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Abstract
Causal structure learning can reveal the causal
mechanism behind natural systems. It is well stud-
ied that the multiple domain data consisting of
observational and interventional samples benefit
causal identifiability. However, for non-stationary
time series data, domain indexes are often un-
available, making it difficult to distinguish obser-
vational samples from interventional samples. To
address these issues, we propose a novel Latent
Intervened Non-stationary learning (LIN) method
to make the domain indexes recovery process and
the causal structure learning process mutually
promote each other. We characterize and justify
a possible faithfulness condition to guarantee the
identifiability of the proposed LIN method. Exten-
sive experiments on both synthetic and real-world
datasets demonstrate that our method outperforms
the baselines on causal structure learning for la-
tent intervened non-stationary data.

1. Introduction
Causal structure learning is one fundamental problem
in causal inference and aims to learn the causal mecha-
nism/structure among variables from observational data.
The causal structure is often represented by a Directed
Acyclic Graph (DAG). One benefit of the causal structure
is to help understand the complex mechanisms in the real
world, like diseases (Shen et al., 2020) or earth systems
(Runge et al., 2019a); and can also benefit downstream tasks
(Pearl, 2000; 2010).

Traditional methods for causal structure learning include
constraint-based (Spirtes et al., 1995; 2000; Zhang, 2008) ,
score-based (Chickering, 2002) , and model-based (Shimizu
et al., 2006; Hoyer et al., 2008) approaches. They assume
data is independent and identically distributed, which could
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Figure 1. Comparison of input data in different settings. (a) the
multi-domain setting: Samples are partitioned according to their
provided domain indexes (solid borders); observational samples
are available and are distinguishable from interventional samples
(different colors). (b) latent-intervened setting. Samples are mixed
without domain indexes (dashed borders); observational samples
are not distinguishable and are technically possible to be absent
(same color).

be violated in heterogeneous/non-stationary cases, resulting
in spurious correlation or non-independent noise. Recently,
a new line of research on the multi-domain methods shows
valuable information in such cases could aid causal structure
learning (Yang et al., 2018; Ghassami et al., 2018; Brouil-
lard et al., 2020; Huang et al., 2020; Perry et al., 2022).
They learned the consistent causal structure from data with
multiple different domains, instructed by domain indexes.
Formally, a domain index ei ∈ [K] indicates the domain
generating sample xi ∈ Rd.

Unfortunately, such domain indexes are usually unavailable
for non-stationary temporal data in reality, which limits
their applications. There are attempts to fill this gap. CD-
NOD (2020) assumed time indexes can approximate domain
indexes with smoothness assumption; Faria et al (2022) as-
sumed the Dirichlet process (DP) over domain indexes to
treat ELBO instead. However, most of the existing methods
impose additional assumptions on the dynamic over domain
indexes, like smoothness or certain types of process; or re-
quire samples from observational distribution to be included
and can be distinguished from other domains, limiting their
applications in more general cases. Therefore, as illustrated
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in Figure 1, learning causal structures for latent-intervened
non-stationary data is still an open problem.

In this paper, we focus on causal structure learning task for
latent intervened non-stationary data, which emphasizes on
following aspects, compared with the previous task:

1. Generality. Special assumptions can limit the dynamic
of domain indexes, e.g. smoothness or certain pro-
cesses. These assumptions can induce bias once vio-
lated.

2. Samples. Most methods (Yang et al., 2018; Brouil-
lard et al., 2020) require samples in the domain with
no intervention to be distinguishable from samples in
intervened domains. However, in reality, these samples
can be hard to identify or can be not included.

3. Explainability. Information about which and how
variables’ distributions change can be useful in reality.
Huang et. al.(2020) visualized the rapidness of change
over time. However, It is still hard to identify a certain
variable’s distribution shifting at different time points.

For this new task, we propose a novel Latent Intervened
Non-stationary learning (LIN) method with considering
both learning causal structure and recovering domain in-
dexes. Specifically, we answer the following questions. The
first question is, when and how well can we recover do-
main indexes without assumption on their dynamic? We
show that is possible (up to Kullback–Leibler divergence
and permutations) during the causal structure learning pro-
cess. This result allows our method to be applicable in more
general cases. And the second question is, when and how
well can we learn causal structure without access to do-
main indexes? This situation is more realistic, however, its
faithfulness condition is less studied in the current existing
literature. We characterize and justified a possible faith-
fulness condition which guarantees I-Markov Equivalence
Class (I-MEC). Later we shall see these questions benefit
each other. For explainability, for different time points, we
identify their domain indexes and corresponding interven-
tion targets to show whether one variable’ conditional dis-
tribution changes and provide information for downstream
tasks.

The main contributions of this paper can be summarized as
follows:

1. This paper formalizes the casual structure learning task
for latent intervened non-stationary data. The domain
indexes that are associated with different interventional
distributions are unavailable. Samples from observa-
tional distribution may be indistinguishable from other
domains.

2. This paper proposes a theoretical-guaranteed score-
based semi-parametric method, called Latent Inter-
vened Non-stationary learning (LIN) to both recover
latent domain indexes and learn causal structure.

3. For domain indexes, this paper shows that they are
possible to be recovered (up to Kullback–Leibler di-
vergence and permutations) without assumptions on
their dynamic. For causal structure, this paper char-
acterizes a new I-faithfulness condition to guarantee
I-Markov Equivalence Class (I-MEC).

4. We provide extensive experiments with existing meth-
ods on both synthetic data and real-world data. For
real-world data, we compared results in recovering the
Pacific Walker circulation from a climate dataset.

2. Related Works
Structure learning from multiple domains A series of
parametric works (Ghassami et al., 2018; Yang et al., 2018;
Brouillard et al., 2020) treat data from different domains as
intervention distribution. i.e. the distribution of an interven-
tion distribution is a result of changing some conditional
distribution from observational distribution. For each in-
tervention distribution, one augmented node is added to
the original graph with links from this node to those nodes
whose conditional distributions are intervened. The identifi-
cation requires assumptions on distributions.

There are also non-parametric approaches that introduce one
single surrogate variable to indicate which variable changes
across different domains. Mooij et al. (2020) introduce
a framework to learn pooled data from different contexts.
Some works (Huang et al., 2020; Perry et al., 2022) utilize
distribution shifting by kernel embedding or counting pairs
of domains where conditional distribution changes. These
methods allow non-parametric conditional independence
tests between distributions.

Structure learning for non-stationary data One re-
search line is to adapt the FCI algorithm to the structural
vector-autoregressive (SVAR) process (Malinsky & Spirtes,
2018; 2019; Gerhardus & Runge, 2020). These methods
can learn both instantaneous and time-lag relations with
latent confounders while assuming the non-stationarity is
due to the partial observation (i.e. the violation of the causal
sufficiency assumption) on a stationary process with no
distribution shifting.

Another research line is to utilize distribution shifting. There
exists an attempt to model the coefficients of the linear
SVAR model it-selves as another set of linear SVAR models
(Huang et al., 2019). It imposes a specific structure over
non-stationarity and is restricted to the linear case. Recently
some methods (Zhang et al., 2017; Huang et al., 2020) use
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time indexes as a surrogate variable to detect modules chang-
ing with time. They showed that distribution shifting can
benefits structure learning. They assume that latent vari-
ables are deterministic smooth functions of time, and the
method doesn’t explicitly split data into different clusters.

3. Non-stationarity from Latent Interventions
In this section, we describe the data generating process and
discuss how non-stationarity emerges from latent interven-
tions.

Data Generating Process Consider a time series {xt}Tt=1,
where xt ∈ Rd. t is a time index. The time series is
assumed to follow a causal graph G(V,E). V is the set
of variables, and E is the set of edges. If we only con-
sider instantaneous relation, then |V | = d. Here we also
consider time-lag relation up to t − P + 1 so that V =

{x(1)
t , . . . , x

(d)
t , . . . , x

(1)
t−P+1, x

(d)
t−P+1}, and |V | = dP . For

i ∈ [d], Pai ⊂ V is the set of direct causes for x(i)
t in G.

If no intervention is applied, the joint distribution for xt has
the following factorization:

p(∅)
(
xt

)
=

∏
j∈[d]

p
(∅)
j|Paj . (1)

• p(∅)
(
xt

)
called observational distribution, where ∅ in-

dicates no variable is intervened.

• Samples generated according to p(∅) are called obser-
vational samples.

• p
(∅)
j|Paj refers to the conditional distribution of x

(j)
t

given Pai.

Domains As in the multi-domain literature (Mooij et al.,
2020; Huang et al., 2020; Perry et al., 2022), samples are
divided into different domains by their generating processes.
Specifically, each sample xt is assigned a domain index
et = k ∈ [K]. Its corresponding distribution is

p(Ik)
(
xt

)
=

∏
j∈Ik

p
(Ik)
j|Paj

∏
j /∈Ik

p
(∅)
j|Paj . (2)

• Ik is the intervention targets in the k-th domain, and
p
(Ik)
j|Paj ̸= p

(∅)
j|Paj .

• If Ik ̸= ∅, p(Ik)
(
xt

)
is called interventional distribu-

tion; samples are called interventional samples.

• We sometime use p(k) to refer p(Ik) for short.

In this paper, domain indexes are assumed to be latent. To
make sure the above setting is well-defined, a common

assumption in the multi-domain literature is employed: Re-
quiring the set of intervention targets I := {Ik | k ∈ [K]}
to be conservative, as stated in Definition 3.1.
Definition 3.1. An intervention targets set I over d vari-
ables {1, 2, . . . , d} is said to be conservative if for any
j ∈ [d], there exist I ∈ I such that j /∈ I .

Intuitively, when I is conservative, each conditional distri-
bution of p(∅) is presented as a part of the interventional dis-
tributions in some domains. Therefore, the dataset contains
enough information about the observational distribution.
For more details, please see Appendix B.

Non-stationarity Here, samples are associated with two
types of indexes: time indexes and domain indexes. Time
indexes allow sample dependency through time-lag relations
in the causal graph. Domain indexes allow samples to fol-
low different conditional distributions sharing the common
causal graph. In some realistic situations, domain indexes
can be hard to acquire. Therefore, the underlying distribu-
tion shifting cannot be captured, yielding a non-stationarity
in the aspect of the data generating process.

4. Latent Intervened Non-stationary Learning
In this section, we propose a method to both learn the under-
lying causal graph and domain indexes. Previous literature
finds that domain indexes are helpful to identify the causal
graph. We highlight that its converse is also true: the causal
graph can reduce the searching space of possible data distri-
bution, which is also helpful in recovering domain indexes.

4.1. Model and Algorithm

Sometimes we will emphasize the ground truth by adding a
star symbol, for example, G∗ for the causal graph, I∗ for the
set of intervention targets, and E∗ for the sample partition
based on domain indexes. Note that the E∗ is unique up to
permutation over its clusters.

Model To learn domain indexes, a hyper-parameter Nc

is required to specify the number of domains. Our method
will divide samples into at most Nc clusters, where each
cluster is to estimate one domain. The distribution in the c-
th cluster is estimated by a corresponding parametric model
f (c)

f (c)
(
xt

)
:=

d∏
j=1

f
(c)
j|Paj ,

c ∈ {1, 2, . . . , Nc}.

(3)

Note that in Equation (3), Paj is now an estimation for
causal parents Pa∗j of node j in true causal graph G∗.

An intuitive approach to further expand Equation (3) is to
parameterize the intervention targets Îc and observational
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distribution f (∅) directly. However, we argue this is not a
good way. In our problem setting, domain indexes are not
available. As a consequence, we have no valid initial sam-
ples to feed to f (∅). Another reason is that when I is con-
servative, information about observational distribution has
already been included in domains’ distributions, modeling
an additional f (∅) would introduce redundant parameters,
and has a negative influence on the learning process.

Therefore, we expand Equation (3) in an indirect way. Par-
ticularly, we introduce a lower triangular matrix Mj ∈
{0, 1}Nc×Nc for each node j ∈ [d]. Mjkl = 1 means
the k-th and the l-the cluster shared a common conditional
distribution, i.e. f (k)

j|Paj = f
(l)
j|Paj . Each row of Mj contains

exactly one element with value 1 and others with value 0.
To be specific:

f
(c)
j|Paj :=

k∏
ℓ=1

(
f̃
(c)
j|Paj

)Mjcℓ

,

f̃
(c)
j|Paj := f̃ (c)

(
x
(j)
t |θ = NNk,j(Paj ;ϕk)

)
,

c ∈ {1, 2, . . . , Nc},

(4)

where f̃ (c) is a pre-defined distribution family, whose pa-
rameters are determined by a neural network NN based on
variables’ parents’ values. In the technical aspect, each Mj

should have a unique representation, to do this, an additional
regularization term is employed:

g(M) =

d∑
j=1

Nc∑
c=1

c∑
ℓ=1

Mjcℓ · ℓ (5)

By using g(M), different slots on the same line in each
Mj have different priorities, which makes Mj to be the
representation unique that minimizes g(M) (rows are fixed,
no permutation on rows).

Score We learn the proposed model by maximizing the
score we present here.

S(G,M, E) := sup
ϕ

1

T

Nc∑
c=1

∑
t∈Ee

log f (c)(xt)

− λ|G| − λMg(M)

(6)

The first term is the averaged log-likelihood over data;The
second and the third terms are penalty terms with positive
small coefficients λ, λM > 0. ϕ stands for parameters in
neural networks. |G| is number of edges in graph.

Here we highlight that M can be seen as an estimation of
the set of intervention targets I . We cannot write out I only
because we don’t know which one is from observational dis-
tribution. By definition, M estimates the similarity among
domains for each conditional distribution. Therefore, given

Algorithm 1 Latent Intervention Learning
Input: non-stationary data X , hyper-parameter Nc, ρ0
Randomly Initialization:{G},M = {Mj}dj=1, {E}, E is
a sample partition.
Initialization Lagrange multiplier: α← 0, ρ← ρ0
repeat

Solve sub-problem Lρ(G, I, α | E) until it converges
Update α and ρ based on (Zheng et al., 2018)
Update {E} as described.

until hold-out loss converged and h = 0.
Output: estimated graph Ĝ, the set of matrices {M̂j}dj=1,
and clusters Ê

I is conservative, M also contains the similarity between
each conditional distribution with its counterpart in observa-
tional distribution. So we sometimes refer M by notation
I to emphasize that we will use the similarity information
related to observational distribution.

It is also reasonable to use the notation |I| to refer to g(M).
When a node j ∈ [d] is added to an intervention targets Ic
of a domain, the g(M) will increase. Before adding the
node, the row Mjc,· will select one column, say the ℓ-th, i.e.
Mjcℓ = 1. By conservative assumption, there are multiple
non-zero items in the ℓ-th column. Under the faithfulness
condition 5.5 which we shall discuss later, the ℓ-th column
will be split into two columns, leading to one additional
non-zero column in Mj . Therefore, weights of some items
originally in the ℓ-th column will increase in g(M).

It is worth noting that the score we propose in Equation (6)
is not a trivial analogy to the case where domain indexes are
given (Brouillard et al., 2020), where samples from the same
domain were firstly aggregated to compute domain-specific
log-likelihoods. Directly applying their score in this setting
introduces a biased term since we don’t know the correct
partition. The induced biased term is difficult to tackle and
would influence the identifiability.

Algorithm We present our algorithm in Algorithm 1. The
algorithm received the non-stationary dataset X without do-
main indexes, and a hyper-parameter Nc is given to suggest
how many clusters the algorithm should consider. Then
the samples would be initially separated in Nc clusters ran-
domly. The causal graph is initialized to be a fully connected
graph, and each Mj is randomly initialized. Two Lagrange
multipliers are employed, and are initialized as α := 0, and
ρ := ρ0. And we take ρ0 as 10−8 in practice.

Then the algorithm would basically go through an opti-
mization process in order to maximize the score under the
constraint that the instantaneous relation in causal graph G
forms a directed acyclic graph. Zheng et al. (Zheng et al.,
2018) characterize DAG constraint by calculating trace for
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the matrix exponential to adjacency matrix. For example, let
G0 be the adjacency graph for instantaneous relation. The
constrain condition requires Tr eG0 = 0.

An augmented Lagrange optimization process would be
used. We solve a series of sub-problem

min
G,I,α

Lρ(G, I, α|E)

Lρ(G, I, α | E)

:=− S(G, I, E) + α|h(G)|+ ρ

2
|h(G)|2

(7)

where h(G) is Non-DAG penalty for instantaneous links
(Zheng et al., 2018). Define as h(G) := Tr eG0 , where G0
is the adjacency graph for instantaneous relation. ρ and α
would be initialized by ρ0 and α0 and would be updated
according to the augmented Lagrange optimization process.
Data partition E would be updated by clustering process
between sub-problems.

4.2. Recovering domain indexes

As shown in Algorithm 1, the estimation for domain indexes
E would be updated after each sub-problem. Each sample’s
domain index is estimated by

arg max
k∈[Nc]

log f (k)(xt). (8)

Following previous works, we employ the Gumbel-softmax
trick (Jang et al., 2017) to keep back-propagation in practice.

In the process of causal structure identification, the domain
indexes would be gradually recovered. The following state-
ment is a corollary of Theorem 5.10, which is presented
here to informally explain how far we can go on Recovering
domain indexes.

Corollary 4.1. Given the condition stated in Theorem 5.10,
if the score proposed in Equation (6) is optimized, then
samples in each cluster would approach one of the true
domains asymptotically in the sense of Kullback–Leibler
divergence.

5. Analysis on Identifiability
In this section, we discuss the Identifiability of our proposed
method and the assumptions it requires. Some assumptions
are employed in the case where domain indexes are given
(Brouillard et al., 2020): Assumption 5.7, Assumption 5.8.

5.1. Preliminary

Relations among interventional distributions In this
paper, we assume domain indexes are unavailable, therefore,
it is hard to test whether observational samples are included
in a dataset, not to mention distinguishing them from others.

As suggested by related work, it can be helpful to pretend
one domain is observational.

Definition 5.1. (Yang et al., 2018). J-observation targets
set. For a set of interventional distribution {p(I)}I∈I with
a intervention target set I, where ∅ ∈ I may not hold. For
one specific target J ∈ I, we relabeled the original target
set to ĨJ with corresponding interventional distribution set
{p̃(I)}I∈ĨJ

by following rules:

• for I ∈ I, if I = J , then relabel I as ∅ in ĨJ .

• for I ∈ I, if I ̸= J , then relabel I as ĨJ := I ∪ J

• p̃
(∅)
J := p(J), and p̃

(ĨJ )
J := p(I)

Then we have:

p(I)
(
xt

)
= p(ĨJ )

(
xt

)
=

∏
j∈ĨJ

p
(I)
j|Paj

d∏
j /∈ĨJ

p
(J)
j|Paj

=
∏
j∈ĨJ

[p̃
(ĨJ )
J ]j|Paj

d∏
j /∈ĨJ

[p̃
(∅)
J ]j|Paj

(9)

Causal graph with intervention Previous works use the
notion of I-DAG to graphically represent intervention infor-
mation by introducing additional nodes and edges.

Definition 5.2. (Yang et al., 2018) Given a DAG G(V,E)
which is a causal graph, and an intervention target set I,
whose each element I ∈ I is a subset of V , indicating which
variables are intervened by that intervention. I-DAG GI is
the augmented causal graph with node set V ∪ {ζI |I ∈ I}
and edge set E ∪ {ζI → j|I ∈ I, j ∈ V, j ∈ I}

Note that the augmented graph GĨJ for a J-observation
targets set ĨJ is defined in same way.

I-Markov Equivalence class Given a graph G and a set
of intervention targets I, the set of all multi-domain distri-
butions which it can express, is denoted byMI(G). We say
G1 and G2 are I-Markov Equivalence Class (I-MEC) if and
only ifMI(G1) =MI(G2). (Yang et al., 2018)

Definition 5.3. MI(G) := {{p(I)}I∈I |∀I, J ∈ I : p(I) ∈
M(G) and p

(I)
j|Paj

= p
(J)
j|Paj

,∀j /∈ I ∪ J}

whereM(G) is the collection of strictly positive densities
which are Markov to G.

Important Notations We use A ⊥⊥G B|C to represent
that node A and node B are d-separated given node C in
the causal graph G;and use A ⊥⊥GI B|C to represent that
node A and node B are d-separated given node C in the
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augmented causal graph GI . For random variables, we use
XA ⊥⊥p(I) XB |XC to represent that variable XA and XB

are independent conditioned on variable XC under distribu-
tion p(I).

5.2. Faithfulness condition with latent domains

Is it necessary to propose a new faithfulness condition, given
the one that has been proposed in the multi-domain litera-
ture (Yang et al., 2018; Brouillard et al., 2020)? For latent
intervened non-stationary data, it also lost the information
about which domain represents the observational one for
each node’s conditional distribution. In this case, it can be
ambiguous to determine interventional targets. As a conse-
quence, augmented nodes in estimated I-DAG graph can
point to wrong variables, then it would contain wrong v-
structures, and therefore some edges with wrong direction
in the original non-augmented causal graph.

Based on Yang et al.’s result (2018), Brouillard et al.(2020)
formalized I-faithfulness condition. They showed that this
condition is required to learn I-MEC by maximizing the
score they designed.

Definition 5.4. I-faithfulness assumption (Brouillard et al.,
2020)

1. For disjoint subsets A,B,C ⊂ V , if XA and XB

are d-connected in graph G conditioning on XC , then
XA ̸⊥⊥p(∅) XB |XC

2. For any disjoint A,C ⊂ V and I ∈ I, p(I)A|C = p
(∅)
A|C

implies A ⊥⊥GI ζI |C ∪ ζ−I

To show the above condition 5.4’s problem in latent inter-
vened data, consider two different domains I, J ∈ I with a
node j ∈ I ∩ J whose conditionals satisfy

p
(I)
j|Paj = p

(J)
j|Paj ̸= p

(∅)
j|Paj . (10)

In this case, for latent intervened data, there are ambiguous
explanations about whether node j should be an interven-
tion target, which motivates our following new faithfulness
condition 5.5.

Definition 5.5. Faithfulness for latent domains.

1. For disjoint subsets A,B,C ⊂ V , if XA and XB are
d-connected in graph G conditioning on XC , then exist
I ∈ I, such that XA ̸⊥⊥p(I) XB |XC

2. For any disjoint A,C ⊂ V and I ̸= J in I,

[p̃
(ĨJ )
J ]A|C = [p̃

(∅)
J ]A|C

implies
A ⊥⊥GĨJ

ζĨJ |C ∪ ζ−ĨJ

The second condition in Definition 5.5 rejects the case stated
in Equation (10), and requires the interventions to be diverse
enough to avoid repeating conditionals.

In the last part of this subsection, we characterize the re-
lation of these two sets of faithfulness conditions by the
following proposition, where (C2) is from Definition 5.4,
(C4) is from Definition 5.5; (C1) is necessary for (C4); and
(C3) is necessary for (C2).

Proposition 5.6. Suppose {p(I)}I∈I ∈ MI(G), and I is
conservative, then: conditions (C1) and (C2) hold if and
only if conditions (C3) and (C4) hold.

• (C1) For any disjoint A,C ⊂ V and I ̸= J in I, if
[p̃

(ĨJ )
J ]A|C = [p̃

(∅)
J ]A|C , then there exists L̃J ∈ ĨJ and

L̃J ̸= ∅, such that A ⊥⊥GĨJ
ζL̃J
|C ∪ ζ−L̃J

• (C2) For any disjoint A,C ⊂ V and I ∈ I, p(I)A|C =

p
(∅)
A|C implies A ⊥⊥GI ζI |C ∪ ζ−I

• (C3) For any disjoint A,C ⊂ V and I ∈ I, if p(I)A|C =

p
(∅)
A|C , then there exists J ∈ I and J ̸= ∅ such that

A ⊥⊥GI ζJ |C ∪ ζ−J

• (C4) For any disjoint A,C ⊂ V and I ̸= J in I,
[p̃

(ĨJ )
J ]A|C = [p̃

(∅)
J ]A|C implies A ⊥⊥GĨJ

ζĨJ |C ∪ ζ−ĨJ

5.3. Main result for identifiability

Let G∗ be the ground truth causal graph, M∗ characterizing
the ground truth intervention target set I∗, and E∗ is the
correct partition based on domain index. Pa∗j is the set of
parents for node j in ground truth graph G∗.

Assumption 5.7. For the ground truth distribution of data
{p(I)}I∈I∗ ∈ MI∗(G∗), and they have finite entropy. For
the ground truth intervention target set I∗ assume it is con-
servative, i.e. for any j ∈ [p], there is an I ∈ I, such that
p
(I)
j|Pa∗j

= p
(∅)
j|Pa∗j

Assumption 5.8. For model density, assume it is strictly
positive, and the true density can be expressed by Equa-
tion (2).

Assumption 5.9. The ground truth distribution {p(I)}I∈I∗

is faithful to G∗ and I∗ according to Definition 5.5

Theorem 5.10. With Assumption 5.7, 5.8, and 5.9, in ad-
dition to Nc ≥ K, each cluster has enough data, and the
penalty coefficients in Equation (6) is sufficiently small, it
holds asymptotically that for any estimation (Ĝ, Î, Ê)

S(G∗, I∗, E∗) > S(Ĝ, Î, Ê)

, if ĜÎ is not an I-Markov Equivalence to G∗I∗ , or any
cluster in Ê is close to none of the domains in the sense of
Kullback–Leibler divergence.
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Table 1. Results in synthetic data driven by Brownian motion

ERDOS-RENYI
BROWNIAN DIM 1D 2D

METHOD ACCU RECALL F1 SHD SID ACCU RECALL F1 SHD SID

PCMCI+ 0.7800 0.5385 0.5600 11 14 0.8400 0.6923 0.6923 8 5
VAR-LINGAM 0.6800 1.0000 0.6190 16 0 0.6400 1.0000 0.5909 18 0

DYNOTEARS 0.7800 0.6923 0.6207 11 21 0.8200 0.6154 0.6400 9 23
SVAR-FCI 0.7600 0.4615 0.5000 12 16 0.8400 0.6154 0.6667 8 6

LATENT PCMCI 0.8000 0.6154 0.6154 10 12 0.7800 0.6923 0.6207 11 4
CPF SAEM 0.5400 0.5385 0.3784 23 16 0.6800 0.8462 0.5789 16 9

TIME-LAG CD-NOD 0.6600 0.4615 0.4138 17 21 0.6400 0.5385 0.4375 18 22
DCDI 0.7200 0.9231 0.6316 14 2 0.7400 1.0000 0.6667 13 0

LIN (OURS) 0.9200 1.0000 0.9286 2 0 0.8800 1.0000 0.8125 6 0

BARABASI–ALBERT
BROWNIAN DIM 1D 2D

METHOD ACCU RECALL F1 SHD SID ACCU RECALL F1 SHD SID

PCMCI+ 0.7000 0.6000 0.5455 15 23 0.7800 0.5333 0.5926 11 22
VAR-LINGAM 0.5400 0.8667 0.5306 23 6 0.4800 0.8000 0.4800 26 16

DYNOTEARS 0.7000 0.6667 0.5714 15 21 0.6800 0.7333 0.5789 16 30
SVAR-FCI 0.7200 0.3333 0.4167 14 30 0.7600 0.4667 0.5385 12 17

LATENT PCMCI 0.7800 0.7333 0.6667 11 11 0.8200 0.8000 0.7273 9 11
CPF SAEM 0.6400 0.4667 0.4375 18 31 0.6200 0.5333 0.4571 19 20

TIME-LAG CD-NOD 0.6600 0.4000 0.4138 17 35 0.6600 0.4667 0.4516 17 34
DCDI 0.7200 0.6000 0.5625 14 25 0.8600 0.9333 0.8000 7 7

LIN (OURS) 0.9800 1.0000 0.9677 1 0 0.8800 1.0000 0.8333 6 0

In Theorem 5.10 above, none of Enough data nor Sufficient
small implies additional assumption. Enough data means
we are using sample average to estimate the expectation
of the proposed score, which is common in related litera-
ture. Hence the estimated score S(G, I, E) could be seen
as a random variable. If Nc is too large, the algorithm may
have no enough data, which leads to a large variance and
consequently has a negative influence on identifiability. Suf-
ficient small means the coefficients λ and λM in Equation (6)
should be sufficient small in the sense of Equation (34) and
Equation (35), which also occurs in one of our most related
work (Brouillard et al., 2020). The value of λ and λM can
be selected by empirical criterion stated in the next section.

6. Experiments
Empirical Criterion for Hyper-parameter Selection
We introduce a rule of thumb to select hyper-parameter Nc.
The first term is the ratio of the parameters’ number to sam-
ple size; the second term is the loss (i.e. negative score) over
hold-out data. When Nc is too large, the first term would
be dominant, and such Nc would not be selected. When the
sample size is sufficient, the second term would be dominant
and one could select Nc mainly based on likelihood. Other
criteria could be used based on background knowledge, for
example, use averaged negative log-likelihood.

criterion =
#param
#sample

+ eval.loss (11)

Metrics We use these metrics across all experiments: ac-
curacy, recall, F1 score , SHD, and SID . Accuracy is the rate
that one model correctly predicts the existence or absence of
edges in the ground truth graph. Recall is the proportion of
edges in the ground truth graph that are correctly detected by
a model. F1 score is the harmonic mean between precision
and recall, where precision is the ratio of correctly detected
edges to all predicted edges. SHD means Structural Ham-
ming Distance, which is the number of edges’ states that are
mistake predicted. SID means Structural Intervention Dis-
tance, which measures the distance between the estimated
graph and true graph in terms of their corresponding causal
inference statements (Peters & Bühlmann, 2015).

Baseline Methods We compare the proposed method with
three groups of methods. The first group is for the station-
ary data : (1) PCMCI+ (Runge, 2020): use CI tests with
optimized conditioning sets. (2) VAR-LiNGAM (Hyvärinen
et al., 2010): use ICA (Hyvärinen & Oja, 2000) to non-
Gaussian data. (3) dyNoTears (Pamfil et al., 2020): a score-
based method with continuous optimization. The second
group is for latent confounders : (1) SVAR-FCI (Malin-
sky & Spirtes, 2018): adapt FCI (Spirtes et al., 1995) to
time-series. (2) Latent PCMCI (Gerhardus & Runge, 2020):
adapt PCMCI+ to time-series. The third group is for distri-
bution shifting : (1) CPF-SAEM: linear structure with state-
space model (Huang et al., 2019). (2) CD-NOD: two-stage
non-parametric method (Huang et al., 2020). (3) DCDI:

7
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score-based parametric method (Brouillard et al., 2020).

6.1. Synthetic Data

The data are generated based on the combination of two
types of graphs, and two types of stochastic processes that
are employed to drive the latent interventions, and for each
process type, we test for two different instances.

Graph type we consider Erdős–Rényi graph (ER graph)
and Barabási–Albert (BA graph). For the ER graph, each
edge is generated with a fixed probability. For the BA graph
nodes are added one by one and edges from each new node
to existing nodes are generated with a probability that is
proportional to the existing edge one node has.

pi =
ki + 1∑
j(kj + 1)

(12)

Stochastic process At each time point, one domain index
would be sampled according to multinomial distribution.
we compared cases when each domain indexes are equally
weighted and when they are not. In unequal case, the sam-
pling probability is proportional to

[
1 2 . . . K

]
.

Another random process we use is Brownian motion. we
condition i-dimension Brownian motion in Ri, where i ∈
{1, 2}. We restrict the motion inside the box [−M,M ]i

by simply applying x 7→ (x mod 2M) − M , and each
quadrant represents one domain.

Result In Table 1, the system is under a Brownian mo-
tion, moving in a 1-dimensional or 2-dimensional rectangle
centered at the original point. Each quadrant represents one
domain. In Table 3 (see appendix), the domain of each time
point is decided by multinomial sampling, which is evenly
or unevenly distributed over possible domains.

We observe that (1) For CD-NOD, its smoothness assump-
tion over domain indexes is violated in these cases. As a
result, its performance is lower than the group for latent
confounders; and has a gap with DCDI receiving random
domain indexes. CPF-SAEM has similar result. These ob-
servations support our argument that assumptions on the
dynamic of domain indexes limit the generality. (2) In the
group for latent confounders, Latent PCMCI has a relatively
better result. However, it doesn’t consistently outperform
methods for stationary data. Therefore, it is not sufficient to
handle non-stationarity by simply regarding domain indexes
as a latent confounder because it ignores the information
carried by distribution shifting, as pointed out by the multi-
domain methods in recent years; and is supported by the
result of our LIN method. (3) Our LIN method outperforms
methods in the group for distribution shifting and the other
two groups. This empirical fact corroborates our theoretical

Figure 2. Result illustration on Pacific Walker Circulation Data.
(a) ground truth (b) LIN Method. Green: Correctly detected. Red:
detected but not exist.

analysis of our method’s identifiability over latent domain
indexes associated with different interventions in different
situations.

6.2. Real World Data

Pacific Walker Circulation (PWC) dataset Pacific
Walker Circulation (PWC) describes wind movement among
the Pacific. It is an important and well-understood topic in
climate science (Runge et al., 2019b). The dataset is pro-
vided by Copernicus Climate Change Service information
(Hersbach et al., 2023). The ground truth causal graph and
related coordinates of latitude and longitude are adopted
from Eldhose et al. (2022). The dataset contains daily
records of surface pressure or temperature in four regions
for 20 years since 2001. The ground truth graph contains
loops, so we treat it as a summary graph and therefore SID
metric is not applicable here.

Illustration We draw the result in Figure 2. The left part
is the ground truth graph for Pacific Walker Circulation,
which is explained by Runge et. al.(2019b); The right part
is from our LIN method. The method correctly recovered a
structure that is a non-trivial super-set of the ground truth.

Result Results are summarized in Table 2. We could ob-
serve that (1) Among the three groups of baseline methods,
the group for distribution shifting has better results in accu-
racy and F1 score. (2) In this time-series data, smoothness
is a relatively reasonable assumption, so we could observe
CD-NOD and CPF-SAEM have fair good results. CPF-
SAEM produced the second best results in all metrics. (3)
The Pacific system is evolving under intervention by sur-
rounding unknown factors. Hence it is reasonable to expect
our LIN method outperforms others. (4) VAR-LiNGAM
also produced the highest recall, however, it predicted all
time-lag edges, leading to the highest recall but a trivial
summary graph with very limited information and the high-
est SHD. (5) Combined with synthetic data, we see that
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Table 2. Results in Pacific Walker Circulation data. (SID is not
applicable for summary graph with loops)

METHOD ACCU RECALL F1 SHD

PCMCI+ 0.6250 0.5556 0.6250 6
VAR-LINGAM 0.5625 1.0000 0.7200 7

DYNOTEARS 0.6875 0.4444 0.6154 5
SVAR-FCI 0.6250 0.5556 0.6250 6

LATENT PCMCI 0.6875 0.6667 0.7059 5
CPF SAEM 0.7500 0.7778 0.7778 4

TIME-LAG CD-NOD 0.6875 0.6667 0.7059 5
DCDI 0.6875 0.6667 0.7059 5

LIN (OURS) 0.8125 1.0000 0.8571 3

our LIN method outperforms baseline methods in different
dynamics of domain indexes (i.e. smooth or stochastic),
which supports its improvement in generality.

6.3. Clustering Performance

We also evaluated the model’s ability for clustering in syn-
thetic data. Markham et al.(2022) discussed several kernel-
based methods for clustering data with respect to their in-
herent structure which are included as baseline methods.

Result Results are shown in Table 4 in Appendix. The
first row is driven by multinomial sampling, and the second
row is driven by Brownian motion. Our method has a higher
ARI score in each case. These results validate our LIN’s
ability to recover hidden domain indexes during the causal
structure learning procedure. It is needed to note that in
non-stationary data, the baseline methods’ i.i.d. assumption
is violated, which is another possible reason for their lower
score.

Another perspective is to compare ARI scores for each
method across different cases. We could observe that the
same method can have different ARI scores in different
graph types or stochastic processes. One possible reason is
that the Kullback–Leibler divergence between two domains
varies with cases. This is because we generate conditional
distribution randomly in the data generating process. If
two domain distributions have smaller Kullback–Leibler
divergence, then they are more difficult to be distinguished.

6.4. Hyper-parameter Analysis

We provide results with different combinations of hyper-
parameters in Table 6 and Table 7. Due to page limitation,
detailed analysis is presented in Appendix A.4.

7. Conclusion
In this paper, we investigated the causal structure learning
task for latent intervened non-stationary time series data ,
which is a more realistic and more difficult multi-domain
setting with the absence of domain indexes. The previous
faithfulness condition has a problem in this situation be-
cause it can have ambiguous interpretations for intervention
targets, leading to incorrect v-structures and edges with false
directions.

For causal identifiability, we characterize a new faithfulness
condition to guarantee the recovery of domain indexes and
the identification of causal structure to I-MEC. For the
learning algorithm, we propose a novel Latent Intervened
Non-stationary Learning (LIN) method to identify causal
structure up to I-MEC and to recover domain indexes up to
Kullback–Leibler divergence. In agreement with theoretical
analysis, our LIN method outperforms previous methods in
synthetic and real-world datasets while without assumptions
over domain indexes.

Possible future works include estimating the exact number
of hyper-parameter Nc, analyzing sample efficiency of the
method, and exploring non-parametric methods for this task.

Potential Negative Societal Impact
Our methods require faithfulness conditions to learn causal
structure, and there is no result guarantee about selection
bias in this paper. Hence potential users should be familiar
with the background of their data, and be cautious about
making unfair decisions due to biased datasets.

Source Code
Our code is available at LIN2023 on GitHub. For codes
for baseline methods, please refer to causal-learn, lingam,
tigramite, dynotears, and CPF SAEM.
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A. Additional Experiment
A.1. Experiment Result on synthetic data

Table 3. Results in synthetic data driven by multinomial sampling

ERDOS-RENYI
MULTINOMIAL WEIGHT EVEN UNEVEN

METHOD ACCU RECALL F1 SHD SID ACCU RECALL F1 SHD SID

PCMCI+ 0.8800 0.6923 0.7500 6 10 0.7600 0.5385 0.5385 12 14
VAR-LINGAM 0.5400 0.8462 0.4889 23 5 0.6000 0.9231 0.5455 20 1

DYNOTEARS 0.8600 0.7692 0.7407 7 21 0.8600 0.6923 0.7200 7 10
SVAR-FCI 0.8200 0.5385 0.6087 9 15 0.8400 0.6154 0.6667 8 12

LATENT PCMCI 0.8600 0.6923 0.7200 7 8 0.8800 0.8462 0.7857 6 2
CPF SAEM 0.6400 0.6154 0.4706 18 13 0.5800 0.6154 0.4324 21 15

TIME-LAG CD-NOD 0.7800 0.5385 0.5600 11 21 0.7200 0.6154 0.5333 14 21
DCDI 0.8200 0.9231 0.7273 9 3 0.7800 0.9231 0.6857 11 1

LIN (OURS) 0.9600 1.0000 0.9286 2 0 0.9200 1.0000 0.8667 4 0

BARABASI–ALBERT
MULTINOMIAL WEIGHT EVEN UNEVEN

METHOD ACCU RECALL F1 SHD SID ACCU RECALL F1 SHD SID

PCMCI+ 0.6800 0.4667 0.4667 16 25 0.5600 0.2667 0.2667 22 27
VAR-LINGAM 0.5000 0.7333 0.4681 25 14 0.5200 0.8000 0.5000 24 12

DYNOTEARS 0.4000 1.0000 0.5000 30 20 0.6600 0.8000 0.5854 17 28
SVAR-FCI 0.7600 0.4000 0.5000 12 24 0.7400 0.2667 0.3810 13 27

LATENT PCMCI 0.7200 0.4667 0.5000 14 23 0.7600 0.6000 0.6000 12 17
CPF SAEM 0.7000 0.5333 0.5161 15 28 0.6400 0.4000 0.4000 18 33

TIME-LAG CD-NOD 0.6800 0.3333 0.3846 16 37 0.6600 0.2667 0.3200 17 36
DCDI 0.7600 0.8000 0.6667 12 11 0.6600 0.8000 0.5854 17 11

LIN (OURS) 0.9400 1.0000 0.9091 3 0 0.9000 1.0000 0.8571 5 0

A.2. Experiment Result on clustering

Table 4. Clustering Results in synthetic data.

ER EVEN ER UNEVEN BA EVEN BA UNEVEN
METHOD RI ARI RI ARI RI ARI RI ARI

K-MEANS 0.6296 0.1919 0.7750 0.5147 0.5520 0.0140 0.5738 0.0858
DEP-CON 0.6053 0.1244 0.5411 0.0146 0.6776 0.2746 0.6634 0.2773

POLY-KERNEL 0.6053 0.1244 0.5366 0.0035 0.6603 0.2435 0.6747 0.3034
RBF 0.6255 0.1849 0.5922 0.1228 0.5527 0.0221 0.5630 0.0637

LIN (OURS) 0.9519 0.8919 0.9057 0.7988 0.9167 0.8126 0.7303 0.4184

ER 1D ER 2D BA 1D BA 2D
METHOD RI ARI RI ARI RI ARI RI ARI

K-MEANS 0.8581 0.7161 0.6662 0.2107 0.5042 0.0084 0.5782 0.0136
DEP-CON 0.5019 0.0038 0.5478 0.0052 0.5020 0.0040 0.6301 0.1449

POLY-KERNEL 0.5073 0.0147 0.5851 0.0088 0.5015 0.0030 0.6338 0.1548
RBF 0.6704 0.3409 0.6641 0.2071 0.5051 0.0101 0.5777 0.0157

LIN (OURS) 0.9996 0.9992 0.7919 0.4481 0.8123 0.6247 0.7463 0.3000
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A.3. Experiment Result on Highly Heterogeneous Real-world Data

Dataset We analysis experiment results on Sachs (2005) dataset. This dataset consists of 11 measurements about protein
signals over 7466 cells under different experimental conditions. In this example, different domains correspond to treatments
on cells by different combinations of chemical reagents. To build a highly heterogeneous data, we simply ignore the domain
indexes information and treat them as mixed data.

Methods This data is not a time series. We adapting our LIN method by setting P = 1, i.e. considering no time-lag
relations. And we replace baseline methods used in time-series situations with their non-time-lag counterparts.

Discussion The experiment result are shown in Table 5. Note that some assumptions of our method are violated in this
dataset because chemical reagents can affect receptor enzymes which are not included in measured molecules (Wang et al.,
2017), which means the dataset is not causal sufficient and interventions can be applied to latent variables.

Although the assumptions are not fully satisfied, our LIN method still yields at least the second-best results in all 5 metrics
among baselines. Table 5 also suggests that LiNGAM may be also a fair good method to treat mixed heterogeneous data, as
it attained the highest recall and lowest SID. DCDI method yields third-best results in all 5 metrics, which indicates that our
domain recovering process is still more helpful than random partition for the causal structure learning task.

Table 5. Results in mixed Sachs data without domain indexes

METHOD ACCU RECALL F1 SHD SID

PC 0.7603 0.2105 0.2162 29 90
LINGAM 0.6364 0.6316 0.3529 44 47

LINEAR-NOTEARS 0.8099 0.1579 0.2069 23 92
FCI 0.7355 0.2632 0.2381 32 89

LATENT PCMCI 0.6694 0.1053 0.0909 40 101
CPF SAEM 0.7438 0.3684 0.3111 31 96

CD-NOD 0.7603 0.2105 0.2162 29 90
DCDI 0.7603 0.3684 0.3256 29 85

LIN (OURS) 0.8182 0.5263 0.4762 22 57

A.4. Discussion on hyper-parameters

In this section, we discuss the effect of hyper-parameters with results shown in Table 6 and Table 7, and also show the
efficiency of our proposed empirical criterion.

In Table 6, we perform our method with different combinations of hyper-parameters on synthetic data where domain indexes
are generated by multinomial sampling over 3 domains. The first column indicates whether the sampling weights of domains
are evenly distributed. In Table 7, domain indexes are generated by Brownian motions. The first column indicates the
number of dimensions of this motion. For 1-d Brownian motion, there are 2 domains, For 2-d Brownian motion, there are 4
domains.

The first row in each table indicates the type of the true causal graph, where ER graph means Erdős–Rényi graph and BA
graph means Barabási–Albert graph. Under each graph type, 6 matrices are presented. The first three metrics are usual
accuracy, recall, and F1 score for directed edge detection, and the following two are Structural Hamming Distance (SHD) as
well as Structural Intervention Distance (SID). The last one is our hyper-parameter selection criterion, described in section
6. This criterion is agnostic to any evaluation metric, and the lowest criterion is preferred. As one could observe from the
tables, this criterion can select a combination yielding reasonable results. Users of our method can adjust the criterion based
on their background knowledge of datasets.

In Table 6 and Table 7, we analysis the combinations of two important hyper-parameters:

• PNT: the coefficient of penalty terms,

• Nc: the number of clusters assigned to the model.
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Discussion Fixing PNT = 1E − 8, we discuss the influence of Nc. (1) One can verify that whenever Nc is larger than the
true value, our method can yield highly competitive (best results except for very few cases) result in all 5 metrics compared
with the other 8 baseline methods. Therefore, our method is not very sensitive to Nc. (2) Although the identifiability still
holds when Nc is larger than the true value, an extremely large Nc can raise issues in optimization due to limited sample
size. In addition, a too-small Nc may fail to capture the non-stationarity inside data. In these cases, it is possible to yield
non-optimal results as shown in Table 6 and Table 7. (3) When the true number of domains is unknown, it is necessary to
adjust Nc and PNT by utilizing the empirical criterion. One can see that the empirical criterion selects reasonable results in
all cases.

Now we discuss the influence of PNT by comparing PNT = 1E − 8 and PNT = 1E − 4 (and use Nc selected by empirical
criterion). In general, a smaller PNT is preferred with respect to identifiability, as one can observe that PNT = 1E − 8 is
better in most cases. On the other hand, a larger PNT can encourage the optimization process to converge faster (but not
necessarily better) by reducing searching space. In addition, using a larger PNT can be interpreted as encouraging sparsity.

Table 6. hyper-parameters analysis on synthetic data driven by multinomial sampling

ER GRAPH BA GRAPH
WEIGHTS PNT Nc ACCU RECALL F1 SHD SID SEL ACCU RECALL F1 SHD SID SEL

EVEN

1E-8

2 0.9200 1.0000 0.8667 4 0 -3.2353 0.7800 0.8667 0.7027 11 7 -2.2741
3 0.9600 1.0000 0.9286 2 0 -3.6975 0.9400 1.0000 0.9091 3 0 -3.0597
4 0.9400 1.0000 0.8966 3 0 -3.6333 0.8800 1.0000 0.8333 6 0 -2.3980
5 0.9800 1.0000 0.9630 1 0 -3.6642 0.8400 0.8667 0.7647 8 11 -2.6892

1E-4

2 0.9200 1.0000 0.8667 4 0 -3.3149 0.8800 0.9333 0.8235 6 1 -2.4696
3 0.9400 1.0000 0.8966 3 0 -3.6148 0.8800 0.8667 0.8125 6 9 -3.1210
4 0.9200 1.0000 0.8667 4 0 -3.5125 0.8400 0.9333 0.7778 8 5 -2.8086
5 0.9200 1.0000 0.8667 4 0 -3.1754 0.8600 0.8667 0.7879 7 11 -2.2944

UNEV

1E-8

2 0.8600 0.9231 0.7742 7 1 -2.5793 0.8000 0.8667 0.7222 10 9 -2.8719
3 0.9200 1.0000 0.8667 4 0 -3.3498 0.9200 0.9333 0.8750 4 4 -3.3998
4 0.9000 0.9231 0.8276 5 1 -3.1910 0.9000 0.8667 0.8387 5 8 -3.2579
5 0.8400 0.9231 0.7500 8 1 -3.1059 0.9000 1.0000 0.8571 5 0 -3.4644

1E-4

2 0.8400 0.9231 0.7500 8 1 -2.6234 0.8600 0.9333 0.8000 7 3 -2.7123
3 0.9200 0.9231 0.8571 4 1 -3.3880 0.8400 0.9333 0.7778 8 6 -3.2681
4 0.9200 1.0000 0.8667 4 0 -3.1917 0.8800 0.9333 0.8235 6 7 -3.4001
5 0.9200 0.9231 0.8571 4 1 -3.2738 0.8600 0.9333 0.8000 7 4 -3.1593

Table 7. hyper-parameters analysis on synthetic data driven by Brownian motion

ER GRAPH BA GRAPH
DIMENSION PNT Nc ACCU RECALL F1 SHD SID SEL ACCU RECALL F1 SHD SID SEL

1D

1E-8

2 0.9600 1.0000 0.9286 2 0 -3.2053 0.9000 0.9333 0.8485 5 5 -4.1417
3 0.8400 1.0000 0.7647 8 0 -3.0937 0.9800 1.0000 0.9677 1 0 -4.2656
4 0.8600 1.0000 0.7879 7 0 -3.1295 0.8600 0.8667 0.7879 7 8 -3.5480
5 0.9200 1.0000 0.8667 4 0 -3.0565 0.8800 0.8667 0.8125 6 7 -3.7747

1E-4

2 0.9200 1.0000 0.8667 4 0 -3.1107 0.9800 1.0000 0.9677 1 0 -4.0558
3 0.8000 1.0000 0.7222 10 0 -2.9197 0.8800 0.9333 0.8235 6 3 -3.7044
4 0.8400 1.0000 0.7647 8 0 -3.0473 0.9400 0.9333 0.9032 3 5 -4.1255
5 0.8800 1.0000 0.8125 6 0 -3.3169 0.9600 0.9333 0.9333 2 5 -3.7997

2D

1E-8

2 0.8000 1.0000 0.7222 10 0 -2.7519 0.7800 0.9333 0.7179 11 10 -1.5107
3 0.8800 1.0000 0.8125 6 0 -3.2873 0.8800 1.0000 0.8333 6 0 -2.1300
4 0.8800 1.0000 0.8125 6 0 -3.2969 0.8800 1.0000 0.8333 6 0 -2.1867
5 0.9000 1.0000 0.8387 5 0 -3.1764 0.8800 0.9333 0.8235 6 7 -1.4915

1E-4

2 0.7600 0.9231 0.6667 12 6 -2.3545 0.8000 0.9333 0.7368 10 12 -1.3081
3 0.9000 1.0000 0.8387 5 0 -3.0087 0.9600 1.0000 0.9375 2 0 -2.2369
4 0.8200 0.9231 0.7273 9 2 -3.3188 0.9600 1.0000 0.9375 2 0 -1.9692
5 0.9000 1.0000 0.8387 5 0 -3.1711 0.9400 0.9333 0.9032 3 3 -1.6238
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B. Preliminary Background Knowledge
In this section, we go through some basic concepts in related literature. Proposition B.2 is an extended version of Yang’s
result (2018) to technically cover the case where ∅ /∈ I, therefore, the proof of Proposition B.2 is not claimed to be a
contribution of this paper.

Notation recall I is a set of intervention targets. {p(I)}I∈I is the corresponding interventional distribution. Meanings of
M(G) andMI(G) are in Definition 5.3.

Definition B.1. I-Markov Property

• p(I) ∈M(G) for any I ∈ I

• For any disjoint subset A, V ⊂ V and I ∈ I, if A ⊥⊥GI ζI |C ∪ ζ−I , then p
(I)
A|C = p

(∅)
A|C

Proposition B.2. Suppose {p(I)}I∈I ∈MI(G), and I is conservative, then

• there uniquely exists p(∅) ∈M(G) such that each p(I) can be factorized like Equation (2)

• {p(I)}I∈I satisfies I-Markov properties..

Proof. If ∅ ∈ I then we are done according to Yang et. al. ’s work(2018). Here we consider ∅ /∈ I. The general idea is
similar.

Since p(∅) ∈M(G), it is of the form p(∅) =
∏

i∈V p
(∅)
i|Pai

. For each i ∈ V , since I is conservative, there exist I ∈ I such that

i /∈ I , let p(∅)i|Pai
be p(I)i|Pai

. Such choice is well-defined (and is unique), if I ̸= J ∈ I , and i /∈ I ∪ J , by {p(I)}I∈I ∈MI(G),
we have p

(I)
i|Pai

= p
(J)
i|Pai

.

The first one in I-Markov properties holds by definition ofMI(G). For the second one, consider any C ⊂ V , and any
j ∈ V \ C, if there is an I ∈ I, such that

j ⊥⊥GI ζI |C ∪ ζ−I , (13)

then it holds that
p
(I)
j|C = p

(∅)
j|C (14)

As p(∅) exists, such that for each J ∈ I , if i /∈ J , then p
(J)
i|Pai

= p
(∅)
i|Pai

, where Pai means the parents of node i in graph G. We
keep this density p(∅) fixed. We define Van as the ancestral set of {j} ∪ C (including {j} ∪ C); let B′ ⊂ Van be the nodes in
Van that are d-connected to ζ−I conditioning on C ∪ ζ−I in augmented graph GI ; And A′ := Van \ (B′ ∪ C); j ∈ A′.

• For i ∈ A′, by definition, i ⊥⊥GI ζI |C ∪ ζ−I , we have i /∈ I , which means p(I)i|Pai
= p

(∅)
i|Pai

. We claim that Pai ⊂ A′ ∪C:
suppose ℓ ∈ Pai \C, if ℓ ∈ B′, then there exists a path i←− ℓ←− · · · ←− ζI (or i←− ℓ −→ · · · ←− ζI ), leading to
i ∈ B′ given ℓ /∈ C, contradiction.

• For i ∈ B′, we claim that Pai ⊂ B′ ∪ C: if not, suppose ℓ ∈ (Pai ∩ A′) \ C, if there is a path i −→ · · · ←− ζI
conditioning on C ∪ ζI in GI , then through ℓ −→ i, we have ℓ ∈ B′, contradiction; if the path is i ←− · · · ←− ζI ,
from Equation (13) we know there is no directed path i −→ · · · −→ j without involving nodes in C, and so a common
descendant between ℓ and ζI is in C, so ℓ ∈ B′, contradiction.

• For i ∈ C such that Pai ∩ A′ ̸= ∅. Clearly i /∈ I , otherwise some nodes in A′ would also be in B′. So we have
p
(I)
i|Pai

= p
(∅)
i|Pai

. Similarly, node i has no parents in B′. Hence, Pai ⊂ A′ ∪ C.

• For i ∈ C such that Pai ∩A′ = ∅, by definition Pai ⊂ VAn \A′ = B′ ∪ C.

Therefore, for Î ∈ {∅, I}, since {p(I)}I∈I ∈MI(G) and Lemma A.1 in Yang et. al. ’s work(2018), we can write:

p(Î)(X) = g1(XA′ , XC)g2(XB′ , XC ; Î)
∏

i∈V \Van

p
(Î)
i|Pai

(15)
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where
g1(XA′ , XC) =

∏
i∈A′

p
(∅)
i|Pai

∏
i∈C,Pai∩A′ ̸=∅

p
(∅)
i|Pai

(16)

g2(XB′ , XC ; Î) =
∏
i∈B′

p
(Î)
i|Pai

∏
i∈C,Pai∩A′=∅

p
(Î)
i|Pai

(17)

so
p(Î)(Xj , XC) = ĝ1(Xj , XC)ĝ2(XC ; Î) (18)

where ĝ1(Xj , XC) =
∫
XA′\{j}

g1(XA′ , XC), ĝ2(XC ; Î) =
∫
XB′

g2(XB′ , XC ; Î).

Now we observe that
p
(Î)
j|C

=p(Î)(Xj |XC)

=
p(Î)(Xj , XC)

p(Î)(XC)

=
ĝ1(Xj , XC)ĝ2(XC ; Î)

ĝ2(XC ; Î)
∫
Xj

ĝ1(Xj , XC)

=
ĝ1(Xj , XC)∫

Xj
ĝ1(Xj , XC)

(19)

is invariant with Î , so p
(I)
j|C = p

(∅)
j|C

C. Detailed Proofs for Our Results
Proof for Proposition 5.6. We first consider the only if direction. Given conditions (C1) and (C2), (C3) is straightforward.
Now we consider (C4). We start with

[p̃
(ĨJ )
J ]j|C = [p̃

(∅)
J ]j|C (20)

for some C ∈ V , j ∈ V \ C and I ̸= J in I.

In order to show (C4) holds, we what to show

j ⊥⊥GĨJ
ζĨJ |C ∪ ζ−ĨJ

(21)

which means there is no path between j and ζĨJ in augmented graph GĨJ conditioning on C ∪ ζ−ĨJ
.

By (C1), there exists L̃J ∈ ĨJ and L̃J ̸= ∅, such that

j ⊥⊥GĨJ
ζL̃J
|C ∪ ζ−L̃J

(22)

If L = I then Equation (21) holds and we are done. If not, since the d-separated condition, for any ℓ ∈ L̃J := L ∪ J :

• if ℓ /∈ C, then by Equation (22) path like j · · · ←− ℓ←− ζL̃J
is blocked conditioning on C ∪ ζ−L̃J

in the augmented

graph GĨJ (path like j · · · −→ ℓ←− ζL̃J
is also blocked conditioning on C ∪ ζ−L̃J

in the augmented graph GĨJ since
ℓ is not conditioned). In this case, there is no path like j · · · ←− ℓ conditioning on C in the original graph G: otherwise,
such path would also exist in the augmented graph GĨJ conditioning on C ∪ ζ−L̃J

(because this can be seen as adding
a node ζL̃J

and an edge ζL̃J
−→ ℓ to the original graph G), leading to the violation of Equation (22). Hence, there is

also no path like j · · · ←− ℓ←− ζL (or j · · · ←− ℓ←− ζJ ) conditioning on C ∪ ζ−L (or C ∪ ζ−J ) in the augmented
graph GI .

• if ℓ ∈ C, then by Equation (22) path like j · · · −→ ℓ←− ζL̃J
is blocked conditioning on C ∪ ζ−L̃J

in the augmented

graph GĨJ (path like j · · · ←− ℓ←− ζL̃J
is also blocked conditioning on C ∪ ζ−L̃J

in the augmented graph GĨJ since
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ℓ is conditioned). In this case, there is no path like j · · · −→ ℓ conditioning on C in the original graph G; and there is
also no path like j · · · −→ ℓ←− ζL (or j · · · −→ ℓ←− ζJ ) conditioning on C ∪ ζ−L (or C ∪ ζ−J ) in the augmented
graph GI .

It follows that

p
(∅)
j|C = p

(L)
j|C = p

(J)
j|C = p

(I)
j|C (23)

the first equality is by Proposition B.2; the second equality is by Equation (22) with corresponding ĨJ -Markov properties
since ∅ ∈ ĨJ and {p(I)}I∈ĨJ

∈MĨJ
(G), and the third equality is by Equation (20).

By contrary, if Equation (21) doesn’t hold, i.e. such path exists, then by definition, it must exist ℓ ∈ ĨJ := I ∪ J ⊂ V such
that j is d-connected to ĨJ through −→ ℓ←− ζĨJ or←− ℓ←− ζĨJ with ℓ ∈ C or ℓ /∈ C respectively. This path should not
involve nodes in ζ−ĨJ

because they are conditioned. If conditioning on ζ−ĨJ
can open any path, it must serve as a collider,

but all nodes in ζ−ĨJ
have no parent. Therefore, that path between (and including) j and ℓ is made of nodes and edges in G,

conditioning on C ⊂ V .

Thus, through ℓ, j is d-connected to ζI or ζJ conditioning on set C in graph GI , conditioning on C ∪ ζ−I or C ∪ ζ−J

respectively. By (C2), p(I)j|C ̸= p
(∅)
j|C or p(J)j|C ̸= p

(∅)
j|C , which is contradiction with Equation (23).

Next, we consider the if direction. Given conditions (C3) and (C4), (C1) is straightforward. Now we consider (C2). Suppose
for any disjoint A,C ⊂ V and any j ∈ A, I ∈ I, p(I)j|C = p

(∅)
j|C we want to show

j ⊥⊥GI ζI |C ∪ ζ−I .

By (C3), there exists J ∈ I and J ̸= ∅ such that

j ⊥⊥GI ζJ |C ∪ ζ−J

If J = I we are done. If not, by I-Markov condition, we have p
(J)
j|C = p

(∅)
j|C = p

(I)
j|C i.e. [p̃J ]

(ĨJ )
j|C = [p̃J ]

(∅)
j|C . By (C4),

j ⊥⊥GĨJ
ζĨJ |C ∪ ζ−ĨJ

,

similar to the previous argument,

j ⊥⊥GI ζI |C ∪ ζ−I

Proof for Theorem 5.10. We consider ground truth by adding a star notion G∗, I∗, and E∗, and denote π∗
ℓ :=

|E∗
ℓ |
T , πc :=

|Ec|
T ,
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πcℓ :=
|EcE∗

ℓ |
T . For a possible choice (ignoring penalty terms),

−S(G, I, E) = − sup
ϕ

Nc∑
c=1

K∑
ℓ=1

πcℓ
1

|EeE∗ℓ |
∑

x∈EeE∗
ℓ

[
log f (c)(x)

]

→ − sup
ϕ

Nc∑
c=1

K∑
ℓ=1

πcℓ E
x∼p(ℓ)

[
log f (c)

]

= − sup
ϕ

Nc∑
c=1

K∑
ℓ=1

πcℓ E
x∼p(ℓ)

[ d∑
j=1

log f
(c)
j|Paj

]

= − sup
ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
− log

p
(ℓ)
j|Pa∗j

f
(c)
j|Paj

+ log p
(ℓ)
j|Pa∗j

]

= − sup
ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
−DKL(p

(ℓ)
j|Pa∗j

||f (c)
j|Paj )−H(p

(ℓ)
j|Pa∗j

)

]

= − sup
ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
−DKL(p

(ℓ)
j|Pa∗j

||f (c)
j|Paj )

]
− sup

ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
−H(p

(ℓ)
j|Pa∗j

)

]

= inf
ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
DKL(p

(ℓ)
j|Pa∗j

||f (c)
j|Paj )

]
+

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
H(p

(ℓ)
j|Pa∗j

)

]

= inf
ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
DKL(p

(ℓ)
j|Pa∗j

||f (c)
j|Paj )

]
+

K∑
ℓ=1

d∑
j=1

( Nc∑
c=1

πcℓ

)
E

x∼p(ℓ)

[
H(p

(ℓ)
j|Pa∗j

)

]

= inf
ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
DKL(p

(ℓ)
j|Pa∗j

||f (c)
j|Paj )

]
+

K∑
ℓ=1

d∑
j=1

π∗
ℓ E
x∼p(ℓ)

[
H(p

(ℓ)
j|Pa∗j

)

]
(24)

Note that G, I, ϕ are used by model f (k) in Equation (3).

For the score of ground truth (ignoring penalty terms):

−S(G∗, I∗, E∗)→ inf
ϕ

K∑
ℓ=1

d∑
j=1

π∗
ℓ E
x∼p(ℓ)

[
DKL(p

(ℓ)
j|Pa∗j

||f (ℓ)
j|Paj )

]
+

K∑
ℓ=1

d∑
j=1

π∗
ℓ E
x∼p(ℓ)

[
H(p

(ℓ)
j|Pa∗j

)

]
(by Equation (24))

→ 0 +

K∑
ℓ=1

d∑
j=1

π∗
ℓ E
x∼p(ℓ)

[
H(p

(ℓ)
j|Pa∗j

)

]
(by Assumption 5.8)

(25)

Combining Equation (24) and Equation (25) , we have (considering penalty terms):

S(G∗, I∗, E∗)− S(G, I, E)

= inf
ϕ

Nc∑
c=1

K∑
ℓ=1

d∑
j=1

πcℓ E
x∼p(ℓ)

[
DKL(p

(ℓ)
j|Pa∗j

||f (c)
j|Paj )

]
+ λ

(
|G| − |G∗|

)
+ λM

(
|I| − |I∗|

) (26)

where |I| = g(M) and |I∗| = g(M∗) . The first term in Equation (26) is the score term, others are penalty terms.

Suppose there exist a cluster e that is not pure,i.e., exist a, b ∈ [K] with a ̸= b but πea > 0 and πeb > 0. Since they are
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different distributions, there exists j ∈ [p] such that p(b)j|Pa∗j
̸= p

(a)
j|Pa∗j

. Then the score term in Equation (26) has lower bound:

inf
ϕ

K∑
ℓ=1

d∑
j=1

πeℓ E
x∼p(ℓ)

DKL(p
(ℓ)
j|Pa∗j

||f (e)
j|Paj )

≥ inf
ϕ

{
πea E

x∼p(a)

[
DKL(p

(a)
j|Pa∗j

||f (e)
j|Paj )

]
+ πeb E

x∼p(b)

[
DKL(p

(b)
j|Pa∗j

||f (e)
j|Paj )

]} (27)

if Equation (27) is zero, by strictly positive assumption, we have DKL(p
(a)
j|Pa∗j

||f (e)
j|Paj ) = DKL(p

(b)
j|Pa∗j

||f (e)
j|Paj ) = 0,which

implies p(b)j|Pa∗j
= p

(a)
j|Pa∗j

, contradiction. Thus, Equation (27) is positive.

Now we assume that each estimated cluster Êc (c ∈ {1, . . . , Nc}, Nc ≥ K) contains samples from same domains. We
rearrange the index of clusters such that samples in the k-th cluster are from the k-th domain for k ∈ {1, . . . ,K}. Then
Equation (26) has lower bound

inf
ϕ

K∑
ℓ=1

π∗
ℓ E
x∼p(ℓ)

DKL(p
(ℓ)||f (ℓ))

≥(min
ℓ

π∗
ℓ ) inf

ϕ

K∑
ℓ=1

DKL(p
(ℓ)||f (ℓ))

(28)

Equation (28) is positive if and only if

η(G, I) := inf
ϕ

K∑
ℓ=1

DKL(p
(ℓ)||f (ℓ)) (29)

is positive. G, I, ϕ are used by model f (k) in Equation (3).

Recall that the ground truth distribution set is {p(I)}I∈I∗ and |I∗| = K, which means there are K domains and each domain
has its own distribution and its own intervention target in I . we have assigned each domain a number in [K] := {1, 2, . . . ,K}.
For example, for I ̸= J ∈ I∗ we assign k, ℓ ∈ [K] respectively. In Equation (28) we rearranged the recovered indexes
so that it is consistent with assigned indexes, and dropped duplicated clusters to make sure each domain has exactly one
corresponding cluster. These operation is for simplifying the analysis. Now for each domain, the data is ready, the left
is to estimate its intervention target (by finding its elements ) and distribution density (approximated by training a neural
network).

Now we are going to show: the above score would be positive if some estimated augmented graph GĨJ do not have the
same skeleton or v-structure as the ground truth graph. If this could be done, we could conclude that the learned G and I is
I-Markov Equivalent to the grounded in the sense MI(G) = MI∗(G∗) according to proposition 3.14 in Yang et al.’s work
(2018).

Equation (28) builds a bridge to the score of previous Brouillard et al.’s work. However, in general, their proof cannot be
directly applied because some gaps occur in the case where ∅ /∈ I. In the following part of this proof, our contribution is to
show Assumption 5.9 can fill these gaps. We use Brouillard et al.’s work to refer to Brouillard et al.(2020)’s result.

Consider any I ̸= J in I∗, and the corresponding correct J-observation target is Ĩ∗J , which is estimated by ĨJ . Suppose any
j ∈ [p] such that j ∈ Ĩ∗J but j /∈ ĨJ . Since node j and ζĨ∗

J
are never d-separated in ground truth G∗Ĩ

∗
J , so we have:

j ̸⊥⊥G∗Ĩ∗
J
ζĨ∗

J
|Paj ∪ ζ−Ĩ∗

J
(30)

(recall that Paj means parents set of node j in graph G, not in ground truth graph G∗)

The following part of the proof involves a notion called Z(j, A) used in Brouillard et al.’s work.

Z(j, A) := {(p(1), p(1))
∣∣p(1)j|A = p

(2)
j|A and p(1), p(1) > 0} (31)

By Assumption 5.9 and second property in Definition 5.5, we have[
p̃
(ĨJ )
J

]
j|Paj
̸=

[
p̃
(∅)
J

]
j|Paj

(32)
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which means p
(I)
j|Paj

̸= p
(J)
j|Paj

, so (p(I), p(J)) /∈ Z(j,Paj). On the other hand, recall the model design in Equation (3)

and Equation (4), suppose the index for I and J is k and ℓ respectively, then j /∈ ĨJ , therefore, f (I)
j|Paj

= f
(J)
j|Paj

and

(f (I), f (J)) ∈ Z(j,Paj). So we have

η(G, I) = inf
ϕ

K∑
ℓ=1

DKL(p
(ℓ)||f (ℓ))

≥ inf
ϕ

DKL(p
(I)||f (I)) + DKL(p

(J)||f (J))

≥ inf
(f1,f2)∈Z(j,Paj)

DKL(p
(I)||f1) + DKL(p

(J)||f2)

>0

(33)

The last inequality holds by Lemma 16 in Brouillard et al.’s work.

In Case 0.1 of proof for Theorem 2 in Brouillard et al.’s work, they have shown that if η(G, I) > 0, then λ+λM is sufficient
small would implies Equation (26) is positive, which in the sense

λ+ λM < min
(G,I)∈S

η(G, I)
−min{|G| − |G∗|, |I| − |I∗|}

(34)

where S := {(G, I)|min{|G| − |G∗|, |I| − |I∗| < 0} .

Thus we have Ĩ∗J ⊂ ĨJ and therefore |Ĩ∗J | ≤ |ĨJ |. Penalty on |ĨJ | would push |Ĩ∗J | = |ĨJ | (there is also an inequality like
Equation (34), see Case 0.2 in their paper), so Ĩ∗J can be learned correctly. The above reasoning is adjusted from Case 0.1
and Case 0.2 of proof for Theorem 2 in Brouillard et al.’s work. From now on we assume we found I∗.

Consider any C ⊂ V , and i ̸= j in V \ C, that i is d-connected to j given C in true graph G∗. By Assumption 5.9 and the
first condition in Definition 5.5, there exists I ∈ I , such that Xi ̸⊥⊥p(I) Xj |XC . Therefore, in Case 1 , 3, and 4 of proof for
Theorem 1 in Brouillard et al.’s work, one can still find such p(I) /∈M(G), which implies η(G, I∗) > 0

As shown in Case 1 of proof for Theorem 1 in Brouillard et al.’s work: if η(G, I∗) > 0, then λ is sufficient small would
implies Equation (26) is positive, which in the sense

λ < min
(G,I∗)∈G+

η(G, I∗)
|G∗| − |G|

(35)

where G+ is as same as what is defined in their paper.

In Case 2, where nothing needs to be adjusted. And we could assume |G| = |G∗| in Case 3∼ 6, in which case, η(G, I∗) > 0
implies Equation (26) is positive.

Consider any C ⊂ V , i ∈ V \ C, and I ∈ I, that i is d-connected to ζI given C ∪ ζ−I in true augmented graph G∗I
∗
. By

Assumption 5.9 and second property in Definition 5.5, [p̃(ĨJ )J ]j|C ̸= [p̃
(∅)
J ]j|C i.e. p(I)j|C ̸= p

(J)
j|C Thus, Case 5, 6 of proof for

Theorem 1 in Brouillard et al.’s work one can still find such (p(I), p(J)) /∈ Z(j,Paj), which implies η(G, I∗) > 0

Now, we have shown that with the given condition, for any J ∈ I, we can learn each J-observation augmented graph’s
skeleton and v-structure. By Theorem 3.14 in Yang et al.(2018)’s paper, we learned an I-MEC to the true augmented graph.
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D. Detailed Implementation
Hyper-parameter setting In experiments, each method requires multiple hyper-parameters. We highlight how those
hyper-parameters are set in Table 8. Both synthetic and real-world datasets are about time series, we control the maximal
time lag to be 1, which means all methods consider the relation between xt−1 and xt; and ignore relations like xt−2 and xt.
Some methods rely on Conditional Independence tests (i.e. CI Test), each test gives a p-value to compare with a pre-specified
value α, called confidence level. α is controlled to be 0.01. Some methods require coefficients for penalty terms. The
magnitude of those coefficients depends on the specific implementations of specific methods. Therefore, different methods
have different magnitudes for penalty-term coefficients.

Table 8. Hyper-parameter setting

HYPER-PARAMETER DESCRIPTION INVOLVED METHODS VALUE

TIME LAG TIME LAG RELATION TO CONSIDER ALL 1
ALPHA CONFIDENCE LEVEL FOR CI TESTS THOSE WHO USE CI TEST 0.01

HIDDEN DIM NEURAL NETWORK ARCHITECTURE DCDI, LIN 5
N HIDDEN LYR NEURAL NETWORK ARCHITECTURE DCDI, LIN 1

LR LEARNING RATE DCDI, LIN 0.01
LMD COEFFICIENT FOR PENALTY TERMS DYNOTEARS [1E-1, 1E-3]
PNT COEFFICIENT FOR PENALTY TERMS DCDI [1E-2, 1E-4]
PNT COEFFICIENT FOR PENALTY TERMS LIN {1E-08, 1E-16}
Nc NUMBER OF CLUSTERS TO CONSIDER LIN {2, 3, 4, 5}

Tuning For baseline methods, if there exist multiple choices for hyper-parameters, we take the result with the best F1
score in the test set. For our LIN method, we take the result with the best criterion as stated in Equation (11). This criterion
is calculated in hold-out data in the training set.

Interpreting PAGs as DAGs Some baseline methods, like CD-NOD, PCMCI, and SVAR-FCI, would not guarantee
DAGs, instead, they report Partial Ancestral Graphs (PAGs). Therefore, inspired by Pamfil et. al. (2020), we use following
rules in evaluation process:

• For usual directed edges −→: we treat them as regular edges in DAGs.

• For bi-directed edges←→: this type of edge means there is no causal relation between two variables (although they are
correlated), so we drop them before evaluation.

• For other types of edges with ambiguous, like ◦ −→ and ◦ − ◦: only check whether skeleton is correct.

with these rules, we got results in evaluation, which prefer to believe those ambiguous edges are correct.

Details about Generating Process driven by Brownian Motions In this paper, we generate two groups of synthetic
data by the dynamic behind those latent interventions. The first group is those whose interventions are controlled by a
Brownian motion, as illustrated in Figure 3. The left part is one-dimension Brownian motion, the horizon axis is time t,
and the vertical axis can be seen as the position of the system concerned in its environment; Different colors represent
domains with different interventional distributions. For example, when time t = 2, the system is in the red area, its data
generating process follows the interventional distribution associated with this red area Pred(xt|xt−1); and when time t = 6,
it follows the interventional distribution associated with blue area Pblue(xt|xt−1) ̸= Pred(xt|xt−1). The sample partition can
be represented in time-order like

{red, red, . . . , blue, red, . . . , blue, blue}

or we can use domain index zt ∈ {0, 1} to represent the interventional distribution from which sample xt is generated. If
we use 0 forred, and use 1 for blue, then domain indexes are:

{0, 0, . . . , 1, 0, . . . , 1, 1}
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Figure 3. examples for Brownian motion

Similarly, The right part is two-dimension Brownian motion in the x-y plain which is parameterized by time t. In this case,
there are four possible interventional distributions that may affect the system we concern: Pred(xt|xt−1), Pblue(xt|xt−1),
Pyellow(xt|xt−1), and Pgreen(xt|xt−1); and domain index zt ∈ {0, 1, 2, 3} can be used.

When generating synthetic data, we let each colored area be a finite interval with length M in the one-dimensional world;
or an M ×M rectangle in the two-dimensional world, repeated in whole space, and set M = 5 in practice. Each node’s
interventional distribution is controlled by a neural network that transforms its parents in the causal graph to distribution
parameters. In practice, we use Gaussian distribution, and the parameters mean, and variance are determined by nodes’
parents.

Although for synthetic data, we know the exact value of domain index zt, they are assumed to be unknown as in realistic
situations, and would only be used to evaluate the model’s ability to recover them. None of our proposed LIN method or
other baseline methods can use these domain indexes in training.

Extraction of Real-world Climate dataset We use ERA5 hourly data on single levels from 1959 to present in Copernicus
climate data store the variables are 2m temperature and Surface pressure. The data is sub-sampled to 00:00 on each day
from 2001 to 2021. The latitude and longitude for Pacific Walker Data are summarised in Table 9. For each region, we
describe a rectangle in the world map, and valuables in that region are averaged so that for each one of the four regions,
there is a scalar value at each time point.

Table 9. latitude and longitude

SUB-REGION NORTH WEST EAST SOUTH VARIABLE

WPAC 5 140 145 -5 SURFACE PRESSURE
CPAC 5 -145 -140 -5 SURFACE AIR TEMPERATURE
EPAC 5 -95 -90 -5 SURFACE AIR TEMPERATURE

ATL 20 -50 -40 10 SURFACE AIR TEMPERATURE
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