain generalization and adaptation methods due to
its large number of categories and diverse image sources.

DomainNet: The DomainNet dataset is a large-scale dataset used in transfer learning, consisting of 6 domains: {clipart,
infograph, painting, quickdraw, real, and sketch}. It consists of a total of 586,575 images, with each domain containing
345 classes.

CIFAR-10/100C: CIFAR-10 and CIFAR-100 are both foundational datasets in computer vision, containing 60,000
32x32 color images across 10 and 100 classes, respectively. The CIFAR-10/100C variants introduce additional
corruptions (e.g., noise, blur, weather conditions) to simulate real-world distribution shifts, making them highly relevant
for evaluating robustness under adversarial conditions.

ImageNet-C: ImageNet-C is significantly larger compared to CIFAR10-C and CIFAR100-C. This dataset contains
1,281,167 training images and 50,000 test images, categorized into 1,000 classes. Like CIFAR10-C and CIFAR100-C,
ImageNet-C also includes 15 types of corruptions.

Backbones

The choice of backbone models is critical for the performance of domain adaptation algorithms, as they must efficiently
extract features from images across various domains. For this work, we select the following backbone architectures:

L]

ResNet-18/50: ResNet-18 and ResNet-50 are used as backbone models in this study, where ResNet-18 offers a
relatively lightweight model with fewer parameters, suitable for faster training and inference, while ResNet-50, with
its deeper architecture, provides a more expressive feature representation that may improve performance on complex
datasets.

ViT-B/16: The Vision Transformer (ViT) is a more recent architecture that has demonstrated state-of-the-art perfor-
mance in various vision tasks by treating images as sequences of patches. ViT-B/16 refers to a ViT model with a base
configuration and a patch size of 16x16 pixels. ViT models are especially useful in scenarios where large-scale data
and diverse domains are involved.

CLIP: Contrastive Language- Image Pre-Training (CLIP), developed by OpenAl, is a cutting-edge multimodal model
that bridges visual and textual domains through contrastive learning. CLIP employs dual encoders (ResNet/ViT
for images and Transformer for text) to project both modalities into a shared semantic space, enabling zero-shot
classification by matching image features with natural language prompts.

Both ResNet and ViT backbones are well-established in the literature and serve as strong candidates for evaluating domain
adaptation techniques, with ResNet-18/50 being more computationally efficient and ViT-B/16 being particularly effective in
capturing complex relationships across domains. In this work, the zero-shot classification model CLIP is also included as a
backbone to validate the effectiveness of our proposed methods on closed-source foundation models.

D.3.

Implementation Details

Consistent with prior work (Wang et al., 2020; Niu et al., 2022; 2023; Nguyen et al., 2023; Yuan et al., 2024; Iwasawa &
Matsuo, 2021; Wang et al., 2023; Zhang et al., 2023), hyperparameter tuning in our experimental setup is conducted
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across datasets. Specifically, in the Domain Generalization task, we first identify the optimal parameter set based on the
highest accuracy achieved on the default domain (art paintings in PACS, art in OfficeHome and clipart in DomainNet).
These parameters are then applied to other domains to assess their performance. Specifically, we conduct a search for the
learning rate within the range {1e-7, 5e-7, le-6, 5e-6, le-3, 5e-5, le-4, 5e-4, 1e-3, 5e-3, le-2, Se-2, le-1}. For methods that
include an entropy filter component (e.g., TSD), we explore the entropy filter hyperparameter in the set {1, 5, 10, 15, 20, 50,
100, 200, 300}. For AdaNPC, we explore the hyperparameter k (the number of nearest samples used for voting) over {5, 10,
15, 20, 30, 40, 50}. For the LinearTCA method, we optimized the number of pseudo-source instances k within the range
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200, 300}. For most datasets and backbones, smaller & values generally yield
satisfactory results. For datasets with a substantial number of images per class, it is advisable to experiment with larger
k values. For the LinearTCA* method, we conducted an optimization of k values on the basis of other top-performing
test-time adaptation method and its parameter settings.

For the Image Corruption task, we experiment with each TTA method using learning rates from {1le-7, 5e-7, le-6, 5e-6,
le-5, 5e-5, le-4, 5e-4, le-3, 5e-3, le-2, Se-2, le-1} and the entropy filter hyperparameter in the set {1, 5, 10, 15, 20, 50,
100, 200, 300}. The parameter range for k in AdaNPC, LinearTCA/LinearTCA™ remains consistent with their respective
selections in Domain Generalization task. The top-performing test-time adaptation approach on the Image Corruption is
selected as the base method for LinearTCA™. The best performance results obtained for each method are selected as the final
experimental outcomes. For the pre-trained model on ImageNet-C dataset, we utilize the model provided by TorchVision.

During the Test-Time Adaptation phase, both the Domain Generalization and Image Corruption tasks utilize specific batch
size for different backbones. ResNet-18 and ResNet-50 use a batch size of 128, whereas the ViT-B/16 is configured with a
batch size of 64.

For the implementation of the TCA method, we first obtain the embeddings of all test data during the testing phase. Based
on the inter-class proportion of the test data, we perform high-certainty filtering to select instances that match this proportion
to construct the pseudo-source domain. Subsequently, we use the correlation distance between the pseudo-source domain
and the test domain to compute the linear transformation matrix . Finally, we apply this linear transformation to the
previously retained embeddings of the test data and make final prediction.

E. Additional Experimental Results
E.1. Comparison Results Details

Tables 9 to 17 provide the detailed results of our experimental results on Domain Generalization task, and Tables 18 to 26
offers a detailed overview of the outcomes from our Image Corruption task. These results demonstrate that our TCA method
consistently outperforms other state-of-the-art TTA approaches across most domians and corruption types, effectively
validating the TCA’s capability to robustly enhance accuracy performance during the test phase.

E.2. Analysis Details

Figures 5 and 6 illustrate the adaptation process of LinearTCA to datasets with linear and nonlinear shifts, respectively.
Figures (a) to (f) depict the gradual alignment process of linear and nonlinear shifts. Notably, LinearTCA demonstrates
significantly better performance in adapting to linear shifts compared to nonlinear ones, which the LinearTCA’s proficiency
in handling simpler, linear distribution shifts while revealing its limitations when addressing more complex, nonlinear
transformations.

We also provide the code for generating source and target domain features with both linear and nonlinear distribution shifts.
The features are generated using PyTorch and serve as synthetic examples. The source domain features (X, X 5(2)) consist of

clusters sampled from normal distributions with fixed offsets. The target domain features (X, Xt(Q)) are scaled and shifted
versions of normal distributions to simulate linear and nonlinear domain shifts. The generated features can be visualized
using 2D scatter plots for better understanding of the distributional changes.
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Linear Shift Code:

# Linear Shift
# Source domain features
X_s = torch.cat ((torch.randn (30, 2),
torch.randn (30, 2) + 15,
torch.randn (30, 2) + torch.tensor ([0, 10])), dim=0)
# Target domain features
X_t = torch.cat ((torch.randn (250, 2) =«
torch.randn (250, 2) =
torch.randn (250, 2) =

~

7
+ torch.tensor ([0, 20]),
21)

1), dim=0)

Nonlinear Shift Code:

# Nonlinear Shift
# Source domain features
X_s_ 2 = torch.cat ((torch.randn (30
torch.randn (30
torch.randn (30,
torch.randn (30
# Target domain features
X_t_2 = torch.cat ((torch.randn (250, 2) = 3 + 5,
torch.randn (250, 2) + 10,
( 2)
( 2)

+ 10,
+ torch.tensor ([0, 101),
+ torch.tensor([-5, -10])), dim=0)

torch.randn (250, * 2 + torch.tensor ([0, 2071),
torch.randn (250, * 2.5 + torch.tensor ([-9, 1])), dim=0)

Backbone ‘ Method ‘ PACS Avg ‘ Hyper-parameters
| | A C P S
Source (He et al., 2016) 78.37 7739 9503 7658 81.84 | nan
BN (Schneider et al., 2020) 8091 80.80 95.09 73.81 82.65 | nan
T3A (Iwasawa & Matsuo, 2021) | 80.27 79.56 9557 7740 83.20 | fk=50
AdaNPC (Zhang et al., 2023) 80.81 79.14 96.17 77.81 83.48 | tk=100k=5
TENT (Wang et al., 2020) 82.86 82.12 96.11 79.82 85.23 | Ir=5e-3
ResNet-18 PLC (Lee, 2013) 81.69 81.36 9587 73.71 83.16 | Ir=le-3
EATA (Niu et al., 2022) 82.71 8136 9479 7434 83.30 | Ir=le-2
SAR (Niu et al., 2023) 8330 8255 95.09 80.68 8541 | Ir=le-1
TIPI (Nguyen et al., 2023) 8550 8490 96.05 83.13 87.39 | Ir=5e-3
TEA (Yuan et al., 2024) 86.47 85.79 95.69 80.81 87.19 | Ir=5e-3
TSD (Wang et al., 2023) 86.96 86.73 96.41 81.22 87.83 | Ir=le-4 fk=100
LinearTCA 8091 81.02 95.69 76.74 83.59 | fkTCA=30
LinearTCA * 88.38 87.12 96.59 83.00 88.77 | TSD fkTCA=25

Table 9. Accuracy comparison of different TTA methods on PACS dataset based on ResNet-18 backbone. The best results are highlighted
in boldface, and the second ones are underlined.
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Backbone ‘ Method ‘ PACS Avg ‘ Hyper-parameters
\ \ A C P S
Source (He et al., 2016) 83.89 81.02 96.17 78.04 84.78 | nan
BN (Schneider et al., 2020) 85.50 85.62 96.77 72.05 84.99 | nan
T3A (Iwasawa & Matsuo, 2021) | 84.86 82.47 97.01 7852 85.71 | fk=100
AdaNPC (Zhang et al., 2023) 85.11 8285 97.13 7941 86.12 | tk=200k=10
TENT (Wang et al., 2020) 88.09 87.33 97.19 79.69 88.07 | Ir=le-3
ResNet-50 PLC (Lee, 2013) 86.52 8494 9701 77.88 86.59 | Ir=1e-3
EATA (Niu et al., 2022) 84.72 8520 9635 7246 84.68 | Ir=5e-5
SAR (Niu et al., 2023) 85.55 85.62 96.77 7524 8579 | lr=le-2
TIPI (Nguyen et al., 2023) 88.18 87.93 97.13 78.80 88.01 | Ir=le-3
TEA (Yuan et al., 2024) 88.67 87.80 97.54 80.99 88.75 | Ir=le-3
TSD (Wang et al., 2023) 90.43 89.89 97.84 81.80 89.99 | Ir=le-4 fk=100
LinearTCA 86.28 8392 9695 79.99 86.78 | tkTCA=30
LinearTCA * 90.92 90.10 97.84 83.86 90.68 | TSD fkTCA=30

Table 10. Accuracy comparison of different TTA methods on PACS dataset based on ResNet-50 backbone.

in boldface, and the second ones are underlined.

The best results are highlighted

Backbone ‘ Method ‘ PACS Avg ‘ Hyper-parameters
| | A C P S |
Source (He et al., 2016) 86.96 8430 98.02 78.77 87.02 | nan
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 | nan
T3A (Iwasawa & Matsuo, 2021) | 88.23 8596 98.86 79.18 88.06 | k=50
AdaNPC (Zhang et al., 2023) 89.01 87.37 9898 81.06 89.11 | tk=200k=10
TENT (Wang et al., 2020) 89.60 73.08 9790 79.33 84.98 | Ir=5e-3
VIT-B/16 PLC (Lee, 2013) 87.70 8528 98.62 80.30 87.97 | Ir=5e-4
EATA (Niu et al., 2022) 8745 84.17 9784 7692 86.60 | Ir=5e-3
SAR (Niu et al., 2023) 86.96 8430 98.02 79.18 87.12 | Ir=5e-2
TIPI (Nguyen et al., 2023) 87.99 84.17 9820 81.55 87.98 | Ir=5e-4
TEA (Yuan et al., 2024) 88.77 8541 9796 77.35 87.37 | Ir=1e-3
TSD (Wang et al., 2023) 90.72 8541 9796 59.63 83.43 | Ir=le-5 tk=20
LinearTCA 88.57 86.52 9826 81.09 88.61 | fkTCA=15
LinearTCA * 88.96 8690 9826 83.05 89.30 | TIPItkTCA=30

Table 11. Accuracy comparison of different TTA methods on PACS dataset based on ViT-B/16 backbone. The best results are highlighted
in boldface, and the second ones are underlined.

OfficeHome

Backbone ' Method Avg ' Hyper-parameters
\ \ A C P R \
Source (He et al., 2016) 56.45 48.02 7134 7223 62.01 | nan
BN (Schneider et al., 2020) 55.62 4932 70.60 72.66 62.05 | nan
T3A (Iwasawa & Matsuo, 2021) | 56.61 50.06 73.39 7299 63.26 | k=20
AdaNPC (Zhang et al., 2023) 5595 4942 73.10 73.05 62.88 | tk=20k=5
TENT (Wang et al., 2020) 56.94 50.65 71.86 7292 63.09 | Ir=1e-3
PLC (Lee, 2013) 5595 4937 7083 7273 62.22 | Ir=5e-5
ResNet-18 | EATA (Niu et al., 2022) 56.41 49.62 71.66 7227 6249 | Ir=1e-3
SAR (Niu et al., 2023) 57.15 5031 7024 7234 62.51 | Ir=5e-2
TIPI (Nguyen et al., 2023) 57.03 50.61 72.07 7328 63.25 | Ir=1e-3
TEA (Yuan et al., 2024) 58.55 5047 7175 7294 63.43 | lr=5Se-4
TSD (Wang et al., 2023) 58.06 49.81 7137 70.67 6247 | Ir=1e-4 fk=10
LinearTCA 59.46 5040 72.02 72.78 63.66 | tkTCA=10
LinearTCA * 59.83 51.80 7229 73.17 64.27 | TEA fkTCA=10

Table 12. Accuracy comparison of different TTA methods on OfficeHome dataset based on ResNet-18 backbone. The best results are
highlighted in boldface, and the second ones are underlined.
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Backbone ‘ Method ‘ OfficeHome Avg ‘ Hyper-parameters
\ \ A C P R
Source (He et al., 2016) 64.85 5226 75.04 75.88 67.01 | nan
BN (Schneider et al., 2020) 63.54 5271 73.89 75.05 66.30 | nan
T3A (Iwasawa & Matsuo, 2021) | 65.02 5331 76.10 76.96 67.85 | k=100
AdaNPC (Zhang et al., 2023) 63.74 5233 7572 7643 67.05 | tk=200 k=5
TENT (Wang et al., 2020) 64.65 5485 7504 76.15 67.67 | Ir=5e-4
ResNet-50 PLC (Lee, 2013) 63.82 52.83 74.09 75.03 66.44 | Ir=5e-5
EATA (Niu et al., 2022) 6395 5395 7457 7556 67.01 | Ir=1e-3
SAR (Niu et al., 2023) 64.77 5592 7524 7581 67.94 | lr=le-2
TIPI (Nguyen et al., 2023) 64.73 56.24 7547 77.00 68.36 | Ir=1e-3
TEA (Yuan et al., 2024) 65.97 57.57 7472 7597 68.56 | lr=1e-3
TSD (Wang et al., 2023) 65.51 56.54 76.17 7631 68.63 | Ir=1e-4 fk=1
LinearTCA 66.50 5439 7576 77.07 68.43 | tkTCA=5
LinearTCA * 67.16 5622 76.86 77.05 69.32 | TSD fkTCA=10

Table 13. Accuracy comparison of different TTA methods on OfficeHome dataset based on ResNet-50 backbone. The best results are
highlighted in boldface, and the second ones are underlined.

Backbone ‘ Method ‘ OfficeHome Avg ‘ Hyper-parameters
| | A C P R |

Source (He et al., 2016) 73.51 63.18 82.68 8506 76.11 | nan

BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 | nan

T3A (Iwasawa & Matsuo, 2021) | 77.79 6557 8592 86.18 78.87 | ftk=5

AdaNPC (Zhang et al., 2023) 75.57 6376 84.30 8543 77.26 | tk=200k=5
ViT-B/16 | TENT (Wang et al., 2020) 7458 64.15 83.74 8536 7695 | Ir=1e-3

PLC (Lee, 2013) 7441 63.51 82.81 8531 76.51 | lIr=le4

EATA (Niu et al., 2022) 7417 64.81 83.58 8538 7698 | Ir=1e-3

SAR (Niu et al., 2023) 7495 63.07 83.58 85.06 76.66 | Ir=le-1

TIPI (Nguyen et al., 2023) 7450 64.47 8392 8549 77.09 | Ir=1e-3

TEA (Yuan et al., 2024) 7371 6323 8274 84.92 76.15 | Ir=le-4

TSD (Wang et al., 2023) 7594 5595 84.75 85.33 75.49 | Ir=le-5 tk=20

LinearTCA 76.02 67.35 84.12 85.56 78.26 | fkTCA=5

LinearTCA * 7721 6836 84.64 85.88 79.02 | TIPIfkTCA=5

Table 14. Accuracy comparison of different TTA methods on OfficeHome dataset based on ViT-B/16 backbone. The best results are
highlighted in boldface, and the second ones are underlined.

Backbone ‘ Method ‘ DomainNet Avg ‘ Hyper-parameters
\ C I P Q R S \
Source (He et al., 2016) 57.30 16.86 45.03 12.69 56.89 46.00 39.13 | nan
BN (Schneider et al., 2020) 5726 11.55 4332 11.77 56.58 47.09 3793 | nan
T3A (Iwasawa & Matsuo, 2021) | 58.44 18.57 46.80 14.54 57.66 47.72 40.62 | fk=100
AdaNPC (Zhang et al., 2023) 57.61 1583 44.89 1844 59.72 46.53 40.50 | fk=100 k=10
TENT (Wang et al., 2020) 58.41 13.09 45.17 13.02 57.89 4894 3942 | Ir=le-4
PLC (Lee, 2013) 5745 12.60 44.77 10.01 5574 4720 37.96 | Ir=le-5
ResNet-18 | EATA (Niu et al., 2022) 59.18 1622 46.65 18.04 59.59 50.21 41.65 | Ir=1e-3
SAR (Niu et al., 2023) 59.13 13.10 4575 488 5825 49.83 3849 | Ir=5e-3
TIPI (Nguyen et al., 2023) 5842 11.68 4253 537 5076 47.58 36.05 | lr=5e-4
TEA (Yuan et al., 2024) 58.01 12.83 45.10 14.33 5755 4880 39.43 | Ir=5e-5
TSD (Wang et al., 2023) 57.73 12,19 4458 12.78 5594 4831 38.59 | Ir=le-5 fk=100
LinearTCA 58.67 18.60 46.85 14.88 5793 47.80 40.79 | fkTCA=10
LinearTCA * 5995 16.89 47.68 18.35 59.67 50.66 42.20 | EATA fkTCA=10

Table 15. Accuracy comparison of different TTA methods on DomainNet dataset based on ResNet-18 backbone. The best results are
highlighted in boldface, and the second ones are underlined.

24



Test-time Correlation Alignment

Backbone ‘ Method ‘ DomainNet Avg ‘ Hyper-parameters
| | C I P Q R S |
Source (He et al., 2016) 63.68 2093 5035 1295 62.16 5142 4358 | nan
BN (Schneider et al., 2020) 63.30 14.84 4854 10.83 62.02 52.12 41.94 | nan
T3A (Iwasawa & Matsuo, 2021) | 63.76 21.06 49.82 1846 64.05 5239 4492 | k=100
AdaNPC (Zhang et al., 2023) 64.38 20.12 51.07 17.34 6559 5251 45.17 | tk=200 k=10
TENT (Wang et al., 2020) 6495 1746 5158 11.28 64.04 5451 4397 | Ir=le4
PLC (Lee, 2013) 63.56 14.89 49.09 883 60.83 52.61 41.63 | Ir=1e-5
ResNet-50 | EATA (Niu et al., 2022) 65.89 19.88 52.67 20.36 66.58 55.99 46.89 | Ir=5e-4
SAR (Niu et al., 2023) 6544 14.63 5068 394 6394 5449 42.19 | Ir=5e-3
TIPI (Nguyen et al., 2023) 6497 1747 51.63 11.67 64.03 54.69 44.08 | Ir=le-4
TEA (Yuan et al., 2024) 64.87 1695 5140 1148 6190 5431 4348 | Ir=le-4
TSD (Wang et al., 2023) 6431 16.53 50.75 852 5897 53.63 42.12 | Ir=5e-5 fk=5
LinearTCA 64.58 23.79 50.06 14.10 63.60 53.21 44.89 | fkTCA=5
LinearTCA * 66.46 21.04 51.61 2047 66.86 56.57 47.17 | EATA fkTCA=5

Table 16. Accuracy comparison of different TTA methods on DomainNet dataset based on ResNet-50 backbone. The best results are

highlighted in boldface, and the second ones are underlined.

Backbone ‘ Method ‘ DomainNet Avg ‘ Hyper-parameters
| | C I P Q R S
Source (He et al., 2016) 71.62 2559 5734 18.07 7190 5724 50.29 | nan
BN (Schneider et al., 2020) 0.00 0.00 000 0.00 000 0.00 0.00 | nan
T3A (Iwasawa & Matsuo, 2021) | 73.56 2695 59.77 27.34 75777 6024 53.94 | tk=100
AdaNPC (Zhang et al., 2023) 73.76 2552 59.86 2442 7599 60.14 5328 | fk=200k=5
TENT (Wang et al., 2020) 72.65 18.00 3508 420 74.03 3582 39.96 | Ir=le-4
PLC (Lee, 2013) 7229 1927 56.69 500 7245 58.04 4729 | Ir=5e-5
ViT-B/16 | EATA (Niu et al., 2022) 7391 2876 61.71 2479 7539 61.84 54.40 | Ir=1e-3
SAR (Niu et al., 2023) 73.06 17.42 4094 1137 73.67 4039 42.81 | Ir=5e-2
TIPI (Nguyen et al., 2023) 7271 17.62 3337 454 7398 3596 39.70 | Ir=le-4
TEA (Yuan et al., 2024) 7196 2417 5531 883 7220 58.00 4841 | Ir=5e-5
TSD (Wang et al., 2023) 7240 2347 5920 412 7354 59.60 48.72 | Ir=le-6 fk=50
LinearTCA 7337 2842 60.88 20.66 7339 60.03 52.79 | fkTCA=5
LinearTCA * 75.02 30.11 63.33 25.14 76.05 6331 55.49 | EATA fkTCA=5

Table 17. Accuracy comparison of different TTA methods on DomainNet dataset based on ViT-B/16 backbone. The best results are

highlighted in boldface, and the second ones are underlined.

Method | CIFAR-10-C Ave
| Gau Sho.  Imp. Def. Gla. Mot.  Zoo.  Sno. Fro. Fog Bri. Con Ela. Pix. Jpe.

Source (He et al., 2016) 2743 3356 2157 43.64 4048 5126 5129 68.18 5452 66.65 87.50 27.59 67.06 48.86 7237 50.80
BN (Schneider et al., 2020) 66.05 6822 5683 8234 5786 79.78 8232 7499 7430 7885 8722 81.80 7031 73.61 71.00 73.70
T3A (Iwasawa & Matsuo, 2021) | 44.16 5032 29.64 5698 49.02 6085 6229 7020 60.83 70.75 8723 37.68 71.60 5859 7322 58.89
AdaNPC (Zhang et al., 2023) 40.96 4754 27.01 5484 4647 5993 6191 7012 60.59 71.18 87.16 3513 71.06 58.15 7373 57.72
TENT (Wang et al., 2020) 65.09 7278 5893 8278 59.02 81.01 8392 77.82 7583 79.34 88.10 8277 7210 7647 7226 7521
PLC (Lee, 2013) 66.06 6825 56.92 82.66 57.69 79.78 8229 74.84 7433 7891 87.07 81.82 7049 73.63 71.00 73.72
EATA (Niu et al., 2022) 66.89 6821 56.76 8249 57.59 80.10 82.09 7490 7435 78.82 87.13 82.04 70.66 74.16 71.73 73.86
SAR (Niu et al., 2023) 6628 6823 5830 8234 5920 79.78 8232 7499 7453 7885 8722 8251 7032 73.61 71.00 7397
TIPI (Nguyen et al., 2023) 67.69 7321 5954 83.80 6236 81.29 84.15 7815 7690 7991 88.63 8299 7246 7734 7311 76.10
TEA (Yuan et al., 2024) 7076 72.46 6144 8340 6045 81.56 84.05 77.57 7612 81.07 8797 82.82 7251 7651 7426 76.20
TSD (Wang et al., 2023) 7233 7573 6484 8324 6145 8249 8392 7829 7579 81.96 8755 7943 73.07 7848 7536 76.93
LinearTCA 52.17 55.61 3634 57.08 48.18 6225 6226 7194 67.17 73.09 8723 41.70 7028 56.43 72.68 60.96
LinearTCA * 7311 7593 6530 8323 62.13 8221 83.87 7841 7625 8212 8742 7932 7348 78.60 7562 77.13

Table 18. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, based on ResNet-18 backbone.

The best results are highlighted in boldface, and the second ones are underlined.
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Method | CIFAR-10-C Ave
‘ Gau. Sho. Imp. Def. Gla. Mot.  Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source (He et al., 2016) 30.81 37.09 2471 38.07 41.66 5197 51.17 6849 60.52 6679 86.19 2825 65.19 3895 71.66 50.77
BN (Schneider et al., 2020) 6198 63.05 5625 8258 5449 80.11 82.61 7416 7236 7928 87.04 81.06 67.16 7127 7022 7224
T3A (Iwasawa & Matsuo, 2021) | 4534 4951 36.76 39.10 46.88 56.85 5352 6588 57.84 6882 84.61 33.13 6820 46.08 7049 54.87
AdaNPC (Zhang et al., 2023) 4193 4729 3250 4160 4570 56.09 5638 6725 59.62 69.90 8551 3224 6827 46.08 7088 54.75
TENT (Wang et al., 2020) 62.04 6330 56.26 82.66 5452 80.09 82.68 7440 7243 79.20 8721 8l.11 6734 7139 7032 7233
PLC (Lee, 2013) 6235 6271 56.09 8257 5407 8024 8291 7454 7226 79.37 8720 81.09 67.62 7139 7071 72.34
EATA (Niu et al., 2022) 62.61 63.63 56.13 8234 5471 7997 8216 7489 7216 79.27 87.66 81.32 67.76 70.81 70.28 72.38
SAR (Niu et al., 2023) 65.12 6649 5849 8258 55.65 80.12 8261 75.10 73.60 79.63 87.04 8156 6849 7263 7147 73.37
TIPI (Nguyen et al., 2023) 62.02 63.61 5537 8280 5443 8029 83.11 7481 7277 7896 87.52 8135 6749 71.72 70.70 72.46
TEA (Yuan et al., 2024) 6392 65.15 5573 8232 5234 8054 83.14 7499 73.17 80.08 87.58 8090 67.57 7047 7026 72.54
TSD (Wang et al., 2023) 6442 6556 56.16 83.06 5395 80.88 8332 7518 7358 80.17 87.84 8149 6838 7291 71.61 7323
LinearTCA 52.05 5576 43.06 51.79 49.06 61.68 62.03 7153 67.67 72.83 86.04 37.62 69.92 5028 72.69 6027
LinearTCA * 65.27 66.63 59.15 82.87 56.37 80.78 8280 75.05 72.69 79.61 86.85 80.97 69.10 7274 72.05 73.53

Table 19. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, based on ResNet-50 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

CIFAR-10-C

Method Avg
| Gau. Sho. Imp. Def.  Gla. Mot. Zoo. Sno. Fro. Fog Bri.  Con Ela. Pix. Jpe.

Source (He et al., 2016) 3725 4431 3994 83.16 7031 8354 8580 87.15 8506 79.19 9275 29.73 8473 84.68 84.58 71.48
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00

T3A (Iwasawa & Matsuo, 2021) | 47.84 52.78 51.52 83.16 73.06 83.35 8566 87.04 8496 79.53 9272 3644 8449 8572 8481 7421
AdaNPC (Zhang et al., 2023) 4870 54.14 5095 8331 74.10 8346 8586 87.20 8531 80.09 9270 3792 8470 85.84 84.70 74.60
TENT (Wang et al., 2020) 37.25 4431 3994 83.16 70.31 8354 85.80 87.15 8505 79.19 9275 29.73 84.73 84.68 84.58 71.48
PLC (Lee, 2013) 37.18 4427 39.84 83.15 7031 8354 8577 87.15 8507 79.19 9275 29.72 8474 84.69 8459 71.46
EATA (Niu et al., 2022) 46.55 4834 3191 8630 6931 84.78 86.56 88.62 87.25 8032 93.05 45.84 84.87 8699 8429 73.67
SAR (Niu et al., 2023) 37.25 4431 3994 83.16 7031 8354 8580 87.15 8506 79.19 9275 29.73 8473 84.68 84.58 71.48
TIPI (Nguyen et al., 2023) 37.24 4432 3993 83.17 7030 8355 8577 87.16 8507 79.18 92.74 29.73 8475 84.69 84.58 71.48
TEA (Yuan et al., 2024) 3723 4431 3992 83.17 70.30 8356 8579 87.15 85.06 7920 92.75 29.73 84.74 84.69 84.58 71.48
TSD (Wang et al., 2023) 37.17 4422 39.80 83.18 70.35 8358 85.80 87.16 85.08 7920 92.75 29.70 84.74 8470 84.59 71.47
LinearTCA 56.10 60.11 5513 8521 76.10 8490 87.50 87.89 87.00 8226 92.86 4561 85.64 87.20 8537 77.26
LinearTCA * 64.74 6497 54.15 8724 7539 8588 88.35 8894 88.24 83.10 93.09 60.32 85.72 88.16 84.96 79.55

Table 20. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, based on ViT-B/16 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method | CIFAR-100-C Ave
\ Gau. Sho. Imp. Def. Gla. Mot.  Zoo. Sno. Fro. Fog Bri. Con Ela. Pix. Jpe.

Source (He et al., 2016) 1046 1249 336 3444 23.63 38.10 42.67 39.25 33.01 3284 5578 11.55 4648 34.88 46.15 31.01
BN (Schneider et al., 2020) 39.78 39.81 2995 56.18 40.92 5471 58.68 4852 4959 46.79 61.89 48.63 50.26 54.61 4537 4838
T3A (Iwasawa & Matsuo, 2021) | 10.51 11.59 393  36.77 2694 4054 4508 39.49 34.68 3563 56.05 13.23 47.61 40.63 4515 32.52
AdaNPC (Zhang et al., 2023) 10.01 10.69 3.64 3357 2438 37.00 4106 3588 3145 3228 5219 1229 4332 3721 4050 29.70
TENT (Wang et al., 2020) 43.19 4438 3170 58.86 4329 56.57 61.00 51.19 50.66 50.75 64.02 47.77 52.08 57.74 49.11 50.82
PLC (Lee, 2013) 39.65 39.47 30.25 5631 40.70 5450 58.88 4856 49.37 46.73 62.04 48.68 50.44 5420 4545 4835
EATA (Niu et al., 2022) 4195 41.87 3196 57.55 4262 5594 59.00 4947 5043 4848 62.54 49.57 51.12 5564 4750 49.71
SAR (Niu et al., 2023) 44.07 45.12 3337 59.80 43.69 5721 61.15 51.70 5197 5149 6390 5046 52.64 57.97 49.52 51.60
TIPI (Nguyen et al., 2023) 44,04 4511 3286 57.89 4385 5587 60.08 52.16 51.69 49.38 6340 4424 5143 5742 49.76 50.61
TEA (Yuan et al., 2024) 4378 4343 32.68 5820 42.62 5630 60.67 50.84 51.32 50.16 63.87 49.95 5178 56.60 47.83 50.67
TSD (Wang et al., 2023) 4177 4252 3216 57.88 4138 56.08 59.84 4930 5043 49.65 62.83 43.52 5049 5523 4720 4935
LinearTCA 1398 1645 542 3896 29.15 4256 4630 4240 39.41 39.56 56.78 15.33 49.51 4256 47.07 35.03
LinearTCA * 4470 45.77 3376 59.77 4445 5741 6149 5225 5252 5192 6425 51.18 5328 58.68 49.81 52.08

Table 21. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, based on ResNet-18 backbone.
The best results are highlighted in boldface, and the second ones are underlined.
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Test-time Correlation Alignment

Method \ CIFAR-100-C Ave
‘ Gau. Sho. Imp. Def. Gla. Mot Zoo. Sno. Fro. Fog Bri. Con Ela. Pix. Jpe.

Source (He et al., 2016) 17.23 1942 977 3534 31.87 39.15 4198 4199 38.68 32.00 5456 11.18 47.57 4251 47.02 34.02
BN (Schneider et al., 2020) 42.09 4222 3137 5623 4236 5461 5722 4843 49.61 4529 60.06 4507 5052 5509 4596 4841
T3A (Iwasawa & Matsuo, 2021) | 18.46 20.58 1098 37.34 3481 40.71 44.04 40.74 39.09 3348 5389 1094 4723 4559 4620 34.94
AdaNPC (Zhang et al., 2023) 17.41 18.85 10.53 3526 3143 3749 4099 3725 3578 30.65 49.75 10.68 43.74 41.78 4253 3227
TENT (Wang et al., 2020) 4396 4424 3176 58.87 43.16 56.70 59.49 50.64 50.86 49.07 60.81 4355 5237 5794 4839 50.12
PLC (Lee, 2013) 41.80 4250 31.57 5598 4262 5460 5727 4835 4883 4528 60.03 4477 5047 5523 4634 4838
EATA (Niu et al., 2022) 4469 4476 3496 57.10 4349 5626 58.80 49.86 5029 4729 61.00 4532 51.65 56.05 46.81 49.89
SAR (Niu et al., 2023) 4459 44.64 3457 5826 4355 5641 58.62 50.08 50.74 47.77 6139 46.76 5149 5685 48.07 5025
TIPI (Nguyen et al., 2023) 46.12 4631 34.13 5748 4346 5563 5851 5132 5245 4856 61.05 40.80 51.28 5793 4948 50.30
TEA (Yuan et al., 2024) 44.64 4579 3471 57.63 43.66 56.11 5837 50.18 5021 48.86 61.11 4559 5121 5646 48.61 50.21
TSD (Wang et al., 2023) 4537 46.18 3451 57.85 4244 5598 5850 50.33 50.54 49.66 60.61 3694 5092 56.05 48.19 49.60
LinearTCA 2190 2446 1280 39.80 36.53 42.66 4580 43.03 42.66 36.47 55.13 1297 4949 4741 48.09 37.28
LinearTCA * 4729 4895 36.13 57.60 4446 55.68 58.80 5331 52.11 48.68 61.78 4187 5149 5848 50.99 51.17

Table 22. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, based on ResNet-50 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

CIFAR-100-C

Method Avg
| Gau Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri.  Con Ela. Pix. Jpe.

Source (He et al., 2016) 2171 2474 1953 6241 43.14 61.13 67.65 6634 6748 54.03 7743 3326 60.09 6048 56.17 51.71
BN (Schneider et al., 2020) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00

T3A (Iwasawa & Matsuo, 2021) | 2432 27.25 23.66 65.04 47.67 6322 6956 6746 69.16 57.09 7816 36.55 6236 63.61 5853 5424
AdaNPC (Zhang et al., 2023) 2275 2577 22,65 6354 4646 62.02 6899 66.78 68.50 5645 77.60 3534 61.63 6287 56.82 5321
TENT (Wang et al., 2020) 1095 1394 440 66.79 4592 67.13 7128 6783 6992 5926 7842 4929 62.18 6626 5729 5272
PLC (Lee, 2013) 21.66 2471 1949 6242 43.16 61.15 67.61 6634 6753 5404 7744 3329 60.10 6049 56.17 51.71
EATA (Niu et al., 2022) 50.06 5296 44.88 70.07 5445 69.01 70.21 6645 70.10 62.13 78.08 60.10 62.59 6626 58.61 62.40
SAR (Niu et al., 2023) 16.59 18.07 9.89 67.86 47.37 6731 7148 6799 70.19 60.58 78.17 5290 61.29 66.11 5856 54.29
TIPI (Nguyen et al., 2023) 7.95 9.85 377 67.08 4589 6696 7198 68.01 70.63 5947 7824 4770 6237 67.37 5817 52.36
TEA (Yuan et al., 2024) 1099 1739 8.09 66.54 4555 6524 7078 67.06 69.09 5830 7644 4515 61.60 6482 57.56 5231
TSD (Wang et al., 2023) 21.53 2449 19.03 62.61 4325 6134 6772 6634 67.67 54.15 7746 3336 60.10 60.73 56.26 51.74
LinearTCA 2746 30.02 2533 6529 4798 6426 6991 6832 70.01 5849 78.16 3942 62.74 65.09 58.82 5542
LinearTCA * 5198 5492 46.74 71.00 56.07 69.73 71.06 6756 71.01 6393 78.61 6235 6342 67.73 5949 63.71

Table 23. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, based on ViT-B/16 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method | ImageNet-C Ave
\ Gau. Sho. Imp. Def. Gla. Mot.  Zoo. Sno. Fro. Fog Bri. Con Ela. Pix. Jpe.

Source (He et al., 2016) 1.54 227 148 1144 868 11.12 17.62 10.64 1621 14.02 51.52 344 1649 2335 30.67 14.70
BN (Schneider et al., 2020) 13.65 1484 14.17 1195 13.04 2334 3389 29.18 2842 40.80 58.11 12.09 3892 4435 37.08 27.59
T3A (Iwasawa & Matsuo, 2021) | 1.61 2.35 1.65 1057 820 10.12 1738 11.03 16.14 1519 4923 324 18.00 2337 3031 14.56
AdaNPC (Zhang et al., 2023) 142 201 1.42 8.23 649 764 1382 850 12.08 11.97 4281 277 1541 1992 2449 1193
TENT (Wang et al., 2020) 2345 2571 24.08 1879 2090 33.54 4285 39.64 3295 50.36 60.13 10.68 4881 5196 46.98 3539
PLC (Lee, 2013) 13.64 1485 14.16 1196 13.02 2336 3391 29.18 2843 40.78 58.12 12.08 3891 4435 37.08 27.59
EATA (Niu et al., 2022) 28.24 30.16 2888 2530 25.74 36.61 43.71 41.80 3642 5087 59.12 3175 49.10 5233 47.82 39.19
SAR (Niu et al., 2023) 28.04 29.59 27.88 23.66 2390 36.16 4340 4094 36.71 51.01 60.18 2738 4895 52.47 4798 38.55
TIPI (Nguyen et al., 2023) 2445 2652 2475 2037 2225 33.65 4246 3931 3347 4993 59.44 1253 4841 5151 4692 3573
TEA (Yuan et al., 2024) 18.82 2050 19.00 1627 17.68 2851 39.17 35.19 3226 4692 59.16 1542 4439 4881 43.64 3238
TSD (Wang et al., 2023) 1560 1699 16.13 1559 1541 28.69 38.07 3292 3001 4590 58.69 7.62 41.06 4747 4152 30.11
LinearTCA 2.22 3.05 215 1144 9.1 1156 1946 13.19 1871 17.07 52.18 3.70 19.56 2543 3230 16.07
LinearTCA * 2825 30.20 28.80 25.34 2574 3650 43.73 41.82 36.52 5091 59.14 31.79 49.17 52.37 47.88 39.21

Table 24. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, based on ResNet-18 backbone.
The best results are highlighted in boldface, and the second ones are underlined.
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Test-time Correlation Alignment

Method ‘ ImageNet-C Avg
‘ Gau Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con Ela. Pix. Jpe.

Source (He et al., 2016) 3.00 3.70 264 1791 974 1471 2245 16.60 23.06 2401 59.12 538 1651 20.87 32.63 18.15
BN (Schneider et al., 2020) 1632 17.09 1697 1523 1554 26.64 39.38 3446 3345 4843 6567 17.08 4462 4949 4047 32.06
T3A (Iwasawa & Matsuo, 2021) | 2.97 3.38 265 17.05 937 13.69 2263 1698 2283 2534 57.68 505 1841 2031 3236 18.05
AdaNPC (Zhang et al., 2023) 2.61 3.00 236 1419 792 11.14 1888 1422 18.65 22.08 52.65 4.21 16.57 1773 28.04 15.62
TENT (Wang et al., 2020) 2670 2890 28.01 25.01 2472 38.66 48.84 46.04 4049 57.04 6796 2442 5373 5772 5154 4132
PLC (Lee, 2013) 1632 17.09 1696 1524 1554 26.64 3939 3444 3345 4844 6566 17.07 4461 4950 4047 32.06
EATA (Niu et al., 2022) 3538 3775 3634 3329 3274 4751 53.07 5253 4630 60.54 68.06 43.82 5842 61.15 5572 48.17
SAR (Niu et al., 2023) 3439 3542 3577 3227 31.15 4534 5158 50.03 4420 5927 68.14 3558 56.82 60.06 5452 46.30
TIPI (Nguyen et al., 2023) 2796 31.36 3137 2474 2439 4268 4993 4801 3740 5794 66.51 1666 56.19 5894 5390 41.87
TEA (Yuan et al., 2024) 2251 2394 2270 20.70 21.00 36.06 4693 4491 39.37 56.06 67.01 2279 52,65 56.86 49.99 38.90
TSD (Wang et al., 2023) 1890 18.80 19.63 1831 1749 31.12 4427 39.74 36.02 5338 67.00 13.06 4797 5454 4595 35.08
LinearTCA 3.35 4.39 3.08 17.67 10.01 15.12 2289 1921 2561 2730 59.50 581 2039 21.72 34.11 19.34
LinearTCA * 3544 3778 3629 3337 3280 47.63 5332 5245 4632 60.55 68.04 4390 58.61 61.08 5571 48.22

Table 25. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, based on ResNet-50 backbone.
The best results are highlighted in boldface, and the second ones are underlined.

Method | ImageNet-C Ave
| Gau.  Sho.  Imp. Def. Gla. Mot.  Zoo.  Sno. Fro. Fog Bri. Con Ela. Pix. Jpe.

Source (He et al., 2016) 3509 3216 3588 3142 2531 3945 3155 2447 30.13 5474 6448 4898 3420 53.17 5645 39.83
BN (Schneider et al., 2020) 0.00 000 0.00 000 000 000 000 000 000 000 000 000 000 000 000 0.00

T3A (Iwasawa & Matsuo, 2021) | 27.87 28.15 3027 3242 27.00 40.66 33.52 2595 30.76 5632 64.85 5020 3799 5375 57.01 39.78
AdaNPC (Zhang et al., 2023) 30.01 26.86 3098 28.19 2340 3638 29.65 21.18 26.59 5278 61.24 4453 3444 5050 5498 36.78
TENT (Wang et al., 2020) 51.19 50.00 5248 4735 4295 5440 4519 743 16.27 6487 7090 6435 2597 6335 6348 48.01
PLC (Lee, 2013) 29.10 29.61 31.58 31.19 25.10 3933 3145 2458 30.18 5433 6447 4844 34.17 5252 5511 3874
EATA (Niu et al., 2022) 56.63 5620 57.49 56.13 57.13 6226 62.89 64.02 62.77 7371 77.07 7034 67.39 7142 6996 64.36
SAR (Niu et al., 2023) 5490 5582 56.68 5594 5561 6247 5811 1720 34.16 7185 77.14 6348 6575 7145 6852 5794
TIPI (Nguyen et al., 2023) 56.76 56.70 5845 5590 56.10 61.75 19.67 188 451 64.18 7591 6924 637 70.05 69.97 4850
TEA (Yuan et al., 2024) 39.46 3872 4190 2447 28.03 4201 3346 1343 3346 5389 66.09 58.66 3495 5565 5641 4137
TSD (Wang et al., 2023) 36.78 33.68 37.61 3228 2636 4093 32.65 2520 3149 56.17 65.65 5427 3510 5461 57.17 4133
LinearTCA 3045 30.77 32.83 3350 2747 4214 3491 2698 32.85 57.65 64.88 56.65 38.18 54.08 57.22 4137
LinearTCA * 5692 5647 57.63 56.52 57.56 62.65 63.62 6453 6330 7406 77.11 70.64 67.82 71.65 70.19 64.71

Table 26. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, based on ViT-B/16 backbone.
The best results are highlighted in boldface, and the second ones are underlined.
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Test-time Correlation Alignment

Linear Shift
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Figure 5. Adaptation process of LinearTCA to datasets with linear shifts.
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Test-time Correlation Alignment

Nonlinear Shift
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Figure 6. Adaptation process of LinearTCA to datasets with nonlinear shifts
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